JP5354846B2 - Assembled battery and charging / discharging method of assembled battery - Google Patents

Assembled battery and charging / discharging method of assembled battery Download PDF

Info

Publication number
JP5354846B2
JP5354846B2 JP2006220366A JP2006220366A JP5354846B2 JP 5354846 B2 JP5354846 B2 JP 5354846B2 JP 2006220366 A JP2006220366 A JP 2006220366A JP 2006220366 A JP2006220366 A JP 2006220366A JP 5354846 B2 JP5354846 B2 JP 5354846B2
Authority
JP
Japan
Prior art keywords
battery
temperature
heat
assembled battery
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006220366A
Other languages
Japanese (ja)
Other versions
JP2008047371A (en
Inventor
康宏 原田
則雄 高見
浩貴 稲垣
義直 舘林
秀郷 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006220366A priority Critical patent/JP5354846B2/en
Publication of JP2008047371A publication Critical patent/JP2008047371A/en
Application granted granted Critical
Publication of JP5354846B2 publication Critical patent/JP5354846B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery pack and a charge and discharge method of the battery pack of long life and excellent energy density, capable of temperature control of batteries by charge and discharge, and hardly affected by surrounding environments. <P>SOLUTION: The battery pack 30 with a plurality of flat secondary batteries 10 stacked is provided with heat exchanger plates 7 each having a principal surface in contact with a principal surface of the secondary battery so as to exchange heat with the secondary battery and forming a battery/heat exchanging plate assembly in combination with the secondary battery, at least one thermoelectric conversion element 31 fitted at a side face of the battery/heat exchanging plate assemblies so as to exchange heat with a plurality of the stacked battery/heat exchanging plate assemblies, and an outer package member 38 with a heat insulating layer surrounding the battery/heat exchanging plate assemblies and the thermoelectric conversion element. The secondary battery has a combination of an anode active material and a cathode active material having an area in which an entropy variation &Delta;S of the total battery reaction under a normal temperature atmospheric pressure becomes endothermic. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、扁平形状の二次電池を複数個積層して得られる組電池および組電池の充放電方法に関する。   The present invention relates to an assembled battery obtained by stacking a plurality of flat secondary batteries and a method for charging and discharging the assembled battery.

近年、二次電池の性能が向上し、携帯型電子機器からハイブリッド自動車や電気自動車、電力貯蔵用電源等、応用分野が多岐に渡っている。これらの背景から、二次電池に求められる性能として高出入力性能や高エネルギー密度化はもとより、高寿命、広い動作温度範囲などが挙げられている。さらに用途電源の高出力化に伴い、単電池を多数積層した組電池の技術開発も急務の課題となっている。特に、近年では動作環境に関わらず安定した性能を発現できるような使用方法も必要とされており、極端に言えば宇宙空間などの真空環境から極低温度下や高温下まで対応できる組電池の開発が望まれている。   In recent years, the performance of secondary batteries has been improved, and application fields are diversified from portable electronic devices to hybrid vehicles, electric vehicles, power storage power supplies, and the like. From these backgrounds, the performance required for the secondary battery includes not only high input / output performance and high energy density, but also a long life and a wide operating temperature range. Furthermore, along with the increase in the output of the application power supply, the technical development of an assembled battery in which a large number of single cells are stacked has become an urgent issue. In particular, in recent years, there has been a need for a method of use that can produce stable performance regardless of the operating environment, and in extreme terms, an assembled battery that can be used from vacuum environments such as outer space to extremely low and high temperatures. Development is desired.

一方で、近年、様々な用途に使用されている二次電池として、ニッケル水素二次電池やリチウムイオン二次電池が挙げられる。これらは、急速充放電性能に優れている点や、エネルギー密度が高いという利点を持っており、携帯型電子機器から電力貯蔵用に至るまで幅広く使われている。   On the other hand, nickel-metal hydride secondary batteries and lithium-ion secondary batteries are examples of secondary batteries used in various applications in recent years. These have the advantage of excellent rapid charge / discharge performance and high energy density, and are widely used from portable electronic devices to power storage.

また、近年では組電池の高エネルギー密度化のため、単電池外槽が従来の円柱状のものから、角型扁平形状のものへと改良されつつある。これは、組電池を構成する際に単電池同士の隙間を無くし、デッドスペースを少なく配置することが可能なためである。その一方で、組電池は角型扁平形状を単電池ごとの均熱化や放熱処理の面で少なからず問題を抱えている。特に、大電流を流すような高出力型の二次電池は高速充放電時に発熱が大きいため、構成電池の冷却や均熱化が組電池の寿命向上や電池容量維持のために重要な課題となっている。   In recent years, in order to increase the energy density of assembled batteries, the unit cell outer tank has been improved from a conventional cylindrical one to a rectangular flat one. This is because the gap between the single cells can be eliminated when forming the assembled battery, and the dead space can be reduced. On the other hand, the assembled battery has a considerable problem in terms of equalizing the temperature of each square cell and heat dissipation treatment. In particular, high-power secondary batteries that carry large currents generate a large amount of heat during high-speed charging / discharging, and cooling and soaking of the constituent batteries are important issues for improving the battery life and maintaining battery capacity. It has become.

従来の円柱状電池を組電池とすると、必ず単電池同士の間に隙間が生じるため、特許文献1に記載されるように、この隙間に熱交換媒体として空気を送風することで、単電池ごとの均熱化や放熱、保温などの伝熱処理を行うことが比較的容易である。   When a conventional cylindrical battery is an assembled battery, a gap is always generated between the single cells. Therefore, as described in Patent Document 1, air is blown into the gap as a heat exchange medium. It is relatively easy to conduct heat transfer such as heat equalization, heat dissipation, and heat retention.

これに対して、扁平角型形状の単電池を組電池とすると、単電池同士の間に隙間が生じないため、熱交換媒体は組電池の表面と熱交換するだけで、組電池の内部と熱交換できない。このため、組電池の内部に反応熱が蓄積され、組電池の内部と表面との間に大きな温度差を生じる。具体的には、積層した両端面から近い側の単電池が冷却され易く、組電池の中心部(コア部)に近くなるほど熱が蓄積され易くなる。   On the other hand, when a flat rectangular cell is an assembled battery, there is no gap between the cells, so the heat exchange medium can be exchanged with the inside of the assembled battery only by exchanging heat with the surface of the assembled battery. Heat exchange is not possible. For this reason, reaction heat is accumulated inside the assembled battery, and a large temperature difference is generated between the inside and the surface of the assembled battery. Specifically, the unit cells closer to the both end surfaces of the stacked layers are more likely to be cooled, and heat is more likely to be accumulated closer to the center portion (core portion) of the assembled battery.

図13に示すように、角型扁平状電池10の相互間にそれぞれ間隙11を形成し、これらの間隙11に冷却空気を通流させることにより、組電池の外槽を均熱化や放熱するという方策も考えられる。しかし、この方策の組電池は、高充填密度にするという角型扁平電池の利点を生かすことができず、組電池のエネルギー密度を向上させ難いという問題点がある。   As shown in FIG. 13, gaps 11 are formed between the rectangular flat batteries 10, and cooling air is allowed to flow through these gaps 11, so that the outer tub of the assembled battery is soaked and dissipated. This can be considered as well. However, the battery pack of this measure cannot take advantage of the rectangular flat battery having a high packing density, and there is a problem that it is difficult to improve the energy density of the battery pack.

特許文献2には、角型扁平電池を積層した組電池において、厚さ方向の中心部が最も冷却性能が高くなるように冷却タブを配置するという技術が開示されている。この従来技術によれば、積層した扁平電池面内の均熱化が容易となり、冷却タブが分担電圧検出用タブとしても機能するとされている。しかし、特許文献2の扁平電池では、組み電池の積層方向と垂直な方向に冷却用タブが突出することになり、結果として組電池の有する投影面積は大きくなるため、エネルギー密度が低下してしまうおそれがある。また、冷却タブが電圧検出用タブとなるため、冷却タブ同士を接触させることができない。冷却タブ同士を接触できないことは、各電池間の熱量のばらつきを抑えるうえで不利になると考えられる。本来、構成電池間を均熱させるためには、電池同士は熱伝導媒体を介して接触していることが好ましいからである。   Patent Document 2 discloses a technique in which a cooling tab is arranged so that the cooling performance is the highest in the central portion in the thickness direction in an assembled battery in which rectangular flat batteries are stacked. According to this prior art, it is easy to equalize the temperature in the stacked flat battery surface, and the cooling tab also functions as a shared voltage detection tab. However, in the flat battery of Patent Document 2, the cooling tab protrudes in a direction perpendicular to the stacking direction of the assembled battery, and as a result, the projected area of the assembled battery increases, resulting in a decrease in energy density. There is a fear. Moreover, since the cooling tab is a voltage detection tab, the cooling tabs cannot be brought into contact with each other. The inability to contact the cooling tabs is considered to be disadvantageous in suppressing variation in the amount of heat between the batteries. Originally, in order to soak the constituent batteries, it is preferable that the batteries are in contact via a heat conducting medium.

一方、電池構造の問題の他にも、電池を構成する活物質や電極構造も問題となる。高速充放電型の二次電池においては、充電放電時に内部抵抗によるジュール発熱による問題が大きい。また、活物質の構成により、電極反応(電池反応)における全エントロピー変化が異なり、これらも電池の発熱に寄与する。化学反応による電池の熱挙動を簡単に記述すると下式(1)〜(3)のようになる。   On the other hand, in addition to the problem of the battery structure, the active material and electrode structure constituting the battery also become a problem. In a high-speed charge / discharge type secondary battery, a problem due to Joule heat generation due to internal resistance during charge / discharge is significant. Further, the total entropy change in the electrode reaction (battery reaction) differs depending on the configuration of the active material, and these also contribute to the heat generation of the battery. When the thermal behavior of the battery due to a chemical reaction is simply described, the following equations (1) to (3) are obtained.

正極反応; LiM → □M+Li++e- …(1)
負極反応; □X+Li++e- → LiX …(2)
全電池反応; LiM+□X → □M+LiX …(3)
正極の活物質をMとし、負極の負極活物質をXとした。ここで、記号□はリチウムイオンを受け入れることのできるサイトを表わす。これら電池の反応により、発熱または吸熱が起こる。これらの電池における熱の出入りは、温度一定、圧力一定とした条件において下式(4)のギブス・ヘルムホルツの式で表される。
Positive electrode reaction; LiM → □ M + Li + + e (1)
Negative electrode reaction; □ X + Li + + e → LiX (2)
LiM + □ X → □ M + LiX (3)
The positive electrode active material was M, and the negative electrode active material was X. Here, the symbol □ represents a site that can accept lithium ions. These batteries react to generate heat or endotherm. The heat input and output in these batteries is expressed by the Gibbs-Helmholtz equation of the following equation (4) under the conditions of constant temperature and constant pressure.

ΔG=ΔH−TΔS …(4)
ここで、ΔGはギブスエネルギー変化量、ΔHはエンタルピー変化量、ΔSはエントロピー変化量をそれぞれ表わす。全電池反応による発熱量をQsとすると、Qsは下式(5)で与えられることから、電池反応の全エントロピー変化量ΔSによりその電池反応が吸熱であるか発熱であるかを判別することができる。
ΔG = ΔH−TΔS (4)
Here, ΔG represents the Gibbs energy variation, ΔH represents the enthalpy variation, and ΔS represents the entropy variation. If Qs is the calorific value due to the total battery reaction, Qs is given by the following equation (5). Therefore, it is possible to determine whether the battery reaction is endothermic or exothermic based on the total entropy change ΔS of the battery reaction. it can.

Qs=Tcell・ΔS …(5)
このエントロピー変化量ΔSは、電池の充電深度(SOC)により異なる。汎用のリチウムイオン電池に用いられるLiCoO2正極とカーボン系負極に着目してみると、正極であるLiCoO2は充電時に広範囲の充電深度において吸熱反応を示すが、負極であるカーボン系材料は充電中に発熱反応を示す領域が多い。充電中は正極の吸熱反応と負極の発熱反応が相殺される領域もあるが、内部抵抗や過電圧による発熱量をも含めて正負両極の全反応として総合的にみた場合に、充電時も放電時も結果として電池全体が発熱する傾向になる。従って、従来のリチウムイオン組電池の構成は、充放電に伴い電池が発熱する傾向を持つため、何らかの冷却機構が必要になる。
Qs = Tcell · ΔS (5)
The entropy change amount ΔS varies depending on the charging depth (SOC) of the battery. Focusing on the LiCoO 2 positive electrode and carbon-based negative electrode used in general-purpose lithium ion batteries, the positive electrode LiCoO 2 exhibits an endothermic reaction in a wide range of charge depths during charging, but the negative electrode carbon-based material is being charged. There are many areas that exhibit an exothermic reaction. While there are areas where the endothermic reaction of the positive electrode and the exothermic reaction of the negative electrode cancel each other during charging, when viewed as a total reaction of both positive and negative electrodes, including the amount of heat generated by internal resistance and overvoltage, during charging and discharging As a result, the whole battery tends to generate heat. Therefore, since the structure of the conventional lithium ion assembled battery has a tendency that the battery generates heat during charging and discharging, some kind of cooling mechanism is required.

ところで、組電池の温度を適正な温度範囲に収めることで、環境温度に影響されることなく電池の性能を発揮するための技術も必要となる。組電池の均熱や放熱が必要になるのは、主として二次電池の充放電時に生じる発熱によるものであったが、環境温度による影響も考慮しなくてはならない。例えば、極低温下で二次電池の性能を発揮するためには、電池自体の温度を適正な温度範囲内に維持する必要がある。   By the way, by keeping the temperature of the assembled battery in an appropriate temperature range, a technique for exhibiting the performance of the battery without being affected by the environmental temperature is also required. The soaking and heat dissipation of the assembled battery is mainly due to the heat generated during charging and discharging of the secondary battery, but the influence of the environmental temperature must also be considered. For example, in order to demonstrate the performance of a secondary battery at an extremely low temperature, it is necessary to maintain the temperature of the battery itself within an appropriate temperature range.

二次電池は化学反応を利用した電力貯蔵手段であるがゆえに、周囲の温度環境にも敏感であるためである。特に、氷点下以下の低温度下では十分な性能が発揮できず、40℃以上の高温下に長時間晒すと寿命の低下を招くことが多い。そこで、電池を積極的に保温や冷却をする手段として、近年、電熱素子や熱交換素子を用いた技術が特許文献1、3、4にそれぞれ開示されている。   This is because the secondary battery is a power storage means using a chemical reaction and is therefore sensitive to the surrounding temperature environment. In particular, sufficient performance cannot be exhibited at low temperatures below the freezing point, and exposure to a high temperature of 40 ° C. or higher for a long time often leads to a decrease in life. Thus, in recent years, Patent Documents 1, 3, and 4 disclose techniques using an electrothermal element and a heat exchange element as means for actively keeping and cooling the battery.

特許文献1、3に記載された従来技術では、熱交換素子により加熱または冷却された熱媒体(主に空気などの流体)を電池間隙に流すことで、組電池の温度を制御している。これらの特許文献1、3は、熱媒体の存在しない環境下(宇宙空間等の真空環境下)や極低温や極高温などの環境下など流体が温度制御用の熱媒体として機能しにくい環境下では効率良く組電池を温度制御することができない。また、常温下においても、空気等の流体のような伝熱効率が低い媒体を介して温度制御することは、結果としてエネルギーをロスすることになりうるため好ましくない。また、これらの特許文献1、3に開示されている活物質の組み合わせは、電池の充電反応による吸熱領域が少ないか、殆ど無いため、充放電制御による電池の温度コントロールを行うことは困難である。
特開2003−109655号公報 特開2005−71784号公報 特開2003−142166号公報 特開平11−176487号公報
In the prior art described in Patent Documents 1 and 3, the temperature of the assembled battery is controlled by flowing a heat medium (mainly fluid such as air) heated or cooled by the heat exchange element through the battery gap. These Patent Documents 1 and 3 describe an environment in which a fluid is unlikely to function as a heat medium for temperature control, such as in an environment where no heat medium exists (in a vacuum environment such as outer space) or in an environment such as extremely low temperature or extremely high temperature. Thus, the temperature of the assembled battery cannot be controlled efficiently. Even at room temperature, controlling the temperature via a medium with low heat transfer efficiency such as a fluid such as air is not preferable because energy may be lost as a result. Moreover, since the combination of the active materials disclosed in Patent Documents 1 and 3 has little or no endothermic region due to the charging reaction of the battery, it is difficult to control the temperature of the battery by charge / discharge control. .
JP 2003-109655 A Japanese Patent Laying-Open No. 2005-71784 JP 2003-142166 A Japanese Patent Laid-Open No. 11-176487

本発明は上記事情に鑑みて、高寿命かつエネルギー密度に優れ、充放電により電池の温度制御が可能で、周囲環境に影響されにくい角型扁平電池の組電池および組電池の充放電方法を提供することを目的とする。   In view of the above circumstances, the present invention provides an assembled battery of a rectangular flat battery and a charging / discharging method of the assembled battery, which has a long life and excellent energy density, can be temperature-controlled by charging and discharging, and is not easily affected by the surrounding environment. The purpose is to do.

本発明に係る組電池は、角型の二次電池が複数個積み重ねられた組電池であって、前記二次電池と熱交換しうるように前記二次電池の主面に接触する主面と、前記主面に直交するように前記主面の周縁から立ち上がる少なくとも1つの側部突起カバーと、隣接する他の伝熱板の前記側部突起カバーに対応する凹所と、を有し、前記二次電池と組み合わせられて電池/伝熱板アッセンブリを形成する、複数の矩形状伝熱板と、積み重ねられた複数の前記電池/伝熱板アッセンブリと熱交換しうるように前記電池/伝熱板アッセンブリの側面に設けられた少なくとも1つの熱電変換素子と、前記電池/伝熱板アッセンブリおよび前記熱電変換素子の周囲を取り囲む断熱層を有する外装部材と、を具備し、前記二次電池は、常温大気圧下における全電池反応のエントロピー変化ΔSが吸熱となる領域を持つ負極活物質と正極活物質の組み合わせを有し、
前記二次電池と前記伝熱板とを交互に積み重ねて、電池/伝熱板アッセンブリの積層体を形成すると、前記側部突起カバーが前記凹所のところに配置され、前記積層体の側面が前記側部突起カバーによって覆われることを特徴とする。
An assembled battery according to the present invention is a battery assembly secondary batteries of the square are stacked plurality, the main surface in contact with the major surface of the secondary battery as can the secondary battery and the heat exchanger and The at least one side projection cover rising from the peripheral edge of the main surface so as to be orthogonal to the main surface, and a recess corresponding to the side projection cover of another adjacent heat transfer plate , A plurality of rectangular heat transfer plates combined with a secondary battery to form a battery / heat transfer plate assembly, and the battery / heat transfer so that heat can be exchanged with the plurality of stacked battery / heat transfer plate assemblies. At least one thermoelectric conversion element provided on a side surface of the plate assembly, and an exterior member having a heat insulating layer surrounding the battery / heat transfer plate assembly and the thermoelectric conversion element, and the secondary battery includes: All under normal temperature and atmospheric pressure Have a combination of the anode active material and the positive electrode active material having a region where entropy change ΔS pond reaction is endothermic,
When the secondary battery and the heat transfer plate are alternately stacked to form a battery / heat transfer plate assembly laminate, the side protrusion cover is disposed at the recess, and the side surface of the laminate is It is covered with the said side part protrusion cover, It is characterized by the above-mentioned .

本発明に係る組電池の充放電方法は、角型の二次電池が複数個積み重ねられた組電池であって、前記二次電池と熱交換しうるように前記二次電池の主面に接触する主面と、前記主面に直交するように前記主面の周縁から立ち上がる少なくとも1つの側部突起カバーと、隣接する他の伝熱板の前記側部突起カバーに対応する凹所と、を有し、前記二次電池と組み合わせられて電池/伝熱板アッセンブリを形成する、複数の矩形状伝熱板と、積み重ねられた複数の前記電池/伝熱板アッセンブリと熱交換しうるように前記電池/伝熱板アッセンブリの側面に設けられた少なくとも1つの熱電変換素子と、前記電池/伝熱板アッセンブリおよび前記熱電変換素子の周囲を取り囲む断熱層を有する外装部材と、を具備し、前記二次電池は、常温大気圧下における全電池反応のエントロピー変化ΔSが吸熱となる領域を持つ負極活物質と正極活物質の組み合わせを有し、前記二次電池と前記伝熱板とを交互に積み重ねて、電池/伝熱板アッセンブリの積層体を形成すると、前記側部突起カバーが前記凹所のところに配置され、前記積層体の側面が前記側部突起カバーによって覆われることを特徴とする組電池の充放電方法であって、
前記二次電池の充放電時の吸熱反応を利用して、前記組電池を適正な温度範囲に制御するため、前記二次電池のジュール熱により生じる発熱量が吸熱量よりも少なくなるように電流制御することを特徴とする。
A method for charging and discharging an assembled battery according to the present invention is an assembled battery in which a plurality of prismatic secondary batteries are stacked, and is in contact with the main surface of the secondary battery so as to be able to exchange heat with the secondary battery. A main surface , at least one side projection cover that rises from the periphery of the main surface so as to be orthogonal to the main surface, and a recess corresponding to the side projection cover of another adjacent heat transfer plate, A plurality of rectangular heat transfer plates that are combined with the secondary battery to form a battery / heat transfer plate assembly, and the plurality of stacked battery / heat transfer plate assemblies are heat exchangeable. comprising at least one thermoelectric element provided on a side surface of the battery / heat exchanger plate assembly, and a package member having a heat-insulating layer surrounding a periphery of the battery / heat exchanger plate assembly and the thermoelectric conversion element, the two Secondary battery is at room temperature and atmospheric pressure A battery / heat transfer plate assembly having a combination of a negative electrode active material and a positive electrode active material having a region where the entropy change ΔS of all battery reactions in the battery is endothermic, and alternately stacking the secondary battery and the heat transfer plate When the laminated body is formed, the side protrusion cover is disposed at the recess, and the side surface of the laminated body is covered with the side protrusion cover. ,
In order to control the assembled battery to an appropriate temperature range using the endothermic reaction during charging / discharging of the secondary battery, the current generated so that the amount of heat generated by the Joule heat of the secondary battery is less than the endothermic amount. It is characterized by controlling.

本発明によれば、充電時の吸熱反応を利用して組電池の内側から発電部の発熱を抑えるとともに、冷却手段により伝熱板を介して組電池の外側から発電部を冷却するので、組電池のコア部と表面部との温度差が小さくなり、全体として組電池の温度上昇が抑制される。このため、環境温度に影響されにくく、優れた均熱特性(温度均一性)と冷却・保温特性を有する組電池が提供される。   According to the present invention, the endothermic reaction during charging is used to suppress the heat generation of the power generation unit from the inside of the assembled battery, and the power generation unit is cooled from the outside of the assembled battery via the heat transfer plate by the cooling means. The temperature difference between the core portion and the surface portion of the battery is reduced, and the temperature rise of the assembled battery is suppressed as a whole. For this reason, the assembled battery which is hard to be influenced by environmental temperature and has an excellent heat equalization characteristic (temperature uniformity) and cooling / heat retention characteristics is provided.

以下、本発明の実施の形態に係る組電池について添付の図を参照して説明する。図1乃至図4は組電池の構成要素となる単電池を示し、図5は本発明の実施の形態に係る組電池の全体の概要を示す。   Hereinafter, an assembled battery according to an embodiment of the present invention will be described with reference to the accompanying drawings. 1 to 4 show a unit cell as a component of the assembled battery, and FIG. 5 shows an outline of the entire assembled battery according to the embodiment of the present invention.

図1の(a)には角型扁平形状の二次電池10を示し、図1の(b)には略矩形状の伝熱板7を示す。図2に示すように、伝熱板7は、その主面7aが二次電池の主面10aと接触するように二次電池10を保持する。ここで「主面」とは、最も面積が広い面をいう。図1(a)(b)および図2に示した単電池10と伝熱板7では、XY面に平行な面をいう。   FIG. 1A shows a square flat secondary battery 10, and FIG. 1B shows a substantially rectangular heat transfer plate 7. As shown in FIG. 2, the heat transfer plate 7 holds the secondary battery 10 so that the main surface 7a thereof is in contact with the main surface 10a of the secondary battery. Here, the “main surface” refers to the surface having the largest area. In the unit cell 10 and the heat transfer plate 7 shown in FIGS. 1A and 1B and FIG. 2, the surface parallel to the XY plane is referred to.

二次電池10は、(i)常温大気圧下における全電池反応のエントロピー変化ΔSが、各充電状態(充電深度)において吸熱となる領域を持つ活物質(正負両極の活物質)を含み、(ii)充電時または放電時において、全充放電深度の50%以上の領域で、電池の吸熱量がピーク時の50%以上を維持する。なお、上記(i)と(ii)の条件を満たす角型扁平形状の二次電池であれば、その種類は問わず多種多用の二次電池を本発明に適用することが可能である。   The secondary battery 10 includes (i) an active material (positive and negative electrode active material) having a region where the entropy change ΔS of all battery reactions under normal temperature and atmospheric pressure is endothermic in each charged state (charging depth), ii) At the time of charging or discharging, the endothermic amount of the battery is maintained at 50% or more of the peak in a region of 50% or more of the total charge / discharge depth. In addition, as long as it is a square flat secondary battery that satisfies the above conditions (i) and (ii), a wide variety of secondary batteries can be applied to the present invention regardless of the type.

全充放電深度の50%未満の領域で吸熱を示す電池の場合、吸熱反応を利用できるSOC領域が狭いため、電池の温度制御を行うことが困難となり好ましくない。また、全充放電深度の50%以上で吸熱を示したとしても、その吸熱量がピーク時の50%以下では、電池のジュール熱による発熱の影響を受け易く、同様に吸熱による温度制御が困難となるため好ましくない。   In the case of a battery that exhibits endotherm in a region of less than 50% of the full charge / discharge depth, the SOC region where the endothermic reaction can be utilized is narrow, which makes it difficult to control the temperature of the battery. Even if the endotherm is shown at 50% or more of the full charge / discharge depth, if the endotherm is 50% or less at the peak, it is easily affected by heat generated by the Joule heat of the battery, and similarly temperature control by endotherm is difficult. This is not preferable.

次に、本発明の組電池に用いられる角型扁平形状の二次電池10の構成要素をそれぞれ説明する。   Next, each component of the square flat secondary battery 10 used in the assembled battery of the present invention will be described.

1)負極
負極は、例えば負極活物質、導電剤および結着剤を適当な溶媒に分散させて得られる負極材ペーストを集電体の片側、もしくは両面に塗布することにより作製する。
1) Negative electrode
The negative electrode is produced, for example, by applying a negative electrode material paste obtained by dispersing a negative electrode active material, a conductive agent, and a binder in a suitable solvent to one side or both sides of a current collector.

負極活物質は、例えばリチウムイオンを吸蔵・放出する炭素質物、金属酸化物、金属硫化物、金属窒化物、合金、軽金属などが挙げられ、後述する正極との組み合わせで、電池全体の反応におけるエントロピー変化が、全充放電深度の50%以上の領域で、電池の吸熱量がピーク時の50%以上を示せば本発明の負極として適用可能である。   Examples of the negative electrode active material include carbonaceous materials, metal oxides, metal sulfides, metal nitrides, alloys, and light metals that occlude and release lithium ions. In combination with the positive electrode described later, the entropy in the overall battery reaction If the change is in the region of 50% or more of the total charge / discharge depth and the endothermic amount of the battery shows 50% or more of the peak, it can be applied as the negative electrode of the present invention.

なお、電池の発熱及び吸熱に起因するエントロピー変化の測定方法は、任意のSOCに揃えた電池を、一定温度の恒温槽内に24時間以上保持し、その後、10〜40℃にそれぞれ6時間保って、電池の開放電圧Voの温度変化からdVo/dTを測定する。前述の(5)式とΔG=n・F・Eの関係から下式(6)を導出し、測定した開放電圧Voに起電力Eを近似させることで、下式(6)より全エントロピー変化量ΔSを算出できる。但し、n:反応に関与する電荷数、F:ファラデー定数、E:起電力である。   In addition, the measurement method of the entropy change resulting from the heat generation and endotherm of the battery is as follows: a battery having an arbitrary SOC is kept in a constant temperature bath for 24 hours or more, and then kept at 10 to 40 ° C. for 6 hours. Then, dVo / dT is measured from the temperature change of the open circuit voltage Vo of the battery. The following formula (6) is derived from the relationship of the above formula (5) and ΔG = n · F · E, and the electromotive force E is approximated to the measured open-circuit voltage Vo, whereby the total entropy change from the following formula (6). The amount ΔS can be calculated. Where n is the number of charges involved in the reaction, F is the Faraday constant, and E is the electromotive force.

ΔS=−(∂ΔG/∂T)=n・F・(∂E/∂T) …(6)
負極活物質には、広い充放電深度で充電時に発熱ピークを持たないことから、スピネル構造を有するチタン酸リチウムを使用することが望ましい。この場合、正極活物質には、充電時に強い吸熱ピークを持つリチウムコバルト複合酸化物、リチウムニッケルコバルト複合酸化物及びリチウムニッケルコバルトマンガン複合酸化物のうちのいずれかを使用することが望ましい。このような正極活物質及び負極活物質を用いた非水電解質二次電池は、全充放電深度の50%以上において、吸熱量がピーク値の50%以上を維持することから、充電時に電池の冷却が可能となるため好ましい。
ΔS = − (∂ΔG / ∂T) = n · F · (∂E / ∂T) (6)
As the negative electrode active material, it is desirable to use lithium titanate having a spinel structure because it does not have an exothermic peak during charging at a wide charge / discharge depth. In this case, it is desirable to use any one of a lithium cobalt composite oxide, a lithium nickel cobalt composite oxide, and a lithium nickel cobalt manganese composite oxide having a strong endothermic peak during charging as the positive electrode active material. A non-aqueous electrolyte secondary battery using such a positive electrode active material and a negative electrode active material maintains an endothermic amount of 50% or more of the peak value at 50% or more of the total charge / discharge depth. This is preferable because cooling is possible.

負極活物質の平均粒子径は1μm以下であることが望ましい。平均粒子径1μm以下の負極活物質を使用することにより、上記充電曲線を示す非水電解質二次電池のサイクル性能を向上することができる。とくに、急速充電時および高出力放電時においてこの効果は顕著となる。また、充放電時の過電圧を低下させ、結果として吸熱反応を効率よく利用することができる。但し、平均粒径が小さ過ぎると、非水電解質の分布が負極側に偏り、正極での電解質の枯渇を招くおそれがあるため、その下限値は0.001μmにすることが好ましい。   The average particle size of the negative electrode active material is desirably 1 μm or less. By using a negative electrode active material having an average particle diameter of 1 μm or less, the cycle performance of the nonaqueous electrolyte secondary battery exhibiting the above charge curve can be improved. In particular, this effect becomes significant during rapid charging and high-power discharging. Moreover, the overvoltage at the time of charging / discharging can be reduced, and as a result, endothermic reaction can be utilized efficiently. However, if the average particle size is too small, the distribution of the non-aqueous electrolyte is biased toward the negative electrode, which may lead to depletion of the electrolyte at the positive electrode, so the lower limit is preferably set to 0.001 μm.

なお、負極活物質の粒径測定は、例えば、レーザー回折式分布測定装置(島津SALD-300)を用い、まず、ビーカーに試料を約0.1gと界面活性剤と1〜2mLの蒸留水を添加して十分に攪拌した後、攪拌水槽に注入し、2秒間隔で64回光度分布を測定し、粒度分布データを解析するという方法にて測定できる。   The particle size of the negative electrode active material is measured using, for example, a laser diffraction distribution measuring device (Shimadzu SALD-300). First, about 0.1 g of a sample, a surfactant, and 1 to 2 mL of distilled water are placed in a beaker. After adding and stirring sufficiently, it can inject | pour into a stirring water tank, and can measure by the method of measuring a luminous intensity distribution 64 times at intervals of 2 second, and analyzing a particle size distribution data.

リチウムイオンを吸蔵・放出する炭素質物としては、例えばコークス、炭素繊維、熱分解気相炭素物、黒鉛、樹脂焼成体、メソフェーズピッチ系炭素繊維またはメソフェーズ球状カーボンの焼成体などを挙げることができる。中でも、2500℃以上で黒鉛化したメソフェーズピッチ系炭素繊維またはメソフェーズ球状カーボンを用いると電極容量が高くなるため好ましい。   Examples of the carbonaceous material that occludes / releases lithium ions include coke, carbon fiber, pyrolytic vapor phase carbon material, graphite, resin fired body, mesophase pitch carbon fiber, and mesophase spherical carbon fired body. Among these, it is preferable to use mesophase pitch-based carbon fiber or mesophase spherical carbon graphitized at 2500 ° C. or higher because the electrode capacity is increased.

金属酸化物としては、例えば、チタン含有金属複合酸化物、例えばSnB0.40.63.1やSnSiO3などのスズ系酸化物、例えばSiOなどのケイ素系酸化物、例えばWO3などのタングステン系酸化物などが挙げられる。これら金属酸化物のなかで、金属リチウムに対する電位が0.5Vよりも高いような負極活物質、例えばチタン酸リチウムのようなチタン含有金属複合酸化物を用いた場合、電池を急速に充電した場合でも負極上でのリチウムデンドライトの発生が起こらず、劣化が少なくなるため好ましい。 Examples of the metal oxide include titanium-containing metal composite oxides, for example, tin-based oxides such as SnB 0.4 P 0.6 O 3.1 and SnSiO 3 , silicon-based oxides such as SiO, and tungsten-based oxides such as WO 3 Etc. Among these metal oxides, when a negative electrode active material having a potential higher than 0.5 V with respect to metal lithium, for example, a titanium-containing metal composite oxide such as lithium titanate is used, the battery is rapidly charged However, lithium dendrite does not occur on the negative electrode, which is preferable because deterioration is reduced.

チタン含有金属複合酸化物としては、例えば、酸化物合成時はリチウムを含まないチタン系酸化物、リチウムチタン酸化物、リチウムチタン酸化物の構成元素の一部を異種元素で置換したリチウムチタン複合酸化物などを挙げることができる。リチウムチタン酸化物としては、例えば、スピネル構造を有するチタン酸リチウム(例えばLi4+xTi512(xは充放電により変化する値で、0≦x≦3))、ラムステライド型のチタン酸リチウム(例えばLi2+yTi37(yは充放電により変化する値で、0≦y≦3)などを挙げることができる。これらは、充電時に全充放電深度の90%以上において目立った発熱のピークが無いため、後述する吸熱領域を広く持つ正極との組み合わせで、本発明の電池が容易に構成できるため、好ましい。 Examples of titanium-containing metal composite oxides include lithium-titanium composite oxides in which some of the constituent elements of lithium-containing titanium-based oxides, lithium-titanium oxides, and lithium-titanium oxides are replaced with different elements during oxide synthesis. Things can be mentioned. Examples of the lithium titanium oxide include lithium titanate having a spinel structure (for example, Li 4 + x Ti 5 O 12 (x is a value that varies depending on charge / discharge, 0 ≦ x ≦ 3)), ramsteride type titanium. Lithium acid (for example, Li 2 + y Ti 3 O 7 (y is a value that varies depending on charge / discharge, 0 ≦ y ≦ 3)), etc. These are at 90% or more of the total charge / discharge depth during charging. Since there is no conspicuous peak of heat generation, the battery of the present invention can be easily configured in combination with a positive electrode having a wide endothermic region to be described later, which is preferable.

チタン系酸化物としては、TiO2、TiとP、V、Sn、Cu、Ni、Co及びFeよりなる群から選択される少なくとも1種類の元素を含有する金属複合酸化物などが挙げられる。TiO2はアナターゼ型で熱処理温度が300〜500℃の低結晶性のものが好ましい。TiとP、V、Sn、Cu、Ni、Co及びFeよりなる群から選択される少なくとも1種類の元素を含有する金属複合酸化物としては、例えば、TiO2−P25、TiO2−V25、TiO2−P25−SnO2、TiO2−P25−MeO(MeはCu、Ni、Co及びFeよりなる群から選択される少なくとも1種類の元素)などを挙げることができる。この金属複合酸化物は、結晶相とアモルファス相が共存もしくは、アモルファス相単独で存在したミクロ構造であることが好ましい。このようなミクロ構造であることによりサイクル性能が大幅に向上することができる。中でも、リチウムチタン酸化物、TiとP、V、Sn、Cu、Ni、Co及びFeよりなる群から選択される少なくとも1種類の元素を含有する金属複合酸化物が好ましい。 Examples of the titanium-based oxide include metal composite oxides containing at least one element selected from the group consisting of TiO 2 , Ti and P, V, Sn, Cu, Ni, Co, and Fe. TiO 2 is preferably anatase type and low crystalline having a heat treatment temperature of 300 to 500 ° C. Examples of the metal composite oxide containing at least one element selected from the group consisting of Ti and P, V, Sn, Cu, Ni, Co, and Fe include TiO 2 —P 2 O 5 , TiO 2 — V 2 O 5 , TiO 2 —P 2 O 5 —SnO 2 , TiO 2 —P 2 O 5 —MeO (Me is at least one element selected from the group consisting of Cu, Ni, Co and Fe). Can be mentioned. This metal complex oxide preferably has a microstructure in which a crystal phase and an amorphous phase coexist or exist alone. With such a microstructure, the cycle performance can be greatly improved. Among these, a lithium titanium oxide, a metal composite oxide containing at least one element selected from the group consisting of Ti and P, V, Sn, Cu, Ni, Co, and Fe is preferable.

金属硫化物として硫化リチウム(TiS2)、硫化モリブデン(MoS2),硫化鉄(FeS、FeS2、LixFeS2)などが挙げられる。金属窒化物としてリチウムコバルト窒化物(LixCoyN、0<x<4,0<y<0.5)などが挙げられる。 Examples of the metal sulfide include lithium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), and iron sulfide (FeS, FeS 2 , Li x FeS 2 ). Examples of the metal nitride include lithium cobalt nitride (Li x Co y N, 0 <x <4, 0 <y <0.5).

導電剤として、例えばアセチレンブラック、カーボンブラック、コークス、炭素繊維、黒鉛等の炭素材料を用いることができる。   As the conductive agent, for example, a carbon material such as acetylene black, carbon black, coke, carbon fiber, and graphite can be used.

結着剤として、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等を用いることができる。   As the binder, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), carboxymethylcellulose (CMC), or the like is used. Can do.

集電体として、負極の電位に応じて種々の金属箔等を用いることができるが、例えばアルミニウム箔、アルミニウム合金箔、ステンレス箔、チタン箔等、銅箔、ニッケル箔などが挙げられる。このときの箔の厚さとしては、8μm以上25μm以下であることが好ましい。集電体の厚さが8μm未満であると、電気抵抗が増大してジュール熱が大きくなるばかりでなく、機械的強度が不足して破損しやすくなる。一方、集電体の厚さが25μmを超えると、電極活物質に対する集電体重量が大きくなるため、電池の重量あたりのエネルギー密度が低くなるという問題を生じる。また、負極電位が金属リチウムに対して0.3Vよりも貴である場合、例えば負極活物質としてリチウムチタン酸化物を使用する際には、アルミニウム箔やアルミニウム合金箔が電池重量を抑えることができるため好ましい。   As the current collector, various metal foils and the like can be used depending on the potential of the negative electrode, and examples include aluminum foil, aluminum alloy foil, stainless steel foil, titanium foil, copper foil, nickel foil, and the like. In this case, the thickness of the foil is preferably 8 μm or more and 25 μm or less. When the thickness of the current collector is less than 8 μm, not only the electric resistance increases and Joule heat increases, but also the mechanical strength is insufficient and the glass tends to break. On the other hand, when the thickness of the current collector exceeds 25 μm, the weight of the current collector with respect to the electrode active material increases, which causes a problem that the energy density per weight of the battery decreases. When the negative electrode potential is nobler than 0.3 V with respect to metallic lithium, for example, when lithium titanium oxide is used as the negative electrode active material, an aluminum foil or an aluminum alloy foil can suppress the battery weight. Therefore, it is preferable.

アルミニウム箔及びアルミニウム合金箔の平均結晶粒径は、50μm以下であることが好ましい。50μmより大きい平均結晶粒径をもつアルミニウム箔は機械的強度が不足するからである。これにより、集電体の強度を飛躍的に増大させることができるため、負極を高いプレス圧で高密度化することが可能となり、電池容量を増大させることができる。また、高温環境下(40℃以上)における過放電サイクルでの負極集電体の溶解・腐食劣化を防ぐことができるため、負極インピーダンスの上昇を抑制することができる。さらに、出力特性、急速充電、充放電サイクル特性も向上させることができる。また、内部抵抗の低減により吸熱反応を効率よく利用できる。平均結晶粒径のより好ましい範囲は30μm以下であり、更に好ましい範囲は5μm以下である。   The average crystal grain size of the aluminum foil and the aluminum alloy foil is preferably 50 μm or less. This is because an aluminum foil having an average crystal grain size larger than 50 μm lacks mechanical strength. Thereby, since the intensity | strength of an electrical power collector can be increased greatly, it becomes possible to make a negative electrode high density with a high press pressure, and can increase battery capacity. Moreover, since the dissolution / corrosion deterioration of the negative electrode current collector in the overdischarge cycle under a high temperature environment (40 ° C. or higher) can be prevented, an increase in the negative electrode impedance can be suppressed. Furthermore, output characteristics, quick charge, and charge / discharge cycle characteristics can also be improved. Further, the endothermic reaction can be efficiently utilized by reducing the internal resistance. A more preferable range of the average crystal grain size is 30 μm or less, and a further preferable range is 5 μm or less.

平均結晶粒径は次のようにして求められる。集電体表面の組織を光学顕微鏡で組織観察し、1mm×1mm内に存在する結晶粒の数nを求める。このnを用いてS=1x106/n(μm2)から平均結晶粒子面積Sを求める。得られた面積Sの値と下式(7)から平均結晶粒子径d(μm)を算出する。 The average crystal grain size is determined as follows. The structure of the current collector surface is observed with an optical microscope, and the number n of crystal grains existing within 1 mm × 1 mm is determined. Using this n, the average crystal grain area S is determined from S = 1 × 10 6 / n (μm 2 ). The average crystal particle diameter d (μm) is calculated from the obtained area S value and the following equation (7).

d=2(S/π)1/2 …(7)
前記平均結晶粒子径の範囲が50μm以下の範囲にあるアルミニウム箔またはアルミニウム合金箔は、材料組成、不純物、加工条件、熱処理履歴ならび焼なましの加熱条件など多くの因子に複雑に影響され、前記結晶粒子径(直径)は、製造工程の中で、前記諸因子を組み合わせて調整される。
d = 2 (S / π) 1/2 (7)
The aluminum foil or aluminum alloy foil having a range of the average crystal particle diameter of 50 μm or less is complicatedly affected by many factors such as material composition, impurities, processing conditions, heat treatment history and annealing conditions, The crystal particle diameter (diameter) is adjusted by combining the above factors in the production process.

アルミニウム箔およびアルミニウム合金箔の厚さは、20μm以下、より好ましくは15μm以下である。アルミニウム箔の純度は99%以上が好ましい。アルミニウム合金としては、マグネシウム、亜鉛、ケイ素などの元素を含む合金が好ましい。一方、鉄、銅、ニッケル、クロムなどの遷移金属の含有量は1%以下にすることが好ましい。なお、車載用の場合、アルミニウム合金箔が特に好ましい。   The thickness of the aluminum foil and the aluminum alloy foil is 20 μm or less, more preferably 15 μm or less. The purity of the aluminum foil is preferably 99% or more. As the aluminum alloy, an alloy containing elements such as magnesium, zinc, and silicon is preferable. On the other hand, the content of transition metals such as iron, copper, nickel and chromium is preferably 1% or less. In the case of in-vehicle use, an aluminum alloy foil is particularly preferable.

負極の活物質、導電剤及び結着剤の配合比は、負極活物質80〜95質量%、導電剤3〜20質量%、結着剤1.5〜7質量%の範囲にすることが好ましい。これらの範囲を外れる配合比では、電極の剥離や導電率の低下に伴う出力低下、サイクル特性悪化等の問題を生じる。   The compounding ratio of the negative electrode active material, the conductive agent and the binder is preferably in the range of 80 to 95% by mass of the negative electrode active material, 3 to 20% by mass of the conductive agent, and 1.5 to 7% by mass of the binder. . When the blending ratio is out of these ranges, problems such as output reduction and cycle characteristic deterioration due to electrode peeling and conductivity decrease occur.

また、アルミ箔に塗布する電極の厚みとしては、電極完成時の厚さで10〜50μmとすることが好ましく、より好ましくは、20〜30μmである。これは、電極の塗布量が50μmよりと厚いと、反応するリチウムイオンの拡散距離が伸びるため、過電圧によるロスが起こり易く、電池の発熱や充放電レート特性の低下を招くため好ましくない。また、15μmより薄すぎても、活物質量に対する集電体重量が多くなるため、重量あたりの容量エネルギー密度が極端に悪くなるため、好ましくない。   Moreover, as thickness of the electrode apply | coated to aluminum foil, it is preferable to set it as 10-50 micrometers by the thickness at the time of completion of an electrode, More preferably, it is 20-30 micrometers. This is not preferable if the coating amount of the electrode is thicker than 50 μm, because the diffusion distance of the reacting lithium ions is extended, and loss due to overvoltage is likely to occur, leading to heat generation of the battery and deterioration of charge / discharge rate characteristics. On the other hand, if the thickness is less than 15 μm, the weight of the current collector with respect to the amount of the active material increases, so that the capacity energy density per weight is extremely deteriorated.

2)正極
正極は、例えば正極活物質、導電剤および結着剤を適当な溶媒に分散させて得られる正極材ペーストを集電体の片側、もしくは両面に塗布することにより作製する。
2) Positive electrode
The positive electrode is produced, for example, by applying a positive electrode material paste obtained by dispersing a positive electrode active material, a conductive agent and a binder in a suitable solvent to one side or both sides of a current collector.

正極の活物質は、種々の酸化物、硫化物などが挙げられる。例えば、二酸化マンガン(MnO2)、酸化鉄、酸化銅、酸化ニッケル、リチウムマンガン複合酸化物(例えばLixMn2O4またはLixMnO2)、リチウムニッケル複合酸化物(例えばLixNiO2)、リチウムコバルト複合酸化物(例えばLixCoO2)、リチウムニッケルコバルト複合酸化物(例えばLiNi1-yCoyO2)、リチウムマンガンコバルト複合酸化物(例えばLiMnyCo1-yO2)、スピネル型リチウムマンガンニッケル複合酸化物(LixMn2-yNiyO4)、オリビン構造を有するリチウムリン酸化物(LixFePO4、LixFe1-yMnyPO4、LixCoPO4など)、硫酸鉄(Fe2(SO4)3)、バナジウム酸化物(例えばV2O5)などが挙げられる。また、ポリアニリンやポリピロールなどの導電性ポリマー材料、ジスルフィド系ポリマー材料、イオウ(S)、フッ化カーボンなどの有機材料および無機材料も挙げられる。これらの正極と前述の負極を組み合わせた全電池反応におけるエントロピー変化が、全充放電深度の50%以上の領域で、ピーク吸熱量の50%以上を維持するように組み合わせることで、利用可能である。 Examples of the active material of the positive electrode include various oxides and sulfides. For example, manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, lithium manganese composite oxide (for example, Li x Mn 2 O 4 or Li x MnO 2 ), lithium nickel composite oxide (for example, Li x NiO 2 ) Lithium cobalt composite oxide (e.g. Li x CoO 2 ), lithium nickel cobalt composite oxide (e.g. LiNi 1-y Co y O 2 ), lithium manganese cobalt composite oxide (e.g. LiMn y Co 1-y O 2 ), spinel-type lithium-manganese-nickel composite oxide (Li x Mn 2-y Ni y O 4), lithium phosphates having an olivine structure (Li x FePO 4, Li x Fe 1-y Mn y PO 4, Li x CoPO 4 Etc.), iron sulfate (Fe 2 (SO 4 ) 3 ), vanadium oxide (for example, V 2 O 5 ) and the like. In addition, conductive polymer materials such as polyaniline and polypyrrole, disulfide-based polymer materials, organic materials such as sulfur (S) and carbon fluoride, and inorganic materials are also included. The entropy change in the total battery reaction in which these positive electrodes and the above-described negative electrodes are combined can be used by combining them so as to maintain 50% or more of the peak heat absorption in the region of 50% or more of the total charge / discharge depth. .

より好ましい二次電池用の正極は、電池電圧が高いリチウムマンガン複合酸化物(LixMn2O4)、リチウムニッケル複合酸化物(LixNiO2)、リチウムコバルト複合酸化物(LixCoO2)、リチウムニッケルコバルト複合酸化物(LixNi1-yCoyO2)、スピネル型リチウムマンガンニッケル複合酸化物(LixMn2-yNiyO4)、リチウムマンガンコバルト複合酸化物(LixMnyCo1-yO2)、リチウムリン酸鉄(LixFePO4)などが挙げられる。なお、x、yは0〜1の範囲であることが好ましい。より好ましくは、広い充放電深度領域において、強い吸熱ピークを持つリチウムコバルト複合酸化物(LixCoO2)が挙げられる。 More preferable positive electrodes for secondary batteries include lithium manganese composite oxide (Li x Mn 2 O 4 ), lithium nickel composite oxide (Li x NiO 2 ), and lithium cobalt composite oxide (Li x CoO 2 ) having a high battery voltage. ), Lithium nickel cobalt composite oxide (Li x Ni 1-y Co y O 2 ), spinel type lithium manganese nickel composite oxide (Li x Mn 2-y Ni y O 4 ), lithium manganese cobalt composite oxide (Li x Mn y Co 1-y O 2), lithium iron phosphate (Li x FePO 4), and the like. X and y are preferably in the range of 0 to 1. More preferably, lithium cobalt composite oxide (Li x CoO 2 ) having a strong endothermic peak in a wide charge / discharge depth region can be used.

また、正極活物質には、組成がLiaNibCocMndO2(但し、モル比a,b,c及びdは0≦a≦1.1、0.1≦b≦0.5、0≦c≦0.9、0.1≦d≦0.5)で表されるリチウムニッケルコバルトマンガン複合酸化物を使用することができる。 Further, the positive electrode active material has a composition of Li a Ni b Co c Mn d O 2 (however, the molar ratios a, b, c and d are 0 ≦ a ≦ 1.1, 0.1 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.9). , 0.1 ≦ d ≦ 0.5), a lithium nickel cobalt manganese composite oxide can be used.

導電剤として、例えばアセチレンブラック、カーボンブラック、人工黒鉛、天然黒鉛、導電性ポリマー等を用いることができる。   As the conductive agent, for example, acetylene black, carbon black, artificial graphite, natural graphite, conductive polymer, or the like can be used.

結着剤として、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、PVdFの水素もしくはフッ素のうち、少なくとも1つを他の置換基で置換した変性PVdF、フッ化ビニリデン−6フッ化プロピレンの共重合体、ポリフッ化ビニリデン−テトラフルオロエチレン−6フッ化プロピレンの3元共重合体等を用いることができる。   As a binder, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), modified PVdF in which at least one of hydrogen or fluorine of PVdF is substituted with another substituent, vinylidene fluoride-6fluoride A copolymer of propylene, a terpolymer of polyvinylidene fluoride-tetrafluoroethylene-6propylene fluoride, or the like can be used.

前記結着剤を分散させるための有機溶媒として、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド(DMF)等が使用される。   As an organic solvent for dispersing the binder, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF) or the like is used.

集電体として、例えば厚さ8〜25μmのアルミニウム箔、アルミニウム合金箔、ステンレス箔、チタン箔等を挙げることができる。   Examples of the current collector include aluminum foil, aluminum alloy foil, stainless steel foil, and titanium foil having a thickness of 8 to 25 μm.

正極集電体は、アルミニウム箔若しくはアルミニウム合金箔が好ましく、負極集電体と同様にその平均結晶粒径は50μm以下であることが好ましい。より好ましくは、30μm以下である。更に好ましくは5μm以下である。前記平均結晶粒径が50μm以下であることにより、アルミニウム箔またはアルミニウム合金箔の強度を飛躍的に増大させることができ、正極を高いプレス圧で高密度化することが可能になり、電池容量を増大させることができる。   The positive electrode current collector is preferably an aluminum foil or an aluminum alloy foil, and the average crystal grain size is preferably 50 μm or less, like the negative electrode current collector. More preferably, it is 30 μm or less. More preferably, it is 5 μm or less. When the average crystal grain size is 50 μm or less, the strength of the aluminum foil or the aluminum alloy foil can be dramatically increased, the positive electrode can be densified with a high press pressure, and the battery capacity can be increased. Can be increased.

平均結晶粒径の範囲が50μm以下の範囲にあるアルミニウム箔またはアルミニウム合金箔は、材料組織、不純物、加工条件、熱処理履歴、ならびに焼鈍条件など複数の因子に複雑に影響され、結晶粒径は製造工程の中で、前記諸因子を組合せて調整される。   Aluminum foil or aluminum alloy foil with an average grain size range of 50 μm or less is affected by multiple factors such as material structure, impurities, processing conditions, heat treatment history, and annealing conditions, and the grain size is manufactured. In the process, the above factors are adjusted in combination.

アルミニウム箔およびアルミニウム合金箔の厚さは、20μm以下、より好ましくは15μm以下である。アルミニウム箔の純度は99%以上が好ましい。アルミニウム合金としては、マグネシウム、亜鉛、ケイ素、などの元素を含む合金が好ましい。一方、鉄、銅、ニッケル、クロムなどの遷移金属の含有量は1%以下にすることが好ましい。   The thickness of the aluminum foil and the aluminum alloy foil is 20 μm or less, more preferably 15 μm or less. The purity of the aluminum foil is preferably 99% or more. As the aluminum alloy, an alloy containing elements such as magnesium, zinc and silicon is preferable. On the other hand, the content of transition metals such as iron, copper, nickel and chromium is preferably 1% or less.

正極の活物質、導電剤及び結着剤の配合比は、正極活物質80〜95質量%、導電剤3〜20質量%、結着剤1.5〜7質量%の範囲にすることが好ましい。また、アルミ箔に塗布する電極の厚みとしては、電極完成時の厚さで10〜50μmとすることが好ましく、より好ましくは、20〜30μmである。これは、電極の塗布量が50μmよりと厚いと、反応するリチウムイオンの拡散距離が伸びるため、過電圧によるロスが起こり易く、電池の発熱や充放電レート特性の低下を招くため好ましくないからである。また、15μmより薄すぎても、活物質量に対する集電体重量が多くなるため、重量あたりの容量エネルギー密度が極端に悪くなるため、好ましくない。   The compounding ratio of the positive electrode active material, the conductive agent and the binder is preferably in the range of 80 to 95% by mass of the positive electrode active material, 3 to 20% by mass of the conductive agent, and 1.5 to 7% by mass of the binder. . Moreover, as thickness of the electrode apply | coated to aluminum foil, it is preferable to set it as 10-50 micrometers by the thickness at the time of completion of an electrode, More preferably, it is 20-30 micrometers. This is because if the coating amount of the electrode is thicker than 50 μm, the diffusion distance of the reacting lithium ions is increased, so that loss due to overvoltage is liable to occur, which leads to heat generation of the battery and deterioration of charge / discharge rate characteristics. . On the other hand, if the thickness is less than 15 μm, the weight of the current collector with respect to the amount of the active material increases, so that the capacity energy density per weight is extremely deteriorated.

3)セパレータ
セパレータには多孔質セパレータを用いる。
3) Separator
A porous separator is used as the separator.

多孔質セパレータとして、例えば、ポリエチレン、ポリプロピレン、セルロース、またはポリフッ化ビニリデン(PVdF)を含む多孔質フィルム、合成樹脂製不織布等を挙げることができる。中でも、ポリエチレンか、あるいはポリプロピレン、または両者からなる多孔質フィルムは、電池温度が上昇した場合に細孔を閉塞して充放電電流を大幅に減衰させるシャットダウン機能を付加しやすく、二次電池の安全性を向上できるため、好ましい。   Examples of the porous separator include a porous film containing polyethylene, polypropylene, cellulose, or polyvinylidene fluoride (PVdF), and a synthetic resin nonwoven fabric. Among these, porous films made of polyethylene or polypropylene, or both, are easy to add a shutdown function that closes the pores and significantly attenuates the charge / discharge current when the battery temperature rises. This is preferable because the property can be improved.

4)非水電解質
非水電解質として、LiBF4、LiPF6、LiAsF6、LiClO4、LiCF3SO3、LiN(CF3SO2)2、LiN(C2F5SO2)2、Li(CF3SO2)3C、LiB[(OCO)2]2などから選ばれる一種以上のリチウム塩を0.5〜2mol/Lの濃度で有機溶媒に溶解した有機電解液が挙げられる。
4) Non-aqueous electrolyte
As the non-aqueous electrolyte, LiBF 4, LiPF 6, LiAsF 6, LiClO 4, LiCF 3 SO 3, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, Li (CF 3 SO 2) 3 Examples thereof include an organic electrolyte obtained by dissolving one or more lithium salts selected from C, LiB [(OCO) 2 ] 2 and the like in an organic solvent at a concentration of 0.5 to 2 mol / L.

有機溶媒として、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などの環状カーボネートや、ジエチレルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)などの鎖状カーボネートや、ジメトキシエタン(DME)、ジエトエタン(DEE)などの鎖状エーテルや、テトラヒドロフラン(THF)、ジオキソラン(DOX)などの環状エーテルや、γ-ブチロラクトン(GBL)、アセトニトリル(AN)、スルホラン(SL)などの単独もしくは混合溶媒を用いることが好ましい。   Examples of organic solvents include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), chain carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC), and dimethoxyethane. (DME), chain ethers such as dietoethane (DEE), cyclic ethers such as tetrahydrofuran (THF) and dioxolane (DOX), γ-butyrolactone (GBL), acetonitrile (AN), sulfolane (SL) alone or It is preferable to use a mixed solvent.

また、非水電解質として、リチウムイオンを含有した常温溶融塩(イオン性融体)を用いることができる。リチウムイオンと有機物カチオンとアニオンから構成されるイオン性融体であり、100℃以下、好ましくは室温(23℃)以下でも液状であるものを選択すると、広い動作温度の二次電池を得ることができる。   Moreover, a room temperature molten salt (ionic melt) containing lithium ions can be used as the non-aqueous electrolyte. A secondary battery having a wide operating temperature can be obtained by selecting an ionic melt composed of lithium ions, an organic cation and an anion, which is liquid at 100 ° C. or lower, preferably at room temperature (23 ° C.) or lower. it can.

5)ラミネート外装材
ラミネート型リチウムイオン電池において、外装材に使用されるラミネートフィルムの厚さは、0.2mm以下にすることが望ましい。
5) Laminate exterior material
In the laminate type lithium ion battery, it is desirable that the thickness of the laminate film used for the exterior material is 0.2 mm or less.

図4に示すように、ラミネートフィルムは、例えば、電池本体10aを覆う最内層の熱融着性樹脂フィルム10b(熱可塑性樹脂フィルム)、アルミニウム箔のような金属箔10cおよび剛性を有する有機樹脂フィルム10dをこの順序で積層した複合フィルム材を用いることができる。   As shown in FIG. 4, the laminate film includes, for example, an innermost heat-fusible resin film 10 b (thermoplastic resin film) covering the battery body 10 a, a metal foil 10 c such as an aluminum foil, and a rigid organic resin film. A composite film material in which 10d are laminated in this order can be used.

なお、図1及び図4においては図示されていないが、二次電池主面のラミネート外装材の周辺部は、最内層10bが互いに熱融着されたシール部を有していてもよい。   Although not shown in FIGS. 1 and 4, the peripheral portion of the laminate exterior material on the main surface of the secondary battery may have a seal portion in which the innermost layers 10 b are heat-sealed.

熱融着性樹脂フィルムとしては、例えばポリエチレン(PE)フィルム、ポリプロピレン(PP)フィルム、ポリプロピレン−ポリエチレン共重合体フィルム、アイオノマーフィルム、エチレンビニルアセテート(EVA)フィルム等を用いることができる。また、前記剛性を有する有機樹脂フィルムとしては、例えばポリエチレンテレフタレート(PET)フィルム、ナイロンフィルム等を用いることができる。   As the heat-fusible resin film, for example, a polyethylene (PE) film, a polypropylene (PP) film, a polypropylene-polyethylene copolymer film, an ionomer film, an ethylene vinyl acetate (EVA) film, or the like can be used. Moreover, as an organic resin film which has the said rigidity, a polyethylene terephthalate (PET) film, a nylon film, etc. can be used, for example.

6)正極端子及び負極端子
正極端子には、アルミニウム、チタン及びそれらをもとにした合金、ステンレスなどを用いることができる。負極端子には、ニッケル、銅及びそれらをもとにした合金などを用いることができる。負極電位が金属リチウムに対し1Vよりも貴な場合、例えば負極活物質としてリチウムチタン酸化物を使用した場合などは、負極端子としてアルミニウムあるいはアルミニウム合金を用いることができる。この場合、正極端子、負極端子ともアルミニウムまたはアルミニウム合金を用いると、軽量かつ電気抵抗を小さく抑えることができ、吸熱反応を効率よく利用することができるため好ましい。
6) Positive terminal and negative terminal
For the positive electrode terminal, aluminum, titanium, alloys based on them, stainless steel, or the like can be used. For the negative electrode terminal, nickel, copper, an alloy based on them, or the like can be used. When the negative electrode potential is nobler than 1 V with respect to metallic lithium, for example, when lithium titanium oxide is used as the negative electrode active material, aluminum or an aluminum alloy can be used as the negative electrode terminal. In this case, it is preferable to use aluminum or an aluminum alloy for both the positive electrode terminal and the negative electrode terminal because the light weight and the electric resistance can be kept small, and the endothermic reaction can be efficiently used.

7)組電池の伝熱板
図1の(b)に示す伝熱板7の材料として、アルミニウム、金、銀、銅、シリコンなど、室温での熱伝導率が150W・m-1・K-1以上の金属であることが望ましい。熱伝導率が150 W・m-1・K-1より低いと、構成電池間の均熱性能や電気熱変換素子の伝熱効率が悪くなるため好ましくない。これらの金属のうち、比重は組電池のエネルギー密度を左右するため軽金属であることが好ましく、コスト等も考慮するとアルミニウムと銅が好ましい。更に好ましくは、表面酸化皮膜を形成し、金属として安定であるアルミニウムが最も適した材料であるといえる。これら金属のほか、ステンレス鋼や真鍮などの複合金属材料を用いてもよい。また、伝熱板表面に金属をコートしたような、スパッタ材料、クラッド材料なども用いることができる。
7) Heat transfer plate for battery pack
The material of the heat transfer plate 7 shown in FIG. 1B is a metal having a thermal conductivity of 150 W · m −1 · K −1 or more, such as aluminum, gold, silver, copper, or silicon, at room temperature. desirable. If the thermal conductivity is lower than 150 W · m −1 · K −1 , the soaking performance between the constituent batteries and the heat transfer efficiency of the electrothermal transducer are deteriorated. Among these metals, the specific gravity is preferably a light metal because it affects the energy density of the assembled battery, and aluminum and copper are preferable in consideration of cost and the like. More preferably, aluminum which forms a surface oxide film and is stable as a metal can be said to be the most suitable material. In addition to these metals, composite metal materials such as stainless steel and brass may be used. Further, a sputter material, a clad material, etc., in which a metal is coated on the surface of the heat transfer plate, can also be used.

伝熱板7は、図1の(b)に示すように、主面7aと、一方の長辺の辺縁部に間隔をあけて配置された一対の側部突起カバー9と、その対辺の中央部に配置された1つの側部突起カバー9と、一対の側部突起カバー9の間に設けられた1つの凹所8と、1つの側部突起カバー9の間に設けられた一対の凹所8と、を備えている。伝熱板7は、扁平形状電池10が持つ最も面積の広い面に接触するよう構成されている。特に、扁平形状電池10が図4に示すラミネート外装材10b,10c,10dで覆われた電池(以下、ラミネート外装電池という)である場合、伝熱板7に接触することで電池面内の温度分布を緩和し、均熱化することができる。なお、第1層(最内層)のラミネート外装材10bは樹脂、第2層(中間層)のラミネート外装材10cはアルミニウム箔、第3層(最外層)のラミネート外装材10dは樹脂である。   As shown in FIG. 1 (b), the heat transfer plate 7 includes a main surface 7a, a pair of side projection covers 9 arranged at intervals on the edge of one long side, and One side protrusion cover 9 disposed in the center, one recess 8 provided between the pair of side protrusion covers 9, and a pair of protrusions provided between the one side protrusion cover 9 And a recess 8. The heat transfer plate 7 is configured to be in contact with the widest surface of the flat battery 10. In particular, when the flat battery 10 is a battery covered with the laminate exterior materials 10b, 10c, and 10d shown in FIG. 4 (hereinafter referred to as a laminate exterior battery), the temperature within the battery surface is brought into contact with the heat transfer plate 7. Distribution can be relaxed and soaking. The first layer (innermost layer) laminate sheathing material 10b is a resin, the second layer (intermediate layer) laminate sheathing material 10c is an aluminum foil, and the third layer (outermost layer) laminate sheathing material 10d is a resin.

また、伝熱板7は電池の接合面に対してほぼ直交する方向に延び出す3つの側部突起カバー9を有している。これら3つの側部突起カバー9を伝熱板7に対して非対称に設けることにより、組電池として積層する際に、図2に示すように、下側電池の中央部の側部突起カバー9が上側電池の一対の側部突起カバー9間の凹所8に嵌まり込むとともに、上側電池の中央部の側部突起カバー9が下側電池の一対の側部突起カバー9間の凹所8に嵌まり込む。このように、積層される上下電池の側部突起カバー9が互いに補完し合うことで、伝熱板7の側面を構成できるばかりでなく、側部突起カバー9は組み電池作成時のガイドとして機能するため生産性向上に大きく寄与する。   Further, the heat transfer plate 7 has three side protrusion covers 9 that extend in a direction substantially orthogonal to the joining surface of the battery. By providing these three side projection covers 9 asymmetrically with respect to the heat transfer plate 7, when stacking as an assembled battery, as shown in FIG. It fits into the recess 8 between the pair of side projection covers 9 of the upper battery, and the side projection cover 9 at the center of the upper battery fits into the recess 8 between the pair of side projection covers 9 of the lower battery. Fit. In this way, the side protrusion covers 9 of the upper and lower batteries stacked together complement each other, so that the side surfaces of the heat transfer plate 7 can be configured, and the side protrusion cover 9 functions as a guide when creating the assembled battery. Therefore, it greatly contributes to productivity improvement.

また、組電池を直列に接続する場合、伝熱板7に単電池10をセットすることで、側部突起カバー9の向きにより正極タブ12a及び負極タブ12bの向きが一義的に決まる。これにより、側部突起カバー9で構成された凹凸を互い違いに積層することで、電池の極性方向が直列接続として一義的に決まるため、電池を誤接続することなく組電池を作成することが可能となる。   Moreover, when connecting assembled batteries in series, the direction of the positive electrode tab 12a and the negative electrode tab 12b is uniquely decided by the direction of the side protrusion cover 9 by setting the cell 10 to the heat exchanger plate 7. As a result, by alternately laminating the irregularities formed by the side protrusion covers 9, the battery polarity direction is uniquely determined as a series connection, so that an assembled battery can be created without erroneous connection of the batteries. It becomes.

8)単電池の積層方法
図3は、扁平形状電池10と伝熱板7を積み重ねた積層体を示す断面模式図である。ここで、扁平形状電池10と伝熱板7は符号20で示した両面粘着テープまたは接着剤で固定されるのが好ましい。これらを用いて密着させることで、伝熱板7と扁平形状電池10との隙間をなくし、伝熱効率を高めることができる。これらの粘着テープや接着剤は熱伝導性が高いものが好ましく、市販の熱伝導性両面テープや熱伝導性接着剤を用いることができる。
8) Method for Laminating Single Cells FIG. 3 is a schematic cross-sectional view showing a laminated body in which the flat battery 10 and the heat transfer plate 7 are stacked. Here, it is preferable that the flat battery 10 and the heat transfer plate 7 are fixed with a double-sided pressure-sensitive adhesive tape or an adhesive indicated by reference numeral 20. By using these materials, the gap between the heat transfer plate 7 and the flat battery 10 can be eliminated, and the heat transfer efficiency can be increased. These adhesive tapes and adhesives preferably have high thermal conductivity, and commercially available thermal conductive double-sided tapes and thermal conductive adhesives can be used.

上述のごとく積層された電池は、図5に示すような組電池30となる。伝熱板7の側部突起カバー9で構成された側面に、熱電変換素子(ペルチェ素子)31が貼り付けられる。ペルチェ素子31と側面の貼り付けには先述したような熱伝導性粘着テープ20や接着剤を使うことができる。さらに、この熱電変換素子31と組電池30の側面部分との間に薄いアルミ箔シートを貼り付けることで、組電池間の均熱化を促進することが望ましい。積層された上下の単電池が持つ側部突起カバー9を、それぞれ面接触させることで、単電池間の伝熱をより促進することができるからである。   The battery stacked as described above is an assembled battery 30 as shown in FIG. A thermoelectric conversion element (Peltier element) 31 is attached to the side surface of the heat transfer plate 7 formed by the side protrusion cover 9. For the attachment of the Peltier element 31 and the side surface, the heat conductive adhesive tape 20 or the adhesive as described above can be used. Furthermore, it is desirable to promote soaking between the assembled batteries by sticking a thin aluminum foil sheet between the thermoelectric conversion element 31 and the side surface portion of the assembled battery 30. This is because heat transfer between the single cells can be further promoted by bringing the side projection covers 9 of the stacked upper and lower single cells into surface contact with each other.

9)組電池の制御回路及び制御方法
制御回路基板32は、保護回路(図示せず)と、演算回路32aと、記憶装置32bと、温度制御回路33とを含んでいる。保護回路は、電池の温度管理を行い、かつ電流の調整・遮断等を行う。演算回路32aは、温度検知手段34から温度検出信号を受け、記憶装置32bから所望の算式やデータを呼び出し、演算を行う。さらに、演算回路32aは、HEV駆動システム4のSOC検知手段42からSOC検出信号を受け、記憶装置32bから所望の算式やデータを呼び出し、演算を行う。記憶装置32bは、種々の算式やデータを記憶・格納するデータベースとしての役割を有する。温度制御回路33は、演算回路32aから制御指令信号を受け、それに基づいて熱電変換素子31を制御する。
9) Control circuit and control method for battery pack The control circuit board 32 includes a protection circuit (not shown), an arithmetic circuit 32a, a storage device 32b, and a temperature control circuit 33. The protection circuit controls the temperature of the battery and adjusts / cuts off the current. The arithmetic circuit 32a receives a temperature detection signal from the temperature detection means 34, calls a desired formula or data from the storage device 32b, and performs an operation. Further, the arithmetic circuit 32a receives an SOC detection signal from the SOC detection means 42 of the HEV drive system 4, calls a desired formula or data from the storage device 32b, and performs an operation. The storage device 32b serves as a database for storing and storing various arithmetic expressions and data. The temperature control circuit 33 receives the control command signal from the arithmetic circuit 32a and controls the thermoelectric conversion element 31 based on the control command signal.

なお、扁平電池10がリチウムイオン二次電池の場合は、制御回路基板32に保護回路機能を持たせることが好ましい。組電池30からの正極タブ35aは制御回路基盤32を介して外部端子36aに接続されている。一方、負極タブ35bは直接に外部端子36bに接続されている。また、ペルチェ素子31は制御回路基板32に接続され、必要に応じて電力の供給を受けるようになっている。   In addition, when the flat battery 10 is a lithium ion secondary battery, it is preferable to give the control circuit board 32 a protective circuit function. The positive electrode tab 35 a from the assembled battery 30 is connected to the external terminal 36 a via the control circuit board 32. On the other hand, the negative electrode tab 35b is directly connected to the external terminal 36b. The Peltier element 31 is connected to the control circuit board 32 and is supplied with electric power as required.

制御回路基盤32には、組電池30の温度管理を行うための温度制御回路33が実装されている。温度制御回路33は、組電池の温度を検出するための温度検知手段34から得られた温度情報をもとに、組電池の温度制御のための充放電制御を行うか、ペルチェ素子31への電力供給量及び電流方向を制御する。組電池の温度が高いと判断された場合、電池反応が吸熱反応となるように、組電池の充放電制御を行う。このとき、電池反応によって生じた吸熱量Qs(=Tcell・ΔS)がジュール熱量Qj(=I・R)(I:充放電電流値、R:電池内部抵抗)を上回るように、充放電電流値Iを制御する。これらの吸熱反応を利用した方法で温度制御が困難である場合は、ペルチェ素子31が吸熱となる方向に電流を流すようにする、また、逆に温度が低いと判断された場合には、電池の発熱方向となるように充放電を制御し、これらの発熱反応を利用した方法で温度制御が困難である場合、ペルチェ素子31が発熱方向へ電流を流すように制御するとよい。温度検知手段34として、熱電対やサーミスタといった広く公知の技術を利用することができる。環境温度の影響を受けにくくするため、温度検知手段34は、扁平形状電池10の中心部に配置することが好ましく、伝熱板7と単電池10との間に隙間ができないように配置することが望ましい。具体的には薄型サーミスタを積層間に挟み込み、接着剤で充填することで、単電池10相互間の隙間を排除することができる。なお、図5において、便宜上のため、温度検知手段34は簡略化して表記してある。 A temperature control circuit 33 for managing the temperature of the assembled battery 30 is mounted on the control circuit board 32. The temperature control circuit 33 performs charge / discharge control for temperature control of the assembled battery based on the temperature information obtained from the temperature detection means 34 for detecting the temperature of the assembled battery, Control power supply and current direction. When it is determined that the temperature of the assembled battery is high, charge / discharge control of the assembled battery is performed so that the battery reaction becomes an endothermic reaction. At this time, the charge / discharge current is such that the endothermic amount Qs (= Tcell · ΔS) generated by the battery reaction exceeds the Joule heat amount Qj (= I 2 · R) (I: charge / discharge current value, R: battery internal resistance). Controls the value I. When it is difficult to control the temperature by a method using these endothermic reactions, a current is allowed to flow in the direction in which the Peltier element 31 becomes endothermic. On the contrary, if it is determined that the temperature is low, the battery When it is difficult to control the temperature by the method using these exothermic reactions, it is preferable to control the Peltier element 31 to flow current in the heat generating direction. As the temperature detection means 34, a widely known technique such as a thermocouple or a thermistor can be used. In order to make it less susceptible to the environmental temperature, the temperature detecting means 34 is preferably arranged at the center of the flat battery 10 and arranged so that there is no gap between the heat transfer plate 7 and the unit cell 10. Is desirable. Specifically, a gap between the single cells 10 can be eliminated by sandwiching a thin thermistor between the layers and filling it with an adhesive. In FIG. 5, the temperature detection means 34 is simplified for convenience.

9)組電池の外装構造
これらの組電池30及びペルチェ素子31、保護回路32は電池ケース38に収められ、蓋37でパッケージ化される。ケース38及び蓋37に断熱材(図示せず)を充填または内張りして、断熱構造とする。断熱材には、ウレタン系、フェノール系、ポリスチレン系、セルロース系などの樹脂系断熱材全般が利用可能なほか、グラスウールやロックウール等の難燃性断熱材も適用可能である。このとき、ペルチェ素子のセル貼付面の反対面は直接アルミケースが触れるようにしている。これは、ペルチェ素子31そのもの放熱が必要な場合を考慮している。ペルチェ素子31そのものは優れた伝熱性を有していないことから、これがセルと外装との間に入ることで断熱構造を維持することができる。
9) Exterior structure of assembled battery These assembled battery 30, Peltier element 31, and protection circuit 32 are housed in a battery case 38 and packaged by a lid 37. The case 38 and the lid 37 are filled or lined with a heat insulating material (not shown) to form a heat insulating structure. As the heat insulating material, not only resin-based heat insulating materials such as urethane, phenolic, polystyrene, and cellulose can be used, but also flame retardant heat insulating materials such as glass wool and rock wool can be applied. At this time, the aluminum case directly touches the surface opposite to the cell attachment surface of the Peltier element. This considers the case where the Peltier element 31 itself needs to dissipate heat. Since the Peltier element 31 itself does not have excellent heat conductivity, the heat insulating structure can be maintained by entering between the cell and the exterior.

ラミネート外装電池の場合、電池を直接に冷却する機構は、その伝熱性能の低さから、あまり効果的ではなく、電池の温度上昇は電池の熱容量で決まることが多い。従って、外部に冷却機構を持つことは効率的ではなく、むしろ断熱構造を持たせることで、環境温度などの外部からの熱的影響を避けることができ、ペルチェ素子による保温、冷却効率が高まるため好ましい。また、充放電時の発熱・吸熱反応を利用して電池温度を制御することで、活物質そのものが吸熱、または発熱が起こるため、従来の冷却・加温方法にくらべて伝熱が速く、熱分布が生じにくいという利点もある。熱媒体による温度制御を持つ従来構成の組電池では、電池表面と内部で温度差を生じ、これが電池寿命の低下を招くことが知られている。本発明の構成においては、先述のように熱分布が生じにくいため電池の寿命を延ばすことが可能である。   In the case of a laminated battery, the mechanism for directly cooling the battery is not very effective due to its low heat transfer performance, and the temperature rise of the battery is often determined by the heat capacity of the battery. Therefore, it is not efficient to have an external cooling mechanism. Rather, by providing a heat insulation structure, it is possible to avoid thermal influences from the outside such as the environmental temperature, and the thermal insulation and cooling efficiency by the Peltier element increases. preferable. In addition, by controlling the battery temperature using the exothermic / endothermic reaction during charging / discharging, the active material itself absorbs or generates heat, so heat transfer is faster than conventional cooling / heating methods. There is also an advantage that distribution is difficult to occur. It is known that a battery pack having a conventional configuration with temperature control using a heat medium causes a temperature difference between the battery surface and the inside, which leads to a reduction in battery life. In the configuration of the present invention, as described above, since the heat distribution hardly occurs, the life of the battery can be extended.

10)組電池の充電制御方法
パッケージ化された組電池システムの温度制御は、主に充放電電流を制御することで行い、それらが有効に機能しない場合やあらかじめ規定された温度範囲から逸脱した場合に限り、ペルチェ素子31などの熱電変換素子で温度制御を行う。
10) Charge control method for battery pack
The temperature control of the packaged assembled battery system is performed mainly by controlling the charge / discharge current, and only when the Peltier element 31 or the like is used when they do not function effectively or deviate from a predetermined temperature range. Temperature control is performed with a thermoelectric conversion element.

図6は、ハイブリッド型電気自動車(HEV)への適用例として、組電池の電池システム3およびHEV駆動システム4を有する制御系統を示すブロック図である。組電池30の電池温度を検出する温度検知手段34から送られた温度信号S1と、電池の充放電深度(SOC)を管理・計測するSOC検出手段42から送られたSOC情報信号S7は、マイコンなどの演算回路32aに送られる。走行中に、セル温度があらかじめ規定されている温度領域よりも高い温度になった場合、HEV駆動システム4の動力制御回路44にモータ動力45の一時停止を促し、主動力をエンジン動力46へと切り替える。   FIG. 6 is a block diagram showing a control system having an assembled battery system 3 and an HEV drive system 4 as an application example to a hybrid electric vehicle (HEV). The temperature signal S1 sent from the temperature detection means 34 for detecting the battery temperature of the assembled battery 30 and the SOC information signal S7 sent from the SOC detection means 42 for managing and measuring the charge / discharge depth (SOC) of the battery are: To the arithmetic circuit 32a. When the cell temperature becomes higher than a predetermined temperature range during traveling, the power control circuit 44 of the HEV drive system 4 is urged to temporarily stop the motor power 45 and the main power is transferred to the engine power 46. Switch.

次に、組電池が持つ吸熱反応領域に合わせたSOCの調整を行う。SOCの調整は、電池電力の消費または充電により行うものとし、演算回路32aにより制御される。吸熱領域のSOCおよび、吸収熱量等の電池の熱的な基本データは、あらかじめマップ化され、これらのデータは記憶装置32bに収容されている。   Next, the SOC is adjusted in accordance with the endothermic reaction region of the assembled battery. The SOC is adjusted by battery power consumption or charging, and is controlled by the arithmetic circuit 32a. The basic thermal data of the battery, such as the SOC of the heat absorption region and the amount of heat absorbed, is mapped in advance, and these data are stored in the storage device 32b.

次に、SOCが吸熱反応領域に入ったら、組電池30の吸熱反応を起こす方向に電流を制御する。すなわち、充電により吸熱する電池10の場合は充電方向に、その逆は放電方向に制御を行うものとする。主として、充電時に吸熱となる二次電池が多いことから、吸熱時の充電電流は走行中の車両から発生する回生エネルギーなどを利用すると良い。このとき、記憶装置32bのデータを参照し、演算回路32aにより、適切な電流値を決定する。組電池30の吸熱反応により、電池の冷却が行われているかを温度検知手段34からの信号S1により確認し、冷却された場合にはHEV駆動システム4の動力制御回路44へ信号S6を送り、通常の運転モードへと戻す。このとき、電池の冷却速度より電池の発熱速度が速いなど、効率的に熱量を吸収できずに温度が上昇し続けた場合、演算回路32aから温度制御回路33を介して熱電素子31に電力を供給して冷却を行う(信号S2→信号S3)。   Next, when the SOC enters the endothermic reaction region, the current is controlled in a direction in which the endothermic reaction of the assembled battery 30 occurs. That is, in the case of the battery 10 that absorbs heat by charging, control is performed in the charging direction and vice versa. Mainly, since there are many secondary batteries that absorb heat during charging, it is preferable to use regenerative energy generated from a running vehicle as the charging current during heat absorption. At this time, referring to the data in the storage device 32b, an appropriate current value is determined by the arithmetic circuit 32a. Whether or not the battery is being cooled by the endothermic reaction of the assembled battery 30 is confirmed by a signal S1 from the temperature detecting means 34. If the battery is cooled, a signal S6 is sent to the power control circuit 44 of the HEV drive system 4, Return to normal operation mode. At this time, when the temperature continues to rise without efficiently absorbing heat, such as when the heat generation rate of the battery is faster than the cooling rate of the battery, power is supplied from the arithmetic circuit 32a to the thermoelectric element 31 via the temperature control circuit 33. Supply and cool (signal S2 → signal S3).

次に、電池10の温度が規定の温度領域よりも低い温度になった場合、電池10の発熱領域を記憶装置32bからの情報信号S5をもとに、電池のジュール発熱を利用して加熱を行うように、HEV駆動システム4の動力制御回路44へ信号S6を送る。このとき、極端に低温度の環境での車両の始動時、あるいは始動直後の場合は、温度制御回路33を介して熱電変換素子31に電力を供給して組電池30の加熱を行う。   Next, when the temperature of the battery 10 becomes lower than the specified temperature range, the heat generation area of the battery 10 is heated using the Joule heat generation of the battery based on the information signal S5 from the storage device 32b. To do so, a signal S6 is sent to the power control circuit 44 of the HEV drive system 4. At this time, when the vehicle is started in an extremely low temperature environment or immediately after the start, the assembled battery 30 is heated by supplying power to the thermoelectric conversion element 31 via the temperature control circuit 33.

本実施形態では温度制御回路33を電池パック内部に収納するようにしたが、本発明はこの設置方法に限定されるものではない。例えば、通信などの手段によって、本発明の組電池から外部回路へ温度情報を与えるようにし、電気熱交換器への電力供給も外部から行うようにすることで、完全に外部回路から電池の温度制御をすることも可能となる。また、複数の組電池30を組み合わせて1つのモジュールとして使用する場合、温度制御回路33はモジュールごとに装備するのが好ましい。この場合、構成される組電池から温度検知手段34によって検知された温度情報を一括して管理し、制御する回路を少なくとも1つ有すればよい。また、電池の充放電による吸熱反応を利用するだけで電池温度制御が可能な用途においては、高価な熱電変換素子を省略して低コスト化することも可能である。   In the present embodiment, the temperature control circuit 33 is housed in the battery pack, but the present invention is not limited to this installation method. For example, by providing temperature information from the assembled battery of the present invention to an external circuit by means of communication or the like, and supplying power to the electric heat exchanger from the outside, the temperature of the battery is completely from the external circuit. It is also possible to control. Moreover, when combining the some assembled battery 30 and using it as one module, it is preferable to equip the temperature control circuit 33 for every module. In this case, it is only necessary to have at least one circuit that collectively manages and controls the temperature information detected by the temperature detection means 34 from the assembled battery. In applications where the battery temperature can be controlled simply by using the endothermic reaction due to charging / discharging of the battery, it is possible to reduce the cost by omitting expensive thermoelectric conversion elements.

このように、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   As described above, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

上記のごとくして構成される本発明の一実施形態である組電池を用いて、実際に充放電試験を行い電池内部の温度分布及び異なる温度環境下における電池パックの動作安定性を確認した。比較例として、市販のラミネート型リチウムイオン電池を用いて、従来公知の手法で組電池を構成し、冷却媒体として空気を用いて、充放電試験を行った。   Using the assembled battery which is one embodiment of the present invention configured as described above, a charge / discharge test was actually performed to confirm the temperature distribution inside the battery and the operational stability of the battery pack under different temperature environments. As a comparative example, a commercially available laminate-type lithium ion battery was used to construct a battery pack by a conventionally known method, and a charge / discharge test was performed using air as a cooling medium.

次に種々の実施例と比較例を説明する。   Next, various examples and comparative examples will be described.

[実施例1]
正極活物質にリチウムコバルト酸化物(LiCoO2)を用いた。正極活物質、導電材及び結着剤を配合してn−メチルピロリドン(NMP)溶媒に分散してスラリーを調製した。得られたスラリーを厚さ15μmで、平均結晶粒子径が50μmのアルミニウム箔(純度99.99%)に塗布、乾燥、プレス工程を経て正極を作製した。
[Example 1]
Lithium cobalt oxide (LiCoO 2 ) was used as the positive electrode active material. A positive electrode active material, a conductive material, and a binder were blended and dispersed in an n-methylpyrrolidone (NMP) solvent to prepare a slurry. The obtained slurry was applied to an aluminum foil (purity 99.99%) having a thickness of 15 μm and an average crystal particle diameter of 50 μm, followed by drying and pressing steps to produce a positive electrode.

負極活物質としてチタン酸リチウム(Li4Ti5O12)を用意した。負極活物質、導電材及び結着剤を配合してn−メチルピロリドン(NMP)溶媒に分散してスラリーを調製した。得られたスラリーを厚さ15μmで、平均結晶粒子径が50μmのアルミニウム箔(純度99.99%)に塗布、乾燥、プレス工程を経て負極を作製した。 Lithium titanate (Li 4 Ti 5 O 12 ) was prepared as a negative electrode active material. A negative electrode active material, a conductive material, and a binder were blended and dispersed in an n-methylpyrrolidone (NMP) solvent to prepare a slurry. The obtained slurry was applied to an aluminum foil (purity 99.99%) having a thickness of 15 μm and an average crystal particle diameter of 50 μm, followed by drying and pressing steps to produce a negative electrode.

次に、厚さ20μmの帯状ポリエチレン製多孔質フィルムのセパレータを横向きに配し、その左端に短冊状に裁断した正極片を乗せ、セパレータを正極片の右端に沿って左に折り返し、その上に、短冊状に裁断した負極片を乗せ、セパレータを負極片の左端に沿って右に折り返し、という手順を繰り返して、正極と負極をその間に九十九に折られたセパレータを挟みながら積層し、正極を31枚及び負極を30枚有する発電要素を作製した。   Next, a strip of porous polyethylene porous film having a thickness of 20 μm is placed horizontally, and a positive electrode piece cut into a strip shape is placed on the left end of the separator, and the separator is folded back to the left along the right end of the positive electrode piece. The negative electrode piece cut into strips is placed, and the separator is folded back along the left end of the negative electrode piece to the right, and the positive electrode and the negative electrode are stacked while sandwiching the separator folded in ninety-nine times between them, A power generation element having 31 positive electrodes and 30 negative electrodes was produced.

作製した発電要素は、プレスし、形状を整えた後、正極端子と負極端子を接続し、ラミネートフィルム製の外装部材内に密封し、非水電解質を注液し、容量3Ahの扁平状の非水電解質二次電池を作製した。得られた二次電池の満充電電圧VHは2.8Vであった。 The produced power generation element was pressed and adjusted in shape, and then the positive electrode terminal and the negative electrode terminal were connected, sealed in an exterior member made of a laminate film, injected with a non-aqueous electrolyte, and a flat non-aqueous electrolyte with a capacity of 3 Ah. A water electrolyte secondary battery was produced. The full charge voltage V H of the obtained secondary battery was 2.8V.

この単電池のエントロピー変化ΔSを測定するため、SOCを0〜100%の間で10%間隔で揃えた電池を、20℃の恒温相中に24時間以上保持し、その後、10〜40℃の間で10℃ごとに、それぞれ6時間保って電池の開放電圧Voの温度変化から、dVo/dTを測定し、(6)式からエントロピー変化量ΔSを算出した。   In order to measure the entropy change ΔS of this single cell, a battery in which SOCs are aligned at 10% intervals between 0 to 100% is kept in a constant temperature phase of 20 ° C. for 24 hours or more, and then 10 to 40 ° C. DVo / dT was measured from the temperature change of the open circuit voltage Vo of the battery every 10 ° C. for 6 hours, and the entropy change ΔS was calculated from the equation (6).

ΔS=−(∂ΔG/∂T)=n・F・(∂E/∂T) …(6)
その結果、図8中に特性線Aで示すように、電池の全エントロピー変化は、充電時における全充放電深度の50%以上の領域において、ピーク吸熱量の50%以上を維持していることが判明した。これは、従来のカーボン系負極に比べ、スピネル型チタン酸リチウム(Li4Ti5O12)の充電時の発熱がほとんど無く、正極のコバルト酸リチウムの吸熱反応を最大限利用することができたためである。
ΔS = − (∂ΔG / ∂T) = n · F · (∂E / ∂T) (6)
As a result, as shown by the characteristic line A in FIG. 8, the total entropy change of the battery maintains 50% or more of the peak heat absorption in the region of 50% or more of the total charge / discharge depth during charging. There was found. Compared to the conventional carbon-based negative electrode, there was almost no heat generation during the charge of spinel type lithium titanate (Li 4 Ti 5 O 12 ), and the endothermic reaction of lithium cobalt oxide of the positive electrode could be utilized to the maximum extent. It is.

図1(b)に示すトレー状伝熱板7をアルミニウム板で作製し、熱伝導性粘着テープ20でトレー7とセル10を張り付け、これを9個直列に接続して積層した。側部突起カバー9がモザイク状に組み合わされることにより、組電池30の両側面が形成される。   A tray-like heat transfer plate 7 shown in FIG. 1B was made of an aluminum plate, and the tray 7 and the cell 10 were attached with a heat conductive adhesive tape 20, and nine of them were connected in series and laminated. By combining the side protrusion covers 9 in a mosaic shape, both side surfaces of the assembled battery 30 are formed.

上述した電池の電極タブ12a,12bを超音波溶接により電気的接合を行った。面内の温度分布を調べるため、積層した電池10には温度検知用の薄型サーミスタを図7に示す5つの測定点34a,34b,34c,34d,34eにそれぞれ配置した。サーミスタの取り付けに際しては伝熱板7との間に隙間ができないように注意深く組み付けた。   The electrode tabs 12a and 12b of the battery described above were electrically joined by ultrasonic welding. In order to examine the in-plane temperature distribution, the laminated battery 10 was provided with thin temperature thermistors for temperature detection at the five measurement points 34a, 34b, 34c, 34d, and 34e shown in FIG. When installing the thermistor, it was carefully assembled so that there was no gap between it and the heat transfer plate 7.

次に、側部突起カバー9からなる組電池30の両側面にアルミ箔をそれぞれ接着し、均熱しやすくした。アルミ箔の接着には熱伝導性接着剤を用いた。さらに、組電池30の側面とほぼ同じ面積の1段汎用ペルチェ素子31を両側面にそれぞれ貼り付けた。ペルチェ素子31は、温度制御回路33に電気的に接続され、上述した温度検知用サーミスタのうち電池の中心部にあるものを制御用温度情報として用いた。これらの組電池システムを図5に示す断熱ケース38内に収納した。ケース38の本体はアルミニウムで作製し、断熱材として発泡ウレタンをケース本体に内張りした。なお、断熱材は、組電池30とケース38の本体との間の空隙が断熱材で埋まるように充填した。   Next, aluminum foil was bonded to both side surfaces of the assembled battery 30 including the side protrusion cover 9 to facilitate soaking. A heat conductive adhesive was used for bonding the aluminum foil. Furthermore, the 1 step | paragraph general-purpose Peltier element 31 of the substantially same area as the side surface of the assembled battery 30 was affixed on both side surfaces, respectively. The Peltier element 31 is electrically connected to the temperature control circuit 33, and the temperature detection thermistor at the center of the battery is used as control temperature information. These assembled battery systems were housed in a heat insulating case 38 shown in FIG. The main body of the case 38 was made of aluminum, and urethane foam was lined on the case main body as a heat insulating material. The heat insulating material was filled so that the space between the assembled battery 30 and the main body of the case 38 was filled with the heat insulating material.

この実施例1では、制御回路基板32は、電池ケース38の外部に接続して実験を行った。本実施例では、HEV車両の走行パターンをHEV車両の走行パターンを簡易的にシミュレートした充放電パターンを用いて行った。組電池30は温度制御された恒温槽中に保持され、環境温度を25℃に保って実験を行った。試験時の組電池のSOCは、電池としても実用的で吸熱反応を利用しやすい50%とした。10Cレートの模擬HEV型パルス入出力を行うことで、組電池を45℃まで温度上昇させ、その後、3Cで連続的に充電を行うことで組電池の冷却効果を検証し、温度制御を行った。ここで、1Cとは、単電池を1時間で放電しきるに要する電流値であり、便宜的には単電池の公称容量の数値を1C電流値と置き換えることができる。   In Example 1, the control circuit board 32 was connected to the outside of the battery case 38 for the experiment. In this example, the running pattern of the HEV vehicle was performed using a charge / discharge pattern that simply simulated the running pattern of the HEV vehicle. The assembled battery 30 was held in a temperature-controlled thermostat, and the experiment was conducted while maintaining the environmental temperature at 25 ° C. The SOC of the assembled battery at the time of the test was 50%, which is practical as a battery and easily uses an endothermic reaction. By performing 10C rate simulated HEV type pulse input / output, the temperature of the assembled battery was raised to 45 ° C., and then the cooling effect of the assembled battery was verified by continuously charging at 3C, and temperature control was performed. . Here, 1C is a current value required to completely discharge the cell in 1 hour, and for convenience, the nominal capacity value of the cell can be replaced with the 1C current value.

図9には、本試験における組電池への電流(A)とセル温度(℃)との関係を示した。10Cのレートでパルス放電を行っている領域では、セル温度は単調に増加していることが判明した。これは、電池の発熱反応とジュール熱に伴う温度上昇である。中心部のセル温度が45℃付近に達したときの組電池内部での温度分布はあまり観測されなかったことから、断熱によって表面からの放熱が少ないことが確認でき、伝熱板による均熱効果も確認された。次に、充電モードへ切り替えてから各セルは徐々に冷却され、およそ5分間程度で30℃以下となった。また、この冷却過程においても、各セルの温度分布は殆ど観測されなかった。なお、図9には、すべての測定点温度を表記することは困難であったので、代表的なセル温度のみを抜粋して示した。   FIG. 9 shows the relationship between the current (A) to the assembled battery and the cell temperature (° C.) in this test. It was found that the cell temperature monotonously increased in the region where pulse discharge was performed at a rate of 10C. This is a temperature rise accompanying the exothermic reaction and Joule heat of the battery. When the cell temperature in the center reached around 45 ° C, the temperature distribution inside the battery pack was not observed so much, so it was confirmed that the heat dissipation from the surface was small due to heat insulation, and the soaking effect by the heat transfer plate Was also confirmed. Next, after switching to the charging mode, each cell was gradually cooled down to 30 ° C. or less in about 5 minutes. Also, in this cooling process, the temperature distribution of each cell was hardly observed. In FIG. 9, since it was difficult to describe all measurement point temperatures, only representative cell temperatures were extracted and shown.

[実施例2]
電池の連続放電を必要とする用途の場合、パルス放電に比べてセルの温度上昇勾配が大きい。また、放電中から冷却を行う必要があるため、実施例1のような吸熱反応を利用した温度制御は困難である。このような状況を想定して、本実施例2では、大電流で連続放電をしている電池に対する冷却試験を行った。実施例1と同様に組電池システムを作成し、25℃環境温度中で実験を行った。この組電池を、20Cの放電レートで連続放電を行い、電池温度が30℃に達した時点で、ペルチェ素子31による冷却を行うことで、組電池の温度制御を検証した。組電池のSOCは100%すなわち満充電状態より連続放電を行った。
[Example 2]
In applications that require continuous discharge of the battery, the temperature rise gradient of the cell is larger than that of pulse discharge. Moreover, since it is necessary to perform cooling from during discharge, temperature control using an endothermic reaction as in Example 1 is difficult. Assuming such a situation, in Example 2, a cooling test was performed on a battery that is continuously discharged with a large current. An assembled battery system was prepared in the same manner as in Example 1, and the experiment was performed at an ambient temperature of 25 ° C. The assembled battery was continuously discharged at a discharge rate of 20 C, and when the battery temperature reached 30 ° C., cooling by the Peltier element 31 was performed to verify temperature control of the assembled battery. The SOC of the assembled battery was 100%, that is, the battery was continuously discharged from the fully charged state.

図10には、20Cレートで放電しながら、ペルチェ素子31で冷却を行ったときの電池の温度変化を示した。比較のため、冷却なしで連続放電を行った場合の温度変化(図10中に破線で示した特性線E)も併記してある。電池温度が30℃に達してからペルチェ素子31により組電池30の冷却を開始した。冷却開始直後から温度上昇は緩和され、完全放電時まで運転時のセル温度を40℃以下に保つことができた。また、温度の分布に関しては、積層方向での温度分布は殆ど確認できなかったが、面内では若干、ペルチェ素子31に近い側で温度が低くなる傾向が確認されたが、セル中心部(図10の特性線C;図7の符号34cの位置に相当)とペルチェ素子側(図10の特性線D;図7の符号34bと34dの位置に相当)との温度差も最大5℃以内に抑えられた。   FIG. 10 shows the temperature change of the battery when the Peltier element 31 is cooled while discharging at a 20 C rate. For comparison, a temperature change (characteristic line E indicated by a broken line in FIG. 10) when continuous discharge is performed without cooling is also shown. After the battery temperature reached 30 ° C., cooling of the assembled battery 30 was started by the Peltier element 31. The temperature rise was moderated immediately after the start of cooling, and the cell temperature during operation could be kept at 40 ° C. or lower until complete discharge. As for the temperature distribution, the temperature distribution in the stacking direction could hardly be confirmed, but it was confirmed that the temperature slightly decreased on the side closer to the Peltier element 31 in the plane. 10 characteristic line C (corresponding to the position of 34c in FIG. 7) and the Peltier element side (characteristic line D in FIG. 10; corresponding to the positions of 34b and 34d in FIG. 7) are within a maximum of 5 ° C. It was suppressed.

[比較例1]
比較例1として一般的に広く用いられている扁平形電池の組電池を作成し、その特性を上述の実施例と対比して調べた。この比較例1では、実施例1で作成した電池とほぼ同じ熱容量となるようなサイズの市販のアルミラミネート型リチウムイオン二次電池を使用した。実施例1と同様に、この単電池のエントロピー変化を測定するため、SOCを0〜100%の間で10%間隔で揃えた電池を、20℃の恒温相中に24時間以上保持し、その後、10〜40℃の間で10℃ごとに、それぞれ6時間保って電池の開放電圧Voの温度変化から、dVo/dTを測定し、上述の(6)式からエントロピー変化量ΔSを算出した。市販のリチウムイオン二次電池は、負極に炭素系材料を用いていることから、充電時に負極の発熱が生じる。このため、図11中に特性線Fで示すように、充電時におけるピーク吸熱量の50%以上を維持している領域(特性線Fの破線で示す領域)は、全充放電深度の僅か30%程度にとどまっていることが判明した。
[Comparative Example 1]
An assembled battery of a flat battery generally used widely as Comparative Example 1 was prepared, and its characteristics were examined in comparison with the above-described Examples. In Comparative Example 1, a commercially available aluminum laminate type lithium ion secondary battery having a size almost equal to that of the battery prepared in Example 1 was used. As in Example 1, in order to measure the entropy change of this single cell, a battery in which SOCs were aligned at 10% intervals between 0 to 100% was kept in a constant temperature phase of 20 ° C. for 24 hours or more. DVo / dT was measured from the temperature change of the open circuit voltage Vo of the battery at 10 ° C between 10 and 40 ° C for 6 hours, and the entropy change ΔS was calculated from the above equation (6). Since a commercially available lithium ion secondary battery uses a carbon-based material for the negative electrode, the negative electrode generates heat during charging. For this reason, as shown by the characteristic line F in FIG. 11, the region that maintains 50% or more of the peak heat absorption during charging (the region indicated by the broken line of the characteristic line F) is only 30 of the full charge / discharge depth. It was found that it remained at about%.

この市販のリチウムイオン二次電池を、実施例1と同様に、アルミニウム製トレー状伝熱板熱を性粘着テープでセルを張り付け、これを9個直列に接続して積層した。上述した電池の電極タブを超音波溶接により電気的接合を行った。面内の温度分布を調べるため、積層した電池には温度検知用の薄型サーミスタを面内に5箇所設置した。サーミスタの取り付けに際しては伝熱板との間に隙間ができないように注意深く組付けた。これらの組電池システムを実施例1と同様に断熱構造を持つケースに収めた。   In the same manner as in Example 1, the commercially available lithium ion secondary battery was laminated by connecting aluminum tray-like heat transfer plate heat with a sticky adhesive tape and connecting 9 cells in series. The battery electrode tabs described above were electrically joined by ultrasonic welding. In order to investigate the in-plane temperature distribution, the laminated batteries were provided with five thin thermistors for temperature detection in the plane. When installing the thermistor, it was carefully assembled so that there was no gap between it and the heat transfer plate. These assembled battery systems were housed in a case having a heat insulating structure in the same manner as in Example 1.

比較例1でも同様に、HEV車両の走行パターンを簡易的にシミュレートした充放電パターンを用いて行った。組電池を温度制御された恒温槽中に保持し、環境温度25℃として実験を行った。試験時の組電池のSOCは、ΔS測定の結果から、最も吸熱反応を利用しやすいと思われる20%とした。10Cレートの模擬HEV型パルス入出力を行うことで、組電池を45℃まで温度上昇させ、その後、3Cで連続的に充電を行うことで組電池の冷却効果を検証し、温度制御を行った。ここで、1Cとは、単電池を1時間で放電しきるに要する電流値であり、便宜的には単電池の公称容量の数値を1C電流値と置換ることができる。   Similarly in Comparative Example 1, the charging / discharging pattern that simply simulated the running pattern of the HEV vehicle was used. The assembled battery was held in a temperature-controlled thermostat and the experiment was conducted at an environmental temperature of 25 ° C. The SOC of the assembled battery at the time of the test was set to 20%, which seems to be most likely to use the endothermic reaction from the result of ΔS measurement. By performing 10C rate simulated HEV type pulse input / output, the temperature of the assembled battery was raised to 45 ° C., and then the cooling effect of the assembled battery was verified by continuously charging at 3C, and temperature control was performed. . Here, 1C is a current value required to completely discharge the cell in one hour, and for convenience, the nominal capacity value of the cell can be replaced with the 1C current value.

図12は、横軸に時間(分)をとり、縦軸に組電池の温度(℃)と組電池への供給電流(A)をとって、組電池の温度の変化と供給電流の変化との相関を調べた結果を示す特性線図である。図中にて複数の特性線群Gは組電池の各部位(図7の温度測定点34a,34b,34c,34d)の温度変化を示し、特性線Hは組電池への供給電流の変化(充電と放電の繰り返し)を示している。   In FIG. 12, the horizontal axis represents time (minutes), and the vertical axis represents the battery temperature (° C.) and the supply current (A) to the battery pack. It is a characteristic diagram which shows the result of having investigated the correlation. In the figure, a plurality of characteristic line groups G indicate changes in temperature of each part of the assembled battery (temperature measurement points 34a, 34b, 34c, 34d in FIG. 7), and a characteristic line H indicates changes in the supply current to the assembled battery ( Charging and discharging).

市販のリチウムイオン二次電池は内部抵抗が高いため、10Cという高レートでパルス放電を繰り返すと、短時間のうちに温度上昇が起こり、45℃に達した。次に、放電モードから充電モードへ切り替えたところ、冷却現象はほとんど観測されず、温度上昇が少し継続した後、緩やかな温度低下が見られた。これは、3Cで充電を行ったときに、抵抗過電圧などによるジュール発熱が支配的となり、結果として冷却効果が得られなかったためである。また、充電レートを1Cまで下げても、ほぼ同様の結果となった。これは、SOCが20%前後と低い領域において、正極材料のインピーダンスが上昇しているためと考えられ、充電反応による吸熱量に対して、低SOCにおけるインピーダンス上昇により発熱量の方が多くなってしまっていることを示唆している。これから、吸熱反応領域が狭い活物質の組み合わせでは、十分な冷却効果が得られないことが判明した。   Since a commercially available lithium ion secondary battery has high internal resistance, when pulse discharge was repeated at a high rate of 10 C, the temperature rose within a short time and reached 45 ° C. Next, when switching from the discharge mode to the charge mode, almost no cooling phenomenon was observed, and after a slight temperature increase, a moderate temperature decrease was observed. This is because when charging is performed at 3C, Joule heat generation due to resistance overvoltage or the like becomes dominant, and as a result, a cooling effect cannot be obtained. Moreover, even if the charge rate was lowered to 1C, almost the same result was obtained. This is thought to be because the impedance of the positive electrode material is increased in a region where the SOC is as low as about 20%, and the amount of heat generated is higher due to the increase in impedance at low SOC than the amount of heat absorbed by the charging reaction. It suggests that it is trapped. From this, it has been found that a sufficient cooling effect cannot be obtained with a combination of active materials having a narrow endothermic reaction region.

以上の結果から、比較例1では、高速充放電時において組電池の面内温度分布および積層温度分布のばらつきが共に大きい。これらの温度分布のばらつきが大きいと、組電池内の特定の単電池に過大な負荷がかかるため、比較例1の組電池は寿命が短い。これに対して、実施例1では、高速充放電時において組電池の面内温度分布と積層温度分布のばらつきが小さく、かつ、単電池間の温度のばらつきも小さい。このため、実施例1の組電池は寿命が長い。   From the above results, in Comparative Example 1, the variations in the in-plane temperature distribution and the stacking temperature distribution of the assembled battery during high-speed charge / discharge are large. If the variation in these temperature distributions is large, an excessive load is applied to a specific unit cell in the assembled battery, so that the assembled battery of Comparative Example 1 has a short life. On the other hand, in Example 1, the variation in the in-plane temperature distribution and the stacking temperature distribution of the assembled battery during the high-speed charge / discharge is small, and the temperature variation between the single cells is also small. For this reason, the assembled battery of Example 1 has a long life.

[比較例2]
比較例2では、扁平型電池を積層する際に、従来公知の手法通り、電池間にスペーサを設けることで隙間を空け、ここに熱媒体としてファンで空気を送風して電池の温度制御をするという特許文献1,3と同様の方法を比較した。
[Comparative Example 2]
In Comparative Example 2, when flat batteries are stacked, a gap is formed by providing a spacer between the batteries as in a conventionally known technique, and the temperature of the battery is controlled by blowing air with a fan as a heat medium. The same methods as in Patent Documents 1 and 3 were compared.

これも実施例1と同様に薄型サーミスタを面内5箇所に配置し温度分布を測定した。セル間の隙間に生じる圧力損失を計算すると、組電池の周囲を風洞のような形状で覆い、少なくとも5mm以上の隙間が必要であることが判明した。そこで、図13に示すように隣り合う電池間に5mmの間隙11をもうけて積層し、アルミ製のケース110に収めた。組電池の側面から風速10m/sとなるように電動ファン111を用いて送風し、組電池を冷却した。   Similarly to Example 1, thin thermistors were arranged at five locations in the plane, and the temperature distribution was measured. When the pressure loss generated in the gap between the cells was calculated, it was found that the periphery of the assembled battery was covered with a wind tunnel-like shape and a gap of at least 5 mm or more was necessary. Therefore, as shown in FIG. 13, the batteries were stacked with a gap 11 of 5 mm between adjacent batteries, and housed in an aluminum case 110. The assembled battery was cooled by blowing air using an electric fan 111 so that the wind speed was 10 m / s from the side of the assembled battery.

実施例2と同様に20Cという高レートで連続放電を行うと、市販のリチウムイオン二次電池は内部抵抗が高いため、短時間のうちに温度上昇した。中心の電池温度が30℃を超えたところから、電動ファンによる空冷を行った。その結果を図14に示した。空冷開始直後は、温度低下がほとんど観測されず、その後、セル温度上昇の勾配は次第に低下していくものの、面内の温度分布が大きくなっていった。放電が終了した3分後では面内に5℃以上の温度差が生じた。   When continuous discharge was performed at a high rate of 20 C as in Example 2, the temperature of the commercially available lithium ion secondary battery increased in a short time because of high internal resistance. When the center battery temperature exceeded 30 ° C., air cooling with an electric fan was performed. The results are shown in FIG. Immediately after the start of air cooling, almost no temperature decrease was observed, and then the gradient of the cell temperature increase gradually decreased, but the in-plane temperature distribution increased. Three minutes after the end of the discharge, a temperature difference of 5 ° C. or more occurred in the surface.

図14中に特性線Qで示すように、風上となる位置、すなわち図7の測定点34bの位置では50℃程度となった。一方、図14中に特性線Pで示すように、風下となる位置、すなわち図7の測定点34dの位置では55℃近い温度を維持している箇所も確認された。これから、冷却風の風上と風下で電池の面内温度差を生じることが判明した。   As indicated by the characteristic line Q in FIG. 14, the temperature was about 50 ° C. at the windward position, that is, at the measurement point 34b in FIG. On the other hand, as indicated by the characteristic line P in FIG. 14, it was confirmed that the temperature was close to 55 ° C. at the leeward position, that is, at the measurement point 34 d in FIG. 7. From this, it has been found that an in-plane temperature difference of the battery occurs between the windward and leeward cooling air.

図14中の特性線Rは、まったく送風を行わない場合の電池の温度変化結果である。これから明らかなように、比較例2では、冷却の有無による差が、実施例2と比べて小さい。さらに、冷却媒体を考慮した構造では組電池のケースサイズが大きくなるため、容積エネルギー密度が低下するという問題もある。また、ファン空冷による冷却は、冷却効率が悪いだけでなく、流路の圧力損失などにより風量が変化するため、温度分布が生じやすい。   A characteristic line R in FIG. 14 is a result of temperature change of the battery when no ventilation is performed. As is clear from this, in Comparative Example 2, the difference due to the presence or absence of cooling is smaller than that in Example 2. Furthermore, in the structure in which the cooling medium is taken into account, the case size of the assembled battery becomes large, and there is a problem that the volumetric energy density is lowered. Further, the cooling by fan air cooling not only has a low cooling efficiency, but also the temperature distribution tends to occur because the air volume changes due to the pressure loss of the flow path.

比較例2では、熱媒体として空気を用いるため、周囲環境温度に影響されやすい。特に低温では、単電池の動作温度範囲外では十分な性能が得られず出力特性の低化が著しい。比較例2の組電池は、室温で用いる分には、高速充放電時に電池の冷却が可能であるが、周囲温度が高温度の場合、冷却ファンを回しても温度が下がらず、電池の性能劣化が著しくなることがわかる。   In Comparative Example 2, since air is used as the heat medium, it is easily affected by the ambient temperature. In particular, at low temperatures, sufficient performance cannot be obtained outside the operating temperature range of the unit cell, and output characteristics are significantly reduced. The battery pack of Comparative Example 2 can cool the battery during high-speed charge / discharge when used at room temperature. However, when the ambient temperature is high, the temperature does not decrease even when the cooling fan is turned on. It turns out that deterioration becomes remarkable.

一方、実施例1にて温度制御を行った場合、低温下では電池温度をある程度維持することで、出力特性が改善されている様子が分かる。一方、高温下ではペルチェ素子の冷却効果により、電池の温度上昇を抑えることができ、周囲の環境温度に影響されにくいことがわかる。   On the other hand, when temperature control is performed in Example 1, it can be seen that the output characteristics are improved by maintaining the battery temperature to some extent at low temperatures. On the other hand, it can be seen that at a high temperature, the temperature rise of the battery can be suppressed due to the cooling effect of the Peltier element, and is hardly affected by the ambient environmental temperature.

以上の結果から、比較例2(従来の冷却手法)は、電池寿命に影響を与えることが懸念されるばかりでなく、ファンで消費される電力も考慮にいれると、実施例1よりもエネルギー効率が低い。   From the above results, Comparative Example 2 (conventional cooling method) is not only concerned about affecting the battery life but also more energy efficient than Example 1 when the power consumed by the fan is taken into account. Is low.

本発明は、携帯型電子機器、ハイブリッド自動車、電気自動車、電力貯蔵設備などの種々の電源に利用することができる。   The present invention can be used for various power sources such as portable electronic devices, hybrid vehicles, electric vehicles, and power storage facilities.

(a)は角型扁平形状の単電池を示す斜視図、(b)は伝熱板を示す斜視図。(A) is a perspective view which shows a square-shaped flat cell, (b) is a perspective view which shows a heat exchanger plate. 電池/伝熱板アッセンブリを示す分解斜視図。The disassembled perspective view which shows a battery / heat-transfer plate assembly. 本発明の組電池の一部を示す拡大断面図。The expanded sectional view which shows a part of assembled battery of this invention. 単電池を覆うラミネート外装を示す拡大断面図。The expanded sectional view which shows the laminate exterior which covers a cell. 本発明の実施の形態に係る組電池を備えた電池パックを示す分解斜視図。The disassembled perspective view which shows the battery pack provided with the assembled battery which concerns on embodiment of this invention. 本発明の実施の形態に係る組電池の制御ブロック図。The control block diagram of the assembled battery which concerns on embodiment of this invention. 電池の温度を測定する複数の温度測定点を示す斜視図。The perspective view which shows the several temperature measurement point which measures the temperature of a battery. 実施例1の組電池における充電深度(SOC)と熱流との関係を示す特性線図。The characteristic line figure which shows the relationship between the charge depth (SOC) and heat flow in the assembled battery of Example 1. FIG. 実施例1の組電池に流れる電流および温度の経時変化をそれぞれ示す特性線図。FIG. 3 is a characteristic diagram showing changes in current and temperature flowing through the assembled battery of Example 1 with time. 放電時における実施例2の組電池の温度変化を示す特性線図。The characteristic line figure which shows the temperature change of the assembled battery of Example 2 at the time of discharge. 比較例1の組電池における充電深度(SOC)と熱流との関係を示す特性線図。The characteristic line figure which shows the relationship between the charge depth (SOC) and heat flow in the assembled battery of the comparative example 1. 比較例1の組電池に流れる電流および温度の経時変化をそれぞれ示す特性線図。FIG. 6 is a characteristic diagram showing changes in current and temperature flowing through the assembled battery of Comparative Example 1 with time. 比較例2の組電池を側方から見て示す断面模式図。The cross-sectional schematic diagram which shows the assembled battery of the comparative example 2 seeing from the side. 放電時における比較例2の組電池の温度変化を示す特性線図。The characteristic line figure which shows the temperature change of the assembled battery of the comparative example 2 at the time of discharge.

符号の説明Explanation of symbols

3…電池システム、
7…伝熱板、8…凹所、9…側部突起カバー、
10…単電池、10a…電池本体、10b,10c,10d…ラミネート外装材、
11…間隙(空気通流路)、
12a…正極タブ、12b…負極タブ、
13…電池/伝熱板アッセンブリ、
20…接合部材(粘着テープ、接着剤)、21…保護板、
30…組電池、
31…熱電素子(ペルチェ素子)、
32…制御回路基板、32a…演算回路、32b…記憶装置、
33…温度制御回路、
34…温度検知手段(熱電対、サーミスタ)、
34a,34b,34c,34d…温度測定点、
35a…正極タブ、35b…負極タブ、36a,36b…外部端子、
37…蓋(外装部材)、38…電池ケース(外装部材)、
4…HEV駆動システム、42…SOC検知手段、44…動力制御回路、
45…モータ動力、46…エンジン動力、47…回生電力。
3 ... Battery system,
7 ... Heat transfer plate, 8 ... Recess, 9 ... Side projection cover,
10 ... single battery, 10a ... battery body, 10b, 10c, 10d ... laminate exterior material,
11 ... Gap (air passage),
12a ... positive electrode tab, 12b ... negative electrode tab,
13 ... Battery / heat transfer plate assembly,
20 ... Joining member (adhesive tape, adhesive), 21 ... protective plate,
30 ... assembled battery,
31 ... Thermoelectric element (Peltier element),
32 ... Control circuit board, 32a ... Arithmetic circuit, 32b ... Storage device,
33 ... temperature control circuit,
34 ... temperature detection means (thermocouple, thermistor),
34a, 34b, 34c, 34d ... temperature measurement points,
35a ... Positive electrode tab, 35b ... Negative electrode tab, 36a, 36b ... External terminal,
37 ... Lid (exterior member), 38 ... Battery case (exterior member),
4 ... HEV drive system, 42 ... SOC detection means, 44 ... power control circuit,
45: Motor power, 46: Engine power, 47: Regenerative power.

Claims (8)

角型の二次電池が複数個積み重ねられた組電池であって、
前記二次電池と熱交換しうるように前記二次電池の主面に接触する主面と、前記主面に直交するように前記主面の周縁から立ち上がる少なくとも1つの側部突起カバーと、隣接する他の伝熱板の前記側部突起カバーに対応する凹所と、を有し、前記二次電池と組み合わせられて電池/伝熱板アッセンブリを形成する、複数の矩形状伝熱板と、
積み重ねられた複数の前記電池/伝熱板アッセンブリと熱交換しうるように前記電池/伝熱板アッセンブリの側面に設けられた少なくとも1つの熱電変換素子と、
前記電池/伝熱板アッセンブリおよび前記熱電変換素子の周囲を取り囲む断熱層を有する外装部材と、を具備し、
前記二次電池は、常温大気圧下における全電池反応のエントロピー変化ΔSが吸熱となる領域を持つ負極活物質と正極活物質の組み合わせを有し、
前記二次電池と前記伝熱板とを交互に積み重ねて、電池/伝熱板アッセンブリの積層体を形成すると、前記側部突起カバーが前記凹所のところに配置され、前記積層体の側面が前記側部突起カバーによって覆われることを特徴とする組電池。
An assembled battery in which a plurality of prismatic secondary batteries are stacked,
A main surface that contacts the main surface of the secondary battery so that heat can be exchanged with the secondary battery, at least one side protrusion cover that rises from the periphery of the main surface so as to be orthogonal to the main surface, and adjacent A plurality of rectangular heat transfer plates having a recess corresponding to the side protrusion cover of the other heat transfer plate, and combined with the secondary battery to form a battery / heat transfer plate assembly;
At least one thermoelectric conversion element provided on a side surface of the battery / heat transfer plate assembly so as to exchange heat with a plurality of the battery / heat transfer plate assemblies stacked;
An exterior member having a heat insulating layer surrounding the battery / heat transfer plate assembly and the thermoelectric conversion element;
The secondary battery includes an entropy change ΔS of the total cell reaction at room temperature under atmospheric pressure have a combination of the anode active material and the positive electrode active material having a region serving as heat absorption,
When the secondary battery and the heat transfer plate are alternately stacked to form a battery / heat transfer plate assembly laminate, the side protrusion cover is disposed at the recess, and the side surface of the laminate is An assembled battery covered with the side protrusion cover .
前記二次電池は、充電時または放電時において、全充放電深度の50%以上の領域で、電池反応の吸熱量がピーク時の50%以上を維持する単電池であることを特徴とする請求項1記載の組電池。   The secondary battery is a single cell that maintains 50% or more of the endothermic amount of the battery reaction in a region of 50% or more of the total charge / discharge depth during charging or discharging. The assembled battery according to Item 1. 前記二次電池は、樹脂の最外層を有するラミネート外装材で覆われていることを特徴とする請求項1または2記載の組電池。 The secondary battery is assembled battery according to claim 1 or 2, wherein the covered with laminated outer member having an outermost layer of the resin. 前記熱電変換素子は、供給される電流の向きに応じて発熱または吸熱するペルチェ効果を利用した素子であることを特徴とする請求項1〜3いずれか1項記載の組電池。 The thermoelectric conversion element according to claim 1 to 3 any one assembled battery, wherein it is an element that utilizes the Peltier effect of heat generation or absorption depending on the direction of the current supplied. 前記伝熱板は、アルミニウムでつくられていることを特徴とする請求項1乃至のいずれか1項記載の組電池。 The assembled battery according to any one of claims 1 to 4 , wherein the heat transfer plate is made of aluminum. 前記組電池の温度を検出する温度検知手段と、前記検知温度に基づいて前記熱電変換素子への給電を調整し、前記電池/伝熱板アッセンブリの積層体の温度を制御する温度制御回路と、をさらに具備することを特徴とする請求項1〜5いずれか1項記載の組電池。 Temperature detecting means for detecting the temperature of the assembled battery; and a temperature control circuit for adjusting the power supply to the thermoelectric conversion element based on the detected temperature and controlling the temperature of the battery / heat transfer plate assembly; Moreover the battery pack of any one of claims 1 to 5, characterized in that comprises a. 前記負極活物質にはチタン含有金属複合酸化物を用い、前記正極活物質にはリチウムコバルト複合酸化物、リチウムニッケルコバルト複合酸化物およびリチウムニッケルコバルトマンガン複合酸化物からなる群より選ばれる1又は2以上の複合酸化物を用いることを特徴とする請求項1乃至のいずれか1項記載の組電池。 A titanium-containing metal composite oxide is used as the negative electrode active material, and the positive electrode active material is selected from the group consisting of a lithium cobalt composite oxide, a lithium nickel cobalt composite oxide, and a lithium nickel cobalt manganese composite oxide. The assembled battery according to any one of claims 1 to 6 , wherein the composite oxide is used. 請求項1〜7のいずれか1項に記載の組電池を充電または放電させる方法において、
前記二次電池の充放電時の吸熱反応を利用して、前記組電池を適正な温度範囲に制御するため、前記二次電池のジュール熱により生じる発熱量が吸熱量よりも少なくなるように電流制御することを特徴とする組電池の充放電方法。
In the method to charge or discharge the assembled battery of any one of Claims 1-7 ,
In order to control the assembled battery to an appropriate temperature range using the endothermic reaction during charging / discharging of the secondary battery, the current generated so that the amount of heat generated by the Joule heat of the secondary battery is less than the endothermic amount. A method for charging and discharging an assembled battery, comprising controlling the battery pack.
JP2006220366A 2006-08-11 2006-08-11 Assembled battery and charging / discharging method of assembled battery Expired - Fee Related JP5354846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006220366A JP5354846B2 (en) 2006-08-11 2006-08-11 Assembled battery and charging / discharging method of assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006220366A JP5354846B2 (en) 2006-08-11 2006-08-11 Assembled battery and charging / discharging method of assembled battery

Publications (2)

Publication Number Publication Date
JP2008047371A JP2008047371A (en) 2008-02-28
JP5354846B2 true JP5354846B2 (en) 2013-11-27

Family

ID=39180906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006220366A Expired - Fee Related JP5354846B2 (en) 2006-08-11 2006-08-11 Assembled battery and charging / discharging method of assembled battery

Country Status (1)

Country Link
JP (1) JP5354846B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020060210A1 (en) * 2018-09-20 2020-03-26 주식회사 아모그린텍 Energy storage apparatus having battery pack cooling device
US11557818B2 (en) 2018-05-15 2023-01-17 Samsung Sdi Co., Ltd. Battery pack
KR20230040629A (en) * 2021-09-16 2023-03-23 주식회사 성우하이텍 battery module for eco-friendly vehicle and ventilation bracket applied to thereof

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7743614B2 (en) 2005-04-08 2010-06-29 Bsst Llc Thermoelectric-based heating and cooling system
US20100155018A1 (en) 2008-12-19 2010-06-24 Lakhi Nandlal Goenka Hvac system for a hybrid vehicle
JP5219587B2 (en) * 2008-03-31 2013-06-26 三洋電機株式会社 Laminated battery and battery module including the laminated battery
JP2009301850A (en) * 2008-06-12 2009-12-24 Toyota Motor Corp Lithium secondary battery
JP5028346B2 (en) * 2008-06-27 2012-09-19 Fdk株式会社 Power storage device
JP5536639B2 (en) * 2008-09-05 2014-07-02 パナソニック株式会社 Battery pack
JP5343465B2 (en) * 2008-09-11 2013-11-13 マツダ株式会社 Power storage device
JP5024558B2 (en) * 2008-11-21 2012-09-12 本田技研工業株式会社 Charge control device
PL211980B1 (en) * 2008-12-16 2012-07-31 Impact Automotive Technologies Społka Z Ograniczoną Odpowiedzialnością Thermally stabilized module of electric batteries
KR101419556B1 (en) 2009-03-02 2014-07-16 주식회사 엘지화학 Battery pack for self temperature control electromobile using thermoelectric effect
JP5348685B2 (en) * 2009-03-12 2013-11-20 Necエナジーデバイス株式会社 Lithium ion battery pack
EP2416439B1 (en) 2009-04-01 2015-07-29 LG Chem, Ltd. Battery module having excellent heat dissipation ability and battery pack employed with the same
WO2010135371A2 (en) * 2009-05-18 2010-11-25 Bsst Llc Battery thermal management system
JP2011014436A (en) * 2009-07-03 2011-01-20 Panasonic Corp Battery heating device
DE102009041137B4 (en) 2009-09-14 2022-02-17 Volkswagen Ag Thermoelectric unit, battery unit, device for temperature control of a battery unit and method for temperature control
KR101071537B1 (en) * 2009-09-17 2011-10-10 주식회사 엘지화학 Battery Module Having Heat Dissipation Member of Novel Structure and Battery Pack Employed with the Same
JP5740103B2 (en) 2009-10-19 2015-06-24 日東電工株式会社 Thermally conductive member and assembled battery device using the same
CN102027628B (en) * 2009-11-30 2014-05-14 郑润珥 Battery pack and active cell balancing battery management system including same
KR101000550B1 (en) * 2009-11-30 2010-12-14 정윤이 Battery pack and active cell balancing battery management system including the same
WO2011125505A1 (en) * 2010-04-08 2011-10-13 Jsr株式会社 Electric storage device
KR101108191B1 (en) * 2010-05-24 2012-02-06 에스비리모티브 주식회사 Battery Pack
JP5089814B2 (en) * 2010-08-12 2012-12-05 古河電気工業株式会社 Battery temperature control system and battery temperature control unit
US9653762B2 (en) 2010-08-12 2017-05-16 Furukawa Electric Co., Ltd. Battery temperature regulation system and battery temperature regulation unit
US8741471B2 (en) 2011-03-09 2014-06-03 Samsung Sdi Co., Ltd. Battery pack
JP5861484B2 (en) * 2011-03-11 2016-02-16 日産自動車株式会社 Automotive battery
JP2012190691A (en) * 2011-03-11 2012-10-04 Nissan Motor Co Ltd Battery module
JP2012209248A (en) * 2011-03-11 2012-10-25 Nissan Motor Co Ltd In-vehicle battery
JP5545766B2 (en) * 2011-03-30 2014-07-09 住友重機械工業株式会社 Work machine
JP5773412B2 (en) * 2011-03-31 2015-09-02 Necエナジーデバイス株式会社 Battery pack and electric bicycle
KR101991650B1 (en) 2011-07-11 2019-06-20 젠썸 인코포레이티드 Thermoelectric-based thermal management of electrical devices
WO2013008882A1 (en) * 2011-07-12 2013-01-17 株式会社 豊田自動織機 Temperature detection device
JP5598442B2 (en) * 2011-08-03 2014-10-01 トヨタ自動車株式会社 Battery module
JP5876268B2 (en) * 2011-10-28 2016-03-02 トヨタ自動車株式会社 vehicle
KR101447057B1 (en) 2012-01-26 2014-10-07 주식회사 엘지화학 Battery Module Having Heat Dissipation Mounting Member for Dissipating Heat And Mounting Battery cell
JP5978665B2 (en) * 2012-03-13 2016-08-24 ソニー株式会社 Method for calculating relative remaining capacity of battery made of secondary battery, method for calculating relative remaining capacity of battery made of lithium ion battery, method for estimating temperature of battery made of secondary battery, and temperature of battery made of lithium ion battery Estimation method
JP5936114B2 (en) * 2012-03-16 2016-06-15 日本電気株式会社 Power storage device
JPWO2013141242A1 (en) * 2012-03-21 2015-08-03 新神戸電機株式会社 Lithium ion secondary battery and lithium ion secondary battery module using ionic liquid, and their heat insulation devices
JP5585854B2 (en) * 2012-04-10 2014-09-10 株式会社デンソー Thermal conductivity structure of battery pack
US9599584B2 (en) * 2012-04-27 2017-03-21 California Institute Of Technology Imbedded chip for battery applications
KR102034337B1 (en) * 2013-01-14 2019-10-18 젠썸 인코포레이티드 Thermoelectric-based thermal management of electrical devices
CN108400410A (en) * 2013-01-30 2018-08-14 詹思姆公司 Heat management system based on thermoelectricity
JP5835246B2 (en) * 2013-02-27 2015-12-24 株式会社デンソー Battery unit
KR102033212B1 (en) * 2013-10-29 2019-10-16 젠썸 인코포레이티드 Battery thermal management with thermoelectrics
JP6314602B2 (en) * 2014-03-28 2018-04-25 株式会社Gsユアサ Battery pack and spacer structure
US9899711B2 (en) 2014-09-12 2018-02-20 Gentherm Incorporated Graphite thermoelectric and/or resistive thermal management systems and methods
JP6396812B2 (en) * 2015-01-20 2018-09-26 株式会社Soken Charging rate estimation system
JP6363529B2 (en) * 2015-02-13 2018-07-25 株式会社Soken Battery control device
KR102017275B1 (en) * 2015-06-10 2019-09-02 젠썸 인코포레이티드 Automotive battery thermoelectric module with integrated cold plate assembly and its assembly method
JP6607137B2 (en) 2016-04-21 2019-11-20 株式会社デンソー Power storage device
WO2017221536A1 (en) * 2016-06-21 2017-12-28 Necエナジーデバイス株式会社 Frame member and battery pack using frame member
CN106183769B (en) * 2016-08-15 2018-10-19 牡丹汽车股份有限公司 A kind of Vehicular battery clamping seat
JP2020021532A (en) * 2016-10-18 2020-02-06 株式会社日立製作所 Secondary battery module
JP6729310B2 (en) * 2016-11-08 2020-07-22 トヨタ自動車株式会社 Battery pack
JP6997949B2 (en) * 2018-03-16 2022-02-04 トヨタ自動車株式会社 Manufacturing method of laminated battery module
JP7202806B2 (en) * 2018-07-25 2023-01-12 克行 廣中 Secondary battery system
JP2022511801A (en) 2018-11-30 2022-02-01 ジェンサーム インコーポレイテッド Thermoelectric adjustment system and method
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
CN113085658B (en) * 2019-12-23 2024-03-08 北京新能源汽车股份有限公司 Control method and device of permanent magnet synchronous motor and automobile
DE102020003892B4 (en) 2020-06-29 2021-12-09 Daimler Ag Cell holder for at least one battery cell and cell module
CN112133989A (en) * 2020-08-24 2020-12-25 奇瑞商用车(安徽)有限公司 Battery thermal management structure and management method
WO2023242939A1 (en) * 2022-06-14 2023-12-21 株式会社 東芝 Secondary battery and battery pack
WO2023242940A1 (en) * 2022-06-14 2023-12-21 株式会社 東芝 Positive electrode, secondary battery, and battery pack
CN115320385B (en) * 2022-07-28 2024-04-30 重庆金康赛力斯新能源汽车设计院有限公司 Thermal runaway early warning method, device, equipment and storage medium for vehicle battery
JP7435853B1 (en) 2023-02-10 2024-02-21 株式会社デンソー Battery systems, secondary batteries, and electric aircraft

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821372B2 (en) * 1987-12-18 1996-03-04 松下電器産業株式会社 Sealed lead acid battery
JPH0828209B2 (en) * 1988-10-17 1996-03-21 松下電器産業株式会社 Lead-acid battery pack structure
JP3509382B2 (en) * 1995-04-27 2004-03-22 日産自動車株式会社 Charge control system
JPH0956011A (en) * 1995-08-11 1997-02-25 Nissan Motor Co Ltd Regenerative current charging controller for battery in electric automobile
JPH11242959A (en) * 1997-12-26 1999-09-07 Sanyo Electric Co Ltd Lithium secondary battery
JP2003007356A (en) * 2001-06-25 2003-01-10 Matsushita Refrig Co Ltd Temperature regulator for storage battery and running vehicle mounting the same
JP5049436B2 (en) * 2001-09-28 2012-10-17 パナソニック株式会社 Assembled battery
JP4609623B2 (en) * 2003-05-26 2011-01-12 トヨタ自動車株式会社 Battery binder
JP4586357B2 (en) * 2003-12-10 2010-11-24 日産自動車株式会社 Lithium ion battery
JP2005285456A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Power supply apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11557818B2 (en) 2018-05-15 2023-01-17 Samsung Sdi Co., Ltd. Battery pack
WO2020060210A1 (en) * 2018-09-20 2020-03-26 주식회사 아모그린텍 Energy storage apparatus having battery pack cooling device
KR20230040629A (en) * 2021-09-16 2023-03-23 주식회사 성우하이텍 battery module for eco-friendly vehicle and ventilation bracket applied to thereof
KR102673552B1 (en) * 2021-09-16 2024-06-10 주식회사 성우하이텍 battery module for eco-friendly vehicle and ventilation bracket applied to thereof

Also Published As

Publication number Publication date
JP2008047371A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
JP5354846B2 (en) Assembled battery and charging / discharging method of assembled battery
US10847988B2 (en) Secondary battery charging apparatus, temperature information acquisition device, secondary battery charging method, in-situ measurement method of electrochemical impedance spectrum
JP7120307B2 (en) Battery electrode and manufacturing method thereof
US10431821B2 (en) Cathode active material, cathode, battery, battery pack, electronic apparatus, electric vehicle, electric storage apparatus, and electric power system
JP4314223B2 (en) Regenerative power storage system, storage battery system and automobile
US11431039B2 (en) Method of charging and discharging secondary battery, method of detecting deterioration in secondary battery, method of detecting charging abnormality of secondary battery, and charge and discharge control device
JP6809487B2 (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic equipment
JP2009054297A (en) Battery pack
JP5903807B2 (en) Separator, non-aqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP2012109124A (en) Nonaqueous electrolyte battery
JP6690733B2 (en) Secondary batteries, battery packs, electric vehicles, power storage systems, power tools and electronic devices
US20140370381A1 (en) Secondary battery
JP6596815B2 (en) Secondary battery active material, secondary battery electrode, secondary battery, electric vehicle and electronic device
KR20170032456A (en) Nonaqueous electrolyte battery and battery pack
US11545847B2 (en) Charging device and charging method
JPWO2019009239A1 (en) Secondary batteries, battery packs, electric vehicles, power storage systems, power tools and electronic devices
EP2814093A1 (en) Positive electrode active material and secondary battery
US20140370392A1 (en) Secondary battery and electrode for secondary battery
JP6753465B2 (en) Batteries, battery packs, electronic devices, electric vehicles, power storage devices and power systems
JP2009110936A (en) Lithium ion secondary battery
JP2016105366A (en) Active material for secondary battery, electrode for secondary battery, secondary battery, battery pack, electric motor vehicle, electric power storage system, electric motor-driven tool and electronic device
JP2017168281A (en) Power supply system and vehicle
JP2015156280A (en) Active material for secondary battery, electrode for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic apparatus
WO2015166622A1 (en) Battery, negative electrode, battery pack, electronic device, electric vehicle, electricity storage device and electric power system
EP2814092A1 (en) Secondary battery and electrode for secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

LAPS Cancellation because of no payment of annual fees