JP2013516327A - マニピュレータの自動ティーチング及び位置補正システム - Google Patents

マニピュレータの自動ティーチング及び位置補正システム Download PDF

Info

Publication number
JP2013516327A
JP2013516327A JP2012547132A JP2012547132A JP2013516327A JP 2013516327 A JP2013516327 A JP 2013516327A JP 2012547132 A JP2012547132 A JP 2012547132A JP 2012547132 A JP2012547132 A JP 2012547132A JP 2013516327 A JP2013516327 A JP 2013516327A
Authority
JP
Japan
Prior art keywords
reference point
processing device
transmitter
station module
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012547132A
Other languages
English (en)
Other versions
JP5981848B2 (ja
Inventor
マーティン ホーセック
Original Assignee
ブルックス オートメーション インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブルックス オートメーション インコーポレイテッド filed Critical ブルックス オートメーション インコーポレイテッド
Publication of JP2013516327A publication Critical patent/JP2013516327A/ja
Application granted granted Critical
Publication of JP5981848B2 publication Critical patent/JP5981848B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/402Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for positioning, e.g. centring a tool relative to a hole in the workpiece, additional detection means to correct position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4189Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the transport system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • G05B19/421Teaching successive positions by mechanical means, e.g. by mechanically-coupled handwheels to position tool head or end effector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67294Apparatus for monitoring, sorting or marking using identification means, e.g. labels on substrates or labels on containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36414Compare image detected path with stored reference, difference corrects position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36461Teach for each next similar fixture, piece only some reference points
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Robotics (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Mechanical Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

処理デバイスの少なくとも一部を囲むハウジングと、当該処理デバイスに取り付けられた少なくとも1つの標的と、ハウジング内に配されている少なくとも1つの送信機であって、当該少なくとも1つの標的に当該少なくとも1つの送信機を特定する識別信号を送信する少なくとも1つの送信機と、当該少なくとも1つの標的及び当該少なくとも1つの送信機に動作可能に接続されているコントローラと、を含む基板処理システムであって、当該処理デバイスは、当該少なくとも1つの標的と既知の関係にある第1の処理デバイス基準点を有し、当該コントローラは当該識別信号に基づいて、当該少なくとも1つの標的及び当該少なくとも1つの送信機のうちの1つからデータ信号を受信して、当該データ信号に基づいて当該処理デバイスの動作特徴を制御する基板処理システム。

Description

本実施例は、ロボットシステムに関し、さらに具体的には、ロボットシステムのセットアップ(setup)及び操作に関する。
通常、ロボットマニピュレータのセットアップは、手作業でまたは自動的に行われる、時間がかかりかつ退屈な作業である。ロボットマニピュレータの手作業でのセットアップは、セットアップを行うオペレータについて主観的である傾向があり、通常は繰り返しが不可能なものである。手作業のセットアップの主観的かつ繰り返し不可能な性質は、通常、マニピュレータが設置されたシステムの結果的に得られる能力に影響を与える。手作業のセットアップを完了するための時間(例えば、作業員のコスト、ツール時間(tool time)等)は、マニピュレータのセットアップの費用を高価にし得る。ロボットマニピュレータの手作業のセットアップは、システムが粒子に敏感(例えば、クリーンルーム環境)な場合に汚染をもたらし得、人間及び装置の安全性の問題(有害な化学物質への暴露、またはシステムのロボットマニピュレータ及び他のパーツの衝突による損傷のリスク)を伴い得る。
ロボットマニピュレータの従来の自動的なセットアップは、ロボットマニピュレータに設けられる高価な固定具及び様々なセンサの使用を伴い、並びに/またはマニピュレータが相互作用する処理器具の使用を伴う。センサは、通常は、ロボットのコントローラがアラインメント固定具の特定の特徴及びマニピュレータが固定具またはステーション(station)に接触したことを示すモータのトルクを検出することを可能とする磁気的、光学的または触覚的センサである。
システムのロボットマニピュレータがシステムのステーション(例えば、基板保持ステーション他)と相互作用することなしに、ロボットシステム内の点を自動的にティーチング可能なことは有利であり得る。以下に説明するように、自動的ティーチングシステムが自動的ステーションティーチングを越えた利点をもたらし得ることは有利であり得る。
本開示の実施例の上述の特徴及び他の特徴は、以下の記載において、添付の図面とともに説明される。
実施例の例示の処理システムを示す図である。 実施例の例示の処理システムを示す図である。 実施例の例示の処理システムを示す図である。 実施例の位置決めシステムを示す図である。 実施例の一態様のフロー図である。 実施例の一態様のフロー図である。 実施例の位置誤差の例を表すグラフである。 実施例の位置誤差の例を表すグラフである。 実施例のマニピュレータの漸増移動(incremental move)を表すグラフである。 実施例の自動ティーチングプロセスの収束の例を表すグラフである。 実施例のマニピュレータ及びステーションの概略図である。 実施例の他の態様のフロー図である。 実施例の他の態様のフロー図である。 実施例のマニピュレータ及び/またはステーションのチェックレベルについての基準平面からのズレを示す図である。 実施例のさらに他の態様のフロー図である。 実施例のまたさらに他の態様のフロー図である。 実施例の例示のアクチュエータの概略図である。 実施例の例示のアクチュエータの概略図である。 実施例の一態様のフロー図である。
図1A−1Cは、実施例の例示の処理環境を示している。本開示の実施例は、図面に示されている実施例に関して説明されるが、本開示の実施例は多数の代替形式にて実施され得ることが理解されるべきである。さらに、任意の適切なサイズ、形状またはタイプの要素及び材料が使用され得る。
実施例の1つの態様において、空間的位置決めシステム(SPS)100が、以下に説明するように非接触の態様にて(治具もしくは固定具なしに、またはワークステーションとの接触なしに)、例えば、取り上げ及び配置用途においてロボットマニピュレータを自動的に配置するように構成されていてもよい。実施例は、ワークピース内のロボットマニピュレータ位置の手作業ティーチングを実質的に排除するように構成されていてもよい。実施例の自動的なティーチングは、効率的な態様かつ短時間でのロボットマニピュレータの再現可能なセットアップをもたらし得る。空間的位置決めシステム100との人間のやりとりを最小する故に、自動的ティーチングは、クリーンルーム環境(例えば、実験室、手術室、半導体製造ツール/施設)に汚染をもたらすことなく実行され得る。
実施例の他の態様において、空間的位置決めシステム100が、以下に説明するように、共通の基準点・参照点に対してシステム内の個別のステーションをアラインメントしかつ/または水平にする・高さ合わせする(レベリングする)(level)ように構成されてもよい。単に例示であるが、ステーションは、半導体基板ハンドリングツールの基板アライナ、ロードポート及び処理モジュールを含む任意の適切なステーションであってもよい。ステーションのアラインメント及び/またはレベリングは、システムの組み立ての間(例えば、システムの製造の間)またはシステムが保守点検される際の現場において(例えば、保守手順の間等)等の任意の適切な時に行われてもよい。単なる例示であるが、ステーションがセットアップされる時としての例は、処理装置の製造工程の間を含む(これは、例えば、自動供給装置の材料ハンドリングプラットフォームの最初のセットアップを含んでもよく、その後、セットアップされたものは部分的に解体されて材料処理システム製造業者に送られてもよい。この処理システムは、材料処理システム製造業者においてさらに大きなシステム内に一体化され得、その後、当該システムが部分的に分解されてエンドユーザに送られてもよい)。ステーションがセットアップされる時の他の例は、例えば、エンドユーザ(例えば、半導体製造施設または他の適切な施設)におけるシステム組み立ての間を含む。ステーションがセットアップされる時のさらに他の例は、例えば、エンドユーザの施設におけるシステムの保守または点検を含む(例えば、ロボットマニピュレータまたは処理モジュール等のコンポーネントが点検または取り替えられる際)。開示されている実施例は、例えば、限定するわけではないが、存在するステーション調整の特徴構造を用いてステーションレベリングの誤差を補正するための調整量を含むステーションのレベリングに関する情報等の任意の適切な空間的情報をもたらしてもよい。
さらに他の態様において、実施例は、以下に説明するように、マニピュレータが使用されている間(例えば、オンザフライ・移動中(on-the-fly))にロボットマニピュレータの位置誤差を補正するように構成されてもよい。このような位置誤差は、例えば、ロボットマニピュレータの位置をトラッキングするために使用される位置フィードバックデバイスの不正確性によってもたらされ得る。位置的な誤差は、ロボットマニピュレータの機械的要素における許容誤差を介してもたらされ得、これはマニピュレータの非線形機構によってまたはマニピュレータの機械的部品の摩耗によって増幅され得る。実施例は、取り上げ及び配置動作の正確性及び再現性を向上させ、位置フィードバックデバイス及びロボットマニピュレータの機械的構成要素に対する製造許容誤差の正確性要求を緩和し得る。
本開示の実施例の他の態様において、空間的位置決めシステム100は、以下に説明するように、モータを制御及び/または整流するために全ての座標の実質的に同時の非接触測定をもたらすように構成され得る。非限定的な例として、空間的位置決めシステムは、限定するわけではないが、平面またはリニアモータ、球状モータ及びセルフベアリングモータ(例えば、セルフベアリング回転モータ、磁気的浮上プラットフォーム等)を含む任意の適切なモータの軸及び/または回転座標を測定するように構成され得る。適切なモータの例は、米国特許出願第11/769,651号(出願日、2007年6月27日)に開示されているものを含み、当該出願の開示内容は、参照されることによって全体として本明細書に包含される。
図1Aを参照すると、実施例が半導体処理装置またはシステムの一部されていてもよい。実施例は半導体製造装置に関して説明されるが、実施例は、限定するわけではないが、組み立てプラント、医療デバイス(例えば、ロボット手術装置等)及び、例えば、固定体または移動体に対する正確な位置決めをもたらす実験装置を含む、任意の取り上げ及び配置環境並びに/またはロボットシステムにも同様に適用可能であることが理解されるべきである。
実施例における処理装置10は、代表的な構成を有するクラスタツールとして図1Aに示されている。代替実施例において、処理装置10は、任意の他の所望の構成を有し得る。装置10は、例えば、200mm、300mm、350mm、400mm、またはさらに大きな直径のウェハ等の半導体基板またはウェハの処理を可能なような寸法または形状になされ得る。代替実施例において、処理装置は、限定するわけではないが、フラットパネルディスプレイの基板を含む任意の他の所望の基板を処理可能であってもよい。図1Aに示す実施例において、装置10は、通常は、フロントセクション12及びリアセクション14を有していてもよい。フロントセクション12は、装置10にそれ以外の製造施設(FAB)とのインタフェースをもたらしてもよい。例えば、フロントセクション12は、SMIF及びFOUP等の任意の適切な基板キャリアのドッキングを許容する1または複数のロードポート16(例示の目的で2つの場合を示している)を有する環境的に制御されたモジュールであってもよい。このロードポートは、例えばFAB自動材料ハンドリングシステムもしくはビークル(vehicle)を介してまたは手動手段を介して、キャリアCの自動的なローディング/アンローディングを許容するようになされていてもよい。フロントセクション12は、装置10と装置のインタフェースにドッキングされているキャリアCとの間で基板をローディング/アンローディングする任意の適切な搬送装置11を有していてもよい。適切な搬送装置は、限定するわけではないが、本願と同一の出願人による米国特許第第6,002,840号に記載されている例示の搬送装置を含み、当該特許文献の内容は全体として参照することによって本明細書に包含されている。1つの例において、搬送装置は、図2に示されているような、上腕アーム251、前腕アーム252、及びエンドエフェクタ253を含むSCARAタイプの搬送装置250であってもよい。ツールの、フロントセクション12と類似のフロントセクションの適切な例は、全体を参照することによって本明細書に包含されている米国特許出願第11/178,836号(出願日、2005年7月11日)に記載されている。代替実施例において、装置のフロントセクションは、任意の他の所望の構成を有していてもよい。他の代替実施例において、装置は、分離しているかまたはその他識別可能なフロントエンドセクションをもたず、リアセクションが、介在するロードロックなしに、装置のローディングインタフェースと直接やりとり可能であってもよい。
リアセクション14は、外部雰囲気とは隔離された雰囲気を保持可能であってもよく、実施例において、フロントセクションの雰囲気から隔離され得る。リアセクション14は、不活性ガス(窒素またはアルゴン)を保持し得るか、またはリアセクション14は、真空状態を保持し得る。実施例において、リアセクションは、通常は、ロードロックセクション20、搬送チャンバ22及び処理モジュール24を有する。ロードロックセクション20、搬送チャンバ22及び処理モジュール24の1または複数は、リアセクション14及び/またはロードロックセクション20、搬送チャンバ22及び処理モジュール24のうちの1以上を隔離する1または複数のスロットバルブを含んでいてもよい。スロットバルブは、任意の適切な構成を有する任意の適切なスロットバルブであってもよい。リアセクション14は、装置のロードロックと処理セクションとの間で基板を搬送するために、搬送チャンバ22内に配されている任意の適切な基板搬送システム23を有していてもよい。理解されるように、リアセクションとフロントとをインタフェースしているロードロックセクション20は、リアセクション14内の隔離された雰囲気を漏洩させることなく、雰囲気的に隔離されたリアセクション14とフロントセクション12との間で基板を搬送することを許容する。処理モジュール24は、基板の任意の所望の処理(例えば、材料堆積、イオン注入、洗浄、エッチング、研磨、計測等)を実行するようになされていてもよい。以下にさらに詳細に説明されるように、処理装置10は、空間的位置決めシステム100を用いて構成されていてもよい。
図1Bを参照すると、他の例示の処理装置10′が示されている。この例において、処理装置10′は、処理モジュール24′、基板搬送装置11a−11c及びロードロック20a′、20b′を含んでいる直線的に配置されている処理システムである。例示の直線的に配置されている処理装置は、米国特許出願第11/442,511号(出願日、2006年5月26日)にみられ、当該出願の開示内容は、全体が参照されることによって本明細書に包含されている。この直線に配置された処理装置は、以下でさらに詳細に説明される空間的位置決めシステム100を用いて構成されていてもよい。
図1Cを参照すると、空間的位置決めシステム100が、製造施設の任意の1または複数の位置内にコンポーネントをアラインメントするために構成されていてもよい。例えば、空間的位置決めシステム100は、自動化された材料ハンドリングシステム60のオーバーヘッド(架空)搬送ビークル61を、処理装置10のロードポートと自動的にアラインメントするように構成されていてもよい。適切なオーバーヘッド搬送システムの一例は、参照することによって全体として本明細書に包含されている米国特許第7,165,927号に記載されている。空間的位置決めシステム100は、限定するわけではないが、参照することによって全体として本明細書に包含されている米国特許出願第10/624,987(出願日、2003年7月22日)に記載されているようなコンベヤ及び/またはカート等の架空搬送装置及び地上搬送装置を含む任意の適切な自動材料ハンドリングシステムをアラインメントする様に構成され得ることが理解される。
図2を再度参照して、空間位置決めシステムが、処理装置290に関してさらに詳細に説明される。この例において、処理装置290は、図1Aに関して上述されたバックエンド14及びロードロック20と実質的に類似していてもよい。例えば、処理モジュールPM1−PM4は、処理モジュール24と実質的に類似していてもよく、ロードロックLL1、LL2は、図1Aに関して上述されたロードロック20と実質的に類似していてもよい。空間的位置決めシステム100は、コントローラ270、1または複数の送信機200A−200F及び1または複数の標的210A−210N、210P−210Vを含んでいてもよい。以下に説明するように、標的は送信機からの信号を受信要素に向けてパッシブに返送するパッシブなものであるか、または標的は送信機からの信号を受信するアクティブな受信機であってもよい。所定の数の送信機及び標的が図において示されるが、代替実施例において、図に示されているよりも多いかまたは少ない数等の任意数の送信機及び標的があってもよい。コントローラ270は、本明細書に記載されている実施例の態様を実行するために、プロセッサ、メモリ(例えば、メモリ275)及び当該メモリ上に保存されているコンピュータ可読プログラムコードを含む任意の適切なコントローラであってもよい。コントローラ270は、空間的位置決めシステム100専用のものであってもよく、処理装置290及び/または製造施設の可動に関する制御システムの一部であってもよい。
1つの実施例において、送信機200A−200Fは、限定するわけではないが、光、ラジオ周波数、セルラー方式及び音送信機を含む任意の適切な送信機であってもよい。送信機200A−200Fの各々は、限定するわけではないが、有線または無線接続を含む任意の適切な態様でコントローラ270に接続されていてもよい。送信機は、標的210A−210N、210P−210Vを検出することが可能でありかつ以下で説明される位置判定を行うためにコントローラ270によって解釈される任意の適切な特徴を有する任意の適切な信号を送信してもよい。1つの実施例において、送信機は、例えば、標的によって送信機にパッシブに反射された(またはその他の態様で返送された)信号を検出する受信機を含んでもよい。代替実施例において、当該標的は、送信機からの信号を受信するために任意の適切な位置に配された受信機を含んでもよい。送信機200A−200Fの各々によって送信される信号は、例えば、コントローラ270が、送信機200A−200Fの各々をその信号の各々によって識別可能であるように構成される。代替実施例において、送信機200A−200Fの各々は、任意の適切な態様で識別されてもよい。代替実施例において、標的及び送信機の位置は、本明細書に記載されているように物体の位置を判定するための等価位置情報(equivalent position information)が取得できる限り、逆転させられ得る。
標的210A−210N、210P−210Vは、それらの位置が判定されるように、送信機200A−200Fによって検出可能な任意の適切な標的であってもよい。この実施例において、標的210A−210N、210P−210Vは、送信機から送信された信号を送信機にパッシブに反射する(かまたはその他の態様で返信する)パッシブ標的であってもよく、当該信号は、例えば任意の適切な受信機による検出のために送信機から到来する。標的210A−210N、210P−210Vは、コントローラ270等の任意の他のデバイスと接続されていないか、または当該任意の他のデバイスと情報を共有していてもよく、その一方で、例えば、送信機(または他の受信デバイス)による当該標的の検出を許容する。代替実施例において、標的は、例えば、送信機からの信号を処理して、それらの信号をコントローラ270等のシステムの他のコンポーネントに送信し得るアクティブな標的であってもよい。標的210A−210N、210P−210Vがアクティブである他の代替実施例において、標的は、例えば、コントローラ270に、送信機200A−200Fに関して上述したような任意の適切な態様にて適切に接続されていてもよい。
他の実施例において、空間的位置決めシステム100は、基準送受信機(送信機200A−200Fと置換されてもよいかまたは標的210A−210N、210P−210Vと置換されてもよい)及びアクティブ送受信機(標的210A−210N、210P−210Vと置換されてもよいかまたは送信機200A−200Fと置換されてもよい)を含んでもよい。この基準送受信機は、上述のような信号を発射してもよく、この信号はアクティブ送受信機に受信される。アクティブ送受信機は、同一のまたは異なった信号を基準送受信機に返送してもよい。基準送受信機は、アクティブ送信機からの信号を読み取り、同一の信号をコントローラ270に送信するように構成されて、本明細書に記載されている判定/演算が行われる。
送信機200A−200Fは、処理装置290の周囲及び/または内部の任意の適切な位置に配されてもよい。単なる例示であるが、図2において、送信機200A−200Fは、搬送チャンバ265と処理モジュールPM1−PM4及びロードロックLL1、LL2との間のインタフェースの側部の各々に配されている。標的210A−210N、210P−210Vは、処理装置290のコンポーネント内及び/または周囲の任意の適切な1または複数の位置/場所に配されてもよい。1つの実施例において、標的210A−210N、210P−210Vの位置は、標的の各々が標的210A−210N、210P−210Vの位置の判定のために十分な数の送信機200A−200Fと相互作用可能であるように選択されてもよい。例えば、標的は、送信機が標的に対する実質的に遮られていない「視界」を有するように、所定の送信機の所定の範囲内に配されてもよい。コンポーネントは、限定するわけではないが、互いに相互作用する、例えば処理モジュールPM1−PM4、ロードロックLL1、LL2、及び搬送装置250等の処理装置の任意の適切なコンポーネントを含んでもよい。この例において、処理モジュールPM1−PM4及びロードロックLL1、LL2の各々は、3つの標的を含む。代替実施例において、処理モジュールPM1−PM4及びロードロックLL1、LL2の各々は、3つよりも多いかまたは3つ未満の標的を有してもよい。図2に示すように、搬送装置250は、3つの標的210T−210Vを含むように示されているが、代替実施例において、搬送装置は3よりも多いかまたは3未満の標的を有してもよい。この例において、標的210T−210Vは、エンドエフェクタ253上に配されているが、代替実施例において、標的210T−210Vは搬送装置250の任意の適切な場所に配されていてもよい。この例において、処理モジュールPM1−PM4の各々、ロードロックLL1、LL2の各々、及び搬送装置250において3つの標的が使用され、通常は3つの点が所定の空間領域内の物体の位置を規定する(例えば、基準点(参照点)の3つの座標x、y、z、及び3つの回転Rx、Ry、Rzが3つの点の位置から判定されて、空間的領域内において標的が取り付けられている物体の位置が一意的に特定され得る)。
代替実施例において、標的210A−210Sが、搬送装置250の自動的なティーチングまたは位置補正のために1または複数のステーションに配されるかまたは固定され得る固定具に一体化されてもよい。他の代替実施例において、標的210T−210Vは、搬送装置250の自動的なティーチングをなすために、搬送装置250によって担持される固定具に一体化されてもよい。
図2をさらに参照すると、基準点(または複数の基準点)が処理装置のコンポーネントの各々に割り当てられる。例えば、ステーション基準点RSTNが、処理モジュールPM1に割り当てられてもよい。1つの例において、基準点RSTNは、処理モジュール内の所定の基板位置(例えば、所定の位置における基板の中心)に対応してもよい。代替実施例において、基準点RSTNは、処理モジュールPM1内の任意の適切な点に対応していてもよい。ステーション基準点RSTNの位置は、処理モジュールPM1内に配されている標的210A−210C等の1または複数の標的と一致してもよいか、またはこれらに関して識別されてもよい。理解されるように、基準点は、上述した態様と実質的に同様な態様にて他の処理モジュールPM2−PM4に割り当てられてもよい。
マニピュレータ基準点RRBTは、搬送装置250に関連付けられていてもよい。この例において、マニピュレータ基準点RRBTは、エンドエフェクタ253に配されており、その位置は、基板がエンドエフェクタ253上に担持された際に基板の所定の中心位置と一致する。代替実施例において、基準点RRBTは、搬送装置250上の任意の適切な位置にあってもよい。ステーション基準点RSTNについて上述したように、マニピュレータ基準点RRBTは、エンドエフェクタ253上に配された標的210T−210V等の1または複数の標的と一致するか、またはこれらに関して識別されてもよい。搬送装置250は、例えば、マニピュレータ基準点RRBTの位置を判定するために搬送装置250の運動学的方程式と共に使用され得るエンコーダ等の適切な位置フィードバックデバイスを含んでもよい。
ステーション及びマニピュレータ基準点RSTN及びRRBTは、各々、例えばx、y、z等の3つの独立した座標によって規定された空間内の位置を表してもよいか、または、例えばx、y、z、R、R、Rによって規定された基準座標系を形成するために一般化されてもよい。ここで、R、R、Rは、x、y及びz軸に対する回転を各々示している。代替実施例において、基準点RSTN及びRRBTは、任意の適切な数の軸を有する任意の適切な座標系内の任意の適切な点を表してもよい。単なる例示であるが、空間的位置決めシステム100に関連する座標系は、本明細書においてグローバル座標系をいい、搬送装置位置フィードバックデバイスを用いる座標系は、本明細書においてロボット座標系という。以下に説明するように、空間的位置決めシステム100は、非常に短時間で搬送装置250の全自由度の実質的に同時のティーチングをもたらす。図2の搬送装置250(実施例の説明に使用される)は、上述の6の独立座標に対応した6の自由度を含むが、代替実施例において、搬送装置は、6よりも大きいかまたは6未満の自由度を有してもよいことに留意する。
図3A−3Bを参照すると、処理モジュールPM1及びステーションST1の自動的なティーチングが、単なる例示の目的で説明されている。処理装置290の任意の適切なコンポーネント(または製造施設内の任意のコンポーネント)の位置が、実質的に同様な態様にてティーチングされてもよい。処理モジュールPM1内に包含されている標的210A−210Cの1または複数の位置は、任意の適切な態様にて空間位置決めシステム100から取得される(ブロック300、図3A)。例えば、送信機200A、200Bによって送信される信号は、任意の適切な態様にて配向または同期され(timed)、例えば、送信機200Aからの第1の信号及び送信機200Bからの第2の信号は、第1の時刻及び第2の時刻において受信機によって(例えば、標的210A−210Cの各々によって反射された後に)受信される。代替実施例において、送信機200A、200Bによって送信された信号は、任意の適切な態様にて配向または同期され、例えば、送信機200Aからの第1の信号及び送信機200Bからの第2の信号は、第1及び第2の時刻の各々において標的210A−210Cの各々によって受信される。コントローラ270は、例えば、第1及び第2の信号が受信される時刻に基づいて、送信機200A、200Bに対して標的210A−210Cの各々がどこに位置しているかを判定してもよい。送信機200A、200Bの各々は、グローバル座標系の所定の位置に存在し得るので、コントローラ270は、送信機に対する標的の位置に基づいてグローバル座標系にて標的210A−210Cの各々の位置を判定してもよい(ブロック310、図3A)。代替実施例において、グローバル座標系内の標的210A−210Cは、任意の適切な態様にて判定されてもよい。
図5を参照すると、コントローラは、例えば、搬送装置250に命令して、搬送装置に搬送装置の初期位置500R及び500G(Rはロボット座標を示し、Gはグローバル座標を示す)から、ロボット座標系内のステーションの理論上の座標を用いてティーチングされるステーションへの漸増移動(incremental move)をさせてもよい(ブロック320、図3A)。1つの実施例において、搬送装置250の初期または格納位置は、ステーションアプローチ点の理論的位置として選択されてもよい。代替実施例において、任意の適切な点がステーションアプローチ点として選択されてもよい。漸増移動の初期点500R、500G及び終点501R、501Gは、グローバル及びロボット座標システムの両方においてコントローラ270によってメモリ275内に保存されてもよい。グローバル及びロボット座標系における漸増移動の始点500R、500G及び終点501R、501Gの位置は、例えば、搬送装置250の現在位置の近くにおける2つの座標系の間の変換または関係(例えば、測定された方向及び距離)を定量化するために使用されてもよい(ブロック330、図3A)。代替実施例において、グローバル座標系とロボット座標系との間の関係は、任意の適切な態様にて判定されてもよい。
ブロック330において取得された変換及びグローバル座標系におけるステーション基準点の位置は、ロボット座標系における搬送装置250の次の漸増移動(例えば、点501R、501Gから502R、502Gまでの移動)の方向及び距離を判定するために使用されてもよい(ブロック340、図3B)。コントローラ270は、搬送装置250に命令をして、搬送装置に、ブロック340にて判定された方向及び距離を用いてティーチングされるステーションへの他の漸増移動をさせてもよい(ブロック350、図3B)。搬送装置基準点RRBT及びステーション基準点RSTNとの間の距離が所定の距離または正確性εより小さい場合(ブロック360、図3B)ロボット座標内の搬送装置の位置は、ステーションST1に割り当てられ、後の取り上げ−配置動作に使用される(ブロック370、図3B)。搬送装置基準点RRBT及びステーション基準点RSTNとの間の距離が所定の距離または正確性εより大きい場合(ブロック360、図3B)ブロック340及び350は、グローバル座標系における搬送装置基準点RRBTとステーション基準点RRBTとの間の距離が、所定の正確性ε以下になるまで繰り返される(漸増移動は、例えば、点502R−509R、502G−509Gを使用する)。
単なる例示であるが、図3A及び図3Bに関して上述されたステーション自動ティーチング方法は、2自由度で説明される。しかし、以下の式は、任意の適切な数の自由度に適応させられてもよいことが理解されるべきである。
この具体的な例において、ロボット位置フィードバックデバイスの不正確性及び機械的要素の許容誤差は、ロボット座標系とグローバル座標系との間のオフセット、回転、スケール因子(scaling factor)、及び非線形エラーという態様の歪み・ズレをもたらす。
Figure 2013516327
Figure 2013516327
ここでxSPS及びySPSは、空間位置決めシステム100から得られたRRBTのx及びy座標(すなわち、グローバル座標系における位置)を示し、xRBT、yRBTは、ロボット位置フィードバックデバイスを介して測定されたRRBTのx及びy座標(すなわち、ロボット座標システムにおける位置)を示している。単なる例示であるが、式[1]及び[2]において使用されている定数の近似値は、表1に示されるように定義される。代替実施例において、任意の適切な値が式[1]及び[2]の定数に使用されてもよい。
Figure 2013516327
x及びy方向においてもたらされた位置歪みの例は、図4A及び4Bに各々示されている。この例に示されている位置歪みの量は、通常のロボットの使用において期待されるレベルを実質的に上回っていることに留意すべきである。この位置歪みの増幅は、単なる例示であるが、ロボット位置フィードバックデバイスによって得られた測定値におけるエラーに対する上記方法のロバスト性を明らかにするために選択された。
ブロック320から350に従ったロボットの漸増移動は、以下の例示の式に基づいて計算されてもよい。
Figure 2013516327
Figure 2013516327
Figure 2013516327
Figure 2013516327
Figure 2013516327
Figure 2013516327
Figure 2013516327
Figure 2013516327
ここでx SPSは、空間的位置決めシステムから得られたRRBTのx座標であり、y SPSは、空間的位置決めシステムから得られたRRBTのy座標であり、kはステップを示し、xSTNSPS及びySTNSPSは、空間的位置決めシステムから得られたRSTNのx及びy座標(すなわちグローバル座標系内のステーション位置)を示し、Kは、自動ティーチングプロセスの収束の速度を決定付ける約0から約1まで定数である。この具体的な例において、単なる例示の目的で、Kが約0.5に設定されて初期の漸増移動が比較的短く維持され、自動ティーチングプロセスがさらに容易にグラフで示され得る(図5及び6参照)。上述のように、搬送装置基準点RRBT及びステーション基準点RSTNの位置が、所定の正確性ε内で一致しない場合、ステーションST1の自動ティーチングは、例えば、以下の条件が満たされて、所望の正確性εに達するまで継続する。
Figure 2013516327
この実施例において、εは単なる例示の目的で約1μmに設定され、以下の初期条件は自動ティーチングプロセスを開始するために使用された。
Figure 2013516327
Figure 2013516327
しかし、代替実施例において、正確性εは、任意の適切な値に設定され得、任意の適切な初期条件が使用され得る。
1つの実施例において、空間的位置決めシステム100は、搬送装置250をアラインメントし、かつ搬送装置250がステーションの全ての座標のティーチングを可能とするのに十分な軸または自由度を有していない場合に、ステーションST1等の処理ステーションをレベルリングする。ステーションST1は、6自由度を有しているが、代替実施例において、ステーションST1は任意の適切な数の自由度を有していてもよいことに留意する。ステーションST1等の処理ステーションの6の全ての自由度のティーチングを可能としないだろう搬送装置の例は、平行な水平面内で動作する平面アーム機構を有する2、3及び4軸ロボットマニピュレータを含む。この例において、図7を参照すると、上述の自動ロボットティーチング方法が、搬送エンドエフェクタ253及び/またはステーションST1−ST4及びLL1、LL2を共通水平基準面RHPに対してレベリングするための任意の適切なデバイス780−783によって完遂されてもよい。ステーションST1だけが図7に示されているが、ステーションST2−ST4及びLL1、LL2が同様に構成されていてもよいことが理解されるべきである。
本明細書に記載されている空間的位置決めシステム100は、エンドエフェクタ253及びステーションST1−ST4及びLL1、LL2の共通水平面RHPに対するレベルチェック及び相互調整をもたらして、ステーションST1及び搬送装置250の基準面SLP、RLPが所定量の正確性内にレベリングされてもよい。図7に示されている基準平面SLP、RLP、RHPは、本質的に例示であるに留意し、かつこれらの平面は、互いに対して任意の適切な点に配されていてもよいことに留意する。図に示されている基準平面は水平であるように示されているが、代替実施例において、平面SLP、RLP、RHPは、任意の適切な空間的配向を有していてもよい。この例において、単なる例示であるが、搬送装置基準平面RLP及びステーション基準面SLPは、各々エンドエフェクタ253の平面及び基板支持部785の平面と同一である。
図2、図7A及び図7Bを参照すると、ステーションST1−ST4、LL1、LL2及びエンドエフェクタ253のレベルの判定において、エンドエフェクタ253に包含されているターゲット210T−210Vの位置が、空間的位置決めシステムから取得される(ブロック700、図7A)。標的210T−210Vの位置は、グローバル座標系にて取得されてもよい。コントローラ270は、処理装置290の水平基準平面RHP等の基準面からのエンドエフェクタのレベル(高さ)RLPのズレを計算してもよい(ブロック710、図7A)。エンドエフェクタのレベルRLPと基準平面RHPとのズレが所定量または正確性内にある場合、搬送装置250のレベリング調整は行われない。エンドエフェクタのレベルRLPと基準平面RHPとのズレが所定の量または正確性内にない場合、搬送装置250に対するレベリング調整が演算されて(ブロック720、図7A)実行される(ブロック730、図7A)。1つの実施例において、座標系変換は、例えば、コントローラ270によって、標的210T−210Vのグローバル座標が変換されて、基準平面RHPに対する搬送装置のレベリングに関する調整量が計算されることでなされてもよい。1つの実施例において、調整量は、コントローラ及び/または処理装置290に接続されている任意の適切なディスプレイを介してオペレータに表示されるので、オペレータは、搬送装置250を調整可能である。代替実施例において、レベル調整機構またはシステム782、783は、基準平面RHPに対して搬送装置のレベルを自動的に調整するために、搬送装置250に接続されてもよい。ブロック700から730までは、エンドエフェクタ253と基準平面RHPとの間の所望のレベリング正確性が得られるまで繰り返されてもよい。
基準平面RHPに対する処理装置290内のステーションのレベリングは、エンドエフェクタ253のレベリングに関して上述された態様と実質的に同様の態様にて行われてもよい(例えば、ブロック740−770、図7B参照)。ステーションST1のレベリングが、単に例示の目的で、搬送装置250のレベリングの後の実行されるように図7A、図7Bに示されているが、処理装置290の構成要素のレベリングが任意の適切な順序または実質的に同時に実行されてもよいことが理解されるべきであることに留意する。
一例として、基準水平面RHPからのステーションST1または搬送装置250のレベルSLP、RLPのズレの演算のためのアルゴリズムは、図8に示すように、ステーションST1またはエンドエフェクタ253内に包含された標的の位置から得られたベクトルを用いてもよい。以下に図8の符号について記載する。
Figure 2013516327
Figure 2013516327
Figure 2013516327
Figure 2013516327
Figure 2013516327
ここで、
Figure 2013516327
は1点からi点までのベクトルを示し、i=2または3であり、
Figure 2013516327
は、例えば、点1、2及び3によって定められる平面に垂直な単位ベクトルであり、
Figure 2013516327
は、z方向の単位ベクトルを表し、αはベクトル
Figure 2013516327

Figure 2013516327
との間の角度である。角度αは、例えば、点1、2及び3によって定められる平面のx、y平面からの角度ズレを直接的に決定してもよく、x、y平面は基準水平面RHPと同一であってもよい。
1つの実施例において、ブロック720及び760において判定される調整量は、例えば、名目上の垂直位置をマッチングさせるために、または必要とされる調整の全体量を最小化するために演算されてもよい。
他の実施例において、空間位置決めシステム100は、例えば、処理装置290の1または複数の構成要素、または図1A−1C及び2に示した処理システム内の任意の他の適切な構成要素(例えば、搬送装置、自動材料ハンドリングシステム、ロードポート、処理モジュール、基板アライナ等)の共通基準点に対するアラインメントをもたらしてもよい。共通基準点は、処理装置290内またはその外側に配され得る任意の適切な基準点であってもよい。この例において、共通基準点CRPは、図2のロードポートLL1内にあってもよい。1つの実施例において、共通基準点CRPは、システムの他の構成要素が取り付けられている当該システムの中央コンポーネントに配されているかまたはそれと関連付けられていてもよいことに留意する。例えば、図1A及び2を参照すると、中央コンポーネントは、搬送チャンバ22(例えば、真空チャンバ)であってもよい。代替実施例において、基準点は、製造施設の任意の適切な位置に配されていてもよい。処理システム構成要素のアラインメントは、限定するわけではないが、システムの組み立ての間、または処理システムが現場にて保守点検されている際を含む任意の適正な時点で実施されてもよい。
例えば、図9を参照すると、図2のステーションまたは処理モジュールST1等の、システムと一体化され得る構成要素は、設置特徴及び調整特徴の初期設定を用いて、初期位置または所定位置(nominal location)に設置されてもよい(ブロック900、図9)。所定位置及び初期設定は、限定するわけではないが、例えば処理装置のCAD図面またはレイアウトを含む任意の態様にて取得されてもよい。標的(この例においては、ステーションST1内に包含され得る標的210A−210C)の位置は、空間位置決めシステムから取得される(ブロック910、図9)。標的210A−210Cの位置は、グローバル座標システムにて取得されてもよい。上述のように、標的210A−210Cは、ステーション基準点RSTNと既知の関係にあってもよく、コントローラ270が、ステーションST1の設置位置とステーションST1の共通基準点CRPに対してアラインメントされた位置との間のズレを演算してもよい。ステーションST1の設置位置とアラインメントされた位置との間のズレが所定量または所定の正確性内にある場合、ステーションST1の位置補正は行われない。ステーションST1の設置位置とアラインメントされた位置との間のズレが所定量または所定の正確性内にない場合、ステーションST1に対する位置補正が行われる。1つの実施例において、座標系変換は、例えば、コントローラ270によってなされて、標的210A−210Cのグローバル座標が、処理装置または製造施設の任意の他の適切な座標系に変換されてもよい(ブロック920、図9)。コントローラ270は、変換された座標(またはブロック910で取得された座標が、調整を演算するために使用されるものである場合には非変換座標)を用いて、例えば、ステーションST1の個別の設置特徴及び調整特徴に対する調整量を演算して、共通基準点に対してステーションをアラインメントしてもよい。1つの実施例において、座標変換は、標的の座標を調整量に直接変換するので、この変換の後には追加の演算が必要ないことに留意する。1つの実施例において、設置特徴及び調整特徴の各々の調整量は、コントローラ及び/または処理装置290に接続されている任意の適切なディスプレイを介してオペレータに表示されてもよいので、オペレータはステーションST1を調整可能である(ブロック930、図9)。代替実施例において、アラインメント調整機構またはシステムは、共通基準点CRPに対する搬送装置のアラインメントを自動的に調整するために、ステーションST1に接続されていてもよい。ブロック910から930までは、例えば、ステーションST1と共通基準点CRPとの間で所望のアラインメント正確性が取得されるまで、繰り返されてもよい。
理解されるように、通常の動作摩耗の故の機械的構成要素における、またはシステムの位置測定構成要素における劣化の故に、ロボットシステムの正確性及び再現性は、時間とともに悪化し得る。他の例において、正確な位置フィードバッグデバイスの取得における高いコスト、または精密な機械的構成要素の製造の困難性における高いコストの故に、あるレベルの正確性及び再現性を得るのは困難であり得る。本明細書において開示されている空間的位置決めシステム100は、例えば、図1A−1C及び図2に示されている処理装置内の搬送装置250または任意の他の適切な搬送装置の位置のオンザフライ補正のために構成されていてもよい。オンザフライ位置補正は、例えば、搬送装置250のエンドエフェクタ253がステーション内で位置決めされることを可能とし得る。従って、搬送される基板または他の材料は、位置フィードバックデバイスの不正確性及び搬送装置250の機械的構成要素の許容誤差によってもたらされ得る位置エラーに関わらず、所定の正確性にてステーションから取り上げられるかまたはそこに配置され得る。代替実施例において、空間的位置決めシステム100は、任意の適切な製造環境内の任意の適切な装置の位置を補正してもよい。
例示のオンザフライ位置補正は、図2及び10に関して以下に説明される。搬送装置250及びステーションST1が位置補正の説明において用いられるが、位置補正は、任意の適切な搬送装置及びステーションに適用可能であることに留意する。例えば、取り上げまたは配置動作の間の搬送装置250のエンドエフェクタ253の位置の補正において、搬送装置は、例えば、コントローラ270によって、エンドエフェクタ253を、取り上げまたは配置動作が行われるべきステーションST1に移動するように命令される(ブロック1000、図10)。1つの実施例において、エンドエフェクタの基準点RRBTは、例えば、エンドエフェクタの基準点RRBTがステーション基準点RSTN上に一致するように、または実質的にアラインメントされるように移動させられてもよい。ステーション基準点RSTNは、図3A及び3Bに関して上述したように、ロボット座標系にてティーチングされたことに留意する。代替実施例において、搬送装置基準点RRBTは、任意の適切な位置に移動させられてもよい。
標的210T−210V及びエンドエフェクタ253の基準点RRBTの位置は、例えば、送信機200A、200B等の任意の適切な送信機を用いて空間座標系によって判定される(ブロック1010、図10)。標的210T−210Vの位置は、例えば、グローバル座標系にて判定されてもよい。代替実施例において、標的210T−210V及び基準点RRBTの位置は、任意の適切な座標系にて判定されてもよい。この実施例において、搬送装置基準点RRBTのグローバル座標は、ステーション基準点RSTNのグローバル座標と比較されてもよく、この2つの間の距離が演算されてもよい(ブロック1020、図10)。ステーション基準点RSTNと搬送装置基準点RRBTとの間の演算された距離が、所定の距離(正確性値)内である場合、取り上げまたは配置動作は継続する(ブロック1030、図10)。ステーション基準点RSTNと搬送装置基準点RRBTとの間の演算された距離が、所定の距離または正確性値内にない場合、上述のブロック1000において生成された移動の開始点及び終点(グローバル及びロボット座標系における)が使用されて、エンドエフェクタ253の現在位置周辺のロボット座標系とグローバル座標系との間の変換が判定される(ブロック1040、図10)。この例において、ブロック1000における移動の開始点は、図2に示されている搬送装置250の収納位置であってもよく、終点は、エンドエフェクタ253が、例えば、ステーションST1に近接して配されている、搬送装置の展開位置であってもよい。代替実施例において、ブロック1000における移動の開始点及び終点として、任意の適切な開始点及び終点が使用される。ブロック1040で得られた座標変換及び、例えば、搬送装置基準点RRBTの現在位置に対するグローバル座標系のステーション基準点RSTNは、ロボット座標系におけるエンドエフェクタ253の補正された移動を判定するために使用される(ブロック1050、図10)。補正された移動は、ステーション基準点RSTNに対するさらに正確な位置に搬送装置基準点RRBTを配するための方向及び距離を含んでもよい。搬送装置250は、ステーション基準点RSTNに向かう補正された移動を実行するように命令される(ブロック1060、図10)。ブロック1020−1060は、搬送装置基準点RRBTが、ステーション基準点RSTNに対して所定の距離または正確性内に配されるまで繰り返されてもよい。ブロック1020において演算された差が、搬送装置250によって実行される取り上げまたは配置動作の各々に関して監視されてメモリ275内に記録され得ることが理解されるべきである。代替実施例において、ブロック1020において演算された差は、任意の適切な間隔で定期的に監視及び記録されてもよい。この記録された距離情報は、限定するわけではないが、健全状態監視、欠陥診断目的及び/または処理システムの予防保守を含む任意の適切な目的のために使用されてもよい。
上述したように、空間的位置決めシステム100は、位置的制御及び/または、例えば駆動システムの整流のための位置フィードバックデバイスとして構成されてもよい。この駆動システムは、例えば、回転駆動システム、平面またはリニア駆動システム、球状駆動システム、またはこれらの組み合わせ等の任意の適切な数の自由度を有する任意の適切な駆動システム(例えば、1または多次元のアクチュエータ)を含んでもよい。駆動システムは、ベアリング駆動機構、セルフベアリング駆動機構(例えば、磁気的浮上プラットフォームまたはシャフト)または任意の他の適切な駆動機構であってもよい。
図11及び12を参照すると、例示の材料ハンドリング駆動システムが、1の実施例に従って示されている。材料ハンドリング駆動システムが図内に示されているが、実施例は、任意の適切な駆動システムの位置フィードバッグ及び整流に同様に適用可能である。
図11は、例えば、プリズマチックカップリング(prismatic coupling)1105を介して互いに結合されている2つの磁気的浮上プラットフォーム1110A、1110Bを含む、7自由度平面駆動システム1100を示している。代替実施例において、平面駆動システム1100は、任意の適切な数の自由度、及び任意の適切なカップリングによって互いに結合されている任意の適切な数のプラットフォームを有してもよい。プラットフォーム1110A、1110Bは、巻線1103A、1103Bと相互作用するために任意の適切な磁石1104を含んでもよい。適切な磁石/巻線のペアは、例えば、米国特許出願第11/769,651号(出願日2007年6月27日)に記載されており、当該出願の開示内容は参照することによって本明細書に包含されている。この実施例において、固定のSPSユニット1101A−1101Cが、巻線1103A、1103B内に包含されているかまたは組み込まれている。代替実施例において、固定のSPSユニットは、限定するわけではないが、駆動装置ハウジングまたはフレームを含む駆動システムの任意の適切な位置に配されていてもよい。固定のSPSユニット1101A−1101Cは、図2に関して上述された送信機/送受信機200A−200Fと実質的に同様であってもよい。可動なSPSユニット1102A−1102Cは、プラットフォーム1110A、1110B内に包含されているかまたは組み込まれており、図2に関して上述されたパッシブ/アクティブ標的210A−210N、210P−210Vと実質的に同様であってもよい。代替実施例において、可動なSPSユニットは、プラットフォーム1110A、1110B等の可動な駆動部材の任意の適切な位置に配されていてもよい。さらに他の代替実施例において、固定の及び可動なSPSユニットは、それらの各々の巻線及びプラットフォーム内に組み込まれていなくともよい。例えば、代替実施例において、固定の及び可動なSPSユニットは、巻線またはプラットフォーム内またはその表面上に取り外し可能に(または取り外し不可能に)固定されていてもよい。図11内に3つの固定のSPSユニット及び3つの可動なSPSユニットが単なる例として示されているが、代替実施例において、任意の適切な数の可動な及び固定のSPSユニットが駆動システム1100内に包含されていてもよいことに留意する。さらに、図11に示されている固定の及び可動なSPSユニットは単なる例示であることに留意し、固定の及び可動なSPSユニットは、駆動システム1100内の任意の適切な位置に配されてもよいことに留意する。
図12を参照すると、例示の8自由度の駆動システム1200が1の実施例に従って示されている。この例において、駆動システム1200は、磁石1204が取り付けられている2つの磁気浮上プラットフォーム1210A、1210B、巻線1203A、1203B、固定のSPSユニット1201A−1201C及び可動なSPSユニット1202A−1202Dを含んでいる。磁石1204、巻線1203A、1203B、固定SPSユニット1201A−1201C及び可動SPSユニット1202A−1202Dは、図11に関して説明されたものと実質的に同様である。プラットフォーム1210A1210Bは、回転自在カップリング1206A、1206B及び接続部材1206Cによって結合させられてもよく、プラットフォームは、少なくとも矢印1220の方向に移動し得かつ各々の回転軸R1、R2周りに回転し得る。
図13を参照して、図11の駆動システム1100位置制御及び整流を説明する。図12の駆動システム1200の位置制御及び整流は、駆動システム1100に関して説明される態様と実質的に同一の態様にて実行されてもよいことに留意する。理解されるように、空間的位置決めシステム100を用いた任意の適切な駆動システムの位置制御及び整流は、実質的に以下の説明と同様であってもよい。位置制御及び整流のために、整流及び制御に依存するアクチュエータ要素の可動SPSユニット1102A−1102Cの位置は、図2に関して上述された態様と実質的に同様の態様にて取得される(ブロック1300、図13)。この例において、整流及び制御に依存するアクチュエータ要素は、プラットフォーム1110A及び/またはプラットフォーム1110Bであってもよい。この実施例において、可動SPSユニット1102A―1102Cの位置は、例えば、制御ループの周波数にて取得する等のように周期的に取得されてもよい。代替実施例において、可動SPSユニット1102A−1102Bは、任意の適切な時間間隔で取得されてもよい。可動SPSユニットの位置は、例えば、メモリ275内に保存されて、例えば、制御ループの周期に対応した位置データのセットが生成されてもよい。代替実施例において、位置データのセットは、任意の適切な態様にて保存されてもよい。この実施例において、座標変換は、例えば、1または複数のデータセットに適用され、可動SPSユニット1102A−1102Cのグローバル座標が任意の適切な座標系に変換される(ブロック1310、図13)。単なる例示であるが、座標変換は、アクチュエータ要素(アクチュエータの移動要素)に作用する一般的な力に関連する(またはこれと共に用いられる)一般的な座標をもたらしてもよい。代替実施例において、位置制御及び整流は、グローバル座標系にて実行されてもよい。ここにおいて、制御ループの周期の各々において座標変換が適用されているが、代替実施例において、座標変換は任意の適切な時に適用されてもよい。可動SPSユニット1102A−1102Cの変換された座標は、駆動システム1100の整流及び制御に関する位置情報を判定するために使用されてもよい。1つの実施例において、可動SPSユニット1102A−1102Cの位置または配置は、駆動システム1100の移動構成要素に作用する一般化された力と共に用いられる(またはこれと関連付けられた)量に変換されてもよい。代替実施例において、可動SPSユニット1102A−1102Cの位置または配置は、駆動システム1100を整流及び制御するのに適切な任意の量(例えば、座標)に変換されてもよい。ブロック1310に関して説明された位置的情報は、任意の適切な整流アルゴリズム及び位置制御ループに入力され、限定するわけではないが、駆動システム1100を制御する電圧及び/または電流を含む動作信号が生成されてもよい(ブロック1320、図13)。適切な整流アルゴリズムの例は、上述の米国特許出願第11/769,651号、及び参照されることで全体として本明細書に包含されている米国特許出願第11/769,688号(出願日2007年6月27日)に記載されている。1つの実施例において、SPS100は、ロボットマニピュレータ(例えば、上述の搬送装置と実質的に同様なもの)をキャリブレーションして、例えば、SPS100によって取得されるマニピュレータエンドエフェクタの実際の位置をエンコーダ読み取り値(エンドエフェクタを移動させるために使用されるモータから取得される)に基づいて演算されたエンドエフェクタの位置に対してマッピングして、ロボットマニピュレータのコントローラ内に当該マップを保存する。当該マップは、ロボットマニピュレータの不正確性を実質的に排除し得る。このマップは、マニピュレータへの各々の処理ステーションの位置のティーチングを実質的に排除してもよい。なぜならば、マニピュレータは、ステーション内に配されているSPS標的210A−210N、210P−210Vを用いて取得されたステーション位置に正確に向かうように命令され得るからである。エンドエフェクタの2つの位置は、SPS100の測定値に対してチェックされ、SPS100の座標フレームに対するロボットマニピュレータの位置を反映した座標変換が特定されてもよいことに留意する。
他の実施例において、SPSの標的210A−210N、210P−210Vは、例えば、処理装置10内で取り扱われるかまたは処理される材料(例えば、半導体ウェハ)に組み込まれてもよい。この例において、SPS100は、処理装置10内の材料の位置を実質的に継続的にトラッキングして、その情報を、例えば、搬送システム23と共有してもよい。このことによって、材料が搬送装置のエンドエフェクタ上に正確に位置決めされる(例えば、円状基板の場合には中心に位置決めされる)ように、搬送システム23の搬送装置が材料を取り上げることが可能にされてもよい。1つの例において、材料がエンドエフェクタ上の中心に位置決めされるように取り上げられることができなかったか、または、例えば、搬送中にエンドエフェクタ上で材料が滑った場合、搬送装置は、材料が配置される際に、このミスアラインメントを修正可能である。この例において、SPS100は、アライナ等の基板中心合わせデバイスまたは積極的な基板中心合わせシステムの必要を実質的に排除することが可能である。
さらに他の実施例において、本明細書に記載されているSPS100は、コンベヤタイプのシステムの場合のように、固定ではないステーションを有する材料ハンドリングシステム等のシステムまで拡大されてもよい。この例において、移動ステーション及びロボットマニピュレータのエンドエフェクタは、本明細書に記載されている標的210A−210N、210P−210Vと実質的に同様の標的を含んでおり、かつ/または上述のように標的はシステムに亘って移動させられる材料内に組み込まれている。ロボットマニピュレータは、SPS100からの情報を用いて、例えば、移動の方向及び速度を移動ステーションとマッチングさせ、ステーションから材料を取り上げ/に材料を配置してもよい。
本明細書に記載されている実施例は、任意のロボットシステムの要素を自動的にティーチング、アラインメント、及び/または制御するために、個別にまたはこれらを任意に組み合わせて使用されてもよい。上記説明は、実施形態の単なる例示であることが理解されるべきである。様々な代替例及び変形例が、実施例から逸脱することなく当業者によって考え出され得る。従って、本発明の実施例は、添付の特許請求の範囲内にある全ての代替例、変形例及び変更例を包含することが意図されている。

Claims (24)

  1. 処理デバイスの少なくとも一部を囲むハウジングと、
    前記処理デバイスに取り付けられた少なくとも1つの標的と、
    ハウジング内に配されている少なくとも1つの送信機であって、前記少なくとも1つの標的に前記少なくとも1つの送信機を特定する識別信号を送信する少なくとも1つの送信機と、
    前記少なくとも1つの標的及び前記少なくとも1つの送信機に動作可能に接続されているコントローラと、を含む基板処理システムであって、
    前記処理デバイスは、前記少なくとも1つの標的と既知の関係にある第1の処理デバイス基準点を有し、前記コントローラは、前記識別信号に基づいて、前記少なくとも1つの標的及び前記少なくとも1つの送信機のうちの1つからデータ信号を受信して、前記データ信号に基づいて前記処理デバイスの動作特徴を制御することを特徴とする基板処理システム。
  2. 請求項1に記載のシステムであって、前記コントローラは、さらに、前記識別信号に基づいて前記少なくとも1つの送信機に対する前記少なくとも1つの標的の位置を判定し、前記識別信号は、前記少なくとも1つの送信機の各々を一意的に特定し、
    前記コントローラは、さらに、前記少なくとも1つの送信機によって前記処理デバイス基準点に関連する少なくとも1つの標的に送信された識別信号から前記第1の処理デバイス基準点の位置を判定することを特徴とするシステム。
  3. 請求項1に記載のシステムであって、前記ハウジングは、第1のハウジング及び第1のハウジングに接続された第2のハウジングを含み、前記処理デバイスは、前記第1のハウジング内に配され、第2の処理デバイス基準点が前記第1のハウジングまたは前記第2のハウジング内に配され、前記処理デバイスは、前記第1の処理デバイス基準点と第2の処理デバイス基準点との間の関係に基づいて制御されることを特徴とするシステム。
  4. 請求項3に記載のシステムであって、
    前記処理デバイスはロボットマニピュレータであり、
    前記動作特徴は、前記第1の処理デバイス基準点の位置であり、
    前記第2の処理デバイス基準点はステーションモジュール基準点であり、
    前記コントローラは、さらに、前記第1の処理デバイス基準点が前記ステーションモジュール基準点の所定の距離内に存在するように、前記第1の処理デバイス基準点と前記ステーションモジュール基準点との相対位置に基づいたロボットマニピュレータの移動を命令し、
    前記第1の処理デバイス基準点が前記所定の距離内にある場合に、取り上げ及び配置動作のために、前記コントローラが前記ロボットマニピュレータの位置を前記ステーション基準点に割り当てることを特徴とするシステム。
  5. 請求項3に記載のシステムであって、
    前記処理デバイスがロボットマニピュレータまたはステーションモジュールであって、
    前記動作特徴が前記処理デバイスのレベリング平面であって、
    前記第2の処理デバイス基準点が前記基板処理システムに関連している基準平面であって、
    前記コントローラが、さらに、
    前記レベリング平面の位置を判定し、
    前記基準平面の位置と前記レベリング平面の位置との間のズレを判定し、
    前記ズレが所定の限界を上回っている場合に、前記レベリング平面の調整を行うことを特徴とするシステム。
  6. 請求項3に記載のシステムであって、
    前記基板処理システムの共通基準特徴を含み、
    前記処理デバイスはロボットマニピュレータまたはステーションモジュールであり、
    前記動作特徴は、前記第1の処理デバイス基準点の位置であり、
    前記コントローラは、さらに、
    前記共通基準特徴に対する前記第1の処理デバイス基準点の位置を判定し、
    前記処理デバイスの調整量を判定し、
    前記第1の処理デバイス基準点が前記共通基準特徴に対して所定の距離内にあるように前記処理デバイスの位置の調整を行うことを特徴とするシステム。
  7. 請求項1に記載のシステムであって、
    前記ハウジングに接続されており、かつ第2の処理デバイス基準点を有しているステーションモジュールをさらに含み、
    前記処理デバイスはロボットマニピュレータであり、
    前記動作特徴は、前記第1の処理デバイス基準点の位置であり、前記第1の処理デバイスの基準点は、前記ロボットマニピュレータのエンドエフェクタ上に配され、
    取り上げまたは配置動作において、前記コントローラがさらに、
    前記第1の処理デバイス基準点が前記第2の処理デバイス基準点の位置に移動させられるように前記ロボットマニピュレータを移動させ、
    前記第1の処理デバイス基準点の位置と前記第2の処理デバイス基準点の位置との差を判定し、
    前記差が所定の距離を上回っていた場合に、前記第1の処理デバイス基準点が前記所定の距離内に位置するように前記ロボットマニピュレータに補正された移動をさせることを特徴とするシステム。
  8. 少なくとも1つの固定送信機を用いてステーションモジュール基準点の位置を判定するステップと
    前記少なくとも1つの固定送信機を用いて搬送装置基準点の位置を判定するステップと、
    前記搬送装置基準点を前記ステーション基準点に割り当てて、取り上げ及び配置動作をなすステップと、を含み、
    前記少なくとも1つの固定送信機は、前記少なくとも1つの固定送信機を一意的に特定する識別信号をステーションモジュールの少なくとも1つの標的に送信し、前記少なくとも1つの固定送信機は、前記少なくとも1つの固定送信機を一意的に特定する前記識別信号を搬送装置の少なくとも1つの標的に送信することを特徴とする方法。
  9. 請求項8に記載の方法であって、前記搬送装置基準点と前記ステーションモジュール基準点が所定の距離内に収まるまで、前記ステーションモジュール基準点と前記搬送装置基準点との間の距離に基づいて、前記搬送装置を前記ステーションモジュールに向けて移動させるステップをさらに含むことを特徴とする方法。
  10. 請求項9に記載の方法であって、前記搬送装置を移動させるステップが、前記搬送装置を漸増的に移動させるステップを含むことを特徴とする方法。
  11. 請求項10に記載の方法であって、前記搬送装置の前記漸増的な移動のうちの1つの始点及び終点を用いて第1の座標系と第2の座標系との間の座標系変換を定量化するステップをさらに含み、前記搬送装置の次の漸増的な移動が、前記座標系変換及び前記ステーションモジュール基準点を用いて判定されることを特徴とする方法。
  12. 請求項8に記載の方法であって、
    前記ステーションモジュール基準点及び前記搬送装置基準点の位置は、前記少なくとも1つの固定送信機に対して前記識別信号に基づいて判定され、
    前記ステーションモジュール基準点は、前記ステーションモジュールの前記少なくとも1つの標的と既知の関係にあり、
    前記搬送装置基準点は、前記搬送装置の前記少なくとも1つの標的と既知の関係にあることを特徴とする方法。
  13. 少なくとも1つの送信機を用いてステーションモジュール及び搬送装置のうちの少なくとも1つの動作特徴を判定するステップを含み、前記少なくとも1つの送信機は、前記少なくとも1つの送信機を一意的に特定する識別信号を前記ステーションモジュール及び前記搬送装置のうちの少なくとも1つの標的に送信する方法であって、
    前記方法はさらに、
    前記少なくとも1つの送信機によって前記ステーションモジュール及び前記搬送装置のうちの少なくとも1つの少なくとも1つの標的に送信された前記識別信号に基づいて、前記ステーションモジュール及び前記搬送装置のうちの少なくとも1つに接続されている処理装置の基準データと前記動作特徴との間のズレを判定するステップと、
    前記ズレが所定の限界値を上回っている場合に調整量によって前記動作特徴を調整するステップと、
    を含むことを特徴とする方法。
  14. 請求項13に記載の方法であって、座標変換が前記調整量を判定するために適用されることを特徴とする方法。
  15. 請求項13に記載の方法であって、
    前記動作特徴は前記ステーションモジュール及び前記搬送装置のうちの1つの動作平面であり、
    前記基準データは前記処理装置の基準平面であり、
    前記動作特徴を調整するステップは前記動作平面のレベルを調整するステップをさらに含むことを特徴とする方法。
  16. 請求項13に記載の方法であって、
    前記動作特徴は前記ステーションモジュール及び前記搬送装置のうちの少なくとも1つの基準点であり、
    前記基準データは前記処理装置の共通基準データであり、
    前記動作特徴を調整するステップは前記基準点の位置を調整するステップを含むことを特徴とする方法。
  17. 請求項13に記載の方法であって、前記識別信号は前記標的の各々の位置判定をなすように構成され、前記動作特徴は前記標的と既知の関係にあることを特徴とする方法。
  18. 基板処理システムであって、
    ハウジングと、
    前記ハウジングと接続されておりかつステーションモジュール基準点を有する少なくとも1つのステーションモジュールと、
    前記ハウジング内に少なくとも部分的に配されておりかつ搬送装置基準点を有する搬送装置と、
    前記ハウジングに接続されている少なくとも1つの送信機と、
    前記少なくとも1つの搬送装置及び前記少なくとも1つの送信機と動作可能に接続されているコントローラと、を含み、
    前記コントローラが、
    前記搬送装置基準点が前記ステーションモジュール基準点の位置に移動させられるように前記搬送装置を移動させ、
    前記送信機から送信された1または複数の信号によって、前記搬送装置と前記ステーションモジュール基準点との間の相対位置を判定し、
    前記搬送装置基準点と前記ステーションモジュール基準点の間の位置的差異が所定の限界値を上回っている場合に、前記搬送装置基準点を再位置決めするための補正移動を判定し、
    前記補正移動に従って前記ステーション基準点に対する前記搬送装置基準点の再位置決めをさせることを特徴とするシステム。
  19. 請求項18に記載の基板処理システムであって、前記コントローラは、前記ステーションモジュール基準点の位置、及び前記搬送装置基準点の位置周辺の座標変換に基づいた補正移動を判定することを特徴とするシステム。
  20. 請求項18に記載の基板処理システムであって、前記搬送装置基準点が前記搬送装置のエンドエフェクタ上に配されていることを特徴とするシステム。
  21. 請求項18に記載の基板処理システムであって、前記送信機は、前記搬送装置及びステーションモジュールの各々に動作可能に接続されている標的に前記1または複数の信号を送信し、前記1または複数の信号は、前記標的の各々の位置判定をもたらすように構成され、前記搬送装置基準点及び前記ステーションモジュール基準点は、それら各々の標的と既知の関係にあることを特徴とするシステム。
  22. 材料ハンドリング装置の駆動システムであって、前記駆動システムは、
    固定駆動セクションと、
    前記固定駆動セクションと通信する移動駆動セクションと、を含み、前記固定駆動セクションは前記移動駆動セクションに作用して前記移動駆動セクションを前記固定駆動セクションに対して移動させ、
    前記駆動システムは、さらに、
    前記移動駆動セクション上に配されている少なくとも1つの標的と、
    前記固定駆動セクションに配されている少なくとも1つの送信機であって、前記少なくとも1つの送信器を特定する識別信号を前記少なくとも1つの標的に送信する少なくとも1つの送信器と、
    少なくとも前記少なくとも1つの送信器及び前記固定駆動セクションに動作可能に接続されているコントローラと、を含み、
    前記コントローラが、
    前記少なくとも1つの送信器に対する前記少なくとも1つの標的の位置を判定して位置データのセットを取得し、前記少なくとも1つの標的の位置の当該判定は、前記識別信号の特徴に基づいており、
    前記コントローラが、
    前記位置データのセットに座標変換を適用して位置情報を判定し、
    前記位置情報に基づいて、前記駆動システムを動作させるための整流及び制御信号を生成することを特徴とする駆動システム。
  23. 請求項22に記載の駆動システムであって、前記位置情報は、前記移動構成要素に作用する力とともに用いられる量として表されることを特徴とする駆動システム。
  24. 請求項22に記載の駆動システムであって、前記コントローラが、制御ループの周期にて前記少なくとも1つの標的の位置を周期的に取得し、前記位置データ2セットが各々の周期に対して判定されることを特徴とする駆動システム。
JP2012547132A 2009-12-31 2010-12-21 マニピュレータの自動ティーチング及び位置補正システム Active JP5981848B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/651,160 US8459922B2 (en) 2009-11-13 2009-12-31 Manipulator auto-teach and position correction system
US12/651,160 2009-12-31
PCT/US2010/061407 WO2011082011A1 (en) 2009-12-31 2010-12-21 Manipulator auto-teach and position correction system

Publications (2)

Publication Number Publication Date
JP2013516327A true JP2013516327A (ja) 2013-05-13
JP5981848B2 JP5981848B2 (ja) 2016-08-31

Family

ID=43629509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012547132A Active JP5981848B2 (ja) 2009-12-31 2010-12-21 マニピュレータの自動ティーチング及び位置補正システム

Country Status (6)

Country Link
US (2) US8459922B2 (ja)
JP (1) JP5981848B2 (ja)
KR (1) KR101895545B1 (ja)
CN (1) CN102782597B (ja)
TW (1) TWI556924B (ja)
WO (1) WO2011082011A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201598A (ja) * 2014-04-10 2015-11-12 株式会社荏原製作所 基板処理装置
JP2021072387A (ja) * 2019-10-31 2021-05-06 株式会社Screenホールディングス 基板処理装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI629743B (zh) * 2012-02-10 2018-07-11 布魯克斯自動機械公司 基材處理設備
US10203683B2 (en) 2013-07-16 2019-02-12 Seagate Technology Llc Coordinating end effector and vision controls
CN103794525B (zh) * 2013-07-18 2016-04-06 北京中科信电子装备有限公司 一种可运动机械臂上判定晶片存在的方法
US10424498B2 (en) 2013-09-09 2019-09-24 Persimmon Technologies Corporation Substrate transport vacuum platform
US10002781B2 (en) 2014-11-10 2018-06-19 Brooks Automation, Inc. Tool auto-teach method and apparatus
CN107206588B (zh) * 2015-02-04 2021-04-30 川崎重工业株式会社 机械手的偏移自动调整装置及机械手的偏移自动调整方法
US20160378089A1 (en) * 2015-06-24 2016-12-29 Siemens Aktiengesellschaft Logical Position Sensor
CN106610265B (zh) * 2015-10-22 2019-08-02 沈阳新松机器人自动化股份有限公司 圆心位置获取方法
US10624738B2 (en) * 2017-02-23 2020-04-21 Edwards Lifesciences Corporation Heart valve manufacturing devices and methods
US10903107B2 (en) 2017-07-11 2021-01-26 Brooks Automation, Inc. Semiconductor process transport apparatus comprising an adapter pendant
JP7129788B2 (ja) * 2018-02-16 2022-09-02 日本電産サンキョー株式会社 産業用ロボットの補正値算出方法
KR101957096B1 (ko) * 2018-03-05 2019-03-11 캐논 톡키 가부시키가이샤 로봇 시스템, 디바이스 제조 장치, 디바이스 제조 방법 및 티칭 위치 조정방법
CN108398728A (zh) * 2018-05-07 2018-08-14 广东工业大学 一种设备之间配合误差的辅助标记装置
JP6773084B2 (ja) * 2018-07-02 2020-10-21 株式会社安川電機 動作教示装置、ロボットシステム及び動作教示方法
JP2020044610A (ja) * 2018-09-19 2020-03-26 株式会社デンソーウェーブ ロボットの制御方法
US11247330B2 (en) * 2018-10-19 2022-02-15 Asm Ip Holding B.V. Method for teaching a transportation position and alignment jig
WO2020185841A1 (en) * 2019-03-11 2020-09-17 Persimmon Technologies Corporation Asymmetric dual end effector robot arm

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218622A (ja) * 2009-06-29 2009-09-24 Canon Anelva Corp 基板処理装置及び基板処理装置における基板位置ずれ補正方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3376578A (en) 1966-05-31 1968-04-02 Bruce A. Sawyer Magnetic positioning device
EP0597637B1 (en) * 1992-11-12 2000-08-23 Applied Materials, Inc. System and method for automated positioning of a substrate in a processing chamber
US5563798A (en) 1994-04-05 1996-10-08 Applied Materials, Inc. Wafer positioning system
SE504846C2 (sv) 1994-09-28 1997-05-12 Jan G Faeger Styrutrustning med ett rörligt styrorgan
US6366830B2 (en) 1995-07-10 2002-04-02 Newport Corporation Self-teaching robot arm position method to compensate for support structure component alignment offset
US6360144B1 (en) 1995-07-10 2002-03-19 Newport Corporation Self-teaching robot arm position method
US5980194A (en) * 1996-07-15 1999-11-09 Applied Materials, Inc. Wafer position error detection and correction system
US6002840A (en) 1997-09-30 1999-12-14 Brooks Automation Inc. Substrate transport apparatus
US6198976B1 (en) * 1998-03-04 2001-03-06 Applied Materials, Inc. On the fly center-finding during substrate handling in a processing system
ATE314629T1 (de) 1998-10-13 2006-01-15 Arc Second Inc Optischer sender mit rotierendem kopf für positionsmesssystem
US6256555B1 (en) 1998-12-02 2001-07-03 Newport Corporation Robot arm with specimen edge gripping end effector
US6304051B1 (en) 1999-03-15 2001-10-16 Berkeley Process Control, Inc. Self teaching robotic carrier handling system
US6075334A (en) 1999-03-15 2000-06-13 Berkeley Process Control, Inc Automatic calibration system for wafer transfer robot
US6242879B1 (en) 2000-03-13 2001-06-05 Berkeley Process Control, Inc. Touch calibration system for wafer transfer robot
US6323616B1 (en) 1999-03-15 2001-11-27 Berkeley Process Control, Inc. Self teaching robotic wafer handling system
US6327517B1 (en) * 2000-07-27 2001-12-04 Applied Materials, Inc. Apparatus for on-the-fly center finding and notch aligning for wafer handling robots
US6591160B2 (en) 2000-12-04 2003-07-08 Asyst Technologies, Inc. Self teaching robot
US6533521B1 (en) 2001-03-29 2003-03-18 Genmark Automation, Inc. Integrated substrate handler having pre-aligner and storage pod access mechanism
JP2005520321A (ja) * 2001-07-16 2005-07-07 アシスト テクノロジーズ インコーポレイテッド ツールのフロントエンド加工物処理のための統合システム
US7233841B2 (en) * 2002-04-19 2007-06-19 Applied Materials, Inc. Vision system
US6900877B2 (en) * 2002-06-12 2005-05-31 Asm American, Inc. Semiconductor wafer position shift measurement and correction
JP4831521B2 (ja) 2002-06-19 2011-12-07 村田機械株式会社 縦型輪状コンベヤ及びオーバーヘッドホイストを基にした半導体製造のためのマテリアルの自動化処理システム
AU2003259203A1 (en) 2002-07-22 2004-02-09 Brooks Automation, Inc. Substrate processing apparatus
US7988398B2 (en) * 2002-07-22 2011-08-02 Brooks Automation, Inc. Linear substrate transport apparatus
US6996456B2 (en) 2002-10-21 2006-02-07 Fsi International, Inc. Robot with tactile sensor device
US7107125B2 (en) * 2003-10-29 2006-09-12 Applied Materials, Inc. Method and apparatus for monitoring the position of a semiconductor processing robot
US7458763B2 (en) * 2003-11-10 2008-12-02 Blueshift Technologies, Inc. Mid-entry load lock for semiconductor handling system
US20050113964A1 (en) * 2003-11-10 2005-05-26 Blueshift Technologies, Inc. Sensor methods and systems for semiconductor handling
EP1904893B1 (en) * 2005-07-11 2012-11-28 Brooks Automation, Inc. Substrate transport apparatus with automated alignment
CN101529555A (zh) * 2006-10-23 2009-09-09 赛博光学半导体公司 改进的衬底操作机械手校准
US8752449B2 (en) * 2007-05-08 2014-06-17 Brooks Automation, Inc. Substrate transport apparatus with multiple movable arms utilizing a mechanical switch mechanism
US8099190B2 (en) * 2007-06-22 2012-01-17 Asm International N.V. Apparatus and method for transferring two or more wafers whereby the positions of the wafers can be measured
NL1036673A1 (nl) 2008-04-09 2009-10-12 Asml Holding Nv Robot Position Calibration Tool (RPCT).

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218622A (ja) * 2009-06-29 2009-09-24 Canon Anelva Corp 基板処理装置及び基板処理装置における基板位置ずれ補正方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201598A (ja) * 2014-04-10 2015-11-12 株式会社荏原製作所 基板処理装置
JP2021072387A (ja) * 2019-10-31 2021-05-06 株式会社Screenホールディングス 基板処理装置
JP7390162B2 (ja) 2019-10-31 2023-12-01 株式会社Screenホールディングス 基板処理装置

Also Published As

Publication number Publication date
CN102782597B (zh) 2016-03-23
KR101895545B1 (ko) 2018-09-05
TWI556924B (zh) 2016-11-11
US8459922B2 (en) 2013-06-11
US20110118875A1 (en) 2011-05-19
US20130345858A1 (en) 2013-12-26
US8892248B2 (en) 2014-11-18
JP5981848B2 (ja) 2016-08-31
CN102782597A (zh) 2012-11-14
KR20120112695A (ko) 2012-10-11
TW201134624A (en) 2011-10-16
WO2011082011A1 (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5981848B2 (ja) マニピュレータの自動ティーチング及び位置補正システム
JP7430668B2 (ja) オンザフライ方式の自動ウェハセンタリング方法および装置
KR101363591B1 (ko) 자동 정렬 기능을 갖는 기판 이송 장치
CN107924863B (zh) 搬送系统、搬送机器人及其教导方法
JP2022541346A (ja) 自動ウェハーハンドリングロボットの教育及びヘルスチェックのための統合化された適応型位置決めシステム及びルーチン
WO2000024551A1 (fr) Procede de positionnement d'un systeme de support
CN107026110B (zh) 基板交接位置的示教方法和基板处理系统
CN113906546A (zh) 转位式多站处理室中的晶片放置修正
TWI752910B (zh) 同步自動晶圓定心方法及設備
TW201806067A (zh) 基於傳感器的自動校準晶圓
CN115176337A (zh) 机器人嵌入式视觉设备
CN110154038B (zh) 机器人的位置信息恢复方法
CN110303505B (zh) 机器人的位置信息恢复方法
US10403539B2 (en) Robot diagnosing method
US20050228542A1 (en) Auto-calibration method and device for wafer handler robots

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150203

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160120

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160216

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160729

R150 Certificate of patent or registration of utility model

Ref document number: 5981848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250