JP2013509851A - A method of charging or discharging a battery for determining the end of charging or discharging based on current and temperature measurements - Google Patents

A method of charging or discharging a battery for determining the end of charging or discharging based on current and temperature measurements Download PDF

Info

Publication number
JP2013509851A
JP2013509851A JP2012535895A JP2012535895A JP2013509851A JP 2013509851 A JP2013509851 A JP 2013509851A JP 2012535895 A JP2012535895 A JP 2012535895A JP 2012535895 A JP2012535895 A JP 2012535895A JP 2013509851 A JP2013509851 A JP 2013509851A
Authority
JP
Japan
Prior art keywords
battery
current
voltage
temperature
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012535895A
Other languages
Japanese (ja)
Inventor
ジャン‐マリー、クライン
アルノー、ドレイユ
シルビー、ジェニ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of JP2013509851A publication Critical patent/JP2013509851A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • H02J7/00718Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current in response to charge current gradient
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

バッテリ(1)の充電または放電方法は、バッテリの端子で電圧(U)を測定するステップと、測定電圧(U)と充電終了または放電終了の電圧しきい値とを比較するステップとを含む。この方法はまた、測定値の対を形成するために、バッテリの温度を表す温度(T)を測定するステップと、バッテリ(1)を流れる電流(I)を測定するステップとを含む。次に、電圧しきい値は、測定値の対により決定される。バッテリの充電または放電は、電圧しきい値に達すると停止される。The method for charging or discharging the battery (1) includes a step of measuring a voltage (U b ) at a terminal of the battery and a step of comparing the measured voltage (U b ) with a voltage threshold value at the end of charging or discharging. Including. The method also includes measuring a temperature (T b ) representing the temperature of the battery and measuring a current (I b ) flowing through the battery (1) to form a measurement pair. The voltage threshold is then determined by the measured value pair. Battery charging or discharging is stopped when the voltage threshold is reached.

Description

本発明は、バッテリを充電または放電するための方法に関する。   The present invention relates to a method for charging or discharging a battery.

バッテリの動作を最適化するために、異なる充電および/または放電法の管理を担うレギュレータの開発が必要とされてきた。直接使用するために電力システムに電力を入力可能であるか、または将来的に使用するためにバッテリに生じた電流を蓄積可能である、再生可能なエネルギー源の使用に向けた新技術の開発が進められてきた。   In order to optimize battery operation, it has been necessary to develop regulators that are responsible for managing different charging and / or discharging methods. The development of new technologies for the use of renewable energy sources that can input power into the power system for direct use or can store the current generated in the battery for future use. It has been advanced.

既知の調整モードはオン/オフ調整であり、このタイプは、電圧が第1の高電圧切断(HVD:High Voltage Discconect)しきい値に達すると充電を中断し、電圧が第2の高電圧再接続(HVR:High Voltage Reconnect)しきい値に達すると充電を再開することに基づく。オン/オフタイプの調整は、充電終了の基準が一般にない光起電力分野において使用される場合が多い。実際、ユーザがこのシステムを使用することで、調整を終了すると同時にバッテリが放電される。しかしながら、ユーザからのアクションが何もなく、システムを使用しない期間が長くなると、バッテリの過充電が起こり、バッテリにダメージを与えやすくなる。   A known regulation mode is on / off regulation, which suspends charging when the voltage reaches a first high voltage disconnect (HVD) threshold, and the voltage is Based on resuming charging when a High Voltage Reconnect (HVR) threshold is reached. On / off type adjustment is often used in the photovoltaic field where there is generally no end-of-charge criterion. In fact, when the user uses this system, the battery is discharged at the same time as the adjustment is completed. However, if there is no action from the user and the period during which the system is not used becomes long, the battery is overcharged, which easily damages the battery.

最大調整時間を固定することによって、充電終了を決定することが可能である。しかしながら、この基準は、バッテリのフル充電に達するための調整にかかる充電時間が、充電の電流率、使用するバッテリのタイプ、またはバッテリの状態に応じてさまざまであるため、ほとんど使用されない。   It is possible to determine the end of charging by fixing the maximum adjustment time. However, this standard is rarely used because the charge time for adjustment to reach full battery charge varies depending on the current rate of charge, the type of battery used, or the condition of the battery.

しかしながら、充電終了の管理は、特に、ある一定の妨害反応、特に、水電解液を有するバッテリに関する限り、水の電気分解を制限しながら、バッテリの所与の充電状態を達成するために特に重要である。   However, end-of-charge management is particularly important for achieving a given charge state of the battery while limiting the electrolysis of water, especially as far as batteries with certain interfering reactions, especially water electrolytes are concerned. It is.

同時に、以下の目的、すなわち、
‐損失を補償するために水の追加が可能な開放型バッテリと呼ばれるバッテリのメンテナンス要求の制限、
‐水の追加は不可能であり、過充電が熱暴走および/または爆発につながりうる密閉型バッテリの安全性の確保、
‐最後に、バッテリの寿命の最適化、
のために、これらの妨害反応を制限することが主な課題である。
At the same time, the following purposes:
-Limiting battery maintenance requirements, called open batteries where water can be added to compensate for losses,
-The addition of water is not possible, ensuring the safety of sealed batteries where overcharging can lead to thermal runaway and / or explosion,
-Finally, optimization of battery life,
Therefore, limiting these interfering reactions is a major challenge.

欧州特許出願公開第1990890号明細書には、充電制御ユニットによって制御された2つの充電モードを使用する充電方法が記載されている。第1の充電モードにおいて、充電は制御電流タイプのものであり、第2の充電モードにおいて、充電は制御電圧タイプのものである。第1の充電モードにおいて、この方法は、温度および充電電流の関数である電圧しきい値を含む。電圧しきい値に達すると、制御ユニットは挙動を変更し、充電終了が検出されて、バッテリの急速な温度上昇が起こった場合、または充電電流値が所定のしきい値に達すれば、充電を停止する。   EP-A-1990890 describes a charging method using two charging modes controlled by a charging control unit. In the first charging mode, charging is of the control current type, and in the second charging mode, charging is of the control voltage type. In the first charging mode, the method includes a voltage threshold that is a function of temperature and charging current. When the voltage threshold is reached, the control unit changes its behavior and charging is detected if the end of charge is detected and a rapid temperature rise of the battery occurs or if the charge current value reaches a predetermined threshold. Stop.

欧州特許出願公開第1990890号明細書European Patent Application No. 1990890

本発明の目的は、バッテリの寿命を最適化するように、適時に充電または放電を停止することによって、バッテリの充電または放電を実行することである。   It is an object of the present invention to perform battery charging or discharging by stopping charging or discharging in a timely manner so as to optimize battery life.

この目的は、添付の特許請求の範囲によって達成され、さらに詳細には、以下のステップ、すなわち、
‐バッテリの端子で電圧を測定するステップと、
‐バッテリの温度を表す温度を測定し、バッテリに流れる電流を測定することによって形成される一対の測定値により、充電終了または放電終了の電圧しきい値を決定するステップと、
‐測定電圧と、充電終了または放電終了の電圧しきい値とを比較するステップと、
‐電圧しきい値に達すると、充電または放電を停止するステップと、
を含む方法によって達成される。
This object is achieved by the appended claims, and more particularly the following steps:
-Measuring the voltage at the battery terminals;
-Measuring a temperature representative of the temperature of the battery and determining a voltage threshold for end of charge or end of discharge according to a pair of measurements formed by measuring the current flowing through the battery;
-Comparing the measured voltage with the end-of-charge or end-of-discharge voltage threshold;
-Stopping charging or discharging when a voltage threshold is reached;
Achieved by a method comprising:

他の利点および特徴は、非制約的な例示的目的でのみ与えられ、添付の図面に表された本発明の特定の実施形態についての以下の記載からより明らかにになるであろう。   Other advantages and features will be more apparent from the following description of specific embodiments of the invention given for non-restrictive illustrative purposes only and represented in the accompanying drawings.

独立型システムの一例を表す図である。It is a figure showing an example of a stand-alone system. 80%の充電状態を表す電圧しきい値と、充電電流および温度との関係を表す三次元マッピングを表す図である。It is a figure showing the three-dimensional mapping showing the relationship between the voltage threshold value showing a charge state of 80%, a charging current, and temperature. 30%の充電状態を表す電圧しきい値と、充電電流および温度との関係を表す三次元マッピングを表す図である。It is a figure showing the three-dimensional mapping showing the relationship between the voltage threshold value which represents a charge state of 30%, a charging current, and temperature. 所定の温度における異なる充電電流値に対するバッテリの電圧変動と充電状態との関係を示すプロットを表す図である。It is a figure showing the plot which shows the relationship between the voltage fluctuation of a battery with respect to different charging current values in predetermined | prescribed temperature, and a charging state. バッテリの充電および放電レギュレータに組み込まれる判定流れ図である。It is a determination flowchart incorporated in the charge and discharge regulator of a battery.

図1に示すように、独立型システムは、一般に、バッテリ1に接続された再生可能なエネルギー源を備える。バッテリ1は、太陽エネルギー、風力、水力、または地熱型のものでありうる再生可能なエネルギー源によって再充電される。定義上、再生可能なエネルギー源は、サービスの提供の持続性に依存せず、すなわち、一定の割合で電流を生成していない。このように一定でないことにより、従来の充電および放電方法の使用が無効になる。図1において、バッテリ1は、少なくとも1つの太陽電池パネル2によって再充電され、言い換えれば、単に雲で覆われただけで、充電電流の強度が低減したり、場合によっては、太陽光の条件があまり好ましいものでなければ、バッテリの充電が遮断されたりする。   As shown in FIG. 1, a stand-alone system generally comprises a renewable energy source connected to a battery 1. The battery 1 is recharged by a renewable energy source that can be of the solar, wind, hydraulic or geothermal type. By definition, renewable energy sources do not depend on the sustainability of service delivery, i.e. do not generate current at a constant rate. This non-constancy invalidates the use of conventional charging and discharging methods. In FIG. 1, the battery 1 is recharged by at least one solar panel 2, in other words, simply being covered with a cloud, the intensity of the charging current is reduced, or in some cases the conditions of sunlight are If it is not very favorable, the battery charge may be interrupted.

このように、バッテリの充電または放電特性は、充電/放電状態およびバッテリ1の温度に応じて変動しうる。したがって、再生可能なエネルギー源に依存して充電を行うと、充電が停止される瞬間を決定することが難しくなる。同じように、バッテリの劣化を防止するために、バッテリをあまり重放電しないことが好ましいが、同じ充電原理がバッテリ1の放電にも当てはまる。   Thus, the charge or discharge characteristics of the battery can vary depending on the charge / discharge state and the temperature of the battery 1. Therefore, when charging is performed depending on a renewable energy source, it is difficult to determine the moment when charging is stopped. Similarly, in order to prevent the battery from deteriorating, it is preferable not to discharge the battery too heavily, but the same charging principle applies to the discharging of the battery 1 as well.

以下に記載する方法は、再生可能なエネルギー源に接続されるバッテリに特に適しているが、さまざまな電流電源に接続される任意のタイプのバッテリに適合するように適応されうる。   The methods described below are particularly suitable for batteries connected to renewable energy sources, but can be adapted to fit any type of battery connected to various current sources.

このように、再生可能なエネルギー源2に接続されることが好ましいバッテリ1の充電または放電方法は、バッテリ1の端子の電圧Uを少なくとも測定するステップと、測定電圧Uと充電終了または放電終了の電圧しきい値とを比較するステップとを含む。この方法は、バッテリ1の温度を表す温度Tを測定するステップと、バッテリに流れる電流Iを測定するステップとをさらに含み、したがって、一対の測定値(T,I)を形成する。慣例により、電流が負であれば、バッテリは放電し、正であれば再充電される。電圧しきい値は、温度Tの測定および電流Iの測定によって形成された一対の測定値に応じて決定される。実際、電圧しきい値は、使用条件に応じて、すなわち、充電電流またはそれぞれの放電電流に応じて、およびバッテリ1の温度Tに応じて変動しうる。次に、一対の測定値から決定された電圧しきい値は、充電終了または放電終了の基準を微調整しながら訂正を行うことができる。 Thus, the charging or discharging process of it is preferably a battery 1 connected to a renewable energy source 2, the steps of at least measuring the voltage U b of the battery 1 terminal, charge termination or discharge a measured voltage U b Comparing to an end voltage threshold. The method further includes measuring a temperature T b representative of the temperature of the battery 1 and measuring a current I b flowing through the battery, thus forming a pair of measured values (T b , I b ). . By convention, if the current is negative, the battery is discharged, and if positive, it is recharged. Voltage threshold is determined according to a pair of measurements is formed by measurement of the measurement and the current I b of the temperature T b. In fact, voltage threshold, depending on the use conditions, i.e., in response to the charging current or the respective discharge currents, and may vary according to the temperature T b of the battery 1. Next, the voltage threshold value determined from the pair of measurement values can be corrected while finely adjusting the charge end or discharge end reference.

測定電圧Ubが電圧しきい値に達すれば、バッテリの充電または放電が停止される。停止とは、バッテリの充電終了または放電終了の基準に達したことを意味する。この場合、測定電圧が、電圧しきい値を下回るまで充電は再開されない。同じように、放電終了の基準に達すると、測定電圧が電圧しきい値を下回ったままである限り、放電は再開されない。   When the measured voltage Ub reaches the voltage threshold value, charging or discharging of the battery is stopped. Stopping means that the battery charging or discharging end criterion has been reached. In this case, charging is not resumed until the measured voltage falls below the voltage threshold. Similarly, once the end of discharge criterion is reached, the discharge is not resumed as long as the measured voltage remains below the voltage threshold.

測定電流Ibとは、瞬間的な電流、または所定の時間にわたって測定された電流の平均値のいずれかである。   The measured current Ib is either an instantaneous current or an average value of currents measured over a predetermined time.

バッテリ1の端子の電圧U、バッテリを流れる電流I、およびバッテリ1の温度Tの測定は同時に行われることが好ましい。この測定により、測定時の充電または放電特性の正確なイメージを得ることができる。 It is preferable that the voltage U b at the terminal of the battery 1, the current I b flowing through the battery, and the temperature T b of the battery 1 are measured simultaneously. By this measurement, an accurate image of the charge or discharge characteristics at the time of measurement can be obtained.

規則的な間隔でバッテリの性質を認識し、充電終了または放電終了のしきい値に達するとすぐに充電または放電を停止するように、さまざまな測定が周期的に行われることが好ましい。   Various measurements are preferably made periodically to recognize the nature of the battery at regular intervals and stop charging or discharging as soon as the end of charge or discharge threshold is reached.

発展例によれば、電圧しきい値は、例えば、バッテリのタイプに応じた充電状態のしきい値に対応する。このように、放電時、しきい値は、バッテリの重放電を防止するように選択され、充電時、しきい値は、過度な充電による問題となる化学反応を防止するように選択されうる。   According to a development, the voltage threshold corresponds, for example, to the threshold of the state of charge according to the battery type. Thus, during discharging, the threshold can be selected to prevent heavy discharge of the battery, and during charging, the threshold can be selected to prevent problematic chemical reactions due to excessive charging.

バッテリへのダメージを防止するために、電流および測定温度に依存する電圧しきい値は、20%〜30%のバッテリの充電状態を表す値に対応することが好ましい。このしきい値により、鉛蓄電池の硫酸化、またはリチウム電池の金属リチウム堆積などの劣化からバッテリを保護でき、さらに、利用可能な最小電力をバッテリに維持できる。充電終了の基準に対応する電圧しきい値は、75%〜90%のバッテリの充電状態を表す値に対応することが好ましい。75%の充電状態は鉛蓄電池の脱ガスを制限し、80%はLiMHバッテリを長寿命化し、90%はバッテリがリチウム製の場合、バッテリの異なる元素の均衡を保つ必要がなくなる。言い換えれば、電流Ibおよび温度Tbの測定により決定された電圧しきい値は、バッテリの充電状態、すなわち、物理状態を表しうる。適時に充電または放電を停止することによって、経時的にバッテリの完全性を保存可能である。   In order to prevent damage to the battery, the voltage threshold depending on the current and the measured temperature preferably corresponds to a value representing the state of charge of the battery between 20% and 30%. This threshold can protect the battery from degradation such as sulfation of the lead acid battery or metal lithium deposition of the lithium battery, and can maintain the minimum available power in the battery. It is preferable that the voltage threshold value corresponding to the charge termination standard corresponds to a value representing a charged state of the battery of 75% to 90%. The 75% state of charge limits lead-acid battery degassing, 80% extends the life of LiMH batteries, and 90% eliminates the need to balance the different elements of the battery when the battery is made of lithium. In other words, the voltage threshold value determined by measuring the current Ib and the temperature Tb can represent the state of charge of the battery, that is, the physical state. By stopping charging or discharging in a timely manner, battery integrity can be preserved over time.

バッテリが、これらの充電しきい値と放電しきい値との間で一定のままであれば、妨害となる化学反応が大幅に低減され、バッテリの長期自立性が大幅に改善される。   If the battery remains constant between these charge and discharge thresholds, the interfering chemical reaction is greatly reduced and the long-term independence of the battery is greatly improved.

充電状態は、一般に、百分率として表されるバッテリのインジケータに対応する。バッテリは、0%のときに空であると見なされ、100%のときにフル充電であると見なされる。典型的に、充電状態は、バッテリの公称定格容量に対してバッテリに蓄積された電流量に応じて変動する。   The state of charge generally corresponds to a battery indicator expressed as a percentage. The battery is considered empty when 0% and fully charged when 100%. Typically, the state of charge varies depending on the amount of current stored in the battery relative to the nominal rated capacity of the battery.

言い換えれば、適時に充電または放電を停止するために、一対の測定値、すなわち、温度Tの測定およびバッテリ1を流れる電流Iの測定によって得られる測定値に関連づけられた電圧しきい値を、測定値の対の所定のセットの中から選択することによって、前記電圧しきい値の決定を実行することが好ましい。このように、充電および放電終了の基準は、可能な限りバッテリの完全性を保存するように微調整される。このため、電圧しきい値は、電圧値の表(テーブル)から供給されることが好ましい。次に、表は2つの入力を含んでよく、第1の入力は電流値を示し、第2の入力は温度値を示す。温度Tおよび電流Iの測定値が既知の対に対応していない場合、すなわち、これらの値では表から電圧値が得られない場合、電圧値を与えうるこれらの2つの値に最も近い対を選択して、充電終了または放電終了の基準に対応する電圧しきい値を決定することができる。 In other words, in order to stop charging or discharging in a timely manner, a voltage threshold associated with a pair of measured values, that is, a measured value obtained by measuring the temperature T b and measuring the current I b flowing through the battery 1 is determined. Preferably, the determination of the voltage threshold is performed by selecting from a predetermined set of measurement pairs. In this way, charging and discharging termination criteria are fine-tuned to preserve battery integrity as much as possible. For this reason, the voltage threshold value is preferably supplied from a table of voltage values. Next, the table may include two inputs, the first input indicating the current value and the second input indicating the temperature value. If the measured value of the temperature T b and the current I b does not correspond to a known pair, i.e., closest to these two values if no voltage value obtained from the table, that may have a voltage value in these values A pair can be selected to determine a voltage threshold corresponding to a charge termination or discharge termination criterion.

このような表は、すべての充電または放電パラメータ(充電/放電電流、温度、充電状態など)が決められる条件下で予め確立されうる。特定の例として、表の確立は以下のステップ、すなわち、
‐バッテリ1の充電状態に応じてバッテリ1の端子の電圧Uを表し、バッテリ温度Tおよびバッテリ1を流れる電流Iによって形成される対に対して各々が確立される、複数の曲線を提供するステップと、
‐各曲線に対して、バッテリ1の充電状態から電圧値を決定するステップと、
‐このようにして決定された各電圧値を表に追加するステップと、
を含む。
Such a table may be pre-established under conditions where all charge or discharge parameters (charge / discharge current, temperature, charge state, etc.) are determined. As a specific example, the establishment of a table involves the following steps:
The voltage U b at the terminal of the battery 1 as a function of the state of charge of the battery 1, and a plurality of curves each established for the pair formed by the battery temperature T b and the current I b flowing through the battery 1 Providing steps;
-For each curve, determining a voltage value from the state of charge of the battery 1;
-Adding each voltage value thus determined to the table;
including.

したがって、前記電圧値を決定可能にした電流および温度のそれぞれに対して、表の第1および第2の入力を固定することによって、各電圧値を得られる。   Thus, each voltage value can be obtained by fixing the first and second inputs of the table for each of the current and temperature that allowed the voltage value to be determined.

表の実施形態の特定の例として、バッテリ1の充電の場合、あるステップにおいて、所定の温度(図4の例の場合、25℃)で、電圧とバッテリの充電状態(1は100%の充電状態を表す)との関係を表す、図4に示された曲線のような複数の曲線を確立する。各曲線は、異なる充電率(図4の場合、3.33A、2Aおよび1A)に関連づけられる。複数の異なる温度に対して、同じステップが繰り返される。   As a specific example of the embodiment of the table, in the case of charging the battery 1, the voltage and the state of charge of the battery (1 is 100% charge) at a predetermined temperature (25 ° C. in the example of FIG. 4) A plurality of curves are established, such as the curves shown in FIG. Each curve is associated with a different charge rate (3.33A, 2A and 1A in the case of FIG. 4). The same steps are repeated for multiple different temperatures.

バッテリの充電に関連づけられる電圧値を決定するために、充電状態は、バッテリの75%〜90%の充電状態に固定される。したがって、図4の読取値により、電流/温度の対に対して電圧が固定される。例えば、充電状態を80%(図4の0.8)に固定することによって、25℃および1Aの対は、約3.825Vの電圧値に関連づけられる。したがって、充電方法が実行されるとき、測定値TおよびIが、それぞれ25℃および1Aに等しければ、表の読取値が電圧しきい値として正確に3.825Vの値を与える。 In order to determine the voltage value associated with the charging of the battery, the state of charge is fixed at between 75% and 90% of the battery. Therefore, the reading in FIG. 4 fixes the voltage for the current / temperature pair. For example, by fixing the state of charge to 80% (0.8 in FIG. 4), the 25 ° C. and 1A pair is associated with a voltage value of approximately 3.825V. Thus, when the charging method is performed, if the measured values T b and I b are equal to 25 ° C. and 1 A, respectively, the table reading gives exactly 3.825 V as the voltage threshold.

放電に関連づけられた対のセットの確立に関して、図4の曲線は、異なる放電電流に対して充電済みのバッテリから再びプロットされる。次に、充電状態は、バッテリの20%〜30%の充電状態に固定される。   For the establishment of the pair set associated with the discharge, the curve of FIG. 4 is again plotted from the charged battery for different discharge currents. Next, the state of charge is fixed at a state of charge of 20% to 30% of the battery.

特定の実施形態によれば、バッテリ1の温度Tおよび充電または放電電流Iの任意の測定が、所定の電圧しきい値に対応するようにすることが可能である。このように、バッテリの温度Tが第1の所定の範囲において変動すれば、第1の範囲を表すN個の値の中から第1の値を送り出す温度センサ3によって温度測定が実行される。バッテリ1に流れる電流Iが第2の所定の範囲内において変動すれば、第2の範囲を表すM個の値の中から第2の値を送り出す測定手段4によって、電流Iの測定が実行される。次に、表は、NM個の電圧値を含み、各電圧は、前記第1および第2の値によって形成された温度および電流の単一の対によって得られる。言い換えれば、温度センサ3および電流測定手段4の各々は、所定の範囲においてある一定数の値を測定できる所定の分解能を有する。 According to a particular embodiment, any measurement of the temperature T b and the charging or discharging current I b of the battery 1, it is possible to correspond to a predetermined voltage threshold. Thus, if the temperature T b of the battery varies in a first predetermined range, the temperature measurement is performed by the temperature sensor 3 for feeding a first value from the N values representing the first range . If the current I b flowing through the battery 1 fluctuates within a second predetermined range, the measuring means 4 for feeding a second value from among the M values representing the second range, the measurement of the current I b Executed. The table then includes N * M voltage values, each voltage being obtained by a single pair of temperature and current formed by the first and second values. In other words, each of the temperature sensor 3 and the current measuring means 4 has a predetermined resolution capable of measuring a certain number of values within a predetermined range.

上記に記載した実施形態を示す特定の例として、第1の範囲は、0℃〜60℃の間隔に対応し、その範囲外では、バッテリの内部にダメージを生じるものと見なされるため、バッテリの使用は許容されない。温度センサの分解能は1℃であり、分解能とは、関連するセンサの測定精度を意味する。実際の温度が1.8℃であれば、測定温度は2℃である。この条件によれば、測定可能な温度のセットは、61個の値からなるセットNを表す。同じ原理で、充電時に再生可能なエネルギー源2が供給可能である電流を表す0A〜2Aの範囲にわたって0.01Aの分解能を有する電流測定手段4の場合、電流測定範囲は、範囲[0.01;2]によって規定される間隔であり、電流測定手段4によって測定可能な200個の異なる電流値からなるセットNを表す。   As a specific example illustrating the embodiment described above, the first range corresponds to an interval between 0 ° C. and 60 ° C., and outside that range is considered to cause damage to the interior of the battery, so Use is not allowed. The resolution of the temperature sensor is 1 ° C., and the resolution means the measurement accuracy of the related sensor. If the actual temperature is 1.8 ° C, the measured temperature is 2 ° C. According to this condition, the set of measurable temperatures represents a set N of 61 values. In the same principle, in the case of the current measuring means 4 having a resolution of 0.01 A over the range of 0 A to 2 A representing the current that can be supplied by the renewable energy source 2 during charging, the current measuring range is the range [0.01. 2] and represents a set N of 200 different current values that can be measured by the current measuring means 4.

したがって、最終的に、すべての可能な測定値の組み合わせをカバーする12,200個の対が得られる(すなわち、12,200個の電圧値が表に格納される)。   Thus, ultimately, 12,200 pairs are obtained that cover all possible measurement combinations (ie, 12,200 voltage values are stored in the table).

次に、前述した表は、すべての測定可能な可能性を表すNM個の異なる対のセットを最終的に出力で得るように曲線が確立された場合に固定された対を補外して決定された対によって完了されうる。好ましくは、補外を高め、可能な限り精度を高くするために、第1の範囲の境界および第2の範囲の境界は、曲線を確立するために固定された対の一部を形成する。 The above table then extrapolates the fixed pair when the curve is established to finally obtain a set of N * M different pairs representing all measurable possibilities at the output. It can be completed by the determined pair. Preferably, in order to enhance extrapolation and to be as accurate as possible, the first range boundary and the second range boundary form part of a fixed pair to establish a curve.

好ましくは、対の数を決定できるように、第1の範囲の各温度値は、温度センサ3の測定精度以下である温度差によって第1の範囲の少なくとも1つの別の温度値から分離され、第2の範囲の各電流値は、測定手段4の測定精度以下である電流差によって第2の範囲の少なくとも1つの別の電流値から分離される。   Preferably, each temperature value in the first range is separated from at least one other temperature value in the first range by a temperature difference that is less than or equal to the measurement accuracy of the temperature sensor 3, so that the number of pairs can be determined, Each current value in the second range is separated from at least one other current value in the second range by a current difference that is less than or equal to the measurement accuracy of the measuring means 4.

対のセットの可能な表示は、M行およびN列の行列の形で与えられる。各行は、分解能に応じて電流測定手段4によって測定可能な異なる電流に対応し、各列は、分解能に応じて温度センサ3によって測定可能な異なる温度に対応する。   Possible representations of the set of pairs are given in the form of a matrix with M rows and N columns. Each row corresponds to a different current that can be measured by the current measuring means 4 according to the resolution, and each column corresponds to a different temperature that can be measured by the temperature sensor 3 according to the resolution.

このようにして、図2および図3の三次元マッピングを確立することが可能である。図2は、80%の充電状態に関連づけられた電圧値Uthresholdのセットと電流Iおよび温度Tとの関係を示す。図3は、30%の充電状態に関連づけられた電圧値Uthresholdのセットと電流Iおよび温度Tとの関係を示す。 In this way, the three-dimensional mapping of FIGS. 2 and 3 can be established. FIG. 2 shows the relationship between the set of voltage values U threshold associated with 80% state of charge, current I and temperature T. FIG. 3 shows the relationship between the set of voltage values U threshold associated with 30% state of charge, current I and temperature T.

別の可能な表示は、バッテリ充電および放電レギュレータに組み込まれた3つのフィールド(温度、電流、電圧)を有するデータベースであってもよく、そのうち唯一の基本となるものは、温度値および電流値である。   Another possible indication may be a database with three fields (temperature, current, voltage) built into the battery charge and discharge regulator, the only basic of which is the temperature and current values is there.

求める電圧しきい値を迅速に決定できるようにする任意の他の電圧値格納手段も想定されうる。   Any other voltage value storage means that allows the desired voltage threshold to be determined quickly can also be envisaged.

実際、2つの対のセットは区別されうる。第1のセットは、充電終了の基準を表す電圧しきい値に関連づけられた値に対応し、第2のセットは、放電終了の基準を表す電圧しきい値に関連づけられた値に対応する。   In fact, the two pairs of sets can be distinguished. The first set corresponds to the value associated with the voltage threshold representing the end-of-charge criterion, and the second set corresponds to the value associated with the voltage threshold representing the end-of-discharge criterion.

これらの対のセットは、実施形態の目的のために別々のものとして表されているが、充電に関連づけられた対のセットおよび放電に関連づけられた対のセットは、単一の表の形式で与えられ、第2の範囲は、負の下方境界および正の上方境界を有する電流値を含む。   These sets of pairs are represented as separate for the purposes of the embodiment, but the set of pairs associated with charging and the set of pairs associated with discharging are in the form of a single table. Given, the second range includes current values having a negative lower boundary and a positive upper boundary.

充電終了または放電終了の基準を決定するためにこのような表によって、バッテリに物理的ダメージを生じさせない電気化学ウィンドウでのみバッテリの使用が認められる。これにより、バッテリの完全性を保ちながら、バッテリの寿命より長くすることができる。したがって、バッテリの取り替え頻度が少なくなる。   Such a table to determine end-of-charge or end-of-discharge criteria allows use of the battery only in an electrochemical window that does not cause physical damage to the battery. Thereby, it can be made longer than the lifetime of a battery, maintaining the integrity of a battery. Therefore, the replacement frequency of the battery is reduced.

この方法の実施例によれば、測定電流Iが負であれば、この方法は放電段階にあり、バッテリの端子の電圧Uが規定の電圧しきい値以下になると放電が停止される。 According to an embodiment of the method, if the measured current I b is negative, the method is in the discharge phase, the discharge voltage U b of the battery terminals falls below the specified voltage threshold is stopped.

この方法の別の実施例によれば、測定電流Iが正であれば、この方法は充電段階にあり、バッテリの端子の電圧Uが規定の電圧しきい値以上になると充電が停止される。 According to another embodiment of the method, if it is positive measurement current I b is, the method is in charging phase, the charging voltage U b of the battery terminals is equal to or higher than specified voltage threshold is stopped The

バッテリの寿命期間中、バッテリの物理値および化学値は変化する。その結果、測定値の対およびそれらに関連づけられた電圧しきい値は、すでに確立されたものと異なりうる。したがって、特定の実施形態によれば、電圧しきい値の訂正を行うことが有用な場合もある。言い換えれば、測定値の各対に対して、関連づけられた電圧しきい値は、バッテリ1の使用期間を表す第1の時間後に訂正されうる。このような訂正は、例えば、第1の時間の前の第2の時間と、第1の時間の後の第3の時間との間のバッテリ1の物理特性を解析することによって実行されうる。   During the life of the battery, the physical and chemical values of the battery change. As a result, the measurement pairs and the voltage thresholds associated with them may differ from those already established. Thus, according to certain embodiments, it may be useful to correct the voltage threshold. In other words, for each pair of measurements, the associated voltage threshold can be corrected after a first time representing the duration of use of battery 1. Such a correction can be performed, for example, by analyzing the physical characteristics of the battery 1 between a second time before the first time and a third time after the first time.

特定の発展例によれば、電圧しきい値の訂正は、第1の時間の前の第2の時間と、第1の時間の後の第3の時間との間でバッテリ容量の100%に充電されたバッテリの内部抵抗の変化量の関数である。言い換えれば、所定の使用期間後、バッテリ1の再充電ステップがバッテリ容量の100%になるまで実行され、このように充電されたバッテリ1の内部抵抗は、好ましくは、すでに規定された第1の範囲内の温度で測定される。次に、この内部抵抗は、所定の使用期間より前の時間に同じ条件下で測定された内部抵抗と比較される。測定値の各対に対して、関連づけられた電圧しきい値はその後、内部抵抗の比較結果に応じて訂正される。   According to a particular development, the correction of the voltage threshold is 100% of the battery capacity between the second time before the first time and the third time after the first time. It is a function of the amount of change in the internal resistance of a charged battery. In other words, after a predetermined period of use, the recharging step of the battery 1 is carried out until it reaches 100% of the battery capacity, and the internal resistance of the battery 1 thus charged is preferably the first defined Measured at a temperature within the range. This internal resistance is then compared to the internal resistance measured under the same conditions at a time prior to a predetermined period of use. For each pair of measurements, the associated voltage threshold is then corrected according to the comparison result of the internal resistance.

例えば、バッテリの内部抵抗が、第2の時間と第3の時間との間で20%低下すれば、すべての電圧しきい値がその後20%修正されうる。   For example, if the internal resistance of the battery drops by 20% between the second time and the third time, all voltage thresholds can then be corrected by 20%.

以下の式、

Figure 2013509851
による一般化が可能である。 The following formula,
Figure 2013509851
Can be generalized.

式中、ΔV/Vは、電圧しきい値に適用される変化量であり、ΔR/Rは、バッテリの内部抵抗の測定変化量であり、αは、例えば、0.8〜1.2に含まれる因子である。   Where ΔV / V is the amount of change applied to the voltage threshold, ΔR / R is the measured amount of change in the internal resistance of the battery, and α is, for example, 0.8-1.2. It is an included factor.

バッテリ1の内部抵抗は、電圧‐電流曲線などの方法によって、またはインピーダンス分光法によって測定されうる。当業者に利用可能な任意の他の方法も使用可能であることは言うまでもない。   The internal resistance of the battery 1 can be measured by a method such as a voltage-current curve or by impedance spectroscopy. Of course, any other method available to those skilled in the art can also be used.

第2の時間は、好ましくは、バッテリ容量の100%に充電された新しいバッテリの内部抵抗の測定に対応する。   The second time preferably corresponds to a measurement of the internal resistance of a new battery charged to 100% of the battery capacity.

上記の特定の例は、電圧しきい値を訂正するためにバッテリの内部抵抗の使用について説明している。当業者であれば、電圧しきい値を訂正するために他の物理値を測定可能であることは言うまでもない。   The specific example above describes the use of the battery's internal resistance to correct the voltage threshold. Of course, one skilled in the art can measure other physical values to correct the voltage threshold.

特定の動作例により、前述したような独立型システムのレギュレータの動作判定図が、図5に示されている。同図は、電圧U、電流Iおよび温度Tが、好ましくは、同時に測定される第1のステップE1を含む。ステップE1の後に続くステップE2において、動作基準が確認される。この動作基準は、好ましくは、バッテリの動作が許可される温度の範囲、例えば、0℃〜60℃に対応する。この範囲から外れると、温度は、バッテリに問題となる反応を促すことで、バッテリにダメージを引き起こしてしまう。このようにして、温度範囲外でのバッテリの充電および放電を防止することが可能である。測定温度Tが範囲外であれば(出力「いいえ」)、バッテリは停止され(ステップE3)、ステップE1に戻る。対照的に、測定温度がバッテリの動作範囲内であれば(出力「はい」)、レギュレータは測定電流IをチェックするステップE4に進む。測定電流Iが0A以下であれば、レギュレータは、ステップE1において測定された電流Iおよび温度Tの値から放電終了の基準をチェックすることに対応するE5に進む。この放電終了基準に達すれば、すなわち、測定電圧Uが放電電圧しきい値以下であれば、放電が停止され(ステップ6)、その後、レギュレータはステップEに戻り、そうでなければ、レギュレータはステップE1に直接戻る(E5の出力「いいえ」)。一方、ステップE4のレベルで、測定電流が0Aより大きければ、レギュレータは、ステップ1において測定された電流Iおよび温度Tの値から充電終了基準をチェックすることに対応するステップE7に進む。この充電終了基準に達すれば、すなわち、測定電圧が充電電圧しきい値以上であれば、充電が停止され(ステップE8)、その後、レギュレータはステップE1に戻り、そうでなければ、レギュレータはステップE1に直接戻る(ステップE7の出力「いいえ」)。 FIG. 5 shows an operation determination diagram of the regulator of the stand-alone system as described above according to a specific operation example. The figure includes a first step E1 in which the voltage U b , current I b and temperature T b are preferably measured simultaneously. In step E2 following step E1, the operating criteria are confirmed. This operating criterion preferably corresponds to a temperature range in which the operation of the battery is permitted, for example 0 ° C to 60 ° C. Beyond this range, the temperature can cause damage to the battery by encouraging a problematic reaction to the battery. In this way, it is possible to prevent charging and discharging of the battery outside the temperature range. If the measured temperature Tb is out of range (output “No”), the battery is stopped (step E3) and the process returns to step E1. In contrast, if the measured temperature is within the operating range of the battery (output “yes”), the regulator proceeds to step E4 where the measured current Ib is checked. If the measured current I b is 0A less, the regulator, the flow proceeds to E5 corresponding to checking criteria discharge end from the value of the measured current I b and the temperature T b at step E1. Once it reaches this discharge termination criterion, i.e., if the measured voltage U b is below discharge voltage threshold, the discharge is stopped (Step 6), then the regulator returns to step E, otherwise, the regulator Return directly to step E1 (output “No” of E5). On the other hand, if the measured current is greater than 0 A at the level of step E4, the regulator proceeds to step E7 corresponding to checking the charge termination criterion from the values of current I b and temperature T b measured in step 1. If this charge termination criterion is reached, that is, if the measured voltage is greater than or equal to the charge voltage threshold, charging is stopped (step E8), after which the regulator returns to step E1, otherwise the regulator returns to step E1. Return directly to (output “NO” of step E7).

このような判定図は、バッテリの充電/放電の制御を実行するレギュレータのソフトウェアに組み込まれうる。   Such a determination diagram can be incorporated into the software of a regulator that performs control of charging / discharging of the battery.

Claims (13)

バッテリの充電または放電方法であって、
前記バッテリ(1)の端子で電圧(U)を測定するステップと、
前記バッテリの温度を表す温度(T)の測定、及び前記バッテリに流れる電流(I)の測定によって形成される一対の測定値により、充電終了または放電終了の電圧しきい値を決定するステップと、
前記測定電圧(U)と前記充電終了または放電終了電圧しきい値とを比較するステップと、
前記電圧しきい値に達すると、充電または放電を停止するステップと、
を含むことを特徴とする方法。
A method of charging or discharging a battery,
Measuring a voltage (U b ) at a terminal of the battery (1);
A step of determining a voltage threshold value at the end of charging or discharging based on a pair of measurement values formed by measuring a temperature (T b ) representing the temperature of the battery and measuring a current (I b ) flowing through the battery. When,
Comparing the measured voltage (U b ) with the end of charge or end of discharge voltage threshold;
Stopping charging or discharging when the voltage threshold is reached;
A method comprising the steps of:
前記バッテリ(1)の端子の電圧(U)、前記バッテリ(1)を流れる電流(I)、および前記バッテリ(1)の温度(T)の測定が同時に実行されることを特徴とする、請求項1に記載の方法。 The measurement of the voltage (U b ) of the terminal of the battery (1), the current (I b ) flowing through the battery (1), and the temperature (T b ) of the battery (1) is performed simultaneously. The method of claim 1. 前記電圧しきい値は、バッテリのタイプに応じた充電状態しきい値に対応し、充電が実行されるとき、前記充電状態しきい値が、75%〜90%のバッテリの充電状態に対応することを特徴とする、請求項1または2に記載の方法。   The voltage threshold corresponds to a state of charge threshold depending on the type of battery, and when charging is performed, the state of charge threshold corresponds to a state of charge of the battery between 75% and 90%. The method according to claim 1 or 2, characterized in that 前記電圧しきい値は、バッテリのタイプに応じた充電状態しきい値に対応し、放電が実行されるとき、前記充電状態しきい値が、20%〜30%のバッテリの充電状態に対応することを特徴とする、請求項1または2に記載の方法。   The voltage threshold corresponds to a state of charge threshold depending on the type of battery, and when discharging is performed, the state of charge threshold corresponds to a battery state of 20% to 30%. The method according to claim 1 or 2, characterized in that 前記電圧しきい値は、2つの入力を有する表によって与えられ、第1の入力が電流値を表し、第2の入力が温度値を示すことを特徴とする、請求項1から4のいずれか一項に記載の方法。   The voltage threshold is given by a table having two inputs, wherein the first input represents a current value and the second input represents a temperature value. The method according to one item. 前記表が以下のステップ、すなわち、
前記バッテリ(1)の充電状態により前記バッテリ(1)の端子の圧力(U)を示し、前記バッテリ温度(T)および前記バッテリ(1)を流れる電流(I)によって形成される対に対して各々が確立される複数の曲線を提供するステップと、
各曲線に対して、前記バッテリ(1)の充電状態から電圧値を決定するステップと、
このようにして決定された各電圧値を前記表に追加するステップと、
によって事前に形成されることを特徴とする、請求項5に記載の方法。
The table has the following steps:
The battery (1) charge state indicates the pressure (U b ) at the terminal of the battery (1) and is formed by the battery temperature (T b ) and the current (I b ) flowing through the battery (1). Providing a plurality of curves, each of which is established;
For each curve, determining a voltage value from the state of charge of the battery (1);
Adding each voltage value thus determined to the table;
The method according to claim 5, wherein the method is preformed by:
前記バッテリ(1)の温度(T)が第1の所定の範囲において変動すれば、温度(T)の測定が温度センサ(3)によって実行されて、前記第1の範囲を表すN個の値の中から第1の値を送り出し、前記バッテリ(1)に流れる電流(I)が第2の所定の範囲において変動すれば、前記電流(I)の測定が電流測定手段(4)によって実行されて、前記第2の範囲を表すM個の値の中から第2の値を送り出し、前記表はNM個の電圧値を含むことを特徴とする、請求項5または6に記載の方法。 If the temperature (T b ) of the battery (1) fluctuates in a first predetermined range, the temperature (T b ) is measured by the temperature sensor (3), and N pieces representing the first range If the first value is sent out from the values of the current and the current (I b ) flowing through the battery (1) fluctuates in the second predetermined range, the current (I b ) is measured by the current measuring means (4 ) To deliver a second value out of M values representing the second range, the table including N * M voltage values. The method described in 1. 前記第1の範囲の各温度値が、前記温度センサ(3)の測定精度以下である温度差だけ前記第1の範囲の少なくとも1つの他の温度値から離れ、前記第2の範囲の各電流値が、前記測定手段(4)の精度測定以下の電流差だけ前記第2の範囲の少なくとも1つの他の電流値から離れることを特徴とする、請求項7に記載の方法。   Each temperature value in the first range is separated from at least one other temperature value in the first range by a temperature difference that is less than or equal to the measurement accuracy of the temperature sensor (3), and each current in the second range 8. A method according to claim 7, characterized in that the value is separated from at least one other current value in the second range by a current difference equal to or less than the accuracy measurement of the measuring means (4). 前記測定電流(I)が負であれば、前記方法は放電段階にあり、前記バッテリの端子の電圧(U)が前記決定された電圧しきい値以下になると、放電が停止されることを特徴とする、請求項1から8のいずれか一項に記載の方法。 If the measured current (I b ) is negative, the method is in the discharge phase, and the discharge is stopped when the voltage (U b ) at the battery terminal falls below the determined voltage threshold. A method according to any one of claims 1 to 8, characterized in that 前記測定電流(I)が正であれば、前記方法は充電段階にあり、前記バッテリの端子の電圧(U)が前記決定された電圧しきい値以上になると、充電が停止されることを特徴とする、請求項1から8のいずれか一項に記載の方法。 If the measured current (I b ) is positive, the method is in the charging phase, and charging is stopped when the voltage (U b ) at the battery terminal is above the determined voltage threshold. A method according to any one of claims 1 to 8, characterized in that 測定値の各対に対して、前記バッテリ(1)の使用期間を表す第1の時間後、前記関連づけられた電圧しきい値が訂正されることを特徴とする、請求項1から10のいずれか一項に記載の方法。   11. The associated voltage threshold is corrected for each pair of measured values after a first time representing the duration of use of the battery (1). The method according to claim 1. 前記電圧しきい値の訂正は、前記第1の時間より前の第2の時間と、前記第1の時間の後の第3の時間との間でバッテリ容量の100%に充電された前記バッテリの内部抵抗の変化量の関数であることを特徴とする、請求項11に記載の方法。   The correction of the voltage threshold is for the battery charged to 100% of the battery capacity between a second time before the first time and a third time after the first time. The method according to claim 11, wherein the method is a function of the amount of change in internal resistance. 前記第2の時間は、バッテリ容量の100%に充電された新しいバッテリの内部抵抗の測定値に対応することを特徴とする、請求項12に記載の方法。   The method of claim 12, wherein the second time corresponds to a measurement of the internal resistance of a new battery charged to 100% of the battery capacity.
JP2012535895A 2009-10-29 2010-10-26 A method of charging or discharging a battery for determining the end of charging or discharging based on current and temperature measurements Pending JP2013509851A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0905201A FR2952235B1 (en) 2009-10-29 2009-10-29 METHOD FOR CHARGING OR DISCHARGING A BATTERY TO DETERMINE THE END OF CHARGE OR DISCHARGE BASED ON CURRENT MEASUREMENTS AND TEMPERATURE
FR0905201 2009-10-29
PCT/FR2010/000703 WO2011051575A2 (en) 2009-10-29 2010-10-26 Method for charging or discharging a battery in order to determine the end of charging or discharging on the basis of measurements of current and temperature

Publications (1)

Publication Number Publication Date
JP2013509851A true JP2013509851A (en) 2013-03-14

Family

ID=42262419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012535895A Pending JP2013509851A (en) 2009-10-29 2010-10-26 A method of charging or discharging a battery for determining the end of charging or discharging based on current and temperature measurements

Country Status (8)

Country Link
US (1) US8988045B2 (en)
EP (1) EP2494673B1 (en)
JP (1) JP2013509851A (en)
CN (1) CN102648563B (en)
AU (1) AU2010311249A1 (en)
BR (1) BR112012010141A2 (en)
FR (1) FR2952235B1 (en)
WO (1) WO2011051575A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11342760B2 (en) 2017-01-26 2022-05-24 Sony Interactive Entertainment Inc. Electrical device for parallel connected batteries

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9147910B2 (en) * 2011-12-28 2015-09-29 General Electric Company Method and system for controlling energy storage device
JP5978665B2 (en) * 2012-03-13 2016-08-24 ソニー株式会社 Method for calculating relative remaining capacity of battery made of secondary battery, method for calculating relative remaining capacity of battery made of lithium ion battery, method for estimating temperature of battery made of secondary battery, and temperature of battery made of lithium ion battery Estimation method
FR2992487B1 (en) * 2012-06-26 2014-08-01 Renault Sa METHOD OF MANAGING AN ELECTRICAL NETWORK, ARRANGEMENT FOR IMPLEMENTING THE METHOD, RECORDING MEDIUM AND COMPUTER PROGRAM ASSOCIATED WITH THE METHOD, MOTOR VEHICLE
JP2014172587A (en) * 2013-03-13 2014-09-22 Hitachi Automotive Systems Ltd Control device for battery
JP6265215B2 (en) * 2013-11-01 2018-01-24 日本電気株式会社 Charging device, power storage system, charging method and program
DE102013227174B4 (en) * 2013-12-27 2019-06-19 Fronius International Gmbh Device and method for determining an insulation resistance of a photovoltaic system
US20160020618A1 (en) * 2014-07-21 2016-01-21 Ford Global Technologies, Llc Fast Charge Algorithms for Lithium-Ion Batteries
US9753094B2 (en) * 2014-10-02 2017-09-05 Dell Products L.P. Battery performance under high temperature exposure
CN108475939B (en) * 2015-11-16 2022-03-08 莫列斯有限公司 Power charging module and use method thereof
WO2017129259A1 (en) * 2016-01-29 2017-08-03 Toyota Motor Europe Nv/Sa Control device and method for discharging a rechargeable battery
FR3049115A1 (en) 2016-03-18 2017-09-22 Commissariat Energie Atomique METHOD FOR CHARGING A BATTERY OF ELECTROCHEMICAL BATTERIES AND DEVICE FOR CONTROLLING THE LOAD
US10509076B2 (en) 2016-09-19 2019-12-17 Microsoft Technology Licensing, Llc Battery performance monitoring
JP6729353B2 (en) * 2016-12-26 2020-07-22 株式会社デンソー Battery control system
FR3068829B1 (en) * 2017-07-07 2021-07-23 Commissariat Energie Atomique CALIBRATION PROCESS OF A FAMILY OF LITHIUM-ION BATTERY ELEMENTS, CHARGING METHOD, COMPUTER PROGRAM PRODUCT AND ASSOCIATED CHARGING DEVICE
DE102017215249A1 (en) * 2017-08-31 2019-02-28 Volkswagen Aktiengesellschaft Method for charging a battery, battery management system, system for charging a battery, energy consumer and charger
US11070068B2 (en) 2019-02-06 2021-07-20 International Business Machines Corporation Battery pack and method for discharging the same after a fault event
JP7096193B2 (en) * 2019-04-04 2022-07-05 矢崎総業株式会社 Battery control unit and battery system
WO2020215154A1 (en) 2019-04-23 2020-10-29 Dpm Technologies Inc. Fault tolerant rotating electric machine
EP4060853B1 (en) * 2019-11-11 2024-08-28 LG Electronics Inc. Electronic device and charging control method of electronic device
JP7234957B2 (en) * 2020-02-03 2023-03-08 トヨタ自動車株式会社 BATTERY CONTROL DEVICE, METHOD, PROGRAM AND VEHICLE
EP4315556A1 (en) * 2021-05-04 2024-02-07 Exro Technologies Inc. Battery control systems and methods
EP4324089A4 (en) 2021-05-13 2024-10-23 Exro Tech Inc Method and apparatus to drive coils of a multiphase electric machine
CA3223051A1 (en) 2021-07-08 2023-01-12 Eric HUSTEDT Dynamically reconfigurable power converter utilizing windings of electrical machine
FR3125256B1 (en) 2021-07-13 2023-09-15 Psa Automobiles Sa METHOD FOR CONTROLLING AN END OF CHARGING FOR AN ELECTRIFIED VEHICLE
FR3126560A1 (en) 2021-08-26 2023-03-03 Psa Automobiles Sa METHOD FOR MANAGING A CHARGING SESSION OF AN ELECTRIFIED VEHICLE TO DETERMINE A TARGET STATE OF CHARGE AT THE END OF CHARGE
FR3126356A1 (en) 2021-09-02 2023-03-03 Psa Automobiles Sa BATTERY SYSTEM COMPRISING A MEANS OF MEASURING AN INTERNAL PRESSURE TO CONTROL A RECHARGE INSTRUCTION
CN114336499B (en) * 2021-11-25 2023-09-15 河南嘉晨智能控制股份有限公司 Scheme for adaptively adjusting overcurrent protection point
CN114583777B (en) * 2021-12-20 2024-08-13 全亿大科技(佛山)有限公司 Printer device with power supply function and printer power supply method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102183A (en) * 1998-09-28 2000-04-07 Alcatel Portable electronic equipment provided with circuit for controlling discharge of battery and related method
JP2000217261A (en) * 1999-01-26 2000-08-04 Honda Motor Co Ltd Detector for remaining-capacity of battery
JP2004183854A (en) * 2002-12-06 2004-07-02 Nissan Motor Co Ltd Transmission controller for continuously variable transmission
JP2008283853A (en) * 2007-05-11 2008-11-20 Commissariat A L'energie Atomique Method for charging battery of autonomic system

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075342A (en) * 1989-12-05 2000-06-13 Intermec Ip Corp. Fast battery charging system and method
JPS61502564A (en) * 1984-06-30 1986-11-06 コプマン,ウド Method and apparatus for monitoring the state of charge of a rechargeable battery
US5686815A (en) * 1991-02-14 1997-11-11 Chartec Laboratories A/S Method and apparatus for controlling the charging of a rechargeable battery to ensure that full charge is achieved without damaging the battery
JPH08146105A (en) * 1994-11-25 1996-06-07 Yazaki Corp Computing method for discharge characteristics of battery and measuring device for remaining capacity of battery
FR2739724B1 (en) * 1995-10-05 1997-11-14 Accumulateurs Fixes METHOD FOR CHARGING WATERPROOF NICKEL-CADMIUM BATTERIES
FR2780827B1 (en) * 1998-07-03 2000-09-29 Electricite De France PROCEDURE FOR CONTROL OF AN ELECTRICAL PLANT ASSOCIATED WITH A TEMPORALLY RANDOM SOURCE OF ENERGY
JP3506916B2 (en) * 1998-07-03 2004-03-15 株式会社マキタ Charging device
JP3545240B2 (en) * 1999-01-28 2004-07-21 本田技研工業株式会社 Battery deterioration judgment device
DE60035405T2 (en) * 1999-12-31 2008-03-06 Nokia Corp. Method and device for protecting batteries
US6300763B1 (en) * 2000-11-27 2001-10-09 Delphi Technologies, Inc. Method of calculating dynamic state-of-charge within a battery
KR100395637B1 (en) * 2000-11-27 2003-08-21 삼성전자주식회사 Remaining battery capacity compensator and method of controlling the same
US6618681B2 (en) * 2001-05-02 2003-09-09 Honeywell International Inc. Method and apparatus for predicting the available energy of a battery
US6917298B2 (en) * 2002-04-02 2005-07-12 William P. Romano Solar system alarm backup unit
JP3956932B2 (en) * 2003-11-07 2007-08-08 ソニー株式会社 Charger and charging state determination method
US7321220B2 (en) * 2003-11-20 2008-01-22 Lg Chem, Ltd. Method for calculating power capability of battery packs using advanced cell model predictive techniques
US7429849B2 (en) * 2003-11-26 2008-09-30 Toyo System Co., Ltd. Method and apparatus for confirming the charge amount and degradation state of a battery, a storage medium, an information processing apparatus, and an electronic apparatus
US20050225301A1 (en) * 2004-04-07 2005-10-13 Arnold Edward H Method and system for determining the health of a battery
JP4123184B2 (en) * 2004-04-27 2008-07-23 ソニー株式会社 Secondary battery remaining capacity calculation method and battery pack
US20050253561A1 (en) * 2004-05-11 2005-11-17 Tibbs Bobby L Temperature sensitive charging of batteries with simple chargers
US7688033B2 (en) * 2004-09-29 2010-03-30 Panasonic Ev Energy Co., Ltd. Method for detecting state of secondary battery and device for detecting state of secondary battery
JP4275078B2 (en) * 2005-01-13 2009-06-10 三洋電機株式会社 Battery current limit control method
US8446127B2 (en) * 2005-08-03 2013-05-21 California Institute Of Technology Methods for thermodynamic evaluation of battery state of health
EP2092627B1 (en) * 2006-11-10 2018-05-23 Lithium Balance A/S A battery management system
US7593823B2 (en) * 2006-11-21 2009-09-22 The Furukawa Electric Co., Ltd Method and device for determining state of battery, and battery power supply system therewith
JP2008204800A (en) * 2007-02-20 2008-09-04 Matsushita Electric Ind Co Ltd Quick charging method of nonaqueous electrolyte secondary battery and electronic equipment using it
KR20100075913A (en) * 2007-09-14 2010-07-05 에이일이삼 시스템즈 인코포레이티드 Lithium rechargeable cell with reference electrode for state of health monitoring
JP4660523B2 (en) * 2007-09-19 2011-03-30 レノボ・シンガポール・プライベート・リミテッド Charging system that controls charging at the surface temperature of the battery cell
US8264205B2 (en) * 2008-02-08 2012-09-11 Sion Power Corporation Circuit for charge and/or discharge protection in an energy-storage device
ES2372899T3 (en) * 2008-05-07 2012-01-27 Commissariat à l'énergie atomique et aux énergies alternatives PROCEDURE FOR ESTIMATING THE CHARGE STATUS OF A BATTERY.
KR101042768B1 (en) * 2008-06-03 2011-06-20 삼성에스디아이 주식회사 Battery pack and method of charge thereof
JP5106272B2 (en) * 2008-06-30 2012-12-26 パナソニック株式会社 Degradation determination circuit, power supply device, and secondary battery deterioration determination method
JP5815195B2 (en) * 2008-09-11 2015-11-17 ミツミ電機株式会社 Battery state detection device and battery pack incorporating the same
TWI394971B (en) * 2008-09-23 2013-05-01 Ind Tech Res Inst Characteristic tracking method and circuit for a battery
WO2010109956A1 (en) * 2009-03-27 2010-09-30 株式会社日立製作所 Electric storage device
CN102472797A (en) * 2009-07-10 2012-05-23 松下电器产业株式会社 Circuit for counting number of cycles, battery pack, and battery system
CN102498609B (en) * 2009-09-18 2015-03-25 松下电器产业株式会社 Method for charging/discharging positive electrode active material in a lithium secondary battery, charging/discharging system provided with lithium secondary battery and vehicle, electronic device, battery module, battery pack
WO2011045853A1 (en) * 2009-10-14 2011-04-21 株式会社 日立製作所 Battery control device and motor drive system
JP5496612B2 (en) * 2009-11-11 2014-05-21 三洋電機株式会社 Battery chargeable / dischargeable current calculation method, power supply device, and vehicle equipped with the same
US20110234167A1 (en) * 2010-03-24 2011-09-29 Chin-Hsing Kao Method of Predicting Remaining Capacity and Run-time of a Battery Device
US8765306B2 (en) * 2010-03-26 2014-07-01 Envia Systems, Inc. High voltage battery formation protocols and control of charging and discharging for desirable long term cycling performance
US8450978B2 (en) * 2010-08-27 2013-05-28 Texas Instruments Incorporated Monitoring a rechargeable battery with multiple parameter update rates
WO2012050014A1 (en) * 2010-10-15 2012-04-19 三洋電機株式会社 Power management system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102183A (en) * 1998-09-28 2000-04-07 Alcatel Portable electronic equipment provided with circuit for controlling discharge of battery and related method
JP2000217261A (en) * 1999-01-26 2000-08-04 Honda Motor Co Ltd Detector for remaining-capacity of battery
JP2004183854A (en) * 2002-12-06 2004-07-02 Nissan Motor Co Ltd Transmission controller for continuously variable transmission
JP2008283853A (en) * 2007-05-11 2008-11-20 Commissariat A L'energie Atomique Method for charging battery of autonomic system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11342760B2 (en) 2017-01-26 2022-05-24 Sony Interactive Entertainment Inc. Electrical device for parallel connected batteries

Also Published As

Publication number Publication date
CN102648563B (en) 2016-05-25
WO2011051575A2 (en) 2011-05-05
EP2494673A2 (en) 2012-09-05
AU2010311249A1 (en) 2012-05-24
US8988045B2 (en) 2015-03-24
EP2494673B1 (en) 2016-10-26
BR112012010141A2 (en) 2016-06-07
FR2952235A1 (en) 2011-05-06
WO2011051575A3 (en) 2012-01-19
FR2952235B1 (en) 2015-01-16
CN102648563A (en) 2012-08-22
US20120212184A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP2013509851A (en) A method of charging or discharging a battery for determining the end of charging or discharging based on current and temperature measurements
CN107991623B (en) Battery ampere-hour integral SOC estimation method considering temperature and aging degree
CN108663620B (en) Power battery pack state of charge estimation method and system
EP3664247B1 (en) Charging time computation method and charge control device
US10126369B2 (en) Secondary battery capacity measurement system and secondary battery capacity measurement method
US8965722B2 (en) Apparatus for calculating residual capacity of secondary battery
EP2490034B1 (en) Storage battery device, storage battery state of charge evaluation device and method
US10873201B2 (en) Battery management apparatus and method for protecting a lithium iron phosphate cell from over-voltage using the same
US9219377B2 (en) Battery charging apparatus and battery charging method
WO2019184843A1 (en) Method and apparatus for calculating soh of battery power pack, and electric vehicle
CN107091990B (en) A kind of battery residual capacity measurement and evaluation method
CN110909443A (en) High-precision battery pack charging remaining time estimation method and system
CN105634063B (en) A kind of active equalization method based on battery history data
EP3379277B1 (en) Capacity maintenance rate estimation apparatus or capacity maintenance rate estimation method
US11486932B2 (en) Method for managing a state of charge of a battery left to rest
JP2008151526A (en) Apparatus for determining degradation of secondary cell and backup power supply
KR101866020B1 (en) Method for controlling start of fuel cell vehicle
US20140365150A1 (en) Method and device for determining a charge state of an electric energy store
CN105548906A (en) Method for dynamically estimating battery state of charge
JP4341652B2 (en) Power storage control device and power storage control method
JP2015010962A (en) Method for determining degradation of storage battery and device for determining degradation of storage battery
KR20160110409A (en) Method for managing a state of charge of a battery
US20040130294A1 (en) Life cycle extending batteries and battery charging means, methods and apparatus
US20160118818A1 (en) Lithium Battery System and Control Method Therefor
CN105489954B (en) Method of compensating state of charge of battery cell and battery system performing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141008

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20141016

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141110

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20141117

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141208

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20141215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150624

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150723

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150911