JP5978665B2 - Method for calculating relative remaining capacity of battery made of secondary battery, method for calculating relative remaining capacity of battery made of lithium ion battery, method for estimating temperature of battery made of secondary battery, and temperature of battery made of lithium ion battery Estimation method - Google Patents

Method for calculating relative remaining capacity of battery made of secondary battery, method for calculating relative remaining capacity of battery made of lithium ion battery, method for estimating temperature of battery made of secondary battery, and temperature of battery made of lithium ion battery Estimation method Download PDF

Info

Publication number
JP5978665B2
JP5978665B2 JP2012055518A JP2012055518A JP5978665B2 JP 5978665 B2 JP5978665 B2 JP 5978665B2 JP 2012055518 A JP2012055518 A JP 2012055518A JP 2012055518 A JP2012055518 A JP 2012055518A JP 5978665 B2 JP5978665 B2 JP 5978665B2
Authority
JP
Japan
Prior art keywords
battery
temperature
voltage
circuit voltage
open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012055518A
Other languages
Japanese (ja)
Other versions
JP2013190259A (en
Inventor
慎 堀田
慎 堀田
畠沢 剛信
剛信 畠沢
進一 上坂
進一 上坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2012055518A priority Critical patent/JP5978665B2/en
Publication of JP2013190259A publication Critical patent/JP2013190259A/en
Application granted granted Critical
Publication of JP5978665B2 publication Critical patent/JP5978665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本開示は、電池の温度を変数とした開放電圧の微分係数の測定方法、電池の温度を変数とした開放電圧の微分係数の測定装置、電池の温度推定方法、電池の温度推定装置、電池の劣化状態予測方法、及び、電池の劣化状態予測装置に関する。   The present disclosure relates to a method for measuring a differential coefficient of an open-circuit voltage using a battery temperature as a variable, a device for measuring a differential coefficient of an open-circuit voltage using a battery temperature as a variable, a battery temperature estimating method, a battery temperature estimating apparatus, a battery The present invention relates to a deterioration state prediction method and a battery deterioration state prediction device.

二次電池の状態として重要な特性であるにも拘わらず直接的な測定が困難な内部抵抗値、劣化度合い、相対残容量等の特性は、屡々、放電電流や開放電圧に基づき推定される。そして、これらの特性に対する温度の影響を無視することができない。従って、これらの特性の推定精度を向上させるためには、推定すべき特性毎に温度依存性を測定しておく必要がある。然るに、このような作業には膨大な時間と労力を要する。また、精度良く二次電池の寿命予測や放電容量の推定を行うためには、二次電池の温度変化の予測が不可欠であり、この場合、二次電池の内部抵抗に起因した発熱のみならず、エントロピー変化に起因した吸発熱をも考慮する必要がある。また、二次電池の寿命予測にあっては、初期状態において劣化モードを見極めることができれば、二次電池の寿命予測精度が向上する。しかしながら、現状では二次電池の早期の劣化モードを見極めることは非常に困難である。   The characteristics such as the internal resistance value, the degree of deterioration, and the relative remaining capacity, which are difficult to directly measure in spite of important characteristics as the state of the secondary battery, are often estimated based on the discharge current and the open voltage. And the influence of temperature on these characteristics cannot be ignored. Therefore, in order to improve the estimation accuracy of these characteristics, it is necessary to measure temperature dependency for each characteristic to be estimated. However, such work requires enormous time and labor. In addition, in order to accurately predict the life of the secondary battery and estimate the discharge capacity, it is essential to predict the temperature change of the secondary battery, and in this case, not only the heat generation due to the internal resistance of the secondary battery. Also, it is necessary to take into account the heat absorption and heat generation due to the entropy change. Further, in the life prediction of the secondary battery, if the deterioration mode can be determined in the initial state, the life prediction accuracy of the secondary battery is improved. However, at present, it is very difficult to determine the early deterioration mode of the secondary battery.

複数の単位電池で構成したバッテリの劣化推定方法が、例えば、特開2010−127729から周知である。この特許公開公報に開示された技術にあっては、バッテリの内部抵抗成分に電極反応と拡散反応を考慮したパラメータを有する等価回路を設定し、バッテリの状態を測定する。そして、最終的に、バッテリの容量維持率を推定するが、このとき、バッテリの状態の測定として電池温度を測定し、少なくとも電極反応を考慮して設定されたパラメータの推定値に対して温度補正を行う。   A battery deterioration estimation method including a plurality of unit cells is known from, for example, Japanese Patent Application Laid-Open No. 2010-127729. In the technology disclosed in this patent publication, an equivalent circuit having parameters that take into account electrode reaction and diffusion reaction is set as an internal resistance component of the battery, and the state of the battery is measured. Finally, the capacity maintenance rate of the battery is estimated. At this time, the battery temperature is measured as a measurement of the state of the battery, and the temperature correction is performed on the estimated value of the parameter set in consideration of at least the electrode reaction. I do.

また、電気自動車用二次電池の残存電力量から電気自動車の走行可能距離を算出する方法が、例えば、特開平10−108301から周知である。この特許公開公報に開示された技術にあっては、その時点での電池温度と開回路電圧を検出して、あらかじめ実験的に求めておいた一定温度下一定電力での放電電気量と電池の端子電圧の関係と電池反応のエントロピー変化による発熱量から、一定の微小電気量を放電するあいだでの電池の総発熱量と有効仕事量を算出し、総発熱量とあらかじめ求めておいた電池の比熱から次の一定微小電気量放電区間での電池温度を算出するプロセスを電池の端子電圧が放電終止電圧を超えるまで繰り返して行い、その時点までの有効仕事量の総和から走行可能距離を算出する。   Also, a method for calculating the travelable distance of an electric vehicle from the remaining electric energy of the secondary battery for the electric vehicle is known from, for example, Japanese Patent Laid-Open No. 10-108301. In the technology disclosed in this patent publication, the battery temperature and the open circuit voltage at that time are detected, and the amount of discharged electricity and the battery power at a constant temperature under a constant temperature that has been experimentally determined in advance. From the relationship between the terminal voltage and the calorific value due to the entropy change of the battery reaction, the total calorific value and effective work amount of the battery during the discharge of a certain small amount of electricity are calculated. The process of calculating the battery temperature in the next constant small electric quantity discharge section from the specific heat is repeated until the battery terminal voltage exceeds the discharge end voltage, and the travelable distance is calculated from the total effective work amount up to that point .

特開2010−127729JP 2010-127729 特開平10−108301JP-A-10-108301

しかしながら、特開平10−108301には、具体的に、どのようにして高い精度でエントロピー変化を求めるか、何ら言及されていないし、特開2010−127729には、初期状態での劣化モードを判定する方法に関して、何ら言及されておらず、二次電池の劣化状態を予測することはできない。   However, Japanese Patent Laid-Open No. 10-108301 does not specifically mention how to obtain the entropy change with high accuracy, and Japanese Patent Laid-Open No. 2010-127729 determines the deterioration mode in the initial state. No mention is made regarding the method, and the deterioration state of the secondary battery cannot be predicted.

従って、本開示の第1の目的は、二次電池等において高い精度でエントロピー変化を求めるための基礎データを測定する方法及び測定装置を提供することにある。また、本開示の第2の目的は、高い精度で二次電池等における温度を推定し得る温度推定方法及び温度推定装置を提供することにある。更には、本開示の第3の目的は、高い精度で二次電池における劣化状態を予測し得る二次電池の劣化状態予測方法及び劣化状態予測装置を提供することにある。   Accordingly, a first object of the present disclosure is to provide a method and a measurement apparatus for measuring basic data for obtaining entropy change with high accuracy in a secondary battery or the like. A second object of the present disclosure is to provide a temperature estimation method and a temperature estimation device that can estimate the temperature of a secondary battery or the like with high accuracy. Furthermore, a third object of the present disclosure is to provide a secondary battery deterioration state prediction method and a deterioration state prediction apparatus capable of predicting a deterioration state in a secondary battery with high accuracy.

上記の第1の目的を達成するための本開示の第1の態様に係る電池の温度を変数とした開放電圧の微分係数の測定方法(以下、『本開示の第1の態様に係る電池の(∂VOC/∂T)測定方法』と呼ぶ場合がある)は、二次電池から成る電池の温度を変数とした開放電圧の微分係数の測定方法であって、
電池の温度変動が温度測定装置の温度測定限界以下となり、且つ、電池の開放電圧変動が電圧測定装置の電圧測定限界以下となった状態で、電圧測定装置によって電池の開放電圧を測定し、且つ、温度測定装置によって電池の温度を測定し、開放電圧測定結果及び温度測定結果に基づき、電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求める。
A method for measuring a differential coefficient of an open-circuit voltage using a temperature of a battery according to the first aspect of the present disclosure as a variable (hereinafter referred to as “the battery according to the first aspect of the present disclosure. (Sometimes referred to as “∂V OC / ∂T) measurement method”) is a method for measuring the differential coefficient of the open-circuit voltage with the temperature of the battery comprising the secondary battery as a variable,
With the battery temperature fluctuation below the temperature measurement limit of the temperature measurement device and the battery open-circuit voltage fluctuation below the voltage measurement limit of the voltage measurement device, measure the open-circuit voltage of the battery with the voltage measurement device, and The temperature of the battery is measured by a temperature measuring device, and the differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC of the battery with the battery temperature T as a variable is obtained based on the open circuit voltage measurement result and the temperature measurement result. .

上記の第1の目的を達成するための本開示の第2の態様に係る電池の温度を変数とした開放電圧の微分係数の測定方法(以下、『本開示の第2の態様に係る電池の(∂VOC/∂T)測定方法』と呼ぶ場合がある)は、リチウムイオン電池から成る電池の温度を変数とした開放電圧の微分係数の測定方法であって、
リチウムイオンの拡散反応が生じていない状態において、電圧測定装置によって電池の開放電圧を測定し、且つ、温度測定装置によって電池の温度を測定し、開放電圧測定結果及び温度測定結果に基づき、電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求める。
A method for measuring a differential coefficient of an open-circuit voltage using the temperature of the battery according to the second aspect of the present disclosure as a variable for achieving the first object (hereinafter referred to as “the battery of the second aspect of the present disclosure (Sometimes referred to as “∂V OC / ∂T) measurement method”) is a method for measuring the differential coefficient of the open-circuit voltage with the temperature of the battery comprising a lithium ion battery as a variable,
In the state where the lithium ion diffusion reaction has not occurred, the open circuit voltage of the battery is measured by the voltage measuring device, and the temperature of the battery is measured by the temperature measuring device. Based on the open voltage measurement result and the temperature measurement result, The differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC of the battery with the temperature T as a variable is obtained.

上記の第2の目的を達成するための本開示の第1の態様に係る電池の温度推定方法は、二次電池から成る電池の温度推定方法であって、
予め、電池の温度変動が温度測定装置の温度測定限界以下となり、且つ、電池の開放電圧変動が電圧測定装置の電圧測定限界以下となった状態で、電圧測定装置によって電池の開放電圧を測定し、且つ、温度測定装置によって電池の温度を測定し、開放電圧測定結果及び温度測定結果に基づき、電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求めておき、
電池の温度実測値、電池の充放電電流実測値、及び、予め求められた(∂VOC/∂T)に基づき電池の温度を推定する。
The battery temperature estimation method according to the first aspect of the present disclosure for achieving the second object is a battery temperature estimation method including a secondary battery,
In advance, measure the open circuit voltage of the battery with the voltage measurement device in a state where the temperature variation of the battery is below the temperature measurement limit of the temperature measurement device and the open circuit voltage variation of the battery is below the voltage measurement limit of the voltage measurement device. The battery temperature is measured by a temperature measuring device, and the differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC using the battery temperature T as a variable based on the open circuit voltage measurement result and the temperature measurement result. Seeking
The battery temperature is estimated based on the measured battery temperature, the measured charge / discharge current of the battery, and (∂V OC / ∂T) obtained in advance.

上記の第2の目的を達成するための本開示の第2の態様に係る電池の温度推定方法は、リチウムイオン電池から成る電池の温度推定方法であって、
予め、リチウムイオンの拡散反応が生じていない状態において、電圧測定装置によって電池の開放電圧を測定し、且つ、温度測定装置によって電池の温度を測定し、開放電圧測定結果及び温度測定結果に基づき、電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求めておき、
電池の温度実測値、電池の充放電電流実測値、及び、予め求められた(∂VOC/∂T)に基づき電池の温度を推定する。
The battery temperature estimation method according to the second aspect of the present disclosure for achieving the second object is a battery temperature estimation method including a lithium ion battery,
In the state where the diffusion reaction of lithium ions has not occurred in advance, the open circuit voltage of the battery is measured by the voltage measuring device, and the temperature of the battery is measured by the temperature measuring device, based on the open voltage measurement result and the temperature measurement result, Obtain the differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC of the battery with the temperature T of the battery as a variable,
The battery temperature is estimated based on the measured battery temperature, the measured charge / discharge current of the battery, and (∂V OC / ∂T) obtained in advance.

上記の第3の目的を達成するための本開示の二次電池から成る電池の劣化状態予測方法にあっては、
(A)電池の温度変動が温度測定装置の温度測定限界以下の状態で、放電時又は充電時の端子間電圧と相対残容量との関係を、初期の端子間電圧と相対残容量との関係として求め、次いで、
(B)所望の回数、電池の充放電を繰り返し、その後、
(C)電池の温度変動が温度測定装置の温度測定限界以下の状態で、放電時又は充電時の端子間電圧と相対残容量との関係を、充放電後の端子間電圧と相対残容量との関係として求め、初期の端子間電圧と相対残容量との関係、及び、充放電後の端子間電圧と相対残容量との関係に基づき、電池の劣化状態を予測する。
In the battery deterioration state prediction method comprising the secondary battery of the present disclosure for achieving the third object,
(A) The relationship between the voltage between terminals and the relative remaining capacity during discharging or charging in the state where the temperature fluctuation of the battery is below the temperature measurement limit of the temperature measuring device, and the relationship between the initial terminal voltage and the relative remaining capacity Sought as, then
(B) Repeat charging / discharging of the battery a desired number of times, then
(C) In a state where the temperature fluctuation of the battery is not more than the temperature measurement limit of the temperature measuring device, the relationship between the inter-terminal voltage during discharging or charging and the relative remaining capacity is as follows: The deterioration state of the battery is predicted based on the relationship between the initial inter-terminal voltage and the relative remaining capacity and the relationship between the inter-terminal voltage after charging and discharging and the relative remaining capacity.

上記の第1の目的を達成するための本開示の第1の態様に係る電池の温度を変数とした開放電圧の微分係数の測定装置(以下、『本開示の第1の態様に係る電池の(∂VOC/∂T)測定装置』と呼ぶ場合がある)は、二次電池から成る電池の温度を変数とした開放電圧の微分係数の測定装置であって、
電池の開放電圧を測定する電圧測定装置、
電池の温度を測定する温度測定装置、
電池の温度を制御する温度制御装置、及び、
電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求める演算装置、
を備えており、
温度制御装置によって電池の温度変動が温度測定装置の温度測定限界以下とされ、且つ、電池の開放電圧変動が電圧測定装置の電圧測定限界以下となった状態で、電圧測定装置によって電池の開放電圧が測定され、且つ、温度測定装置によって電池の温度が測定され、開放電圧測定結果及び温度測定結果に基づき、演算装置によって(∂VOC/∂T)が求められる。
An apparatus for measuring a differential coefficient of an open-circuit voltage with the temperature of the battery according to the first aspect of the present disclosure as a variable for achieving the first object (hereinafter referred to as “the battery of the first aspect of the present disclosure. (Sometimes referred to as “∂V OC / ∂T) measuring device”) is a measuring device for the differential coefficient of the open-circuit voltage with the temperature of the battery comprising the secondary battery as a variable,
A voltage measuring device for measuring the open-circuit voltage of the battery,
A temperature measuring device for measuring the temperature of the battery,
A temperature control device for controlling the temperature of the battery; and
An arithmetic unit for calculating a differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC of the battery with the temperature T of the battery as a variable;
With
With the temperature control device, the battery temperature fluctuation is less than or equal to the temperature measurement limit of the temperature measurement device, and the battery open-circuit voltage fluctuation is less than or equal to the voltage measurement limit of the voltage measurement device. And the temperature of the battery is measured by the temperature measuring device, and (∂V OC / ∂T) is obtained by the arithmetic unit based on the open circuit voltage measurement result and the temperature measurement result.

上記の第1の目的を達成するための本開示の第2の態様に係る電池の温度を変数とした開放電圧の微分係数の測定方法(以下、『本開示の第2の態様に係る電池の(∂VOC/∂T)測定装置』と呼ぶ場合がある)は、リチウムイオン電池から成る電池の(∂VOC/∂T)測定装置であって、
電池の開放電圧を測定する電圧測定装置、
電池の温度を測定する温度測定装置、
電池の温度を制御する温度制御装置、及び、
電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求める演算装置、
を備えており、
リチウムイオンの拡散反応が生じていない状態に温度制御装置によってされた状態において、電圧測定装置によって電池の開放電圧が測定され、且つ、温度測定装置によって電池の温度が測定され、開放電圧測定結果及び温度測定結果に基づき、演算装置によって(∂VOC/∂T)が求められる。
A method for measuring a differential coefficient of an open-circuit voltage using the temperature of the battery according to the second aspect of the present disclosure as a variable for achieving the first object (hereinafter referred to as “the battery of the second aspect of the present disclosure (Sometimes referred to as “∂V OC / ∂T) measuring device”) is a (∂V OC / ∂T) measuring device for a battery comprising a lithium ion battery,
A voltage measuring device for measuring the open-circuit voltage of the battery,
A temperature measuring device for measuring the temperature of the battery,
A temperature control device for controlling the temperature of the battery; and
An arithmetic unit for calculating a differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC of the battery with the temperature T of the battery as a variable;
With
In a state in which the lithium ion diffusion reaction has not occurred, the voltage control device measures the open circuit voltage of the battery, and the temperature measurement device measures the battery temperature. Based on the temperature measurement result, (∂V OC / ∂T) is obtained by the arithmetic unit.

上記の第2の目的を達成するための本開示の第1の態様に係る電池の温度推定装置は、二次電池から成る電池の温度推定装置であって、
電池の開放電圧を測定する電圧測定装置、
電池の充放電電流を測定する電流測定装置、
電池の温度を測定する温度測定装置、
電池の温度を制御する温度制御装置、及び、
電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求める演算装置、
を備えており、
予め、温度制御装置によって電池の温度変動が温度測定装置の温度測定限界以下とされ、且つ、電池の開放電圧変動が電圧測定装置の電圧測定限界以下となった状態で、電圧測定装置によって電池の開放電圧が測定され、且つ、温度測定装置によって電池の温度が測定され、開放電圧測定結果及び温度測定結果に基づき、演算装置によって(∂VOC/∂T)が求められ、求められた(∂VOC/∂T)が演算装置に記憶されており、
演算装置は、更に、電池の温度実測値、記憶された(∂VOC/∂T)、及び、電池の充放電電流実測値に基づき電池の温度を推定する。
The battery temperature estimation device according to the first aspect of the present disclosure for achieving the second object is a battery temperature estimation device including a secondary battery,
A voltage measuring device for measuring the open-circuit voltage of the battery,
A current measuring device for measuring the charge / discharge current of the battery,
A temperature measuring device for measuring the temperature of the battery,
A temperature control device for controlling the temperature of the battery; and
An arithmetic unit for calculating a differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC of the battery with the temperature T of the battery as a variable;
With
In advance, with the temperature control device, the battery temperature fluctuation is less than the temperature measurement limit of the temperature measurement device, and the battery open-circuit voltage fluctuation is less than the voltage measurement limit of the voltage measurement device. The open-circuit voltage is measured, and the temperature of the battery is measured by the temperature measuring device. Based on the open-circuit voltage measurement result and the temperature measurement result, (演算 V OC /) T) is obtained by the arithmetic device and is obtained (∂ V OC / ∂T) is stored in the arithmetic unit,
The arithmetic device further estimates the battery temperature based on the actual measured battery temperature, the stored (∂V OC / ∂T), and the actual measured charge / discharge current of the battery.

上記の第2の目的を達成するための本開示の第2の態様に係る電池の温度推定装置は、リチウムイオン電池から成る電池の温度推定装置であって、
電池の開放電圧を測定する電圧測定装置、
電池の充放電電流を測定する電流測定装置、
電池の温度を測定する温度測定装置、
電池の温度を制御する温度制御装置、及び、
電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求める演算装置、
を備えており、
予め、リチウムイオンの拡散反応が生じていない状態に温度制御装置によってされた状態において、電圧測定装置によって電池の開放電圧が測定され、且つ、温度測定装置によって電池の温度が測定され、開放電圧測定結果及び温度測定結果に基づき、演算装置によって(∂VOC/∂T)が求められ、求められた(∂VOC/∂T)が演算装置に記憶されており、
演算装置は、更に、電池の温度実測値、記憶された(∂VOC/∂T)、及び、電池の充放電電流実測値に基づき電池の温度を推定する。
The battery temperature estimation device according to the second aspect of the present disclosure for achieving the second object is a battery temperature estimation device comprising a lithium ion battery,
A voltage measuring device for measuring the open-circuit voltage of the battery,
A current measuring device for measuring the charge / discharge current of the battery,
A temperature measuring device for measuring the temperature of the battery,
A temperature control device for controlling the temperature of the battery; and
An arithmetic unit for calculating a differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC of the battery with the temperature T of the battery as a variable;
With
In a state in which the lithium ion diffusion reaction has not occurred in advance, the open circuit voltage of the battery is measured by the voltage measuring device and the open circuit voltage is measured by the temperature measuring device. Based on the result and the temperature measurement result, (演算 V OC / ∂T) is obtained by the computing device, and the obtained (∂V OC / ∂T) is stored in the computing device,
The arithmetic device further estimates the battery temperature based on the actual measured battery temperature, the stored (∂V OC / ∂T), and the actual measured charge / discharge current of the battery.

上記の第3の目的を達成するための本開示の二次電池から成る電池の劣化状態予測装置は、
電池の充放電を行う充放電装置、
電池の端子間電圧を測定する電圧測定装置、
電池の温度を測定する温度測定装置、
電池の温度を制御する温度制御装置、及び、
演算装置、
を備えており、
温度制御装置によって電池の温度変動が温度測定装置の温度測定限界以下とされた状態で、放電時又は充電時の端子間電圧と相対残容量との関係が、初期の端子間電圧と相対残容量との関係として、演算装置によって求められ、
充放電装置によって、所望の回数、電池の充放電が繰り返され、
温度制御装置によって電池の温度変動が温度測定装置の温度測定限界以下とされた状態で、放電時又は充電時の端子間電圧と相対残容量との関係が、充放電後の端子間電圧と相対残容量との関係として、演算装置によって求められ、更に、初期の端子間電圧と相対残容量との関係、及び、充放電後の端子間電圧と相対残容量との関係に基づき、演算装置によって電池の劣化状態が予測される。
In order to achieve the third object described above, a battery deterioration state prediction apparatus comprising the secondary battery of the present disclosure is provided.
A charging / discharging device for charging / discharging the battery,
A voltage measuring device for measuring the voltage between the terminals of the battery,
A temperature measuring device for measuring the temperature of the battery,
A temperature control device for controlling the temperature of the battery; and
Arithmetic unit,
With
The relationship between the terminal voltage and the relative remaining capacity during discharging or charging is the initial terminal voltage and the relative remaining capacity when the battery temperature fluctuation is below the temperature measurement limit of the temperature measuring device by the temperature controller. Is calculated by the arithmetic unit as
The charging / discharging device repeats charging / discharging of the battery a desired number of times,
In a state where the temperature fluctuation of the battery is not more than the temperature measurement limit of the temperature measurement device by the temperature control device, the relationship between the voltage between the terminals at the time of discharging or charging and the relative remaining capacity is relative to the voltage between the terminals after charging and discharging. The relationship with the remaining capacity is determined by the arithmetic device, and further based on the relationship between the initial inter-terminal voltage and the relative remaining capacity, and the relationship between the inter-terminal voltage after charging and discharging and the relative remaining capacity, by the arithmetic device. The battery deterioration state is predicted.

本開示の第1の態様に係る電池の(∂VOC/∂T)測定方法あるいは測定装置にあっては、電池の温度変動が温度測定装置の温度測定限界以下となり、且つ、電池の開放電圧変動が電圧測定装置の電圧測定限界以下となった状態で、また、本開示の第2の態様に係る電池の(∂VOC/∂T)測定方法あるいは測定装置にあっては、リチウムイオンの拡散反応が生じていない状態において、電池の開放電圧及び温度を測定する。このように、高い精度で電池の開放電圧を測定することによって、エントロピー変化を求めるための基礎データである(∂VOC/∂T)を高い精度で求めることができる。そして、このような(∂VOC/∂T)を高い精度で求めることができるが故に、例えば、次に述べる電池の温度推定を高い精度で行うことができる。 In the battery (∂V OC / ∂T) measurement method or measurement device according to the first aspect of the present disclosure, the battery temperature fluctuation is less than the temperature measurement limit of the temperature measurement device, and the open circuit voltage of the battery In the state where the fluctuation is less than the voltage measurement limit of the voltage measurement device, and in the battery (∂V OC / ∂T) measurement method or measurement device according to the second aspect of the present disclosure, In a state where no diffusion reaction occurs, the open circuit voltage and temperature of the battery are measured. Thus, by measuring the open-circuit voltage of the battery with high accuracy, (∂V OC / ∂T), which is basic data for obtaining the entropy change, can be obtained with high accuracy. Since such (∂V OC / ∂T) can be obtained with high accuracy, for example, battery temperature estimation described below can be performed with high accuracy.

また、本開示の第1の態様に係る電池の温度推定方法あるいは温度推定装置にあっては、電池の温度変動が温度測定装置の温度測定限界以下となり、且つ、電池の開放電圧変動が電圧測定装置の電圧測定限界以下となった状態で、また、本開示の第2の態様に係る電池の温度推定方法あるいは温度推定装置にあっては、リチウムイオンの拡散反応が生じていない状態において、電池の開放電圧及び温度を測定する。それ故、高い精度で電池の温度を推定することができる。   Further, in the battery temperature estimation method or temperature estimation device according to the first aspect of the present disclosure, the battery temperature fluctuation is less than the temperature measurement limit of the temperature measurement apparatus, and the battery open-circuit voltage fluctuation is voltage measurement. In a state where the voltage measurement limit of the device is below the limit, and in the battery temperature estimation method or temperature estimation device according to the second aspect of the present disclosure, in the state where no lithium ion diffusion reaction occurs, Measure the open circuit voltage and temperature. Therefore, the temperature of the battery can be estimated with high accuracy.

更には、本開示の二次電池から成る電池の劣化状態予測方法あるいは電池の劣化状態予測装置にあっては、電池の温度変動が温度測定装置の温度測定限界以下の状態で、放電時又は充電時の端子間電圧と相対残容量との関係を求めるので、高い精度の初期の端子間電圧と相対残容量との関係、充放電後の端子間電圧と相対残容量との関係を得ることができる。その結果、高い精度で電池の劣化状態を予測することが可能となる。   Furthermore, in the battery deterioration state prediction method or the battery deterioration state prediction device including the secondary battery according to the present disclosure, the battery temperature fluctuation is equal to or lower than the temperature measurement limit of the temperature measurement device at the time of discharging or charging. Since the relationship between the terminal voltage and the relative remaining capacity at the time is obtained, the relationship between the initial terminal voltage and the relative remaining capacity with high accuracy and the relationship between the terminal voltage after charging and discharging and the relative remaining capacity can be obtained. it can. As a result, it is possible to predict the deterioration state of the battery with high accuracy.

図1は、実施例1の電池の(∂VOC/∂T)測定装置、実施例4の電池の温度推定装置、実施例5の電池の劣化状態予測装置の概念図である。FIG. 1 is a conceptual diagram of a battery (∂V OC / ∂T) measuring device of Example 1, a battery temperature estimating device of Example 4, and a battery deterioration state predicting device of Example 5. 図2の(A)、(B)及び(C)は、それぞれ、二次電池の長さ方向における温度分布を模式的に示す図、二次電池の長さ方向における開放電圧分布を模式的に示す図、及び、(∂VOC/∂T)の相対残容量依存性を模式的に示す図である。2A, 2B and 2C are diagrams each schematically showing a temperature distribution in the length direction of the secondary battery, and schematically showing an open-circuit voltage distribution in the length direction of the secondary battery. It is a figure which shows, and a figure which shows the relative remaining capacity dependence of (( VOC ) / (T)) typically. 図3の(A)、(B)、(C)は、実施例5において測定された初期・放電曲線及び充放電後・放電曲線を模式的に示すグラフである。3A, 3 </ b> B, and 3 </ b> C are graphs schematically showing the initial / discharge curve and the post-charge / discharge curve measured in Example 5. FIG.

以下、図面を参照して、実施例に基づき本開示を説明するが、本開示は実施例に限定されるものではなく、実施例における種々の数値や材料は例示である。尚、説明は、以下の順序で行う。
1.本開示の電池の(∂VOC/∂T)測定方法、電池の(∂VOC/∂T)測定装置、電池の温度推定方法、電池の温度推定装置、電池の劣化状態予測方法、及び、電池の劣化状態予測装置、全般に関する説明
2.実施例1(本開示の第1の態様及び第2の態様に係る電池の(∂VOC/∂T)測定方法及び電池の(∂VOC/∂T)測定装置)
3.実施例2(実施例1の変形)
4.実施例3(実施例1の別の変形)
5.実施例4(本開示の第1の態様及び第2の態様に係る電池の温度推定方法及び電池の温度推定装置)
6.実施例5(本開示の電池の劣化状態予測方法及び電池の劣化状態予測装置)、その他
Hereinafter, although this indication is explained based on an example with reference to drawings, this indication is not limited to an example and various numerical values and materials in an example are illustrations. The description will be given in the following order.
1. (∂V OC / ∂T) measurement method, battery (∂V OC / ∂T) measurement device, battery temperature estimation method, battery temperature estimation device, battery deterioration state prediction method, and 1. General description of battery deterioration state prediction device Example 1 (Battery (∂V OC / ∂T) Measuring Method and Battery (∂V OC / ∂T) Measuring Device According to First and Second Aspects of Present Disclosure))
3. Example 2 (Modification of Example 1)
4). Example 3 (another modification of Example 1)
5. Example 4 (battery temperature estimation method and battery temperature estimation apparatus according to first and second aspects of the present disclosure)
6). Example 5 (battery deterioration state prediction method and battery deterioration state prediction device of the present disclosure), etc.

[本開示の電池の(∂VOC/∂T)測定方法、電池の(∂VOC/∂T)測定装置、電池の温度推定方法、電池の温度推定装置、電池の劣化状態予測方法、及び、電池の劣化状態予測装置、全般に関する説明]
本開示の第2の態様に係る電池の(∂VOC/∂T)測定方法、本開示の第2の態様に係る電池の(∂VOC/∂T)測定装置、本開示の第2の態様に係る電池の温度推定方法、あるいは、本開示の第2の態様に係る電池の温度推定装置において、リチウムイオンの拡散反応が生じていない状態は、電池の温度変動が温度測定装置の温度測定限界以下となり、且つ、電池の開放電圧変動が電圧測定装置の電圧測定限界以下となった状態である形態とすることができる。
[Battery (∂V OC / ∂T) Measurement Method, Battery (∂V OC / ∂T) Measurement Device, Battery Temperature Estimation Method, Battery Temperature Estimation Device, Battery Degradation State Prediction Method, and , General description of battery deterioration state prediction device]
The battery (∂V OC / ∂T) measurement method according to the second aspect of the present disclosure, the battery (∂V OC / ∂T) measurement device according to the second aspect of the present disclosure, In the battery temperature estimation method according to the aspect or the battery temperature estimation apparatus according to the second aspect of the present disclosure, a state in which a lithium ion diffusion reaction has not occurred indicates that the battery temperature fluctuation is measured by the temperature measurement apparatus. It can be set as the state which is below the limit and the open circuit voltage fluctuation of the battery is below the voltage measurement limit of the voltage measuring device.

上記の好ましい形態を含む本開示の第1の態様あるいは第2の態様に係る電池の(∂VOC/∂T)測定方法、電池の(∂VOC/∂T)測定装置、電池の温度推定方法、あるいは、電池の温度推定装置においては、電圧測定限界が1×10-6ボルトである電圧測定装置、及び、温度測定限界が1×10-2゜Cである温度測定装置を用いることが好ましいが、これに限定するものではない。尚、電圧測定装置に対するこのような電圧測定限界の要請、及び、温度測定装置に対するこのような温度測定限界の要請は、(∂VOC/∂T)の値が10-4乃至10-3のオーダーにあることに基づいている。 Battery (∂V OC / ∂T) Measuring Method, Battery (∂V OC / ∂T) Measuring Device, Battery Temperature Estimation According to First or Second Aspect of Present Disclosure Including Preferred Form In the method or the battery temperature estimation device, a voltage measurement device whose voltage measurement limit is 1 × 10 −6 volts and a temperature measurement device whose temperature measurement limit is 1 × 10 −2 ° C. are used. Although preferable, it is not limited to this. It should be noted that a request for such a voltage measurement limit to the voltage measurement device and a request for such a temperature measurement limit to the temperature measurement device are such that the value of (∂V OC / ∂T) is 10 −4 to 10 −3 . Based on what is on the order.

更には、以上に説明した好ましい形態を含む本開示の第1の態様あるいは第2の態様に係る電池の(∂VOC/∂T)測定方法、電池の(∂VOC/∂T)測定装置においては、電池の相対残容量と関連した(∂VOC/∂T)を求める構成とすることができるし、あるいは又、電池の劣化度合いと関連した(∂VOC/∂T)を求める構成とすることができる。ここで、電池の劣化度合いとして、二次電池の放電容量の減少、内部抵抗値の増加を例示することができる。このように、各状態(相対残容量や劣化度合い)に応じて(∂VOC/∂T)を測定して、この値を相対残容量や劣化度合いの推定に用いることで、相対残容量や劣化度合いの推定に対する温度に起因した補正が不要となる。即ち、温度補正のための測定が不要となる。 Furthermore, the battery (∂V OC / ∂T) measuring method and battery (∂V OC / ∂T) measuring device according to the first or second aspect of the present disclosure including the preferred embodiments described above. Can be configured to obtain (∂V OC / ∂T) related to the relative remaining capacity of the battery, or to obtain (∂V OC / ∂T) related to the degree of deterioration of the battery. It can be. Here, examples of the deterioration degree of the battery include a decrease in the discharge capacity and an increase in the internal resistance value of the secondary battery. Thus, by measuring (∂V OC / ∂T) according to each state (relative remaining capacity and degree of deterioration) and using this value for estimation of relative remaining capacity and degree of deterioration, relative remaining capacity and Correction due to temperature for estimating the degree of deterioration is not necessary. That is, the measurement for temperature correction becomes unnecessary.

本開示の二次電池から成る電池の劣化状態予測方法あるいは劣化状態予測装置にあっては、限定するものではないが、温度測定限界が1×10-2゜Cである温度測定装置を用いることが好ましく、このような好ましい構成を含む本開示の二次電池から成る電池の劣化状態予測方法あるいは劣化状態予測装置にあっては、電圧測定限界が1×10-6ボルトである電圧測定装置を用いて端子間電圧を測定することが好ましい。更には、これらの好ましい構成を含む本開示の二次電池から成る電池の劣化状態予測方法あるいは劣化状態予測装置にあっては、初期の端子間電圧と相対残容量との関係から初期・放電曲線を求め、充放電後の端子間電圧と相対残容量との関係から充放電後・放電曲線を求め、初期・放電曲線及び充放電後・放電曲線に基づき電池の劣化状態を予測する形態とすることができる。 The battery deterioration state prediction method or deterioration state prediction apparatus including the secondary battery according to the present disclosure is not limited, but uses a temperature measurement apparatus having a temperature measurement limit of 1 × 10 −2 ° C. In the battery deterioration state prediction method or deterioration state prediction apparatus comprising the secondary battery of the present disclosure including such a preferable configuration, the voltage measurement device having a voltage measurement limit of 1 × 10 −6 volts is provided. Preferably used to measure the voltage across the terminals. Further, in the battery deterioration state prediction method or deterioration state prediction apparatus comprising the secondary battery of the present disclosure including these preferred configurations, the initial / discharge curve is determined from the relationship between the initial terminal voltage and the relative remaining capacity. After charging / discharging, determine the post-charge / discharge curve from the relationship between the inter-terminal voltage and the relative remaining capacity, and predict the deterioration state of the battery based on the initial / discharge curve and the post-charge / discharge curve be able to.

本開示における二次電池として、リチウムイオン電池、鉛蓄電池、ニッケル・カドミウム電池、ニッケル・水素電池を挙げることができる。また、使用する電圧測定装置、温度測定装置は、周知の電圧測定装置、温度測定装置とすればよい。電池の温度を制御する温度制御装置は、例えば、電池を加熱・冷却するペルチェ素子、及び、ペルチェ素子の動作を制御する温度制御部(温度制御回路)から構成することができる。演算装置は、例えば、CPU、メモリ等から構成すればよい。   Examples of the secondary battery in the present disclosure may include a lithium ion battery, a lead storage battery, a nickel / cadmium battery, and a nickel / hydrogen battery. The voltage measuring device and temperature measuring device to be used may be a well-known voltage measuring device and temperature measuring device. The temperature control device that controls the temperature of the battery can be composed of, for example, a Peltier element that heats and cools the battery, and a temperature control unit (temperature control circuit) that controls the operation of the Peltier element. The arithmetic device may be composed of, for example, a CPU and a memory.

本開示の第1の態様あるいは第2の態様に係る電池の(∂VOC/∂T)測定方法、電池の(∂VOC/∂T)測定装置、本開示の第1の態様あるいは第2の態様に係る電池の温度推定方法、電池の温度推定装置、あるいは又、電池の劣化状態予測方法、電池の劣化状態予測装置にあっては、外部環境から電池を断熱する格納容器に格納された状態で、電池の開放電圧や端子間電圧、電池の温度を測定することが望ましいが、これに限定するものではない。 Battery (∂V OC / ∂T) Measuring Method, Battery (∂V OC / ∂T) Measuring Device According to First or Second Aspect of Present Disclosure, First Aspect or Second of Present Disclosure The battery temperature estimation method, the battery temperature estimation device, or the battery deterioration state prediction method, and the battery deterioration state prediction device according to the above aspect are stored in a storage container that insulates the battery from the external environment. In the state, it is desirable to measure the open circuit voltage of the battery, the voltage between terminals, and the temperature of the battery, but the present invention is not limited to this.

実施例1は、本開示の第1の態様及び第2の態様に係る電池の(∂VOC/∂T)測定方法及び電池の(∂VOC/∂T)測定装置に関する。ここで、電池の(∂VOC/∂T)は、電池のギブズエネルギー変化の内、エントロピー変化に比例する状態量であり、電池の化学的状態を表す基本的な特性である。 Example 1 relates to a battery (測定 V OC / ∂T) measurement method and a battery (∂V OC / ∂T) measurement apparatus according to the first and second aspects of the present disclosure. Here, (∂V OC / ∂T) of the battery is a state quantity proportional to the entropy change in the Gibbs energy change of the battery, and is a basic characteristic representing the chemical state of the battery.

実施例1における電池の(∂VOC/∂T)測定方法は、二次電池あるいはリチウムイオン電池から成る電池の(∂VOC/∂T)測定方法である。そして、電池の温度変動が温度測定装置の温度測定限界以下となり、且つ、電池の開放電圧変動が電圧測定装置の電圧測定限界以下となった状態で[本開示の第1の態様に係る電池の(∂VOC/∂T)測定方法]、あるいは又、リチウムイオンの拡散反応が生じていない状態において[本開示の第2の態様に係る電池の(∂VOC/∂T)測定方法]、電圧測定装置によって電池の開放電圧VOCを測定し、且つ、温度測定装置によって電池の温度Tを測定し、開放電圧測定結果及び温度測定結果に基づき、電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求める。 (∂V OC / ∂T) measuring method of a battery of Example 1 is (∂V OC / ∂T) measuring method of a battery consisting of a secondary battery or a lithium ion battery. Then, in a state where the temperature variation of the battery is equal to or lower than the temperature measurement limit of the temperature measuring device and the open-circuit voltage variation of the battery is equal to or lower than the voltage measurement limit of the voltage measuring device [the battery according to the first aspect of the present disclosure (∂V OC / ∂T) measurement method] or, in a state where no lithium ion diffusion reaction has occurred, [( VOC / ∂T) measurement method of the battery according to the second aspect of the present disclosure], The battery open voltage V OC is measured by the voltage measuring device, the battery temperature T is measured by the temperature measuring device, and the battery opening with the battery temperature T as a variable is measured based on the open voltage measurement result and the temperature measurement result. The differential coefficient (∂V OC / ∂T) of the voltage V OC is obtained.

また、実施例1の電池の(∂VOC/∂T)測定装置10は、二次電池あるいはリチウムイオン電池から成る電池の(∂VOC/∂T)測定装置であって、
電池の開放電圧VOCを測定する電圧測定装置(電圧測定回路)41、
電池の温度を測定する温度測定装置(温度測定回路)31、
電池の温度を制御する温度制御装置、及び、
電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求める演算装置21、
を備えており、更に、
電池の充放電電流を測定する電流測定装置(電流測定回路)42、
を備えている。そして、
温度制御装置によって電池の温度変動が温度測定装置31の温度測定限界以下とされ、且つ、電池の開放電圧変動が電圧測定装置41の電圧測定限界以下となった状態で[本開示の第1の態様に係る電池の(∂VOC/∂T)測定装置]、あるいは又、リチウムイオンの拡散反応が生じていない状態に温度制御装置によってされた状態において[本開示の第2の態様に係る電池の(∂VOC/∂T)測定装置]、電圧測定装置41によって電池の開放電圧VOCが測定され、且つ、温度測定装置31によって電池の温度Tが測定され、開放電圧測定結果及び温度測定結果に基づき、演算装置21によって(∂VOC/∂T)が求められる。
The battery of (∂V OC / ∂T) measuring apparatus 10 of the first embodiment, a battery (∂V OC / ∂T) measuring apparatus comprising a rechargeable battery or a lithium ion battery,
A voltage measuring device (voltage measuring circuit) 41 for measuring the open circuit voltage V OC of the battery;
A temperature measuring device (temperature measuring circuit) 31 for measuring the temperature of the battery;
A temperature control device for controlling the temperature of the battery; and
An arithmetic unit 21 for obtaining a differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC of the battery with the temperature T of the battery as a variable;
In addition,
A current measuring device (current measuring circuit) 42 for measuring the charge / discharge current of the battery;
It has. And
In a state where the temperature fluctuation of the battery is set to be less than or equal to the temperature measurement limit of the temperature measurement device 31 and the open-circuit voltage fluctuation of the battery is less than or equal to the voltage measurement limit of the voltage measurement device 41 by the temperature control device [first disclosed ((V OC / ∂T) measuring device of battery according to aspect) or in a state where the lithium ion diffusion reaction is not generated by the temperature control device [battery according to the second aspect of the present disclosure (∂V OC / ∂T) measuring device], the voltage measuring device 41 measures the open circuit voltage V OC of the battery, and the temperature measuring device 31 measures the battery temperature T, and the open circuit voltage measurement result and the temperature measurement. Based on the result, (演算 V OC / ∂T) is obtained by the arithmetic unit 21.

具体的には、図1に概念図を示すように、(∂VOC/∂T)測定装置10は、電圧測定装置(電圧測定回路)41、電流測定装置(電流測定回路)42、温度測定装置(温度測定回路)31、温度制御装置51,52A,52B、及び、演算装置21を備えている。ここで、具体的には、温度測定装置31は、二次電池あるいはリチウムイオン電池(以下、これらを総称して、単に、『二次電池11』、あるいは、『二次電池』と呼ぶ)の外面と接触し、二次電池11の温度を測定する温度測定部32を備えている。温度測定装置31と温度測定部32とは、配線33によって接続されている。二次電池11は、外部環境から二次電池11を断熱する格納容器61A,61Bに格納されている。格納容器61A,61Bは、二次電池11を出し入れするために二分割されている。温度測定部32は、格納容器61A,61Bに取り付けられている。温度制御装置は、格納容器61A,61Bの上部及び下部に配設されたペルチェ素子52A,52B、及び、ペルチェ素子52A,52Bと配線53A,53Bを介して接続された温度制御部(温度制御回路)51から構成されている。更には、電圧測定装置41及び電流測定装置42は、配線43A,43Bを介して、格納容器61A,61Bの上部及び下部に配設された接触端子部62A,62Bに接続されている。接触端子部62A,62Bは、それぞれ、二次電池11の正極及び負極に接する。演算装置21は、CPU等から構成されており、更に、各種プログラムやデータを記憶しているメモリ22、電圧測定値及び温度測定値を記憶する電圧/温度メモリ23を備えている。 Specifically, as shown in the conceptual diagram of FIG. 1, the (∂V OC / ∂T) measuring device 10 includes a voltage measuring device (voltage measuring circuit) 41, a current measuring device (current measuring circuit) 42, and a temperature measurement. A device (temperature measurement circuit) 31, temperature control devices 51, 52 </ b> A, 52 </ b> B, and an arithmetic device 21 are provided. Specifically, the temperature measuring device 31 is a secondary battery or a lithium ion battery (hereinafter collectively referred to simply as “secondary battery 11” or “secondary battery”). A temperature measuring unit 32 that contacts the outer surface and measures the temperature of the secondary battery 11 is provided. The temperature measuring device 31 and the temperature measuring unit 32 are connected by a wiring 33. The secondary battery 11 is stored in storage containers 61A and 61B that insulate the secondary battery 11 from the external environment. The storage containers 61 </ b> A and 61 </ b> B are divided into two for taking in and out the secondary battery 11. The temperature measuring unit 32 is attached to the storage containers 61A and 61B. The temperature control device includes Peltier elements 52A and 52B disposed in the upper and lower portions of the storage containers 61A and 61B, and a temperature control unit (temperature control circuit) connected to the Peltier elements 52A and 52B via wirings 53A and 53B. ) 51. Furthermore, the voltage measuring device 41 and the current measuring device 42 are connected to contact terminal portions 62A and 62B disposed on the upper and lower portions of the storage containers 61A and 61B via wirings 43A and 43B. The contact terminal portions 62A and 62B are in contact with the positive electrode and the negative electrode of the secondary battery 11, respectively. The arithmetic unit 21 includes a CPU and the like, and further includes a memory 22 that stores various programs and data, and a voltage / temperature memory 23 that stores voltage measurement values and temperature measurement values.

尚、電圧測定装置41、及び、温度測定装置31として、電圧測定限界が1×10-6ボルトである電圧測定装置、及び、温度測定限界が1×10-2゜Cである温度測定装置を用いる。そして、実施例1にあっては、二次電池11の相対残容量と関連した(∂VOC/∂T)を求める。 As the voltage measuring device 41 and the temperature measuring device 31, a voltage measuring device having a voltage measuring limit of 1 × 10 −6 volts and a temperature measuring device having a temperature measuring limit of 1 × 10 −2 ° C. Use. In Example 1, (∂V OC / ∂T) related to the relative remaining capacity of the secondary battery 11 is obtained.

二次電池11の(∂VOC/∂T)の測定にあっては、例えば、先ず、二次電池11を満充電状態としておく。二次電池11として、具体的には、円筒型セルである18650型を用いた。満充電状態では、放電容量は、例えば2000mAhである。 In the measurement of (∂V OC / ∂T) of the secondary battery 11, for example, first, the secondary battery 11 is fully charged. Specifically, the 18650 type which is a cylindrical cell was used as the secondary battery 11. In the fully charged state, the discharge capacity is, for example, 2000 mAh.

そして、二次電池11の温度が、例えば、10゜Cとなるように温度制御装置を設定する。この場合、実際には、図2の(A)に示すように、二次電池11の長さ方向に温度分布が生じるが、円筒型セルの場合には、内部において電極が巻かれている構造であり、図2の(B)に示すように、二次電池11の開放電圧VOCは温度分布の平均値に対応する値になる。定常状態での温度分布は、例えば、ANSYS CFD, CD-adapco STAR-CCM+, Autodesk Simulation CFD, FLOW-3D といった市販の熱流体解析プログラムを用いて容易に算出可能である。それ故、ペルチェ素子52A,52Bの設定温度に対して二次電池11の平均温度を算出することは、比較的容易である。 Then, the temperature control device is set so that the temperature of the secondary battery 11 is, for example, 10 ° C. In this case, actually, as shown in FIG. 2A, a temperature distribution is generated in the length direction of the secondary battery 11, but in the case of a cylindrical cell, an electrode is wound inside. As shown in FIG. 2B, the open circuit voltage V OC of the secondary battery 11 becomes a value corresponding to the average value of the temperature distribution. The temperature distribution in the steady state can be easily calculated using a commercially available thermal fluid analysis program such as ANSYS CFD, CD-adapco STAR-CCM +, Autodesk Simulation CFD, or FLOW-3D. Therefore, it is relatively easy to calculate the average temperature of the secondary battery 11 with respect to the set temperature of the Peltier elements 52A and 52B.

そして、二次電池11の温度変動が温度測定装置31の温度測定限界以下(0.01゜C以下)となり、且つ、二次電池11の開放電圧変動が電圧測定装置41の電圧測定限界(1マイクロボルト)以下となった状態で、開放電圧VOCを電圧測定装置41によって測定し、且つ、温度測定装置31によって二次電池11の温度Tを測定する。あるいは又、リチウムイオンの拡散反応が生じていない状態において、開放電圧VOCを電圧測定装置41によって測定し、且つ、温度測定装置31によって二次電池11の温度Tを測定する。尚、このような状態に達するまでの時間は、二次電池11の仕様に依存するが、24時間〜48時間程度である。次いで、二次電池11の温度が、例えば、15゜Cとなるように温度制御装置を設定する。そして、二次電池11の温度変動が温度測定装置31の温度測定限界以下(0.01゜C以下)となり、且つ、二次電池11の開放電圧変動が電圧測定装置41の電圧測定限界(1マイクロボルト)以下となった状態で、開放電圧VOCを電圧測定装置41によって測定し、且つ、温度測定装置31によって二次電池11の温度Tを測定する。尚、このような状態に達するまでの時間は、二次電池11の仕様に依存するが、10分〜30分程度である。次いで、こうして、二次電池11の温度が、例えば、20゜C、25゜C、30゜C、35゜C、40゜Cとなるように温度制御装置を設定し、同様にして開放電圧VOC及び二次電池11の温度Tを測定する。そして、開放電圧VOC及び二次電池11の温度Tの測定結果を、演算装置21の制御下、電圧/温度メモリ23に記憶しておく。 Then, the temperature variation of the secondary battery 11 becomes less than the temperature measurement limit of the temperature measurement device 31 (0.01 ° C. or less), and the open-circuit voltage variation of the secondary battery 11 is the voltage measurement limit (1) of the voltage measurement device 41. In a state in which the voltage is equal to or less than microvolts), the open circuit voltage V OC is measured by the voltage measuring device 41, and the temperature T of the secondary battery 11 is measured by the temperature measuring device 31. Alternatively, the open circuit voltage V OC is measured by the voltage measuring device 41 and the temperature T of the secondary battery 11 is measured by the temperature measuring device 31 in a state where no lithium ion diffusion reaction occurs. In addition, although the time until it reaches such a state depends on the specification of the secondary battery 11, it is about 24 hours to 48 hours. Next, the temperature control device is set so that the temperature of the secondary battery 11 is, for example, 15 ° C. Then, the temperature variation of the secondary battery 11 becomes less than the temperature measurement limit of the temperature measurement device 31 (0.01 ° C. or less), and the open-circuit voltage variation of the secondary battery 11 is the voltage measurement limit (1) of the voltage measurement device 41. In a state in which the voltage is equal to or less than microvolts), the open circuit voltage V OC is measured by the voltage measuring device 41, and the temperature T of the secondary battery 11 is measured by the temperature measuring device 31. In addition, although time until it reaches such a state is dependent on the specification of the secondary battery 11, it is about 10 minutes-30 minutes. Next, in this way, the temperature control device is set so that the temperature of the secondary battery 11 becomes, for example, 20 ° C., 25 ° C., 30 ° C., 35 ° C., 40 ° C. The temperature T of the OC and the secondary battery 11 is measured. Then, the measurement results of the open circuit voltage V OC and the temperature T of the secondary battery 11 are stored in the voltage / temperature memory 23 under the control of the arithmetic unit 21.

こうして、得られた開放電圧VOC及び二次電池の温度Tから、演算装置21において、
OC=k1×T+k0
といった回帰直線を最小二乗法に基づき求める。得られた係数k1が、二次電池の温度Tを変数とした二次電池の開放電圧VOCの微分係数(∂VOC/∂T)であり、10-3〜10-4(ボルト/゜C)程度の値である。回帰直線の決定係数は、0.99以上(例えば、0.9998)であった。また、開放電圧VOCの値は、100マイクロボルト乃至10ミリボルト程度である。
In this way, from the obtained open circuit voltage V OC and the temperature T of the secondary battery,
V OC = k 1 × T + k 0
Is obtained based on the least square method. The obtained coefficient k 1 is a differential coefficient (∂V OC / ∂T) of the open-circuit voltage V OC of the secondary battery with the temperature T of the secondary battery as a variable, and 10 −3 to 10 −4 (volt / (° C). The coefficient of determination of the regression line was 0.99 or higher (for example, 0.9998). The open circuit voltage V OC is about 100 microvolts to 10 millivolts.

尚、このように高い決定係数が得られることから、測定時間短縮のために、例えば、10゜Cと40゜Cの2点で測定して、その傾きを(∂VOC/∂T)としてもよいし、温度に対して(∂VOC/∂T)の変化が大きい場合や、精度を低下させても構わない用途の場合であれば、例えば、20゜Cと25゜Cの2点で測定するだけでも問題はない。 Since such a high coefficient of determination is obtained, in order to shorten the measurement time, for example, measurement is performed at two points of 10 ° C. and 40 ° C., and the inclination is set as (∂V OC / ∂T). If the change of (∂V OC / ∂T) with respect to the temperature is large, or if the accuracy of the application may be reduced, for example, two points of 20 ° C and 25 ° C. There is no problem just to measure with.

次に、格納容器61A,61Bから二次電池11を取り出し、図示しない放電装置を用いて、一定量の放電を行う。ここでは、例えば、放電容量の10%分の電流量(200mAh)を放電する。放電後にもリチウムイオンの拡散反応は続く。二次電池11を24時間〜48時間、室内に放置して、リチウムイオンの拡散反応が生じていない状態とした後、二次電池11を格納容器61A,61Bに格納し、再び、二次電池11の温度が、例えば、10゜Cとなるように温度制御装置を設定する。そして、二次電池11の温度変動が温度測定装置31の温度測定限界以下(0.01゜C以下)となり、且つ、二次電池11の開放電圧変動が電圧測定装置41の電圧測定限界(1マイクロボルト)以下となった状態で、開放電圧VOCを電圧測定装置41によって測定し、且つ、温度測定装置31によって二次電池11の温度Tを測定する。あるいは又、リチウムイオンの拡散反応が生じていない状態において、開放電圧VOCを電圧測定装置41によって測定し、且つ、温度測定装置31によって二次電池11の温度Tを測定する。更に、上述したと同様に、二次電池11の温度が、例えば、15゜C、20゜C、25゜C、30゜C、35゜C、40゜Cとなるように温度制御装置を設定し、同様にして開放電圧VOC及び二次電池11の温度Tを測定する。そして、開放電圧VOC及び二次電池11の温度Tの測定結果を、演算装置21の制御下、電圧/温度メモリ23に記憶しておく。 Next, the secondary battery 11 is taken out from the storage containers 61A and 61B, and a certain amount of discharge is performed using a discharge device (not shown). Here, for example, a current amount (200 mAh) corresponding to 10% of the discharge capacity is discharged. The lithium ion diffusion reaction continues after discharge. After the secondary battery 11 is left indoors for 24 to 48 hours so that no lithium ion diffusion reaction occurs, the secondary battery 11 is stored in the storage containers 61A and 61B, and again the secondary battery. The temperature controller is set so that the temperature of 11 is, for example, 10 ° C. Then, the temperature variation of the secondary battery 11 becomes less than the temperature measurement limit of the temperature measurement device 31 (0.01 ° C. or less), and the open-circuit voltage variation of the secondary battery 11 is the voltage measurement limit (1) of the voltage measurement device 41. In a state in which the voltage is equal to or less than microvolts), the open circuit voltage V OC is measured by the voltage measuring device 41, and the temperature T of the secondary battery 11 is measured by the temperature measuring device 31. Alternatively, the open circuit voltage V OC is measured by the voltage measuring device 41 and the temperature T of the secondary battery 11 is measured by the temperature measuring device 31 in a state where no lithium ion diffusion reaction occurs. Further, as described above, the temperature control device is set so that the temperature of the secondary battery 11 is, for example, 15 ° C, 20 ° C, 25 ° C, 30 ° C, 35 ° C, 40 ° C. Similarly, the open circuit voltage V OC and the temperature T of the secondary battery 11 are measured. Then, the measurement results of the open circuit voltage V OC and the temperature T of the secondary battery 11 are stored in the voltage / temperature memory 23 under the control of the arithmetic unit 21.

以上の、二次電池11の放電、並びに、開放電圧VOC及び二次電池11の温度の測定を、例えば、放電容量の20%分、30%分・・・、90%分の電流量として、繰り返し行う。そして、開放電圧測定結果及び温度測定結果に基づき、二次電池の温度Tを変数とした二次電池の開放電圧VOCの微分係数(∂VOC/∂T)を求める。具体的には、得られた開放電圧VOC及び二次電池の温度Tから、演算装置21において、各電流流量(二次電池の相対残容量)において、
OC=k1×T+k0
といった回帰直線を最小二乗法に基づき求める。得られた係数k1が、図2の(C)に模式的に示すような、各電流流量(二次電池の相対残容量)における、二次電池の温度Tを変数とした二次電池の開放電圧VOCの微分係数(∂VOC/∂T)である。こうして、二次電池の相対残容量と関連した(∂VOC/∂T)を求めることができる。
The measurement of the discharge of the secondary battery 11 and the measurement of the open circuit voltage V OC and the temperature of the secondary battery 11 are, for example, 20%, 30%, ..., 90% of the discharge capacity. Repeatedly. Then, based on the open-circuit voltage measurement result and the temperature measurement result, a differential coefficient (∂V OC / ∂T) of the open-circuit voltage V OC of the secondary battery using the temperature T of the secondary battery as a variable is obtained. Specifically, from the obtained open circuit voltage V OC and the temperature T of the secondary battery, in the calculation device 21, at each current flow rate (relative remaining capacity of the secondary battery),
V OC = k 1 × T + k 0
Is obtained based on the least square method. The obtained coefficient k 1 is that of the secondary battery with the temperature T of the secondary battery as a variable at each current flow rate (relative remaining capacity of the secondary battery) as schematically shown in FIG. It is a differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC . In this way, (∂V OC / ∂T) related to the relative remaining capacity of the secondary battery can be obtained.

ここで、二次電池のエントロピー変化ΔSは、
ΔS=n・F・(∂VOC/∂T) (1)
で表すことができる。尚、
n:電子数
F:ファラデー定数
である。
Here, the entropy change ΔS of the secondary battery is
ΔS = n · F · (∂V OC / ∂T) (1)
Can be expressed as still,
n: number of electrons F: Faraday constant.

図2の(C)に示した(∂VOC/∂T)の相対残容量依存性は、二次電池の構成材料に大きく依存するが、二次電池のエントロピー変化ΔSが理論的に解析されており、(∂VOC/∂T)の相対残容量依存性のグラフ形状が予め判っている場合には、(T,VOC)の測定点に対してフィッティングをかけることで、正確な(∂VOC/∂T)のデータを得ることができる。尚、このようなフィッティングをかけることが困難な場合には、スプライン等で補間するか、より細かくデータを採取すればよい。 The relative remaining capacity dependence of (∂V OC / ∂T) shown in (C) of FIG. 2 largely depends on the constituent material of the secondary battery, but the entropy change ΔS of the secondary battery is theoretically analyzed. If the graph shape of the relative remaining capacity dependency of (∂V OC / ∂T) is known in advance, fitting to the measurement point of (T, V OC ) gives an accurate ( (V OC / T) data can be obtained. If it is difficult to apply such fitting, interpolation may be performed using a spline or the like, or data may be collected more finely.

実施例1にあっては、上述したとおり、二次電池の温度変動が温度測定装置の温度測定限界以下となり、且つ、二次電池の開放電圧変動が電圧測定装置の電圧測定限界以下となった状態で、あるいは又、リチウムイオンの拡散反応が生じていない状態において、二次電池の開放電圧及び温度を測定する。このように、高い精度で二次電池の開放電圧を測定することができる結果、エントロピー変化を求めるための基礎データである(∂VOC/∂T)を高い精度で求めることができる。 In Example 1, as described above, the temperature variation of the secondary battery was less than the temperature measurement limit of the temperature measurement device, and the open-circuit voltage variation of the secondary battery was less than the voltage measurement limit of the voltage measurement device. In the state, or in the state where the lithium ion diffusion reaction does not occur, the open-circuit voltage and temperature of the secondary battery are measured. Thus, as a result of measuring the open circuit voltage of the secondary battery with high accuracy, (∂V OC / ∂T), which is basic data for obtaining entropy change, can be obtained with high accuracy.

実施例2は、実施例1の変形である。実施例2にあっては、実施例1において得られ、図2の(C)に示した(∂VOC/∂T)の相対残容量依存性を示す曲線[『(∂VOC/∂T)曲線』と呼ぶ]に基づき、演算装置21において、二次電池の相対残容量を求める。即ち、実際に使用されている二次電池11の(∂VOC/∂T)を求め、実際に使用されている二次電池11の、その時点における相対残容量を求める。具体的には、実際に使用されている状態で、二次電池11の(T,VOC)を求める。この場合には、温度測定装置31の温度測定限界は、例えば、0.1゜C以下とすればよいし、電圧測定装置41の電圧測定限界は、例えば、0.1ミリボルト以下とすればよい。 The second embodiment is a modification of the first embodiment. In Example 2, the curve [“(∂V OC / ∂T, which is obtained in Example 1 and shows the dependency on the relative remaining capacity of (∂V OC / ∂T) shown in FIG. 2C). ) Is called “curve”], the arithmetic device 21 determines the relative remaining capacity of the secondary battery. That is, (∂V OC / ∂T) of the secondary battery 11 actually used is obtained, and the relative remaining capacity of the secondary battery 11 actually used at that time is obtained. Specifically, (T, V OC ) of the secondary battery 11 is obtained in a state where it is actually used. In this case, the temperature measurement limit of the temperature measurement device 31 may be, for example, 0.1 ° C. or less, and the voltage measurement limit of the voltage measurement device 41 may be, for example, 0.1 millivolt or less. .

例えば、二次電池の放電中に、適切な時間間隔において、複数回、例えば、2回、(T1,VOC-1),(T2,VOC-2)を求める。この場合、強制的に二次電池の温度を制御するか、充放電によって生じる温度変化を捉えながら、具体的には、二次電池の端子間電圧VTVを測定すればよい。そして、二次電池の内部抵抗に起因する電圧変化や充放電による電圧変化を考慮して、周知の方法に基づいて開放電圧VOC(VOC-1,VOC-2)を算出する。こうして、以下の式に基づき∂VOC/∂Tを求めることができる。 For example, during the discharge of the secondary battery, (T 1 , V OC-1 ), (T 2 , V OC-2 ) are obtained a plurality of times, for example, twice at appropriate time intervals. In this case, the voltage V TV between the terminals of the secondary battery may be specifically measured while forcibly controlling the temperature of the secondary battery or capturing the temperature change caused by charging and discharging. Then, the open circuit voltage V OC (V OC-1 , V OC-2 ) is calculated based on a known method in consideration of the voltage change caused by the internal resistance of the secondary battery and the voltage change due to charging / discharging. Thus, ∂V OC / ∂T can be obtained based on the following equation.

∂VOC/∂T=(VOC-1−VOC-2)/(T1−T2∂V OC / ∂T = (V OC-1 -V OC-2 ) / (T 1 -T 2 )

尚、図2の(C)に示したように、或る(∂VOC/∂T)の値に一致する温度Tの値が3つ、存在する場合(図2の(C)において、「a」、「b」、「c」で示す)がある。従って、電流積算法で大凡の相対残容量を算出しておき、算出された相対残容量の近傍(図2の(C)において、例えば「a」の近傍とする)における(∂VOC/∂T)曲線に着目する。そして、求められた(∂VOC/∂T)の値に一致する(∂VOC/∂T)曲線における相対残容量の値(図2の(C)において、「d」で示す)が、二次電池の相対残容量として求まる。 As shown in FIG. 2C, when there are three values of temperature T that match a certain value (∂V OC / ∂T) (in FIG. 2C, “ a ”,“ b ”, and“ c ”). Accordingly, an approximate relative remaining capacity is calculated by the current integration method, and (∂V OC / ∂ in the vicinity of the calculated relative remaining capacity (for example, in the vicinity of “a” in FIG. 2C). T) Pay attention to the curve. Then, the obtained matches the value of (∂V OC / ∂T) (∂V OC / ∂T) of the state of charge in the curve value (in FIG. 2 in (C), indicated by "d") is, It is obtained as the relative remaining capacity of the secondary battery.

以上の二次電池の相対残容量を求める過程においては、(∂VOC/∂T)を求め、この値を相対残容量の推定に用いるので、相対残容量の推定に対する温度に起因した補正が不要となる。また、電流積算法は、大凡の相対残容量を得るために用いているので、温度補正は不要である。内部抵抗に温度依存性はあるものの、測定する2点間の温度変化が大きくならないように測定時間間隔を選択すれば、内部抵抗の温度依存性を無視することができる。次に説明する実施例3においても同様である。 In the above process for determining the relative remaining capacity of the secondary battery, (∂V OC / ∂T) is obtained, and this value is used for estimating the relative remaining capacity. It becomes unnecessary. Moreover, since the current integration method is used to obtain an approximate relative remaining capacity, temperature correction is unnecessary. Although the internal resistance has temperature dependence, if the measurement time interval is selected so that the temperature change between two points to be measured does not increase, the temperature dependence of the internal resistance can be ignored. The same applies to Example 3 described below.

実施例3も実施例1の変形である。実施例3にあっては、二次電池の劣化度合いと関連した(∂VOC/∂T)を求める。ここで、実施例3にあっては、二次電池の劣化度合いを二次電池の放電容量の減少とする。具体的には、例えば、二次電池の充放電を繰り返すことで放電容量を減少させ、放電容量の減少の各段階で、実施例1と同様にして、(∂VOC/∂T)曲線を求める。こうして、二次電池の劣化度合いと関連した(∂VOC/∂T)曲線、即ち、放電容量と関連した(∂VOC/∂T)曲線を得ることができる。 The third embodiment is also a modification of the first embodiment. In Example 3, (∂V OC / ∂T) related to the degree of deterioration of the secondary battery is obtained. Here, in Example 3, the deterioration degree of the secondary battery is defined as a decrease in the discharge capacity of the secondary battery. Specifically, for example, by repeating charging and discharging of the secondary battery, the discharge capacity is reduced, and at each stage of the reduction of the discharge capacity, the (∂V OC / ∂T) curve is obtained in the same manner as in Example 1. Ask. Thus, a (∂V OC / ∂T) curve related to the degree of deterioration of the secondary battery, that is, a (∂V OC / ∂T) curve related to the discharge capacity can be obtained.

そして、実施例2と同様にして、実際に使用されている二次電池11において、複数(例えば、2点)の(T,VOC)、例えば、(T1,VOC-1),(T2,VOC-2)の値を求め、更には、実施例2と同様にして(∂VOC/∂T)を求め、求められた(∂VOC/∂T)がどの放電容量と関連した(∂VOC/∂T)曲線上に乗るかを、演算装置21において調べる。ここで、一致した(∂VOC/∂T)曲線が対応する放電容量が、求める放電容量である。こうして、実際に使用されている二次電池11の放電容量を推定することができる。そして、このように、(∂VOC/∂T)を測定して、この値を劣化度合いの推定に用いるので、劣化度合いの推定に対する温度に起因した補正が不要となる。 In the same manner as in Example 2, in the actually used secondary battery 11, a plurality (for example, two points) of (T, V OC ), for example, (T 1 , V OC-1 ), ( T 2 , V OC-2 ), and (∂V OC / ∂T) is obtained in the same manner as in Example 2, and the obtained (∂V OC / ∂T) is determined as to which discharge capacity. The arithmetic unit 21 checks whether or not the vehicle is on the relevant (∂V OC / ∂T) curve. Here, the discharge capacity corresponding to the matched (∂V OC / ∂T) curve is the required discharge capacity. Thus, the discharge capacity of the secondary battery 11 that is actually used can be estimated. In this way, (∂V OC / ∂T) is measured and this value is used for estimation of the degree of deterioration, so that correction due to temperature for estimation of the degree of deterioration becomes unnecessary.

実施例4は、本開示の第1の態様及び第2の態様に係る電池の温度推定方法及び電池の温度推定装置に関する。   Example 4 relates to a battery temperature estimation method and a battery temperature estimation apparatus according to the first and second aspects of the present disclosure.

二次電池の充放電電流実測値をI0(充電時:正の値、放電時:負の値)、二次電池の温度実測値をT0とした場合、エントロピー変化起因の吸発熱量ΔQ0は、以下の式(2)で与えられる。ここで、Eemfは二次電池の起電力である。 When the measured charge / discharge current value of the secondary battery is I 0 (charge: positive value, discharge: negative value) and the measured temperature value of the secondary battery is T 0 , the amount of heat absorption / desorption ΔQ due to entropy change 0 is given by the following equation (2). Here, E emf is the electromotive force of the secondary battery.

ΔQ0=−I0・T0・(∂Eemf/∂T) (2) ΔQ 0 = −I 0 · T 0 · (∂E emf / ∂T) (2)

そして、エントロピー変化起因の吸発熱量ΔQ0と、内部抵抗起因の発熱量I0 2・r0との和が、実際の吸発熱量である。それ故、実施例1において説明した方法に基づき、予め、(∂VOC/∂T)を求め、(∂VOC/∂T)から、更に、相対残容量と(∂Eemf/∂T)との関係を求めておくことで、正確に温度変化を予測することが可能になる。更には、場合によっては、二次電池の温度を測定する必要がなくなるため、大型の電池パックの製造コストの削減にも繋がる。尚、二次電池の温度変動が温度測定装置の温度測定限界以下となり、且つ、二次電池の開放電圧変動が電圧測定装置の電圧測定限界以下となった状態では、あるいは又、リチウムイオンの拡散反応が生じていない状態においては、Eemf=VOCである。 The sum of the heat absorption amount ΔQ 0 due to the entropy change and the heat generation amount I 0 2 · r 0 due to the internal resistance is the actual heat absorption amount. Therefore, based on the method described in the first embodiment, (基 づ き V OC / ∂T) is obtained in advance, and the relative remaining capacity and (∂E emf / 相 対 T) are further calculated from (∂V OC / ∂T). Thus, it is possible to accurately predict temperature changes. Furthermore, in some cases, it is not necessary to measure the temperature of the secondary battery, which leads to a reduction in manufacturing cost of a large battery pack. In addition, in the state where the temperature fluctuation of the secondary battery is below the temperature measurement limit of the temperature measurement device and the open-circuit voltage fluctuation of the secondary battery is below the voltage measurement limit of the voltage measurement device, or the diffusion of lithium ions In the absence of reaction, E emf = V OC .

即ち、実施例4の電池の温度推定方法は、二次電池あるいはリチウムイオン電池から成る電池の温度推定方法であって、
予め、電池の温度変動が温度測定装置31の温度測定限界以下となり、且つ、電池の開放電圧変動が電圧測定装置41の電圧測定限界以下となった状態で[本開示の第1の態様に係る電池の温度推定方法]、あるいは又、予め、リチウムイオンの拡散反応が生じていない状態において[本開示の第2の態様に係る電池の温度推定方法]、電圧測定装置41によって電池の開放電圧VOCを測定し、且つ、温度測定装置31によって電池の温度Tを測定し、開放電圧測定結果及び温度測定結果に基づき、電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求めておき(以上の詳細については、実施例1参照)、
電池の温度実測値T0、電池の充放電電流実測値I0、及び、予め求められた(∂VOC/∂T)に基づき電池の温度を推定する。
That is, the battery temperature estimation method of Example 4 is a battery temperature estimation method including a secondary battery or a lithium ion battery,
In the state where the temperature fluctuation of the battery is equal to or lower than the temperature measurement limit of the temperature measuring device 31 and the battery open-circuit voltage fluctuation is equal to or lower than the voltage measurement limit of the voltage measuring device 41 in advance [according to the first aspect of the present disclosure Battery Temperature Estimating Method] Alternatively, in the state where the lithium ion diffusion reaction has not occurred in advance [battery temperature estimating method according to the second aspect of the present disclosure], the voltage measuring device 41 causes the open circuit voltage V of the battery. OC is measured, and the temperature T of the battery is measured by the temperature measuring device 31. Based on the open-circuit voltage measurement result and the temperature measurement result, the differential coefficient of the open-circuit voltage V OC of the battery (∂ V OC / ∂T) is obtained (for details, see Example 1),
Temperature measured value T 0 of the battery, the charge and discharge current measured value I 0 of the battery, and estimates the temperature of the battery based on the previously obtained (∂V OC / ∂T).

また、実施例4の電池の温度推定装置10は、図1に概念図を示すように、
電池の開放電圧VOCを測定する電圧測定装置(電圧測定回路)41、
電池の充放電電流を測定する電流測定装置(電流測定回路)42、
電池の温度を測定する温度測定装置(温度測定回路)31、
電池の温度を制御する温度制御装置51,52A,52B、及び、
電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求める演算装置21、
を備えており、
予め、温度制御装置51,52A,52Bによって電池の温度変動が温度測定装置31の温度測定限界以下とされ、且つ、電池の開放電圧変動が電圧測定装置41の電圧測定限界以下となった状態で[本開示の第1の態様に係る電池の温度推定装置]、あるいは又、予め、リチウムイオンの拡散反応が生じていない状態に温度制御装置51,52A,52Bによってされた状態において[本開示の第2の態様に係る電池の温度推定装置]、電圧測定装置41によって電池の開放電圧VOCが測定され、且つ、温度測定装置31によって電池の温度Tが測定され、開放電圧測定結果及び温度測定結果に基づき、演算装置21によって(∂VOC/∂T)が求められ、求められた(∂VOC/∂T)が演算装置21に記憶されており、
演算装置21は、更に、電池の温度実測値T0、記憶された(∂VOC/∂T)、及び、電池の充放電電流実測値I0に基づき電池の温度を推定する。
Moreover, as shown in the conceptual diagram of FIG.
A voltage measuring device (voltage measuring circuit) 41 for measuring the open circuit voltage V OC of the battery;
A current measuring device (current measuring circuit) 42 for measuring the charge / discharge current of the battery;
A temperature measuring device (temperature measuring circuit) 31 for measuring the temperature of the battery;
Temperature control devices 51, 52A, 52B for controlling the temperature of the battery, and
An arithmetic unit 21 for obtaining a differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC of the battery with the temperature T of the battery as a variable;
With
In the state where the temperature control device 51, 52A, 52B has previously set the battery temperature fluctuation below the temperature measurement limit of the temperature measurement device 31 and the battery open-circuit voltage fluctuation below the voltage measurement limit of the voltage measurement device 41. [Battery Temperature Estimating Device According to First Aspect of Present Disclosure] Alternatively, in a state where the lithium ion diffusion reaction has not been generated in advance by the temperature control devices 51, 52A and 52B [ Battery Temperature Estimating Device According to Second Embodiment], the battery open voltage V OC is measured by the voltage measuring device 41, and the battery temperature T is measured by the temperature measuring device 31, and the open voltage measurement result and the temperature measurement are measured. Based on the result, (∂V OC / ∂T) is obtained by the computing device 21, and the obtained (∂V OC / ∂T) is stored in the computing device 21.
The computing device 21 further estimates the battery temperature based on the measured battery temperature value T 0 , the stored (∂V OC / ∂T), and the measured charge / discharge current value I 0 of the battery.

尚、実施例4の電池の温度推定装置10においても、温度測定限界が1×10-2゜Cである温度測定装置31を用い、更には、電圧測定限界が1×10-6ボルトである電圧測定装置41を用いる。実施例4の電池の温度推定装置10の構成、構造は、実質的に、実施例1において説明した電池の(∂VOC/∂T)測定装置の構成、構造と同様とすることができるので、詳細な説明は省略する。 The battery temperature estimation apparatus 10 of Example 4 also uses the temperature measurement apparatus 31 with a temperature measurement limit of 1 × 10 −2 ° C, and further has a voltage measurement limit of 1 × 10 −6 volts. A voltage measuring device 41 is used. The configuration and structure of the battery temperature estimation device 10 of the fourth embodiment can be substantially the same as the configuration and structure of the battery (∂V OC / ∂T) measurement device described in the first embodiment. Detailed description will be omitted.

ところで、二次電池11の単位時間当たりの発熱量ΔQは、
ΔQ=−I0・T0・(∂Eemf/∂T)+I0 2・r0 (3)
で表すことができる。
Incidentally, the calorific value ΔQ per unit time of the secondary battery 11 is:
ΔQ = −I 0 · T 0 · (∂E emf / ∂T) + I 0 2 · r 0 (3)
Can be expressed as

従って、予め、(∂VOC/∂T)に基づき相対残容量と(∂Eemf/∂T)との関係を求めておき、この関係を、例えば、テーブル化して、演算装置21に記憶しておき、また、内部抵抗値の相対残容量依存性を求めておくことで、実際に使用されている二次電池の温度実測値T0、及び、充放電電流実測値I0に基づき、電池の温度を推定することが可能となる。ところで、電流値I0が大きい場合には内部抵抗値r0の温度依存性を測定しておく必要があるが、電流値I0が小さい場合には内部抵抗値の温度補正を省略することができる。その判断基準は、概ね1Cである。例えば、二次電池が電池パックの形態で実際に使用されるのであれば、電池パックのどこに二次電池が配置されるかによって、二次電池の放熱度合いが決まる。この二次電池の放熱度合いを、予め、熱流体解析プログラムで解析しておき、実効的な熱伝達量Xとして算出する。実効的な熱伝達量Xは、電池の温度Tの関数となる。この熱伝達量Xと、二次電池の熱容量が分かっていれば、測定した電流値I0と二次電池の温度T0から発熱量を算出することができる。 Accordingly, a relationship between the relative remaining capacity and (∂E emf / ∂T) is obtained in advance based on (∂V OC / ∂T), and this relationship is tabulated and stored in the arithmetic unit 21, for example. In addition, by calculating the relative remaining capacity dependency of the internal resistance value, the battery is based on the actually measured temperature value T 0 of the actually used secondary battery and the measured charge / discharge current value I 0. Temperature can be estimated. By the way, when the current value I 0 is large, it is necessary to measure the temperature dependence of the internal resistance value r 0. However, when the current value I 0 is small, the temperature correction of the internal resistance value may be omitted. it can. The criterion is approximately 1C. For example, if the secondary battery is actually used in the form of a battery pack, the degree of heat dissipation of the secondary battery is determined depending on where the secondary battery is arranged in the battery pack. The heat dissipation degree of the secondary battery is analyzed in advance by a thermal fluid analysis program and calculated as an effective heat transfer amount X. The effective heat transfer amount X is a function of the battery temperature T. If the heat transfer amount X and the heat capacity of the secondary battery are known, the calorific value can be calculated from the measured current value I 0 and the temperature T 0 of the secondary battery.

即ち、電流値I0の測定時間間隔Δtと、単位時間当たりの発熱量ΔQの値の積を、順次、加算することで、累積の発熱量を算出することができる。そして、二次電池の温度Tcalcは、実効的な熱伝達量X、電池の熱容量Chc、及び、測定時間間隔Δtを用いて、以下の式(4)に基づき計算することができる。尚、(∂Eemf/∂T)の値は、演算装置21において、電流値I0を積算することで求められた相対残容量をパラメータとして、テーブル化された(∂Eemf/∂T)をサーチすることで得ることができる。 That is, the cumulative heat generation amount can be calculated by sequentially adding the product of the measurement time interval Δt of the current value I 0 and the value of the heat generation amount ΔQ per unit time. Then, the temperature T calc of the secondary battery can be calculated based on the following formula (4) using the effective heat transfer amount X, the heat capacity C hc of the battery, and the measurement time interval Δt. The value of (∂E emf / ∂T) is tabulated using the relative remaining capacity obtained by accumulating the current value I 0 in the arithmetic unit 21 as a parameter (∂E emf / ∂T). Can be obtained by searching.

calc=Σ[{−I0・T0・(∂Eemf/∂T)+I0 2・r0−X}・(Δt/Chp)]
(4)
T calc = Σ [{− I 0 · T 0 · (∂E emf / ∂T) + I 0 2 · r 0 −X} · (Δt / C hp )]
(4)

電池パックにおいては、安全のために、直列接続された各二次電池の電流を測定し、並列接続された各二次電池の電圧を測定する必要がある。これに加えて、全ての二次電池に温度センサを取り付けると、電池パックを構成する二次電池の数が増えるほど、温度センサへの配線数が増加するし、また、通信の負荷も増大する。然るに、実施例4にあっては、電池パックを構成する二次電池の温度を高い精度で推定することができるので、電池パックの構成の複雑化を招くことがない。   In the battery pack, for safety, it is necessary to measure the current of each secondary battery connected in series and measure the voltage of each secondary battery connected in parallel. In addition to this, when temperature sensors are attached to all the secondary batteries, the number of wires to the temperature sensor increases as the number of secondary batteries constituting the battery pack increases, and the communication load also increases. . However, in the fourth embodiment, since the temperature of the secondary battery constituting the battery pack can be estimated with high accuracy, the configuration of the battery pack is not complicated.

実施例5は、本開示の電池の劣化状態予測方法及び電池の劣化状態予測装置に関する。   Example 5 relates to a battery deterioration state prediction method and a battery deterioration state prediction apparatus according to the present disclosure.

何度か二次電池の充放電を繰り返した後、二次電池を高精度で温調した状態において高精度で端子間電圧VTVを測定すると、二次電池の材料系や個体差に応じた放電曲線の歪みが観察されることが判明した。従って、放電曲線の歪みを分類し、放電曲線の歪みと二次電池の劣化とを関連付けることで、二次電池が、多数回の充放電によってどのように劣化していくかの予測を立てることが可能となる。それ故、二次電池を製品に組み込む前に、一度だけ、放電曲線の歪みを求めておけば、二次電池の劣化予測精度を向上させることができる。即ち、二次電池を高精度で温調し、端子間電圧の測定を短い時間間隔で行う(例えば、1回の充放電において1000回程度、端子間電圧の測定を行う)といった充放電工程を、二次電池の出荷前、あるいは、二次電池を製品に組み込む前に、例えば10回程度繰り返すことで得られた二次電池の放電曲線の歪みから、二次電池の有する劣化モードを解析することができ、その結果から二次電池の寿命を予測することが可能となる。また、早期に劣化してしまうような二次電池の不良品の検出も可能となる。 After repeatedly charging and discharging the secondary battery several times, when measuring the voltage V TV between the terminals with high accuracy in a state where the temperature of the secondary battery is adjusted with high accuracy, it is in accordance with the material system and individual differences of the secondary battery. It was found that the distortion of the discharge curve was observed. Therefore, by classifying the distortion of the discharge curve and associating the distortion of the discharge curve with the deterioration of the secondary battery, it is possible to predict how the secondary battery will deteriorate due to multiple charging and discharging. Is possible. Therefore, if the distortion of the discharge curve is obtained only once before incorporating the secondary battery into the product, the deterioration prediction accuracy of the secondary battery can be improved. That is, a charge / discharge process in which the temperature of the secondary battery is controlled with high accuracy and the voltage between terminals is measured at short time intervals (for example, the voltage between terminals is measured about 1000 times in one charge / discharge). Before the secondary battery is shipped or before the secondary battery is incorporated into the product, for example, the deterioration mode of the secondary battery is analyzed from the distortion of the discharge curve of the secondary battery obtained by repeating about 10 times. The lifetime of the secondary battery can be predicted from the result. In addition, it is possible to detect a defective secondary battery that deteriorates early.

即ち、実施例5の電池の劣化状態予測方法にあっては、
(A)電池の温度変動が温度測定装置31の温度測定限界以下の状態で、放電時又は充電時の端子間電圧と相対残容量との関係を、初期の端子間電圧と相対残容量との関係として求め、次いで、
(B)所望の回数、電池の充放電を繰り返し、その後、
(C)電池の温度変動が温度測定装置31の温度測定限界以下の状態で、放電時又は充電時の端子間電圧と相対残容量との関係を、充放電後の端子間電圧と相対残容量との関係として求め、初期の端子間電圧と相対残容量との関係、及び、充放電後の端子間電圧と相対残容量との関係に基づき、電池の劣化状態を予測する。
That is, in the battery deterioration state prediction method of Example 5,
(A) The relationship between the terminal voltage and the relative remaining capacity at the time of discharging or charging is the relationship between the initial terminal voltage and the relative remaining capacity in a state where the temperature fluctuation of the battery is below the temperature measurement limit of the temperature measuring device 31. As a relationship, then
(B) Repeat charging / discharging of the battery a desired number of times, then
(C) In a state where the temperature fluctuation of the battery is not more than the temperature measurement limit of the temperature measuring device 31, the relationship between the inter-terminal voltage and the relative remaining capacity at the time of discharging or charging is as follows. The deterioration state of the battery is predicted based on the relationship between the initial inter-terminal voltage and the relative remaining capacity, and the relationship between the inter-terminal voltage after charging and discharging and the relative remaining capacity.

また、実施例5の電池の劣化状態予測装置10は、図1に概念図を示すように、
電池の充放電を行う充放電装置、
電池の端子間電圧を測定する電圧測定装置(電圧測定回路)41、
電池の温度を測定する温度測定装置31、
電池の温度を制御する温度制御装置51,52A,52B、及び、
演算装置21、
を備えており、
(a)温度制御装置51,52A,52Bによって電池の温度変動が温度測定装置31の温度測定限界以下とされた状態で、放電時又は充電時(実施例5にあっては、具体的には、放電時)の端子間電圧と相対残容量との関係が、初期の端子間電圧と相対残容量との関係として、演算装置21によって求められ、
(b)充放電装置によって、所望の回数、電池の充放電が繰り返され、
(c)温度制御装置51,52A,52Bによって電池の温度変動が温度測定装置31の温度測定限界以下とされた状態で、放電時又は充電時(実施例5にあっては、具体的には、放電時)の端子間電圧と相対残容量との関係が、充放電後の端子間電圧と相対残容量との関係として、演算装置21によって求められ、更に、初期の端子間電圧と相対残容量との関係、及び、充放電後の端子間電圧と相対残容量との関係に基づき、演算装置21によって電池の劣化状態が予測される。
Moreover, as shown in the conceptual diagram of FIG.
A charging / discharging device for charging / discharging the battery,
A voltage measuring device (voltage measuring circuit) 41 for measuring a voltage between terminals of the battery;
A temperature measuring device 31 for measuring the temperature of the battery;
Temperature control devices 51, 52A, 52B for controlling the temperature of the battery, and
Arithmetic device 21,
With
(A) At the time of discharging or charging in a state where the temperature fluctuation of the battery is made not more than the temperature measurement limit of the temperature measuring device 31 by the temperature control devices 51, 52A, 52B (specifically, in the fifth embodiment, The relationship between the inter-terminal voltage and the relative remaining capacity during discharge) is obtained by the arithmetic unit 21 as the initial relationship between the terminal voltage and the relative remaining capacity,
(B) The charging / discharging device repeats charging / discharging of the battery a desired number of times,
(C) In a state where the temperature fluctuation of the battery is set to be equal to or lower than the temperature measurement limit of the temperature measuring device 31 by the temperature control devices 51, 52A, 52B, at the time of discharging or charging (specifically, in the fifth embodiment, The relationship between the inter-terminal voltage and the relative remaining capacity during discharge is obtained by the arithmetic unit 21 as the relation between the inter-terminal voltage after charging and discharging and the relative remaining capacity. Based on the relationship with the capacity, and the relationship between the inter-terminal voltage after charging and discharging and the relative remaining capacity, the computing device 21 predicts the deterioration state of the battery.

尚、実施例5の電池の劣化状態予測装置10においても、温度測定限界が1×10-2゜Cである温度測定装置31を用いる。また、電圧測定限界が1×10-6ボルトである電圧測定装置41を用いる。即ち、上記の工程(a)及び工程(c)においては、温度制御装置51,52A,52Bによって二次電池11の温度変動が温度測定装置31の温度測定限界以下、即ち、0.01゜C以下とされた状態で、云い換えれば、二次電池を高精度で温調した状態で、電圧測定限界が1マイクロボルト以下の電圧測定装置41を用いて放電時の端子間電圧VTVが測定される。実施例5の電池の劣化状態予測装置10の構成、構造は、実質的に、実施例1において説明した電池の(∂VOC/∂T)測定装置と同様の構成、構造とすることができるので、詳細な説明は省略する。尚、二次電池11は充放電装置に接続されているが、図1には、二次電池11の充放電装置への接続状態の図示は省略している。 In the battery deterioration state prediction apparatus 10 of the fifth embodiment, the temperature measurement apparatus 31 having a temperature measurement limit of 1 × 10 −2 ° C. is used. Further, a voltage measuring device 41 having a voltage measurement limit of 1 × 10 −6 volts is used. That is, in the above steps (a) and (c), the temperature control device 51, 52A, 52B causes the temperature fluctuation of the secondary battery 11 to be below the temperature measurement limit of the temperature measurement device 31, that is, 0.01 ° C. in a state of being less, 495. in other words, in a state where the temperature control of the secondary battery with high accuracy, voltage measurement limit is the inter-terminal voltage V TV is measured at the time of discharging using a 1 micro-volts or less voltage measuring device 41 Is done. The configuration and structure of the battery deterioration state prediction device 10 of the fifth embodiment can be substantially the same configuration and structure as the battery (∂V OC / ∂T) measurement device described in the first embodiment. Therefore, detailed description is omitted. Although the secondary battery 11 is connected to the charge / discharge device, the connection state of the secondary battery 11 to the charge / discharge device is not shown in FIG.

具体的には、例えば、放電電流を0.5Cとし、端子間電圧VTVの測定時間間隔を1分とする。そして、このような充放電を10回程度繰り返した後、充放電後の端子間電圧と相対残容量との関係(便宜上、『充放電後・放電曲線』と呼ぶ)を求める。ここで、充放電後・放電曲線は、通常、初期の(即ち、第1回目の測定によって得られた)端子間電圧と相対残容量との関係(便宜上、『初期・放電曲線』と呼ぶ)に対して、ずれたり、歪んだりした放電曲線となる(例えば、図3の(A)、(B)、(C)参照)。通常の二次電池の劣化では、内部抵抗値の増大と放電容量の低下によって、図3の(A)に示すような放電曲線となる。尚、図3の(A)、(B)、(C)において、点線は初期・放電曲線を示し、実線は充放電後・放電曲線を示す。このような初期・放電曲線と充放電後・放電曲線との間の差異は、例えば、二次電池を構成する材料に起因している。そして、劣化要因は、正極、負極、電解液等、種々、存在するため、全ての二次電池が同じように劣化するわけではない。即ち、図3の(B)あるいは図3の(C)に示すような、種々の初期・放電曲線と充放電後・放電曲線との間の差異が存在する。また、何らかの短絡が生じるような要因が存在すれば、その兆候も初期・放電曲線と充放電後・放電曲線との間の差異に出現する。それ故、図3の(A)、(B)、(C)のような劣化の兆候を示す二次電池は、それぞれの二次電池が有する劣化モードの進行に従って劣化していくものと考えられる。即ち、それぞれの二次電池の寿命予測を立てることが可能となる。 Specifically, for example, the discharge current is 0.5 C, and the measurement time interval of the inter-terminal voltage V TV is 1 minute. Then, after such charge / discharge is repeated about 10 times, the relationship between the terminal voltage after charge / discharge and the relative remaining capacity (referred to as “post-charge / discharge curve” for convenience) is obtained. Here, the post-charge / discharge curve is usually the relationship between the initial terminal voltage (that is, obtained by the first measurement) and the relative remaining capacity (referred to as “initial / discharge curve” for convenience). In contrast, the discharge curve is shifted or distorted (see, for example, (A), (B), and (C) in FIG. 3). In normal secondary battery degradation, an increase in internal resistance and a decrease in discharge capacity result in a discharge curve as shown in FIG. 3A, 3B, and 3C, the dotted line indicates the initial / discharge curve, and the solid line indicates the post-charge / discharge / discharge curve. Such a difference between the initial / discharge curve and the post-charge / discharge curve is attributed to, for example, the material constituting the secondary battery. And since there are various deterioration factors such as a positive electrode, a negative electrode, and an electrolytic solution, not all secondary batteries are deteriorated in the same way. That is, as shown in FIG. 3B or FIG. 3C, there are differences between various initial / discharge curves and post-charge / discharge curves. In addition, if there is a factor that causes some short circuit, the sign appears in the difference between the initial / discharge curve and the post-charge / discharge curve. Therefore, it is considered that secondary batteries showing signs of deterioration such as (A), (B), and (C) in FIG. 3 will deteriorate as the deterioration modes of the respective secondary batteries progress. . That is, it is possible to make a life prediction of each secondary battery.

このように、初期の端子間電圧と相対残容量との関係から初期・放電曲線を求め、充放電後の端子間電圧と相対残容量との関係から充放電後・放電曲線を求め、初期・放電曲線及び充放電後・放電曲線に基づき二次電池の劣化状態を予測することができる。尚、初期・放電曲線及び充放電後・放電曲線を多数の二次電池において測定し、多数の二次電池がどのような劣化状態となるかを調べ、関連付けることで、初期・放電曲線及び充放電後・放電曲線と、二次電池の劣化状態との関係を把握することができ、これによって、初期・放電曲線及び充放電後・放電曲線に基づき二次電池の劣化状態を予測することができる。   Thus, the initial / discharge curve is obtained from the relationship between the initial inter-terminal voltage and the relative remaining capacity, and the post-charge / discharge curve is obtained from the relationship between the inter-terminal voltage after charge / discharge and the relative remaining capacity. The deterioration state of the secondary battery can be predicted based on the discharge curve and the post-charge / discharge / discharge curve. In addition, the initial / discharge curve and the post-charge / discharge curve are measured in a large number of secondary batteries, and the deterioration state of the large number of secondary batteries is investigated and correlated to obtain an initial / discharge curve and a charge / discharge curve. It is possible to grasp the relationship between the post-discharge / discharge curve and the deterioration state of the secondary battery, thereby predicting the deterioration state of the secondary battery based on the initial / discharge curve and the post-charge / discharge / discharge curve. it can.

尚、従来の方法のように、0.1゜C程度の温調精度の恒温槽内で、1ミリボルトの電圧測定精度で二次電池の端子間電圧VTVを測定する場合、数百回の充放電を経ないと二次電池の不良品の判別等ができないことが判明した。一方、実施例5では、二次電池の温度を、0.01゜C以下の精度で、例えば、ペルチェ素子のように高速応答可能な温度制御手段によって温調し、しかも、1マイクロボルトの電圧測定精度で端子間電圧VTVを測定することで、端子間電圧VTVの僅かな変化を捉えることができる。その結果、例えば、工場出荷前に二次電池の将来における劣化状態を予測することが可能となる。 When measuring the voltage V TV between the terminals of the secondary battery with a voltage measurement accuracy of 1 millivolt in a thermostat with a temperature adjustment accuracy of about 0.1 ° C. as in the conventional method, several hundred times It has been found that defective products of secondary batteries cannot be identified without charging and discharging. On the other hand, in Example 5, the temperature of the secondary battery is adjusted with a temperature control means capable of high-speed response, such as a Peltier element, with an accuracy of 0.01 ° C. or less, and a voltage of 1 microvolt. By measuring the inter-terminal voltage V TV with measurement accuracy, a slight change in the inter-terminal voltage V TV can be captured. As a result, for example, it is possible to predict the deterioration state of the secondary battery in the future before factory shipment.

二次電池を実際に使用する際、充放電中に或る程度の精度(具体的には、例えば、0.1゜Cの精度)で二次電池の温度を制御することができるならば、端子間電圧測定を、或る程度の時間間隔(具体的には、例えば、10分間隔)で、或る程度の精度(具体的には、例えば、0.1ミリボルトの精度)で行うことで、二次電池の長期に亙る実際の使用における劣化状態の進行を確認することができる。尚、端子間電圧測定の時間間隔や測定回数等を、事前に解析した劣化モードに適したものとすれば、精度良く二次電池の劣化状態の進行を確認することができる。電池パックの内部に配置された複数の二次電池を効率的に温調できるような構造であれば、電池パックの内部に配置されたこれらの二次電池の寿命予測を行うことが可能である。また、二次電池を実際に使用する際には、二次電池を流れる電流の大きさや向きが変化するため、測定の際には電流値を測定して充放電量を常時積算するなどして、使用した電流量を把握しておくことが望ましい。放電曲線の一部の領域に相当する条件でしか二次電池が使用されないような用途の場合には、二次電池が使用されていないときに放電曲線を測定するための充放電を行ってもよい。複数の二次電池から電池パックを構成する場合、例えば、図3の(A)の放電曲線を示す二次電池を集めて電池パックとしたり、図3の(B)の放電曲線を示す二次電池を集めて電池パックとしたり、図3の(C)の放電曲線を示す二次電池を集めて電池パックとしてもよいし、図3の(A)、(B)、(C)の放電曲線を示す二次電池を、適宜、混在させて電池パックとしてもよい。   When the secondary battery is actually used, if the temperature of the secondary battery can be controlled with a certain degree of accuracy during charging / discharging (specifically, for example, an accuracy of 0.1 ° C.) By measuring the voltage between terminals at a certain time interval (specifically, for example, every 10 minutes) with a certain degree of accuracy (specifically, for example, an accuracy of 0.1 millivolt) The progress of the deterioration state in the actual use of the secondary battery over a long period can be confirmed. In addition, if the time interval of the voltage measurement between terminals, the number of times of measurement, etc. are suitable for the deterioration mode analyzed in advance, the progress of the deterioration state of the secondary battery can be confirmed with high accuracy. If the structure can efficiently control the temperature of a plurality of secondary batteries arranged inside the battery pack, it is possible to predict the life of these secondary batteries arranged inside the battery pack. . In addition, when actually using a secondary battery, the magnitude and direction of the current flowing through the secondary battery changes. For this measurement, the current value is measured and the charge / discharge amount is constantly integrated. It is desirable to know the amount of current used. In applications where secondary batteries are used only under conditions corresponding to a part of the discharge curve, charging and discharging to measure the discharge curve when the secondary battery is not used may be performed. Good. When forming a battery pack from a plurality of secondary batteries, for example, secondary batteries showing the discharge curve of FIG. 3A are collected into a battery pack, or the secondary battery showing the discharge curve of FIG. The batteries may be collected into a battery pack, or the secondary batteries showing the discharge curve in FIG. 3C may be collected into a battery pack, or the discharge curves in FIGS. 3A, 3B, and 3C. The secondary battery indicating the above may be mixed as appropriate to form a battery pack.

以上、本開示を好ましい実施例に基づき説明したが、本開示はこれらの実施例に限定するものではない。実施例における電池の(∂VOC/∂T)測定装置、電池の温度推定装置、電池の劣化状態予測装置の構成、構造は例示であり、適宜、変更することができる。実施例においては、二次電池として専らリチウムイオン電池を例にとり、説明を行ったが、二次電池はリチウムイオン電池に限定するものではない。 Although the present disclosure has been described based on the preferred embodiments, the present disclosure is not limited to these embodiments. The configurations and structures of the battery (∂V OC / ∂T) measuring device, the battery temperature estimating device, and the battery deterioration state predicting device in the examples are examples and can be changed as appropriate. In the embodiments, description has been made by taking a lithium ion battery as an example exclusively as a secondary battery, but the secondary battery is not limited to a lithium ion battery.

尚、本開示は、以下のような構成を取ることもできる。
[1]《電池の(∂VOC/∂T)測定方法:第1の態様》
電池の温度変動が温度測定装置の温度測定限界以下となり、且つ、電池の開放電圧変動が電圧測定装置の電圧測定限界以下となった状態で、電圧測定装置によって電池の開放電圧を測定し、且つ、温度測定装置によって電池の温度を測定し、開放電圧測定結果及び温度測定結果に基づき、電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求める、二次電池から成る電池の温度を変数とした開放電圧の微分係数の測定方法。
[2]《電池の(∂VOC/∂T)測定方法:第2の態様》
リチウムイオンの拡散反応が生じていない状態において、電圧測定装置によって電池の開放電圧を測定し、且つ、温度測定装置によって電池の温度を測定し、開放電圧測定結果及び温度測定結果に基づき、電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求める、リチウムイオン電池から成る電池の温度を変数とした開放電圧の微分係数の測定方法。
[3]リチウムイオンの拡散反応が生じていない状態は、電池の温度変動が温度測定装置の温度測定限界以下となり、且つ、電池の開放電圧変動が電圧測定装置の電圧測定限界以下となった状態である[2]に記載の電池の温度を変数とした開放電圧の微分係数の測定方法。
[4]電圧測定限界が1×10-6ボルトである電圧測定装置、及び、温度測定限界が1×10-2゜Cである温度測定装置を用いる[1]乃至[3]のいずれか1項に記載の電池の温度を変数とした開放電圧の微分係数の測定方法。
[5]電池の相対残容量と関連した(∂VOC/∂T)を求める[1]乃至[4]のいずれか1項に記載の電池の温度を変数とした開放電圧の微分係数の測定方法。
[6]電池の劣化度合いと関連した(∂VOC/∂T)を求める[1]乃至[4]のいずれか1項に記載の電池の温度を変数とした開放電圧の微分係数の測定方法。
[7]《電池の温度推定方法:第1の態様》
予め、電池の温度変動が温度測定装置の温度測定限界以下となり、且つ、電池の開放電圧変動が電圧測定装置の電圧測定限界以下となった状態で、電圧測定装置によって電池の開放電圧を測定し、且つ、温度測定装置によって電池の温度を測定し、開放電圧測定結果及び温度測定結果に基づき、電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求めておき、
電池の温度実測値、電池の充放電電流実測値、及び、予め求められた(∂VOC/∂T)に基づき電池の温度を推定する、二次電池から成る電池の温度推定方法。
[8]《電池の温度推定方法:第2の態様》
予め、リチウムイオンの拡散反応が生じていない状態において、電圧測定装置によって電池の開放電圧を測定し、且つ、温度測定装置によって電池の温度を測定し、開放電圧測定結果及び温度測定結果に基づき、電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求めておき、
電池の温度実測値、電池の充放電電流実測値、及び、予め求められた(∂VOC/∂T)に基づき電池の温度を推定する、リチウムイオン電池から成る電池の温度推定方法。
[9]《電池の劣化状態予測方法》
(A)電池の温度変動が温度測定装置の温度測定限界以下の状態で、放電時又は充電時の端子間電圧と相対残容量との関係を、初期の端子間電圧と相対残容量との関係として求め、次いで、
(B)所望の回数、電池の充放電を繰り返し、その後、
(C)電池の温度変動が温度測定装置の温度測定限界以下の状態で、放電時又は充電時の端子間電圧と相対残容量との関係を、充放電後の端子間電圧と相対残容量との関係として求め、初期の端子間電圧と相対残容量との関係、及び、充放電後の端子間電圧と相対残容量との関係に基づき、電池の劣化状態を予測する、二次電池から成る電池の劣化状態予測方法。
[10]温度測定限界が1×10-2゜Cである温度測定装置を用いる[9]に記載の電池の劣化状態予測方法。
[11]電圧測定限界が1×10-6ボルトである電圧測定装置を用いて端子間電圧を測定する[9]又は[10]に記載の電池の劣化状態予測方法。
[12]初期の端子間電圧と相対残容量との関係から初期・放電曲線を求め、充放電後の端子間電圧と相対残容量との関係から充放電後・放電曲線を求め、初期・放電曲線及び充放電後・放電曲線に基づき電池の劣化状態を予測する[9]乃至[11]のいずれか1項に記載の電池の劣化状態予測方法。
[13]《電池の(∂VOC/∂T)測定装置:第1の態様》
電池の開放電圧を測定する電圧測定装置、
電池の温度を測定する温度測定装置、
電池の温度を制御する温度制御装置、及び、
電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求める演算装置、
を備えており、
温度制御装置によって電池の温度変動が温度測定装置の温度測定限界以下とされ、且つ、電池の開放電圧変動が電圧測定装置の電圧測定限界以下となった状態で、電圧測定装置によって電池の開放電圧が測定され、且つ、温度測定装置によって電池の温度が測定され、開放電圧測定結果及び温度測定結果に基づき、演算装置によって(∂VOC/∂T)が求められる、二次電池から成る電池の温度を変数とした開放電圧の微分係数の測定装置。
[14]《電池の(∂VOC/∂T)測定装置:第2の態様》
電池の開放電圧を測定する電圧測定装置、
電池の温度を測定する温度測定装置、
電池の温度を制御する温度制御装置、及び、
電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求める演算装置、
を備えており、
リチウムイオンの拡散反応が生じていない状態に温度制御装置によってされた状態において、電圧測定装置によって電池の開放電圧が測定され、且つ、温度測定装置によって電池の温度が測定され、開放電圧測定結果及び温度測定結果に基づき、演算装置によって(∂VOC/∂T)が求められる、リチウムイオン電池から成る電池の温度を変数とした開放電圧の微分係数の測定装置。
[15]《電池の温度推定装置:第1の態様》
電池の開放電圧を測定する電圧測定装置、
電池の充放電電流を測定する電流測定装置、
電池の温度を測定する温度測定装置、
電池の温度を制御する温度制御装置、及び、
電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求める演算装置、
を備えており、
予め、温度制御装置によって電池の温度変動が温度測定装置の温度測定限界以下とされ、且つ、電池の開放電圧変動が電圧測定装置の電圧測定限界以下となった状態で、電圧測定装置によって電池の開放電圧が測定され、且つ、温度測定装置によって電池の温度が測定され、開放電圧測定結果及び温度測定結果に基づき、演算装置によって(∂VOC/∂T)が求められ、求められた(∂VOC/∂T)が演算装置に記憶されており、
演算装置は、更に、電池の温度実測値、記憶された(∂VOC/∂T)、及び、電池の充放電電流実測値に基づき電池の温度を推定する、二次電池から成る電池の温度推定装置。
[16]《電池の温度推定装置:第2の態様》
電池の開放電圧を測定する電圧測定装置、
電池の充放電電流を測定する電流測定装置、
電池の温度を測定する温度測定装置、
電池の温度を制御する温度制御装置、及び、
電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求める演算装置、
を備えており、
予め、リチウムイオンの拡散反応が生じていない状態に温度制御装置によってされた状態において、電圧測定装置によって電池の開放電圧が測定され、且つ、温度測定装置によって電池の温度が測定され、開放電圧測定結果及び温度測定結果に基づき、演算装置によって(∂VOC/∂T)が求められ、求められた(∂VOC/∂T)が演算装置に記憶されており、
演算装置は、更に、電池の温度実測値、記憶された(∂VOC/∂T)、及び、電池の充放電電流実測値に基づき電池の温度を推定する、リチウムイオン電池から成る電池の温度推定装置。
[17]《電池の劣化状態予測装置》
電池の充放電を行う充放電装置、
電池の端子間電圧を測定する電圧測定装置、
電池の温度を測定する温度測定装置、
電池の温度を制御する温度制御装置、及び、
演算装置、
を備えており、
温度制御装置によって電池の温度変動が温度測定装置の温度測定限界以下とされた状態で、放電時又は充電時の端子間電圧と相対残容量との関係が、初期の端子間電圧と相対残容量との関係として、演算装置によって求められ、
充放電装置によって、所望の回数、電池の充放電が繰り返され、
温度制御装置によって電池の温度変動が温度測定装置の温度測定限界以下とされた状態で、放電時又は充電時の端子間電圧と相対残容量との関係が、充放電後の端子間電圧と相対残容量との関係として、演算装置によって求められ、更に、初期の端子間電圧と相対残容量との関係、及び、充放電後の端子間電圧と相対残容量との関係に基づき、演算装置によって電池の劣化状態が予測される、二次電池から成る電池の劣化状態予測装置。
In addition, this indication can also take the following structures.
[1] << ( VOC / ∂T) measuring method of battery: first embodiment >>
With the battery temperature fluctuation below the temperature measurement limit of the temperature measurement device and the battery open-circuit voltage fluctuation below the voltage measurement limit of the voltage measurement device, measure the open-circuit voltage of the battery with the voltage measurement device, and The temperature of the battery is measured by a temperature measuring device, and the differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC of the battery with the battery temperature T as a variable is obtained based on the open circuit voltage measurement result and the temperature measurement result. A method for measuring a differential coefficient of an open-circuit voltage with a temperature of a battery made of a secondary battery as a variable.
[2] << (∂V OC / ∂T) measurement method of battery: second embodiment}
In the state where the lithium ion diffusion reaction has not occurred, the open circuit voltage of the battery is measured by the voltage measuring device, and the temperature of the battery is measured by the temperature measuring device. Based on the open voltage measurement result and the temperature measurement result, A method for measuring a differential coefficient of an open-circuit voltage using a temperature of a battery made of a lithium ion battery as a variable, which obtains a differential coefficient (の V OC / ∂T) of the open-circuit voltage V OC of the battery using the temperature T as a variable.
[3] The state in which the lithium ion diffusion reaction has not occurred is a state in which the battery temperature fluctuation is below the temperature measurement limit of the temperature measurement device, and the battery open-circuit voltage fluctuation is below the voltage measurement limit of the voltage measurement device. [2] A method for measuring a differential coefficient of an open-circuit voltage using a battery temperature as a variable.
[4] Any one of [1] to [3] using a voltage measuring device having a voltage measuring limit of 1 × 10 −6 volts and a temperature measuring device having a temperature measuring limit of 1 × 10 −2 ° C. A method for measuring a differential coefficient of an open-circuit voltage using the battery temperature described in the section as a variable.
[5] Measurement of differential coefficient of open-circuit voltage using battery temperature as a variable according to any one of [1] to [4] to obtain (∂V OC / ∂T) related to the relative remaining capacity of the battery Method.
[6] A method for measuring a differential coefficient of an open-circuit voltage using a battery temperature as a variable according to any one of [1] to [4], wherein (∂V OC / ∂T) associated with a degree of battery deterioration is obtained. .
[7] << Battery Temperature Estimation Method: First Aspect >>
In advance, measure the open circuit voltage of the battery with the voltage measurement device in a state where the temperature variation of the battery is below the temperature measurement limit of the temperature measurement device and the open circuit voltage variation of the battery is below the voltage measurement limit of the voltage measurement device. The battery temperature is measured by a temperature measuring device, and the differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC using the battery temperature T as a variable based on the open circuit voltage measurement result and the temperature measurement result. Seeking
A battery temperature estimation method comprising a secondary battery, wherein the battery temperature is estimated based on the battery temperature measurement value, the battery charge / discharge current measurement value, and (∂V OC / ∂T) obtained in advance.
[8] <Battery temperature estimation method: second embodiment>
In the state where the diffusion reaction of lithium ions has not occurred in advance, the open circuit voltage of the battery is measured by the voltage measuring device, and the temperature of the battery is measured by the temperature measuring device, based on the open voltage measurement result and the temperature measurement result, Obtain the differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC of the battery with the temperature T of the battery as a variable,
A battery temperature estimation method comprising a lithium ion battery, wherein the battery temperature is estimated based on a measured battery temperature value, a measured charge / discharge current value of the battery, and (∂V OC / ∂T) obtained in advance.
[9] << Method for predicting battery deterioration state >>
(A) The relationship between the voltage between terminals and the relative remaining capacity during discharging or charging in the state where the temperature fluctuation of the battery is below the temperature measurement limit of the temperature measuring device, and the relationship between the initial terminal voltage and the relative remaining capacity Sought as, then
(B) Repeat charging / discharging of the battery a desired number of times, then
(C) In a state where the temperature fluctuation of the battery is not more than the temperature measurement limit of the temperature measuring device, the relationship between the inter-terminal voltage during discharging or charging and the relative remaining capacity is as follows: It consists of a secondary battery that predicts the deterioration state of the battery based on the relationship between the initial terminal voltage and the relative remaining capacity and the relationship between the terminal voltage after charging and discharging and the relative remaining capacity. A battery deterioration state prediction method.
[10] The battery deterioration state prediction method according to [9], wherein a temperature measurement device having a temperature measurement limit of 1 × 10 −2 ° C is used.
[11] The battery deterioration state prediction method according to [9] or [10], in which a voltage between terminals is measured using a voltage measuring device having a voltage measurement limit of 1 × 10 −6 volts.
[12] The initial / discharge curve is obtained from the relationship between the initial inter-terminal voltage and the relative remaining capacity, and the post-charge / discharge curve is obtained from the relationship between the inter-terminal voltage after charge / discharge and the relative remaining capacity. The battery deterioration state prediction method according to any one of [9] to [11], wherein the deterioration state of the battery is predicted based on the curve and the post-charge / discharge / discharge curve.
[13] << Battery (∂V OC / ∂T) Measuring Device: First Mode >>
A voltage measuring device for measuring the open-circuit voltage of the battery,
A temperature measuring device for measuring the temperature of the battery,
A temperature control device for controlling the temperature of the battery; and
An arithmetic unit for calculating a differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC of the battery with the temperature T of the battery as a variable;
With
With the temperature control device, the battery temperature fluctuation is less than or equal to the temperature measurement limit of the temperature measurement device, and the battery open-circuit voltage fluctuation is less than or equal to the voltage measurement limit of the voltage measurement device. Is measured, and the temperature of the battery is measured by the temperature measuring device, and (∂V OC / ∂T) is obtained by the arithmetic device based on the open circuit voltage measurement result and the temperature measurement result. A device for measuring the differential coefficient of open-circuit voltage with temperature as a variable.
[14] << Battery (∂V OC / ∂T) Measuring Device: Second Mode >>
A voltage measuring device for measuring the open-circuit voltage of the battery,
A temperature measuring device for measuring the temperature of the battery,
A temperature control device for controlling the temperature of the battery; and
An arithmetic unit for calculating a differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC of the battery with the temperature T of the battery as a variable;
With
In a state in which the lithium ion diffusion reaction has not occurred, the voltage control device measures the open circuit voltage of the battery, and the temperature measurement device measures the battery temperature. A device for measuring a differential coefficient of an open-circuit voltage, in which (∂V OC / ∂T) is obtained by an arithmetic device based on a temperature measurement result, with a temperature of a battery made of a lithium ion battery as a variable.
[15] <Battery temperature estimation device: first embodiment>
A voltage measuring device for measuring the open-circuit voltage of the battery,
A current measuring device for measuring the charge / discharge current of the battery,
A temperature measuring device for measuring the temperature of the battery,
A temperature control device for controlling the temperature of the battery; and
An arithmetic unit for calculating a differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC of the battery with the temperature T of the battery as a variable;
With
In advance, with the temperature control device, the battery temperature fluctuation is less than the temperature measurement limit of the temperature measurement device, and the battery open-circuit voltage fluctuation is less than the voltage measurement limit of the voltage measurement device. The open-circuit voltage is measured, and the temperature of the battery is measured by the temperature measuring device. Based on the open-circuit voltage measurement result and the temperature measurement result, (演算 V OC /) T) is obtained by the arithmetic device and is obtained (∂ V OC / ∂T) is stored in the arithmetic unit,
The computing device further estimates the temperature of the battery based on the measured value of the battery temperature, the stored (∂V OC / ∂T), and the measured value of the charge / discharge current of the battery. Estimating device.
[16] <Battery temperature estimation device: second embodiment>
A voltage measuring device for measuring the open-circuit voltage of the battery,
A current measuring device for measuring the charge / discharge current of the battery,
A temperature measuring device for measuring the temperature of the battery,
A temperature control device for controlling the temperature of the battery; and
An arithmetic unit for calculating a differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC of the battery with the temperature T of the battery as a variable;
With
In a state in which the lithium ion diffusion reaction has not occurred in advance, the open circuit voltage of the battery is measured by the voltage measuring device and the open circuit voltage is measured by the temperature measuring device. Based on the result and the temperature measurement result, (演算 V OC / ∂T) is obtained by the computing device, and the obtained (∂V OC / ∂T) is stored in the computing device,
The computing device further estimates the battery temperature based on the measured battery temperature value, the stored (∂V OC / T), and the measured charge / discharge current value of the battery. Estimating device.
[17] << Battery degradation state prediction apparatus >>
A charging / discharging device for charging / discharging the battery,
A voltage measuring device for measuring the voltage between the terminals of the battery,
A temperature measuring device for measuring the temperature of the battery,
A temperature control device for controlling the temperature of the battery; and
Arithmetic unit,
With
The relationship between the terminal voltage and the relative remaining capacity during discharging or charging is the initial terminal voltage and the relative remaining capacity when the battery temperature fluctuation is below the temperature measurement limit of the temperature measuring device by the temperature controller. Is calculated by the arithmetic unit as
The charging / discharging device repeats charging / discharging of the battery a desired number of times,
In a state where the temperature fluctuation of the battery is not more than the temperature measurement limit of the temperature measurement device by the temperature control device, the relationship between the voltage between the terminals at the time of discharging or charging and the relative remaining capacity is relative to the voltage between the terminals after charging and discharging. The relationship with the remaining capacity is determined by the arithmetic device, and further based on the relationship between the initial inter-terminal voltage and the relative remaining capacity, and the relationship between the inter-terminal voltage after charging and discharging and the relative remaining capacity, by the arithmetic device. A battery deterioration state prediction device comprising a secondary battery, in which a battery deterioration state is predicted.

10・・・(∂VOC/∂T)測定装置あるいは電池の温度推定装置あるいは電池の劣化状態予測装置、11・・・二次電池あるいはリチウムイオン電池、21・・・演算装置、22・・・メモリ、23・・・電圧/温度メモリ、31・・・温度測定装置(温度測定回路)、32・・・温度測定部、33,43A,43B,53A,53B・・・配線、41・・・電圧測定装置(電圧測定回路)、42・・・電流測定装置(電流測定回路)、51・・・温度制御部、52A,52B・・・ペルチェ素子、61A,61B・・・格納容器、62A,62B・・・接触端子部 10 ... (∂V OC / ∂T) measuring device, battery temperature estimating device, battery deterioration state predicting device, 11 ... secondary battery or lithium ion battery, 21 ... computing device, 22 ... Memory, 23 ... Voltage / temperature memory, 31 ... Temperature measuring device (temperature measuring circuit), 32 ... Temperature measuring unit, 33, 43A, 43B, 53A, 53B ... Wiring, 41 ... Voltage measuring device (voltage measuring circuit), 42 ... Current measuring device (current measuring circuit), 51 ... Temperature controller, 52A, 52B ... Peltier element, 61A, 61B ... Container, 62A , 62B ... contact terminal portion

Claims (10)

電池の温度変動が温度測定装置の温度測定限界以下となり、且つ、電池の開放電圧変動が電圧測定装置の電圧測定限界以下となった状態で、電圧測定装置によって電池の開放電圧を測定し、且つ、温度測定装置によって電池の温度を測定し、開放電圧測定結果及び温度測定結果に基づき、電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を、電池の相対残容量と関連して、予め、求めておき、
放電中の電池の温度及び開放電圧を、複数回、求めて、微分係数(∂V OC /∂T)を算出し、算出された微分係数(∂V OC /∂T)の値に一致する電池の相対残容量の値を求める、二次電池から成る電池の相対残容量の算出方法。
With the battery temperature fluctuation below the temperature measurement limit of the temperature measurement device and the battery open-circuit voltage fluctuation below the voltage measurement limit of the voltage measurement device, measure the open-circuit voltage of the battery with the voltage measurement device, and The temperature of the battery is measured by a temperature measuring device, and the differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC of the battery with the battery temperature T as a variable, based on the open circuit voltage measurement result and the temperature measurement result , In advance, in relation to the relative remaining capacity of the battery,
The temperature and the open circuit voltage of the battery during discharge, a plurality of times, seeking to calculate the differential coefficient (∂V OC / ∂T), matches the value of the calculated derivative (∂V OC / ∂T) cells The method of calculating the relative remaining capacity of a battery comprising a secondary battery, wherein the value of the relative remaining capacity of the battery is obtained.
リチウムイオンの拡散反応が生じていない状態において、電圧測定装置によって電池の開放電圧を測定し、且つ、温度測定装置によって電池の温度を測定し、開放電圧測定結果及び温度測定結果に基づき、電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を、電池の相対残容量と関連して、予め、求めておき、
放電中の電池の温度及び開放電圧を、複数回、求めて、微分係数(∂V OC /∂T)を算出し、算出された微分係数(∂V OC /∂T)の値に一致する電池の相対残容量の値を求める、リチウムイオン電池から成る電池の相対残容量の算出方法。
In the state where the lithium ion diffusion reaction has not occurred, the open circuit voltage of the battery is measured by the voltage measuring device, and the temperature of the battery is measured by the temperature measuring device. Based on the open voltage measurement result and the temperature measurement result, The differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC of the battery with the temperature T as a variable is obtained in advance in relation to the relative remaining capacity of the battery,
The temperature and the open circuit voltage of the battery during discharge, a plurality of times, seeking to calculate the differential coefficient (∂V OC / ∂T), matches the value of the calculated derivative (∂V OC / ∂T) cells A method for calculating the relative remaining capacity of a battery made of a lithium ion battery, wherein the value of the relative remaining capacity is calculated.
リチウムイオンの拡散反応が生じていない状態は、電池の温度変動が温度測定装置の温度測定限界以下となり、且つ、電池の開放電圧変動が電圧測定装置の電圧測定限界以下となった状態である請求項2に記載の電池の相対残容量の算出方法。 The state in which the lithium ion diffusion reaction has not occurred is a state in which the temperature fluctuation of the battery is less than or equal to the temperature measurement limit of the temperature measurement device, and the battery open-circuit voltage fluctuation is less than or equal to the voltage measurement limit of the voltage measurement device. Item 3. A method for calculating the relative remaining capacity of the battery according to Item 2 . 電圧測定限界が1×10-6ボルトである電圧測定装置、及び、温度測定限界が1×10-2゜Cである温度測定装置を用いる請求項1乃至請求項3のいずれか1項に記載の電池の相対残容量の算出方法。 Voltage measurement limit voltage measuring device is 1 × 10 -6 volts, and, according to any one of claims 1 to 3 temperature measurement limit are used temperature measuring device is 1 × 10 -2 ° C Of calculating the relative remaining capacity of the batteries. 電池の温度変動が温度測定装置の温度測定限界以下となり、且つ、電池の開放電圧変動が電圧測定装置の電圧測定限界以下となった状態で、電圧測定装置によって電池の開放電圧を測定し、且つ、温度測定装置によって電池の温度を測定し、開放電圧測定結果及び温度測定結果に基づき、電池の温度Tを変数とした電池の開放電圧VWith the battery temperature fluctuation below the temperature measurement limit of the temperature measurement device and the battery open-circuit voltage fluctuation below the voltage measurement limit of the voltage measurement device, measure the open-circuit voltage of the battery with the voltage measurement device, and The temperature of the battery is measured by a temperature measuring device, and the open circuit voltage V of the battery with the temperature T of the battery as a variable based on the open circuit voltage measurement result and the temperature measurement result. OCOC の微分係数(∂VDifferential coefficient (∂V OCOC /∂T)を、電池の劣化度合いと関連して、予め、求めておき、/ ∂T) in advance in relation to the degree of deterioration of the battery,
放電中の電池の温度及び開放電圧を、複数回、求めて、微分係数(∂VThe battery temperature and the open circuit voltage during discharge are obtained several times and the differential coefficient (∂V OCOC /∂T)を算出し、算出された微分係数(∂V/ ∂T) and the calculated derivative (∂V OCOC /∂T)の値が電池の劣化と関連した微分係数(∂V/ ∂T) is a derivative (∂V) related to battery deterioration. OCOC /∂T)のどの曲線上に乗るかを調べ、一致した(∂V/ ∂T) to check which curve is on, matched (∂V OCOC /∂T)の曲線に対応する劣化の度合いを放電中の電池の劣化度合いとして得る、二次電池から成る電池の劣化度合いの算出方法。/ ∂T) A method for calculating the degree of deterioration of a battery composed of a secondary battery, wherein the degree of deterioration corresponding to the curve of (T) is obtained as the degree of deterioration of the battery being discharged.
リチウムイオンの拡散反応が生じていない状態において、電圧測定装置によって電池の開放電圧を測定し、且つ、温度測定装置によって電池の温度を測定し、開放電圧測定結果及び温度測定結果に基づき、電池の温度Tを変数とした電池の開放電圧VIn the state where the lithium ion diffusion reaction has not occurred, the open circuit voltage of the battery is measured by the voltage measuring device, and the temperature of the battery is measured by the temperature measuring device. Based on the open voltage measurement result and the temperature measurement result, Battery open voltage V with temperature T as a variable OCOC の微分係数(∂VDifferential coefficient (∂V OCOC /∂T)を、電池の劣化度合いと関連して、予め、求めておき、/ ∂T) in advance in relation to the degree of deterioration of the battery,
放電中の電池の温度及び開放電圧を、複数回、求めて、微分係数(∂VThe battery temperature and the open circuit voltage during discharge are obtained several times and the differential coefficient (∂V OCOC /∂T)を算出し、算出された微分係数(∂V/ ∂T) and the calculated derivative (∂V OCOC /∂T)の値が電池の劣化と関連した微分係数(∂V/ ∂T) is a derivative (∂V) related to battery deterioration. OCOC /∂T)のどの曲線上に乗るかを調べ、一致した(∂V/ ∂T) to check which curve is on, matched (∂V OCOC /∂T)の曲線に対応する劣化の度合いを放電中の電池の劣化度合いとして得る、リチウムイオン電池から成る電池の劣化度合いの算出方法。/ ∂T) A method for calculating the degree of deterioration of a battery made of a lithium ion battery, which obtains the degree of deterioration corresponding to the curve of (T) as the degree of deterioration of the battery during discharge.
リチウムイオンの拡散反応が生じていない状態は、電池の温度変動が温度測定装置の温度測定限界以下となり、且つ、電池の開放電圧変動が電圧測定装置の電圧測定限界以下となった状態である請求項6に記載の電池の劣化度合いの算出方法。The state in which the lithium ion diffusion reaction has not occurred is a state in which the temperature fluctuation of the battery is less than or equal to the temperature measurement limit of the temperature measurement device, and the battery open-circuit voltage fluctuation is less than or equal to the voltage measurement limit of the voltage measurement device. Item 7. The method for calculating the degree of deterioration of the battery according to Item 6. 電圧測定限界が1×10Voltage measurement limit is 1 × 10 -6-6 ボルトである電圧測定装置、及び、温度測定限界が1×10Voltage measuring device in volts and temperature measurement limit is 1 × 10 -2-2 ゜Cである温度測定装置を用いる請求項5乃至請求項7のいずれか1項に記載の電池の劣化度合いの算出方法。The method for calculating a degree of deterioration of a battery according to any one of claims 5 to 7, wherein a temperature measuring device having a temperature of ° C is used. 予め、電池の温度変動が温度測定装置の温度測定限界以下となり、且つ、電池の開放電圧変動が電圧測定装置の電圧測定限界以下となった状態で、電圧測定装置によって電池の開放電圧を測定し、且つ、温度測定装置によって電池の温度を測定し、開放電圧測定結果及び温度測定結果に基づき、電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求めておき、更に、微分係数(∂V OC /∂T)に基づき相対残容量と(∂E emf /∂T)[但し、E emf は二次電池の起電力]との関係を求めておき、更に、電池の内部抵抗値の相対残容量依存性を求めておき、
放電中の電池の温度及び開放電圧を、複数回、求めて、微分係数(∂V OC /∂T)を算出し、算出された微分係数(∂V OC /∂T)の値に基づき相対残容量及び(∂E emf /∂T)を算出し、且つ、電池の内部抵抗値を算出し、電池の温度実測値、電池の充放電電流実測値、(∂E emf /∂T)及び電池の内部抵抗値に基づき電池の温度を推定する、二次電池から成る電池の温度推定方法。
In advance, measure the open circuit voltage of the battery with the voltage measurement device in a state where the temperature variation of the battery is below the temperature measurement limit of the temperature measurement device and the open circuit voltage variation of the battery is below the voltage measurement limit of the voltage measurement device. The battery temperature is measured by a temperature measuring device, and the differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC using the battery temperature T as a variable based on the open circuit voltage measurement result and the temperature measurement result. Furthermore, the relationship between the relative remaining capacity and (∂E emf / て T ) [where E emf is the electromotive force of the secondary battery] is obtained based on the differential coefficient (∂V OC / ∂T). Furthermore, the relative remaining capacity dependency of the internal resistance value of the battery is obtained,
Obtain the temperature and open-circuit voltage of the battery being discharged multiple times, calculate the derivative (∂V OC / ∂T), and calculate the relative residual based on the value of the calculated derivative (∂V OC / ∂T). Calculate the capacity and (∂E emf / ∂T), calculate the internal resistance of the battery, measure the battery temperature, the battery charge / discharge current, (∂E emf / ∂T) A battery temperature estimation method comprising a secondary battery, wherein the battery temperature is estimated based on an internal resistance value .
予め、リチウムイオンの拡散反応が生じていない状態において、電圧測定装置によって電池の開放電圧を測定し、且つ、温度測定装置によって電池の温度を測定し、開放電圧測定結果及び温度測定結果に基づき、電池の温度Tを変数とした電池の開放電圧VOCの微分係数(∂VOC/∂T)を求めておき、更に、微分係数(∂V OC /∂T)に基づき相対残容量と(∂E emf /∂T)[但し、E emf は二次電池の起電力]との関係を求めておき、更に、電池の内部抵抗値の相対残容量依存性を求めておき、
放電中の電池の温度及び開放電圧を、複数回、求めて、微分係数(∂V OC /∂T)を算出し、算出された微分係数(∂V OC /∂T)の値に基づき相対残容量及び(∂E emf /∂T)を算出し、且つ、電池の内部抵抗値を算出し、電池の温度実測値、電池の充放電電流実測値、(∂E emf /∂T)及び電池の内部抵抗値に基づき電池の温度を推定する、リチウムイオン電池電池から成る電池の温度推定方法。
In the state where the diffusion reaction of lithium ions has not occurred in advance, the open circuit voltage of the battery is measured by the voltage measuring device, and the temperature of the battery is measured by the temperature measuring device, based on the open voltage measurement result and the temperature measurement result, A differential coefficient (∂V OC / ∂T) of the open circuit voltage V OC of the battery with the temperature T of the battery as a variable is obtained, and the relative remaining capacity (∂V OC / ∂T) is calculated based on the differential coefficient (∂V OC / ∂T). E emf / ∂T) [where E emf is the electromotive force of the secondary battery], and further, the relative remaining capacity dependency of the internal resistance value of the battery is obtained.
Obtain the temperature and open-circuit voltage of the battery being discharged multiple times, calculate the derivative (∂V OC / ∂T), and calculate the relative residual based on the value of the calculated derivative (∂V OC / ∂T). Calculate the capacity and (∂E emf / ∂T), calculate the internal resistance of the battery, measure the battery temperature, the battery charge / discharge current, (∂E emf / ∂T) A battery temperature estimation method comprising a lithium ion battery battery, wherein the battery temperature is estimated based on an internal resistance value .
JP2012055518A 2012-03-13 2012-03-13 Method for calculating relative remaining capacity of battery made of secondary battery, method for calculating relative remaining capacity of battery made of lithium ion battery, method for estimating temperature of battery made of secondary battery, and temperature of battery made of lithium ion battery Estimation method Active JP5978665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012055518A JP5978665B2 (en) 2012-03-13 2012-03-13 Method for calculating relative remaining capacity of battery made of secondary battery, method for calculating relative remaining capacity of battery made of lithium ion battery, method for estimating temperature of battery made of secondary battery, and temperature of battery made of lithium ion battery Estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012055518A JP5978665B2 (en) 2012-03-13 2012-03-13 Method for calculating relative remaining capacity of battery made of secondary battery, method for calculating relative remaining capacity of battery made of lithium ion battery, method for estimating temperature of battery made of secondary battery, and temperature of battery made of lithium ion battery Estimation method

Publications (2)

Publication Number Publication Date
JP2013190259A JP2013190259A (en) 2013-09-26
JP5978665B2 true JP5978665B2 (en) 2016-08-24

Family

ID=49390690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012055518A Active JP5978665B2 (en) 2012-03-13 2012-03-13 Method for calculating relative remaining capacity of battery made of secondary battery, method for calculating relative remaining capacity of battery made of lithium ion battery, method for estimating temperature of battery made of secondary battery, and temperature of battery made of lithium ion battery Estimation method

Country Status (1)

Country Link
JP (1) JP5978665B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102247052B1 (en) * 2014-07-21 2021-04-30 삼성전자주식회사 Method and device to detect abnormal state of battery
CN111027164B (en) * 2018-10-08 2023-12-29 长城汽车股份有限公司 STAR-CCM+ based automatic simulation analysis method and device
JP7044044B2 (en) * 2018-12-07 2022-03-30 トヨタ自動車株式会社 Deterioration degree estimation device for secondary batteries and deterioration degree estimation method for secondary batteries
CN110361662B (en) * 2019-07-16 2021-05-18 深圳市比克动力电池有限公司 Method for measuring temperature entropy coefficient of lithium ion battery
CN112924867A (en) * 2021-01-27 2021-06-08 上海工程技术大学 Lithium battery capacity attenuation calculation method under multi-field coupling
CN115360799B (en) * 2022-10-19 2023-01-17 深圳市欣喜连连科技有限公司 Wireless charging power consumption automatic adjustment method and device and intelligent bedside cabinet

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10108301A (en) * 1996-09-30 1998-04-24 Nissan Motor Co Ltd Travelable distance calculation for electric vehicle
JP5368091B2 (en) * 2005-08-03 2013-12-18 カリフォルニア インスティテュート オブ テクノロジー Electrochemical thermodynamic measurement system
JP5354846B2 (en) * 2006-08-11 2013-11-27 株式会社東芝 Assembled battery and charging / discharging method of assembled battery
JP5656415B2 (en) * 2009-03-26 2015-01-21 プライムアースEvエナジー株式会社 Secondary battery state determination device and control device
JP5354787B2 (en) * 2009-07-02 2013-11-27 本田技研工業株式会社 Capacitor management device
JP2011076730A (en) * 2009-09-29 2011-04-14 Sanyo Electric Co Ltd Method of evaluating secondary battery
FR2952235B1 (en) * 2009-10-29 2015-01-16 Commissariat Energie Atomique METHOD FOR CHARGING OR DISCHARGING A BATTERY TO DETERMINE THE END OF CHARGE OR DISCHARGE BASED ON CURRENT MEASUREMENTS AND TEMPERATURE
JP2011113688A (en) * 2009-11-25 2011-06-09 Sanyo Electric Co Ltd Method for detecting condition of secondary battery
CN102695961B (en) * 2010-01-19 2015-12-02 株式会社杰士汤浅国际 The charged state determinator of secondary cell and the charged state assay method of secondary cell

Also Published As

Publication number Publication date
JP2013190259A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
Zhang et al. Real-time estimation of battery internal temperature based on a simplified thermoelectric model
JP5978665B2 (en) Method for calculating relative remaining capacity of battery made of secondary battery, method for calculating relative remaining capacity of battery made of lithium ion battery, method for estimating temperature of battery made of secondary battery, and temperature of battery made of lithium ion battery Estimation method
EP3297121B1 (en) Charge control apparatus, charge pattern creating device, method, computer program and power storage system
TWI708068B (en) Method and apparatus for determining the state of health and state of charge of lithium sulfur batteries
Hussein Capacity fade estimation in electric vehicle li-ion batteries using artificial neural networks
EP3806270B1 (en) Device and method for charging secondary battery
Wang et al. Online dynamic equalization adjustment of high-power lithium-ion battery packs based on the state of balance estimation
JP6414336B2 (en) Deterioration degree estimation device and deterioration degree estimation method
JP5036662B2 (en) Secondary battery monitoring device and secondary battery system
US20170146608A1 (en) Method of dynamically extracting entropy of battery
JP4042917B1 (en) Capacitor power supply abnormality determination method and abnormality determination apparatus
JP2014522548A (en) Optimized method for thermal management of electrochemical storage equipment
WO2014103705A1 (en) Lifetime estimation device for energy storage devices and lifetime estimation method for energy storage devices
KR20110084633A (en) Apparatus and method for estimating the life span of battery
US20140320087A1 (en) Control apparatus and control method for electricity storage device
US11079440B2 (en) Management device, energy storage module, management method, and computer program
WO2016002398A1 (en) Battery degradation level estimation device and battery degradation level estimation method
JP7497345B2 (en) Method and apparatus for measuring thermodynamic data (enthalpy and entropy) of batteries in real time and in situ
JP2009133675A (en) Battery pack and method of calculating internal impedance
JPWO2019187307A1 (en) Battery monitoring method, battery monitoring device and battery monitoring system
JP2012154839A (en) Life prediction evaluation device and life prediction evaluation method
Estevez et al. Aging estimation of lithium ion cells under real-world conditions through mechanical stress measurements
JP6477959B2 (en) Estimation device, power storage device, estimation method, and computer program
JP5842759B2 (en) Temperature estimation method and temperature estimation device
JP2004152755A (en) Internal resistance detection method of secondary battery, internal resistance detecting device, internal resistance detection program, and medium storing the program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R151 Written notification of patent or utility model registration

Ref document number: 5978665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250