JP3509382B2 - Charge control system - Google Patents

Charge control system

Info

Publication number
JP3509382B2
JP3509382B2 JP10733996A JP10733996A JP3509382B2 JP 3509382 B2 JP3509382 B2 JP 3509382B2 JP 10733996 A JP10733996 A JP 10733996A JP 10733996 A JP10733996 A JP 10733996A JP 3509382 B2 JP3509382 B2 JP 3509382B2
Authority
JP
Japan
Prior art keywords
battery
charging
temperature
current value
charging current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10733996A
Other languages
Japanese (ja)
Other versions
JPH0919074A (en
Inventor
康彦 大澤
丈司 宮本
孝昭 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10733996A priority Critical patent/JP3509382B2/en
Publication of JPH0919074A publication Critical patent/JPH0919074A/en
Application granted granted Critical
Publication of JP3509382B2 publication Critical patent/JP3509382B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン電
池のように、充電時における化学反応が吸熱反応である
電池の充電制御システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge control system for a battery such as a lithium ion battery in which a chemical reaction during charging is an endothermic reaction.

【0002】[0002]

【従来の技術】例えば、電気自動車に使用されている駆
動用電池の従来の充電制御システムでは、CC−CV
(定電流−定電圧)充電やCP−CV(定電力−定電
圧)充電等によって充電が行われている。ところで、電
池は充電時に発熱したり吸熱したりするが、これは充電
時における電池のジュール発熱Qj=I2×R(I:充電
電流、R:電池の内部抵抗)および電池の化学反応によ
る吸発熱Qc(Qcが正の場合は発熱で、負の場合は吸
熱)に依存しており、Qj+Qc>0のときに発熱とな
り、Qj+Qc<0のときに吸熱となる。QjおよびQcは
充電電流Iによって変化するため、Qj+Qcの正負が充
電電流Iによって変化する場合がある。
2. Description of the Related Art For example, in a conventional charging control system for a driving battery used in an electric vehicle, CC-CV is used.
Charging is performed by (constant current-constant voltage) charging or CP-CV (constant power-constant voltage) charging. By the way, the battery generates heat or absorbs heat during charging, which is due to Joule heat generation of the battery during charging Qj = I 2 × R (I: charging current, R: internal resistance of battery) and chemical reaction of the battery. It depends on the heat generation Qc (heat is generated when Qc is positive, and heat is absorbed when Qc is negative), and heat is generated when Qj + Qc> 0 and heat is absorbed when Qj + Qc <0. Since Qj and Qc change depending on the charging current I, the positive / negative of Qj + Qc may change depending on the charging current I.

【0003】図14は、充電電流Iに関するQj,Qcお
よびQj+Qcの変化の様子を示しており、Qc<0であ
る、すなわち化学反応が吸熱である電池の例である。図
において、充電電流Iが0<I<I2のときはQj+Qc
<0、すなわち電池は吸熱となりI1で吸熱量は最大値
Qmになり、I2>0のときはQj+Qc>0となって発熱
する。Qcが発熱であるか吸熱であるかは電池の種類に
よって異なり、例えば、鉛電池の場合は発熱反応とな
り、リチウムイオン電池の場合は吸熱反応となる。Qc
>0である電池の場合、充電電流Iがどのような値であ
ってもQj+Qc>0となり電池は常に発熱するが、図1
4に示すようにQc<0であって、かつ充電電流Iの値
によってはQj+Qc<0となる電池では、Iの大きさに
よって電池が発熱したり吸熱したりする。
FIG. 14 shows changes in Qj, Qc and Qj + Qc with respect to the charging current I, and is an example of a battery in which Qc <0, that is, the chemical reaction is endothermic. In the figure, when the charging current I is 0 <I <I2, Qj + Qc
<0, that is, the battery absorbs heat and the amount of heat absorption reaches the maximum value Qm at I1. When I2> 0, Qj + Qc> 0 and heat is generated. Whether Qc is exothermic or endothermic depends on the type of the battery. For example, a lead battery has an exothermic reaction and a lithium ion battery has an endothermic reaction. Qc
In the case of a battery with> 0, Qj + Qc> 0, regardless of the value of the charging current I, and the battery always generates heat.
As shown in FIG. 4, in a battery in which Qc <0 and Qj + Qc <0 depending on the value of the charging current I, the battery generates heat or absorbs heat depending on the magnitude of I.

【0004】[0004]

【発明が解決しようとする課題】ところで、電池を充電
する際には、電池温度TBに関して適正な温度範囲T1≦
TB≦T2 (リチウムイオン電池ではT1 は25℃程度
で、T2 は35℃程度である)があり、この温度範囲内
で充電を行うのが好ましい。しかしながら、従来のCC
−CV充電やCP−CV充電等による充電制御システム
では、上述したような充電時の化学反応が吸熱反応の電
池、すなわち充電電流の大きさによって発熱したり吸熱
したりする電池であっても、この電池の発熱および吸熱
を考慮した充電が行われていない。そのため、電池の発
熱により電池温度TBがT2 を越えた場合、電池の寿命
劣化が生じたり、発熱を抑えるために電流値を小さくせ
ざるを得ず充電時間が長くなったりした。逆に、吸熱に
より電池温度TBがT1 よりも低くなった場合にも充電
時間が長くなるという欠点があった。また、充電をする
際には、放電によって電池の温度が高くなる場合があ
り、充電中に電池の充電可能温度を越えてしまうおそれ
があった。
By the way, when the battery is charged, an appropriate temperature range T1≤T1 with respect to the battery temperature TB is satisfied.
There is TB≤T2 (T1 is about 25 ° C. and T2 is about 35 ° C. in a lithium ion battery), and it is preferable to charge within this temperature range. However, conventional CC
In a charge control system based on -CV charging, CP-CV charging, or the like, even if the above-described chemical reaction during charging is an endothermic battery, that is, a battery that generates heat or absorbs heat depending on the magnitude of the charging current, Charging is not performed in consideration of heat generation and heat absorption of this battery. Therefore, when the battery temperature TB exceeds T2 due to the heat generation of the battery, the life of the battery is deteriorated, and the current value must be reduced in order to suppress the heat generation, and the charging time becomes long. On the contrary, there is a drawback that the charging time becomes long even when the battery temperature TB becomes lower than T1 due to the heat absorption. In addition, when charging, the temperature of the battery may increase due to discharging, and there is a risk that the temperature exceeds the chargeable temperature of the battery during charging.

【0005】本発明の目的は、充電時の電池温度を適正
温度に保ち、電池寿命の向上や充電時間の短縮を図るこ
とができる充電制御システムを提供することにある。
An object of the present invention is to provide a charge control system capable of maintaining the battery temperature at the time of charging at an appropriate temperature, improving the battery life and shortening the charging time.

【0006】[0006]

【課題を解決するための手段】(1)クレーム対応図で
ある図1に対応付けて本発明を説明すると、請求項1の
発明は、充電時の化学反応が吸熱反応で所定充電電流範
囲において電池が全体として吸熱となるリチウムイオン
電池2を充電する充電器3と、電池2の放電状態に応じ
て充電器3の充電電流を制御する制御手段1とを備える
充電制御システムに適用され、電池2の温度を検出する
温度検出手段4と、充電器3による電池2の充電条件が
予め記憶された記憶手段5とを備え、制御手段1は、
電状態および充電条件に基づいて充電電流を制御し、電
池2の温度が所定の温度範囲よりも高い場合は電池2を
吸熱させ、電池2の温度が所定の温度範囲よりも低い場
合は電池2を発熱させることにより、電池2の温度を所
定の温度範囲内に保持することを特徴とする。 (2)請求項2の発明に係る充電制御システムでは、制
御手段1は、前記放電状態,電池2の温度および充電条
件に基づいて、電池2が発熱となる第1の充電電流値お
よびこの第1の充電電流値よりも小さく電池2が吸熱と
なる第2の充電電流値をそれぞれ算出する演算部11
と、電池2の温度が温度範囲の上限値を越えた場合には
充電電流を第2の充電電流値に制御し、電池2の温度が
温度範囲の下限値より低下した場合には充電電流を第1
の充電電流値に制御する制御部12とを含む。 (3)請求項3の発明に係る充電制御システムでは、制
御手段1は、電池2の温度が温度範囲内である場合に
は、充電電流を第2の充電電流値より大きく、かつ第1
の充電電流値より小さい第3の充電電流値に保持する。 (4)請求項4の発明に係る充電制御システムでは、第
1の充電電流値は電池2の発熱量が所定値以上となる電
流値であり、第2の充電電流値は電池2の吸熱量が最大
となる電流値であり、第3の充電電流値は電池2の発熱
量または吸熱量が略ゼロとなる電流値である。 (5)図7に対応付けて説明すると、請求項5の発明
は、充電時の化学反応が吸熱反応で所定充電電流範囲に
おいて電池が全体として吸熱状態となるリチウムイオン
電池2を充電する充電器3と、電池2の放電状態に応じ
て充電器3の充電電流を制御する制御手段54とを備え
る充電制御システムに適用され、電池2へ送風する送風
機8と、電池2および送風の温度を検出する温度検出手
段51と、充電器3による電池2の充電条件が予め記憶
された記憶手段542とを備え、制御手段54は、放電
状態,電池2の温度,送風の温度および充電条件に基づ
き、充電電流の大きさを変えて電池2の冷却および発熱
を制御するとともに送風機8のオン・オフを制御するこ
とによって、電池2の温度所定の温度範囲内に保持す
ことにより上述の目的を達成する。 (6)請求項6の発明に係る充電制御システムでは、制
御手段54は、放電状態,電池2の温度および充電条件
に基づいて、電池2が発熱となる第1の充電電流値およ
び電池2の発熱量が略ゼロとなる第2の充電電流値をそ
れぞれ算出し、放電状態,電池2の温度,充電条件およ
び送風の温度に基づいて、電池2の発熱量と送風機8に
よる放熱量とが等しくなる第3の充電電流値を算出する
演算部541と、電池2の温度が温度範囲の上限値を越
えた場合には送風機8を作動させるとともに充電電流を
第2の充電電流値に制御し、電池2の温度が温度範囲内
である場合には送風機8を作動させるとともに充電電流
を第3の充電電流値に制御し、電池2の温度が温度範囲
の下限値をより低下した場合には送風機8を停止すると
ともに充電電流を第1の充電電流値に制御する制御部5
41とを備える。 (7)請求項7の発明に係る充電制御システムでは、第
1の充電電流値を、電池2の許容電流値および充電器3
の最大電流値のいずれか小さい方の電流値と等しくし
た。 (8)請求項8の発明に係る充電制御システムでは、充
電開始時の電池2の温度が電池2の充電可能温度を越え
た場合、制御手段54は送風機8を作動させ、電池2の
温度が充電可能温度以下になったならば電池2の充電を
開始するように制御する。
Means for Solving the Problems (1) The present invention will be described with reference to FIG. 1, which is a claim correspondence diagram. In the invention of claim 1, the chemical reaction during charging is an endothermic reaction and a predetermined charging current range.
Charge control including a charger 3 for charging a lithium-ion battery 2 in which the battery absorbs heat as a whole in an enclosure, and a control means 1 for controlling the charging current of the charger 3 according to the discharge state of the battery 2. applied to the system, the temperature detecting means 4 for detecting the temperature of the battery 2, and a storage unit 5 for charging condition of the battery 2 is stored in advance by the charger 3, the control unit 1, release
The charging current is controlled based on the power
If the temperature of the pond 2 is higher than the specified temperature range, install the battery 2
When the temperature of battery 2 is lower than the specified temperature range
In this case, the temperature of the battery 2 is controlled by heating the battery 2.
It is characterized in that it is maintained within a constant temperature range. (2) In the charge control system according to the invention of claim 2, the control means 1 controls the first charging current value and the first charging current value at which the battery 2 generates heat based on the discharge state, the temperature of the battery 2 and the charging condition. An arithmetic unit 11 that calculates a second charging current value that is smaller than the charging current value of 1 and that causes the battery 2 to absorb heat.
When the temperature of the battery 2 exceeds the upper limit value of the temperature range, the charging current is controlled to the second charging current value, and when the temperature of the battery 2 is lower than the lower limit value of the temperature range, the charging current is changed. First
And a control unit 12 for controlling the charging current value of. (3) In the charging control system according to the invention of claim 3, the control means 1 makes the charging current larger than the second charging current value and the first charging current value when the temperature of the battery 2 is within the temperature range.
A third charging current value smaller than the charging current value of is held. (4) In the charge control system according to the invention of claim 4, the first charging current value is a current value at which the heat generation amount of the battery 2 becomes a predetermined value or more, and the second charging current value is the heat absorption amount of the battery 2. Is the maximum current value, and the third charging current value is the current value at which the heat generation amount or heat absorption amount of the battery 2 becomes substantially zero. (5) Explaining in association with FIG. 7, in the invention of claim 5, the chemical reaction during charging is an endothermic reaction and falls within a predetermined charging current range.
Charging including a charger 3 for charging the lithium ion battery 2 in which the battery is in a heat absorbing state as a whole, and a control means 54 for controlling the charging current of the charger 3 according to the discharge state of the battery 2. A blower 8 which is applied to the control system and blows air to the battery 2, a temperature detection unit 51 which detects the temperature of the battery 2 and the air blow, and a storage unit 542 in which the charging condition of the battery 2 by the charger 3 is stored in advance. The control means 54 cools and heats the battery 2 by changing the magnitude of the charging current based on the discharge state, the temperature of the battery 2, the temperature of the blown air and the charging condition.
And the on / off of the blower 8 can be controlled.
By a, to hold the temperature of the battery 2 within a predetermined temperature range
To achieve the above object by that. (6) In the charge control system according to the invention of claim 6, the control means 54 controls the first charging current value and the battery 2 that generate heat based on the discharge state, the temperature of the battery 2 and the charging condition. The second charging current value at which the heat generation amount becomes substantially zero is calculated, and the heat generation amount of the battery 2 and the heat radiation amount by the blower 8 are equal based on the discharge state, the temperature of the battery 2, the charging condition and the temperature of the blower. When the temperature of the battery 2 exceeds the upper limit of the temperature range, the blower 8 is operated and the charging current is controlled to the second charging current value. When the temperature of the battery 2 is within the temperature range, the blower 8 is operated and the charging current is controlled to the third charging current value, and when the temperature of the battery 2 is lower than the lower limit value of the temperature range, the blower is set. 8 and stop charging current Control unit 5 for controlling the first charging current value
And 41. (7) In the charge control system according to the invention of claim 7, the first charge current value is set to the allowable current value of the battery 2 and the charger 3.
Whichever is smaller, whichever is smaller. (8) In the charge control system according to the invention of claim 8, when the temperature of the battery 2 at the start of charging exceeds the chargeable temperature of the battery 2, the control means 54 activates the blower 8 so that the temperature of the battery 2 is maintained. When the temperature becomes lower than the chargeable temperature, the battery 2 is controlled to start charging.

【0007】(1)請求項1の発明に係る充電制御シス
テムでは、制御手段1は、電池2の温度が所定の温度範
囲よりも高い場合は電池2を吸熱させ、電池2の温度が
所定の温度範囲よりも低い場合は電池2を発熱させるこ
とにより、電池2の温度を所定の温度範囲内に保持す
る。 (2)請求項2の発明に係る充電制御システムでは、制
御部12は、電池2の温度が温度範囲の上限値を越えた
場合には充電電流を演算部11が算出した第2の充電電
流値に制御し、一方、電池2の温度が温度範囲の下限値
より低下した場合には充電電流を演算部11が算出した
第1の充電電流値に制御する。 (3)請求項3の発明に係る充電制御システムでは、電
池2の温度が所定の温度範囲内である場合には、制御手
段1は充電電流を第3の充電電流値に保持する。 (4)請求項5の発明に係る充電制御システムでは、
御手段54は、放電状態,電池2の温度,送風の温度お
よび充電条件に基づいて、充電電流の大きさを変えて電
池2の冷却および発熱を制御するとともに送風機8のオ
ン・オフ制御することによって、電池2の温度所定の
温度範囲内に保持する。 (5)請求項6の発明に係る充電制御システムでは、制
御部541は、電池2の温度が温度範囲の上限値を越え
た場合には送風機8を作動させるとともに充電電流を演
算部541が算出した第1の充電電流値に制御し、電池
2の温度が温度範囲内である場合には送風機8を作動さ
せるとともに充電電流を演算部541が算出した第2の
充電電流値に制御し、電池2の温度が温度範囲の下限値
をより低下した場合には送風機8を停止するとともに充
電電流を演算部541が算出した第3の充電電流値に制
御する。 (6)請求項8の発明に係る充電制御システムでは、充
電開始時の電池2の温度が充電可能温度を越えている場
合には、送風機8によって電池2を充電可能温度以下に
冷却してから充電を開始する。
(1) In the charging control system according to the invention of claim 1, the control means 1 controls the temperature of the battery 2 within a predetermined temperature range.
If the temperature is higher than the ambient temperature, the battery 2 will absorb heat and the temperature of the battery 2 will increase.
If the temperature is lower than the specified temperature range, heat the battery 2
By the above, the temperature of the battery 2 is kept within a predetermined temperature range. (2) In the charge control system according to the second aspect of the present invention, the controller 12 controls the second charge current calculated by the calculator 11 when the temperature of the battery 2 exceeds the upper limit of the temperature range. On the other hand, when the temperature of the battery 2 falls below the lower limit value of the temperature range, the charging current is controlled to the first charging current value calculated by the calculation unit 11. (3) In the charge control system according to the third aspect of the invention, when the temperature of the battery 2 is within a predetermined temperature range, the control means 1 holds the charge current at the third charge current value. (4) In the charge control system according to the invention of claim 5, control
The control means 54 changes the magnitude of the charging current based on the discharging state, the temperature of the battery 2, the temperature of the blown air, and the charging condition.
It controls the cooling and heat generation of the pond 2 and turns on the blower 8.
By controlling emission off, holding the temperature of the battery 2 within a predetermined temperature range. (5) In the charge control system according to the invention of claim 6, when the temperature of the battery 2 exceeds the upper limit value of the temperature range, the control unit 541 operates the blower 8 and the calculation unit 541 calculates the charging current. When the temperature of the battery 2 is within the temperature range, the blower 8 is operated, and the charging current is controlled to the second charging current value calculated by the calculation unit 541. When the temperature of 2 is lower than the lower limit value of the temperature range, the blower 8 is stopped and the charging current is controlled to the third charging current value calculated by the calculation unit 541. (6) In the charge control system according to the invention of claim 8, when the temperature of the battery 2 at the start of charging exceeds the chargeable temperature, the battery 2 is cooled to below the chargeable temperature by the blower 8. Start charging.

【0008】なお、本発明の構成を説明する上記課題を
解決するための手段の項では、本発明を分かり易くする
ために発明の実施の形態の図を用いたが、これにより本
発明が発明の実施の形態に限定されるものではない。
Incidentally, in the section of the means for solving the above-mentioned problems for explaining the constitution of the present invention, the drawings of the embodiments of the invention are used for the purpose of making the present invention easy to understand. However, the present invention is not limited to the embodiment.

【0009】[0009]

【発明の効果】請求項1〜4の発明によれば、制御手段
は、放電状態および充電条件に基づいて充電電流を制御
し、電池の温度が所定の温度範囲よりも高い場合は電池
を吸熱させ、電池2の温度が所定の温度範囲よりも低い
場合は電池を発熱させることにより、電池の温度を所定
の温度範囲内に保持する。よって、充電時に、電池の温
度が継続的に所定の温度範囲の上限値より大きな値とな
ったり、継続的に下限値よりも小さな値となることがな
い。そのため、電池の過熱による電池寿命の劣化や、電
池の温度の低下による充電時間の増加を避けることがで
きる。さらに、電池の過熱を避けるための冷却装置等を
設ける必要が無く、冷却装置付加のためのコストの上昇
や冷却装置による余計なエネルギー消費を避けることが
できる。特に、請求項4の発明では、電池の温度が所定
の温度範囲内である場合には、充電電流は発熱量または
吸熱量が略ゼロになる電流値に保持されるため、所定の
温度範囲内において電池の温度がより安定する。請求項
5〜8の発明によれば、制御手段は充電電流の制御とと
もに送風機による電池へ送風を制御しているので、上
記請求項1〜4の発明に係る効果の他、充電時間を短縮
することができるという効果を有する。
According to the present invention, the control means controls the charging current based on the discharging state and the charging condition.
If the battery temperature is higher than the specified temperature range,
The temperature of the battery 2 is lower than the specified temperature range.
If the temperature of the battery is set to a predetermined value by heating the battery,
Keep within the temperature range of. Therefore, at the time of charging, the temperature of the battery does not continuously become higher than the upper limit value of the predetermined temperature range or continuously lower than the lower limit value. Therefore, it is possible to avoid deterioration of battery life due to overheating of the battery and increase of charging time due to decrease of battery temperature. Furthermore, it is not necessary to provide a cooling device or the like for avoiding overheating of the battery, and it is possible to avoid an increase in cost for adding a cooling device and unnecessary energy consumption by the cooling device. In particular, according to the invention of claim 4, when the temperature of the battery is within a predetermined temperature range, the charging current is held at a current value at which the amount of heat generation or the amount of heat absorption is substantially zero, so that within the predetermined temperature range. In, the battery temperature becomes more stable. According to the invention of claims 5 to 8, since the control means controls the blowing of the battery by the blower together with the control of the charging current, the charging time can be shortened in addition to the effects of the inventions of claims 1 to 4. It has the effect of being able to.

【0010】[0010]

【発明の実施の形態】以下、図2〜図13を参照して本
発明の実施の形態を説明する。 −第1の実施の形態− 図2は本発明による充電制御システムの実施例を示す図
であり、電池2は充電時の化学反応が吸熱反応であり、
充電器3により充電される。7は負荷制御装置6を介し
て電池2によって駆動される負荷であり、例えば電気自
動車であれば駆動用モータである。51,52および5
3は、電池2の温度,端子電圧および電流をそれぞれ測
定する温度測定装置,電圧測定装置および電流測定装置
である。54はCPU541および記憶部542を備え
るコントロールユニットであり、CPU541には上述
した各測定装置51〜53からの情報が入力される。C
PU541は、これらの情報に基づいて電池2の放電状
態(DOD: depth of discharge)を算出する。55
は算出された電池2の放電状態を表示する表示装置であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIGS. -First Embodiment-Fig. 2 is a diagram showing an embodiment of a charge control system according to the present invention, in which the battery 2 has an endothermic chemical reaction during charging,
It is charged by the charger 3. A load 7 is driven by the battery 2 via the load control device 6, and is a drive motor in the case of an electric vehicle, for example. 51, 52 and 5
Reference numeral 3 is a temperature measuring device, a voltage measuring device and a current measuring device for respectively measuring the temperature, the terminal voltage and the current of the battery 2. Reference numeral 54 is a control unit including a CPU 541 and a storage unit 542, and information from the above-described measuring devices 51 to 53 is input to the CPU 541. C
The PU 541 calculates the discharge state (DOD: depth of discharge) of the battery 2 based on these pieces of information. 55
Is a display device that displays the calculated discharge state of the battery 2.

【0011】ところで、前述したように、充電時の充電
電流の大きさによって吸熱したり発熱したりする電池2
においては、図14に示すように電池2の吸熱量が最大
となる充電電流値I1と、電池2が発熱も吸熱もしない
充電電流値I2とが存在する。このI1およびI2は電池
2の種類,DODおよび電池温度TBに依存しており、
図3は、特定の電池温度において、DODが0〜100
%であるときのI1およびI2を図示したものである。図
4は、図3においてDODが60%付近の電流値と電池
の発熱量との関係を示した図であり、電流値が正の所が
放電状態を示し、電流値が負の所が充電状態を示してい
る。図4において、充電時の吸熱量が最大になる充電電
流値I1は−0.5Cであり、発熱も吸熱もしない充電
電流値I2は−1.0Cである。図3および図4に示し
た情報は各電池温度毎に求められ、充電条件として記憶
部542に予め入力されている。
By the way, as described above, the battery 2 which absorbs heat or generates heat depending on the magnitude of the charging current during charging.
In FIG. 14, there are a charging current value I1 at which the heat absorption amount of the battery 2 is maximum and a charging current value I2 at which the battery 2 does not generate heat or absorb heat. These I1 and I2 depend on the type of battery 2, DOD and battery temperature TB,
FIG. 3 shows that the DOD is 0 to 100 at a specific battery temperature.
FIG. 6 is a diagram showing I1 and I2 when the percentage is%. FIG. 4 is a diagram showing the relationship between the current value and the amount of heat generated by the battery when the DOD is around 60% in FIG. 3, where the positive current value indicates the discharged state and the negative current value indicates the charged state. It shows the state. In FIG. 4, the charging current value I1 that maximizes the amount of heat absorbed during charging is -0.5C, and the charging current value I2 that neither heats nor absorbs heat is -1.0C. The information shown in FIG. 3 and FIG. 4 is obtained for each battery temperature, and is stored in advance in the storage unit 542 as a charging condition.

【0012】CPU541は、電池温度TBの大きさに
応じて充電電流を3通りの値に設定する。第1番目は、
充電中に電池温度TBが適正な温度範囲T1≦TB≦T2に
ある場合であり、電池温度TB,DODおよび記憶部5
42に入力された充電条件に基づいてI2がCPU54
1により算出され、充電電流はI2に設定される。第2
番目は、電池温度TBがTB<T1の場合であり、電池温
度TBが上昇するように、充電電流がI2より大で電池2
が発熱する電流値I0に設定される。電流値I0は、電池
2の許容電流値または充電器3の最大供給電流値のいず
れか小さい方に設定され記憶部542に予め記憶されて
いる。第3番目は、電池温度TBがTB>T2の場合であ
り、電池温度TB,DODおよび記憶部542に入力さ
れた充電条件に基づいてI1が算出され、電池温度TBが
低下するように、充電電流がI1に設定される。
The CPU 541 sets the charging current to three different values according to the magnitude of the battery temperature TB. The first is
This is the case where the battery temperature TB is within the proper temperature range T1 ≦ TB ≦ T2 during charging, and the battery temperatures TB, DOD and the storage unit 5 are used.
Based on the charging condition input to 42, I2
1 and the charging current is set to I2. Second
The second is the case where the battery temperature TB is TB <T1, and the charging current is larger than I2 and the battery 2 is increased so that the battery temperature TB rises.
Is set to a current value I0 for heat generation. The current value I0 is set to either the allowable current value of the battery 2 or the maximum supply current value of the charger 3 whichever is smaller, and is stored in the storage unit 542 in advance. Third, when the battery temperature TB is TB> T2, I1 is calculated based on the battery temperatures TB, DOD and the charging conditions input to the storage unit 542, and charging is performed so that the battery temperature TB decreases. The current is set to I1.

【0013】図5はCPU541の動作を説明するフロ
ーチャートを示す図であり、この図を用いて図2に示す
充電制御システムの動作を説明する。外部から入力され
たりタイマーから出力されたりする充電開始信号を受け
ると、このフローチャートで示すプログラムがスタート
し、ステップS1へ進む。ステップS1では、温度測定
装置51および電圧測定装置52により電池温度TBお
よび端子電圧を測定し、ステップS2へ進む。ステップ
S2では、電池温度TBおよび端子電圧に基づいて電池
2のDODを算出してステップS3へ進む。なお、DO
Dを算出する際に、電流測定装置53からの電流値情報
に基づいて充電開始直前までの放電電流の積算値を予め
算出しておき、この積算値によりDODの算出値をより
正確に求めることができる。
FIG. 5 is a flowchart showing the operation of the CPU 541, and the operation of the charging control system shown in FIG. 2 will be described with reference to this drawing. When the charge start signal input from the outside or output from the timer is received, the program shown in this flowchart starts and the process proceeds to step S1. In step S1, the temperature measuring device 51 and the voltage measuring device 52 measure the battery temperature TB and the terminal voltage, and the process proceeds to step S2. In step S2, the DOD of the battery 2 is calculated based on the battery temperature TB and the terminal voltage, and the process proceeds to step S3. In addition, DO
When calculating D, the integrated value of the discharge current until just before the start of charging is calculated in advance based on the current value information from the current measuring device 53, and the calculated value of DOD is more accurately calculated from this integrated value. You can

【0014】ステップS3では、電池2に関するDO
D,電池温度TBおよび記憶部542に記憶された充電
条件に基づいて充電電流値I1およびI2を算出し、ステ
ップS4へ進む。ステップS4は、電池温度TBが適正
な温度範囲にあるか否か、つまり、T1≦TB≦T2であ
るか否かを判断するステップであり、T1≦TB≦T2な
らばステップS5へ進み、充電器3の充電電流Iを電流
値I2に設定した後、ステップS8へ進んで電池2の充
電を開始する。また、ステップS4においてTB<T1な
らばステップS6へ進み、充電電流Iを電流値I0に設
定した後、ステップS8へ進んで電池2の充電を開始す
る。さらに、ステップS4においてTB>T2ならばス
テップS7へ進み、充電電流Iを電流値I1に設定した
後、ステップS8へ進んで電池2の充電を開始する。
In step S3, the DO for the battery 2
The charging current values I1 and I2 are calculated based on D, the battery temperature TB, and the charging condition stored in the storage unit 542, and the process proceeds to step S4. Step S4 is a step of determining whether or not the battery temperature TB is within an appropriate temperature range, that is, whether T1 ≤ TB ≤ T2. If T1 ≤ TB ≤ T2, the process proceeds to step S5 and charging is performed. After setting the charging current I of the battery 3 to the current value I2, the process proceeds to step S8 to start charging the battery 2. If TB <T1 in step S4, the process proceeds to step S6 to set the charging current I to the current value I0, and then proceeds to step S8 to start charging the battery 2. Further, if TB> T2 in step S4, the process proceeds to step S7, the charging current I is set to the current value I1, and then the process proceeds to step S8 to start charging the battery 2.

【0015】ステップS9は電池2の充電が完了したか
否かを判別するステップであり、充電が完了した場合に
はステップS10へ進み、充電を終了してこのプログラ
ムを終了する。一方、ステップS9で充電が完了してい
ない場合にはステップS1へ戻り、充電が完了するまで
ステップS1〜S9の各ステップを繰り返す。
Step S9 is a step of determining whether or not the charging of the battery 2 is completed. When the charging is completed, the process proceeds to step S10, the charging is terminated and the program is terminated. On the other hand, if the charging is not completed in step S9, the process returns to step S1 and steps S1 to S9 are repeated until the charging is completed.

【0016】本実施の形態では、充電時に電池温度TB
が適正温度の上限値T2を越えた場合には、電池2が吸
熱となる電流値I1で充電して電池温度TBを下げ、電池
温度TBがT2以下となるように制御するため、電池2は
過熱することが無く、電池寿命の劣化が生じない。逆
に、電池温度TBが下限値T1より低くなった場合には、
電池2が発熱となる電流値I0で充電して電池温度TBを
上昇させ、電池温度TBがT1以上となるように制御する
ため、電池温度TBの低下による充電時間の増加を避け
ることができる。
In this embodiment, the battery temperature TB during charging is
When the battery temperature exceeds the upper limit T2 of the appropriate temperature, the battery 2 is charged by the current value I1 at which the battery 2 absorbs heat to lower the battery temperature TB, and the battery temperature TB is controlled to be T2 or less. No overheating and no deterioration in battery life. On the contrary, when the battery temperature TB becomes lower than the lower limit value T1,
Since the battery 2 is charged with a current value I0 that causes heat generation and the battery temperature TB is increased and the battery temperature TB is controlled to be equal to or higher than T1, it is possible to avoid an increase in charging time due to a decrease in the battery temperature TB.

【0017】上述した実施例では、TB<T1の場合には
充電電流IとしてIOを用い、TB>T2の場合にはI1を
用いたが、それぞれI0とI2との間の電流値およびI1
とI2との間の電流値を用いてもよい。さらに、I2は吸
熱量または発熱量が0となる電流値としたが、多少は発
熱あるいは吸熱する値であってもよい。
In the above-described embodiment, I0 was used as the charging current I when TB <T1 and I1 was used when TB> T2. However, the current value between I0 and I2 and I1 are respectively used.
A current value between I and I2 may be used. Further, although I2 is a current value at which the amount of heat absorption or the amount of heat generation becomes zero, it may be a value that slightly heats or absorbs heat.

【0018】図6は図5に示したフローチャートの変形
例であり、T1<T3<T2である温度T3を設定し、電池
温度TBがT3となるように充電電流を制御する。ステッ
プS41は、電池温度TBがTB<T3であるか否かを判
別するステップであり、TB<T3の場合にはステップS
6へ進んで充電電流IをI0に設定し、それ以外の場合
にはステップS7へ進んで充電電流IをI1に設定す
る。ステップS41,ステップS5以外のステップは図
5のフローチャートと同様である。このように、充電電
流Iの制御方法は、電池温度TBをT1≦TB≦T2に保持
するものであれば上述したものに限らず、他の制御方法
を用いてもよい。
FIG. 6 is a modification of the flow chart shown in FIG. 5, in which a temperature T3 that satisfies T1 <T3 <T2 is set and the charging current is controlled so that the battery temperature TB becomes T3. Step S41 is a step of determining whether or not the battery temperature TB is TB <T3. If TB <T3, Step S41 is performed.
In step 6, the charging current I is set to I0. In other cases, the process proceeds to step S7 to set the charging current I to I1. The steps other than step S41 and step S5 are the same as those in the flowchart of FIG. As described above, the control method of the charging current I is not limited to the above-described one as long as the battery temperature TB is maintained at T1≤TB≤T2, and another control method may be used.

【0019】−第2の実施の形態− 図7は本発明による充電制御システムの第2の実施の形
態を示すブロック図である。図2と同一の部分には同一
の符号を付すとともに、重複する部分は説明を省略し、
図2に示す構成と異なる部分を中心に説明する。8は充
電器3または電池2を電源として作動する電池冷却用送
風機であり、送風機のオン・オフはCPU541によっ
て制御される。送風機からの冷却空気の温度は送風温度
測定装置56によって測定される。
-Second Embodiment- FIG. 7 is a block diagram showing a second embodiment of the charging control system according to the present invention. The same parts as those in FIG. 2 are designated by the same reference numerals, and the overlapping parts will not be described.
The description will focus on the parts different from the configuration shown in FIG. Reference numeral 8 denotes a battery cooling blower that operates using the charger 3 or the battery 2 as a power source, and the ON / OFF of the blower is controlled by the CPU 541. The temperature of the cooling air from the blower is measured by the blower temperature measuring device 56.

【0020】ところで、充電時の充電電流の大きさによ
って吸熱したり発熱したりする電池2では、前述したよ
うに電池2が発熱しない最大の電流値I2が存在した
が、本実施の形態に示すように送風機8によって電池2
を冷却した場合には、送風機8による放熱と電池2の発
熱が等しくなる電流値I3が存在する(図8)。図9
は、特定の電池温度において、DODが0〜100%で
あるときのI2およびI3を図示したものであり、I3は
電流値I2,送風機8の出力,電池2の種類および電池
温度TBと送風温度Tairの差に依存していて図10に示
すような関係を有している。なお、図8は、図9におい
てDODが60%付近の電流値と電池の発熱量との関係
を示した図であり、図4と同様に電流値が正の範囲が放
電状態を示し、電流値が負の範囲が充電状態を示してい
る。また、図10の直線は送風機8の出力が特定の値の
場合について示しており、出力が異なればそれに応じて
直線(すなわちI3)も異なる。図8〜10に示した情
報は電池温度毎に求められ、充電条件として記憶部54
2に予め入力されている。
By the way, in the battery 2 that absorbs heat or generates heat depending on the magnitude of the charging current at the time of charging, there was the maximum current value I2 at which the battery 2 does not generate heat as described above. By the blower 8 the battery 2
When is cooled, there is a current value I3 at which the heat released by the blower 8 and the heat generated by the battery 2 are equal (FIG. 8). Figure 9
Shows I2 and I3 when DOD is 0 to 100% at a specific battery temperature, where I3 is current value I2, output of blower 8, type of battery 2 and battery temperature TB and blown temperature. It depends on the difference in Tair and has a relationship as shown in FIG. Note that FIG. 8 is a diagram showing the relationship between the current value and the amount of heat generation of the battery when the DOD is around 60% in FIG. 9, and like FIG. The negative range indicates the charging status. The straight line in FIG. 10 shows the case where the output of the blower 8 has a specific value, and if the output is different, the straight line (that is, I3) is also different accordingly. The information shown in FIGS. 8 to 10 is obtained for each battery temperature, and is stored in the storage unit 54 as charging conditions.
It is pre-populated in 2.

【0021】CPU541は、電池温度TBに応じて充
電電流および送風機8のオン・オフを以下に述べる3通
りに制御する。第1番目は、充電中に電池温度TBが適
正温度範囲の上限値T2を越えた場合、すなわちT2<T
Bの場合である。T2<TBとなったならば送風機8を作
動させるとともに、そのときの電池温度TB,DODお
よび記憶部542に入力された充電条件に基づいて充電
電流値I2がCPU541により算出され、充電電流が
電流値I2に設定される。電流値I2では電池2は発熱し
ないため、放熱によって電池温度TBが低下する。その
後、電池温度TBがTB<T2となったなら、充電電流は
電池2の発熱と放熱とが等しくなる充電電流値I3に設
定される。なお、電流値I3は電池温度TB,送風温度T
air,DODおよび記憶部542に入力された充電条件
に基づいてCPU541により算出される。
The CPU 541 controls the charging current and the on / off of the blower 8 according to the battery temperature TB in the following three ways. First, when the battery temperature TB exceeds the upper limit value T2 of the proper temperature range during charging, that is, T2 <T
This is the case of B. If T2 <TB, the blower 8 is operated, and the charging current value I2 is calculated by the CPU 541 based on the battery temperatures TB and DOD at that time and the charging condition input to the storage unit 542, and the charging current is the current. Set to the value I2. Since the battery 2 does not generate heat at the current value I2, the battery temperature TB decreases due to heat dissipation. After that, when the battery temperature TB becomes TB <T2, the charging current is set to the charging current value I3 at which the heat generation and the heat radiation of the battery 2 become equal. The current value I3 is the battery temperature TB and the blast temperature T
It is calculated by the CPU 541 based on air, DOD, and the charging condition input to the storage unit 542.

【0022】第2番目は、電池温度TBが適正な温度範
囲T1≦TB≦T2にある場合である。このときには送風
機8を作動させるとともに、そのときの電池温度TB,
DODおよび記憶部542に入力された充電条件に基づ
いて充電電流値I3がCPU541により算出され、充
電電流が電流値I3に設定される。
Second, the battery temperature TB is in the proper temperature range T1≤TB≤T2. At this time, the blower 8 is operated and the battery temperature TB at that time is
The charging current value I3 is calculated by the CPU 541 based on the DOD and the charging condition input to the storage unit 542, and the charging current is set to the current value I3.

【0023】第3番目は、電池温度TBが適正温度範囲
の下限値T1より低くなった場合、すなわちTB<T1の
場合である。このときには送風機8を停止するととも
に、充電電流を電池2の許容電流値または充電器3の最
大供給電流値のいずれか小さい方の値I0に設定する。
電流値I0はI2よりも大きいので電池2は発熱し、電池
温度TBが上昇する。その後、電池温度TBがT1≦TBと
なったなら、送風機8を作動させるとともに、そのとき
の電池温度TB,DODおよび記憶部542に入力され
た充電条件に基づいて充電電流値I3がCPU541に
より算出され、充電電流が電流値I3に設定される。
The third case is when the battery temperature TB becomes lower than the lower limit value T1 of the proper temperature range, that is, TB <T1. At this time, the blower 8 is stopped and the charging current is set to either the allowable current value of the battery 2 or the maximum supply current value of the charger 3 whichever is smaller.
Since the current value I0 is larger than I2, the battery 2 generates heat and the battery temperature TB rises. After that, when the battery temperature TB becomes T1 ≦ TB, the blower 8 is operated, and the charging current value I3 is calculated by the CPU 541 based on the battery temperatures TB and DOD at that time and the charging condition input to the storage unit 542. Then, the charging current is set to the current value I3.

【0024】図11はCPU541の動作を説明するフ
ローチャートを示す図であり、この図を用いて図7に示
す充電制御システムの動作を説明する。外部から入力さ
れたりタイマーから出力されたりする充電開始信号を受
け取ると、このフローチャートで示すプログラムがスタ
ートし、ステップS11へ進む。ステップS11では、
温度測定装置51,送風温度測定装置56,電圧測定装
置52により電池温度TB,送風温度Tairおよび端子電
圧を測定してステップS12へ進み、ステップS12に
おいて電池温度TBおよび端子電圧に基づいて電池2の
DODを算出する。なお、第1の実施の形態と同様に、
DODを算出する際に電流測定装置53から電流値を予
め算出しておき、この積算値によりDODの算出値をよ
り正確に求めることができる。
FIG. 11 is a flowchart showing the operation of the CPU 541, and the operation of the charging control system shown in FIG. 7 will be described with reference to this drawing. When a charging start signal input from the outside or output from the timer is received, the program shown in this flowchart starts and the process proceeds to step S11. In step S11,
The battery temperature TB, the blast temperature Tair, and the terminal voltage are measured by the temperature measuring device 51, the blast temperature measuring device 56, and the voltage measuring device 52, and the process proceeds to step S12. At step S12, the battery 2 of the battery 2 is measured based on the battery temperature TB and the terminal voltage. Calculate DOD. Note that, as in the first embodiment,
When calculating the DOD, the current value can be calculated in advance from the current measuring device 53, and the calculated value of the DOD can be obtained more accurately by this integrated value.

【0025】ステップS13では、電池2に関するDO
D,電池温度TB,送風温度Tairおよび記憶部542に
記憶された充電条件に基づいて充電電流値I2およびI3
を算出し、ステップS14へ進む。ステップS14は、
電池温度TBが適正温度範囲T1≦TB≦T2にあるか否か
を判断するステップであり、電池温度TBに応じてステ
ップS15,S17またはS19のいずれかに進む。ま
ず、電池温度TBがT2<TBの場合にはステップS15
へ進み送風機8をON(作動)し、ステップS16で充
電器3の充電電流Iを電流値I2に設定する。次に、電
池温度TBが適正温度範囲T1≦TB≦T2である場合に
は、ステップS17へ進み送風機8をONし、ステップ
S18で充電電流値Iを電流値I3に設定する。最後
に、電池温度TBがTB<T1の場合には、ステップS1
9で送風機8をOFF(停止)した後、ステップS20
に進んで充電電流Iを電流値I0(上述したように、電
池2の許容電流値または充電器3の最大供給電流値のい
ずれか小さい方)に設定する。
In step S13, the DO for the battery 2
D, battery temperature TB, blast temperature Tair, and charging current values I2 and I3 based on the charging conditions stored in the storage unit 542.
Is calculated, and the process proceeds to step S14. Step S14 is
This is a step of determining whether or not the battery temperature TB is within an appropriate temperature range T1≤TB≤T2, and the process proceeds to any one of steps S15, S17 or S19 depending on the battery temperature TB. First, when the battery temperature TB is T2 <TB, step S15
Then, the blower 8 is turned on (operated) and the charging current I of the charger 3 is set to the current value I2 in step S16. Next, when the battery temperature TB is within the proper temperature range T1≤TB≤T2, the process proceeds to step S17, the blower 8 is turned on, and the charging current value I is set to the current value I3 in step S18. Finally, when the battery temperature TB is TB <T1, step S1
After turning off (stopping) the blower 8 in step 9, step S20
Then, the charging current I is set to the current value I0 (which is the smaller of the allowable current value of the battery 2 and the maximum supply current value of the charger 3 as described above).

【0026】ステップS21では電池2の充電を開始す
る。ステップS22は電池2の充電が完了したかを判断
するステップであり、充電が完了した場合にはステップ
S23へ進んで充電を終了し、このプログラムを終了す
る。一方、ステップS22で充電が完了していない場合
にはステップS11へ戻り、充電が完了するまでステッ
プS11〜S21の各ステップを繰り返す。
In step S21, charging of the battery 2 is started. Step S22 is a step of determining whether or not the charging of the battery 2 is completed. If the charging is completed, the process proceeds to step S23 to end the charging and end this program. On the other hand, if the charging is not completed in step S22, the process returns to step S11, and steps S11 to S21 are repeated until the charging is completed.

【0027】本実施の形態においても、第1の実施の形
態と同様に、充電時の電池温度TBが適正温度の上限値
T2を越えた場合には、電池2が吸熱となる電流値I2で
充電して電池温度TBを下げて電池温度TBがT2以下と
なるように制御するため、電池2は過熱することが無く
電池寿命の劣化が生じない。逆に、電池温度TBが下限
値T1より低くなった場合には、電池2が発熱となる電
流値I0で充電して電池温度TBを上昇させ、電池温度T
BがT1以上となるように制御するため、電池温度TBの
低下による充電時間の増加を避けることができる。さら
に、第1の実施の形態では、電池温度TBがT1≦TB≦
T2の場合には電流値I2で充電し、T2<TBの場合には
電流値I1で充電したが、本実施の形態では、電池温度
TBがT1≦TB≦T2の場合には電流値I3(>I2)で充
電し、T2<TBの場合には電流値I2(>I1)で充電し
ているため、第1の実施の形態に比べて充電時間を短縮
することができる。
Also in this embodiment, as in the case of the first embodiment, when the battery temperature TB during charging exceeds the upper limit value T2 of the proper temperature, the current value I2 at which the battery 2 absorbs heat is reached. Since the battery 2 is charged and the battery temperature TB is lowered to control the battery temperature TB to be T2 or less, the battery 2 is not overheated and the battery life is not deteriorated. On the other hand, when the battery temperature TB becomes lower than the lower limit value T1, the battery temperature TB is increased by charging the battery 2 with a current value I0 that causes heat generation.
Since B is controlled to be T1 or more, it is possible to avoid an increase in charging time due to a decrease in battery temperature TB. Further, in the first embodiment, the battery temperature TB is T1≤TB≤
In the case of T2, the battery was charged with the current value I2, and in the case of T2 <TB, the battery was charged with the current value I1, but in the present embodiment, when the battery temperature TB is T1≤TB≤T2, the current value I3 ( > I2) and when T2 <TB, the current value I2 (> I1) is charged, so that the charging time can be shortened as compared with the first embodiment.

【0028】−第3の実施の形態− 上述した第1および第2の実施の形態では、電池2を充
電する際の適正温度範囲T1≦TB≦T2のT1およびT2
が一定の場合について説明したが、リチウムイオン電池
では、DODが深くなるほど(DODの%が大きくなる
ほど)適正温度範囲の上限値が高くなる傾向がある。図
12は上限値の変化の様子を示す図であり、上限値をT
4で示した。なお、DODが0%のときの上限値が第1
および第2の実施の形態で説明した上限値T2に対応し
ている。本実施の形態では、電池温度TBと温度T1,T
2およびT4とを比較して充電を制御する。充電制御シス
テムは図7に示すシステムの構成と同一なので、システ
ムの動作について説明を行い、構成の説明は省略する。
-Third Embodiment- In the above-described first and second embodiments, T1 and T2 in the proper temperature range T1≤TB≤T2 when the battery 2 is charged.
In the lithium ion battery, the upper limit of the appropriate temperature range tends to increase as the DOD becomes deeper (the% of DOD increases). FIG. 12 is a diagram showing how the upper limit value changes.
Shown by 4. The upper limit when the DOD is 0% is the first
And corresponds to the upper limit value T2 described in the second embodiment. In the present embodiment, the battery temperature TB and the temperatures T1, T
Control charging by comparing 2 and T4. Since the charging control system has the same configuration as the system shown in FIG. 7, the operation of the system will be described, and the description of the configuration will be omitted.

【0029】図13は、充電制御システムの動作を説明
する図であって、第2の実施の形態のフローチャート
(図11)に対応する図である。図13において、図1
1のフローチャートと同一内容のステップには同一ステ
ップ番号を付し、以下では内容の異なるステップを中心
に説明する。ステップS11で電池温度TB,送風温度
Tairおよび端子電圧を測定し、ステップS12で電池
温度TBおよび端子電圧に基づいて電池2のDODを算
出したらステップS101へ進み、DOD,電池温度T
B,送風温度Tairおよび記憶部542に記憶された充電
条件に基づいて充電電流値I2,I3および上限値T4を
算出する。
FIG. 13 is a diagram for explaining the operation of the charging control system and is a diagram corresponding to the flowchart (FIG. 11) of the second embodiment. In FIG. 13, FIG.
Steps having the same contents as those in the flowchart of 1 are given the same step numbers, and in the following, steps having different contents will be mainly described. In step S11, the battery temperature TB, the blast temperature Tair, and the terminal voltage are measured, and in step S12, the DOD of the battery 2 is calculated based on the battery temperature TB and the terminal voltage. Then, the process proceeds to step S101.
The charging current values I2, I3 and the upper limit value T4 are calculated based on B, the blowing temperature Tair, and the charging condition stored in the storage unit 542.

【0030】ステップS102は電池温度TBが上限値
T4より大きいか否かを判断するステップであり、TB≦
T4ならばステップS14へ進み、T4<TBならばステ
ップS103へ進んで、送風機8をON(作動)してス
テップS102へ戻る。すなわち、電池温度TB=T4と
なるまでは充電を開始せず、電池2を送風機8で冷却す
る。ステップS14以降ステップS23までの動作は第
2の実施の形態と同様である。本実施の形態において
も、第2の実施の形態と同様の効果を得ることができ
る。
Step S102 is a step of judging whether or not the battery temperature TB is higher than the upper limit value T4, and TB≤
If T4, the process proceeds to step S14, and if T4 <TB, the process proceeds to step S103 to turn on (operate) the blower 8 and return to step S102. That is, charging is not started until the battery temperature TB = T4, and the battery 2 is cooled by the blower 8. The operations from step S14 to step S23 are the same as those in the second embodiment. Also in this embodiment, the same effect as that of the second embodiment can be obtained.

【0031】上述した第1〜3の実施の形態では、電気
自動車に搭載した駆動用電池について説明したが、充電
電流の大きさに依存して発熱および吸熱の両方の状態を
取り得る電池であれば本発明を適用することができる。
In the above-described first to third embodiments, the driving battery mounted on the electric vehicle has been described, but any battery capable of taking both heat generation and heat absorption depending on the magnitude of the charging current is used. For example, the present invention can be applied.

【0032】上述した実施の形態と特許請求の範囲の要
素との対応において、温度測定装置51および送風温度
測定装置56は温度検出手段を、CPU541は制御手
段を、記憶部542は記憶手段をそれぞれ構成し、充電
電流値I0は第1の充電電流値に、充電電流値I1は請求
項2〜4における第2の充電電流値に、充電電流値I2
は請求項3,4における第3の充電電流値および請求項
6における第2の充電電流値に、充電電流値I3は請求
項6における第3の充電電流値に、温度T1は温度範囲
の下限値に、温度T2は温度範囲の上限値に、温度T4は
請求項8における充電可能温度にそれぞれ対応する。
In the correspondence between the above-described embodiment and the elements of the claims, the temperature measuring device 51 and the blown air temperature measuring device 56 are temperature detecting means, the CPU 541 is controlling means, and the storing section 542 is storing means. The charging current value I0 is the first charging current value, the charging current value I1 is the second charging current value in claims 2 to 4, and the charging current value I2 is
Is the third charge current value in claims 3 and 4 and the second charge current value in claim 6, the charge current value I3 is the third charge current value in claim 6, and the temperature T1 is the lower limit of the temperature range. The value, the temperature T2 correspond to the upper limit value of the temperature range, and the temperature T4 corresponds to the chargeable temperature in claim 8.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のクレーム対応図。FIG. 1 is a diagram corresponding to a claim of the present invention.

【図2】本発明による充電制御システムの第1の実施の
形態を示す図。
FIG. 2 is a diagram showing a first embodiment of a charging control system according to the present invention.

【図3】図2の充電制御システムにおける充電電流値I
1およびI2を説明する図。
FIG. 3 is a charging current value I in the charging control system of FIG.
The figure explaining 1 and I2.

【図4】図2の充電制御システムにおける充電電流と、
電池の発熱量または吸熱量との関係を説明する図。
4 is a charging current in the charging control system of FIG. 2,
The figure explaining the relationship with the amount of heat generation of a battery, or the amount of heat absorption.

【図5】図2の充電制御システムの動作を説明するフロ
ーチャートを示す図。
5 is a diagram showing a flowchart illustrating an operation of the charge control system of FIG.

【図6】図5のフローチャートの変形例を示す図。FIG. 6 is a diagram showing a modification of the flowchart of FIG.

【図7】本発明による充電制御システムの第2の実施の
形態を示すブロック図。
FIG. 7 is a block diagram showing a second embodiment of the charging control system according to the present invention.

【図8】図7の充電制御システムにおける充電電流と、
電池の発熱量または吸熱量との関係を説明する図。
8 is a charging current in the charging control system of FIG. 7,
The figure explaining the relationship with the amount of heat generation of a battery, or the amount of heat absorption.

【図9】図7の充電制御システムにおける充電電流値I
1およびI2を説明する図。
9 is a charging current value I in the charging control system of FIG.
The figure explaining 1 and I2.

【図10】(電池温度TB−送風温度Tair)が変化した
ときの充電電流値I3と充電電流値I2の比の変化を示す
図。
FIG. 10 is a diagram showing a change in the ratio between the charging current value I3 and the charging current value I2 when the (battery temperature TB-air temperature Tair) changes.

【図11】図7に示す充電制御システムの動作を説明す
るフローチャートを示す図。
11 is a diagram showing a flowchart for explaining the operation of the charging control system shown in FIG.

【図12】本発明による充電制御システムの第3の実施
の形態を説明する図であり、電池のDODと充電可能温
度T4との関係を示す図。
FIG. 12 is a diagram for explaining the third embodiment of the charging control system according to the present invention, showing the relationship between the DOD of the battery and the chargeable temperature T4.

【図13】第3の実施の形態を説明するフローチャート
図。
FIG. 13 is a flowchart diagram illustrating a third embodiment.

【図14】充電時の化学反応が吸熱反応である電池の発
熱特性を説明する図。
FIG. 14 is a diagram illustrating heat generation characteristics of a battery in which a chemical reaction during charging is an endothermic reaction.

【符号の説明】[Explanation of symbols]

1 制御手段 2 電池 3 充電器 4 温度検出手段 5 記憶手段 6 負荷制御装置 7 負荷 11 演算部 12 制御部 51 温度測定装置 52 電圧測定装置 53 電流測定装置 54 コントロールユニット 55 表示装置 56 送風温度測定装置 541 CPU 542 記憶部 1 control means 2 batteries 3 charger 4 Temperature detection means 5 storage means 6 Load control device 7 load 11 Operation part 12 Control unit 51 Temperature measuring device 52 Voltage measuring device 53 Current measuring device 54 Control Unit 55 Display 56 Blower temperature measuring device 541 CPU 542 storage unit

フロントページの続き (56)参考文献 特開 昭63−157624(JP,A) 特開 平7−296855(JP,A) 特開 平7−65870(JP,A) 松田好晴,竹原善一朗,電池便覧,日 本,丸善株式会社,2001年 2月20日, 第3版,296頁 高野清南,リチウム二次電池の電気的 熱的挙動とシュミレーション,電総研ニ ュース,日本,電総研,1996年11月, 562号,P5−6 (58)調査した分野(Int.Cl.7,DB名) H02J 7/04 H01M 10/44 101 H01M 10/48 301 H02J 7/10 Front Page Continuation (56) References JP-A 63-157624 (JP, A) JP-A 7-296855 (JP, A) JP-A 7-65870 (JP, A) Yoshiharu Matsuda, Zenichiro Takehara, Battery Handbook, Nihon, Maruzen Co., Ltd., February 20, 2001, 3rd Edition, p. 296 Kiyonan Takano, Electrical and Thermal Behavior and Simulation of Rechargeable Lithium Batteries, AIST News, Japan, AIST, 1996 November, 562, P5-6 (58) Fields investigated (Int.Cl. 7 , DB name) H02J 7/04 H01M 10/44 101 H01M 10/48 301 H02J 7/10

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 充電時の化学反応が吸熱反応で所定充電
電流範囲において電池が全体として吸熱になるリチウム
イオン電池を充電する充電器と、前記電池の放電状態に
応じて前記充電器の充電電流を制御する制御手段とを備
える充電制御システムにおいて、 前記電池の温度を検出する温度検出手段と、 前記充電器による前記電池の充電条件が予め記憶された
記憶手段とを備え、 前記制御手段は、前記放電状態および前記充電条件に基
づいて前記充電電流を制御し、前記電池の温度が所定の
温度範囲よりも高い場合は前記電池を吸熱させ、前記電
池の温度が前記温度範囲よりも低い場合は前記電池を発
熱させることにより、前記電池の温度を前記温度範囲内
に保持することを特徴とする充電制御システム。
1. A predetermined charge due to an endothermic chemical reaction during charging
Lithium in which the battery as a whole absorbs heat in the current range
In a charging control system including a charger that charges an ion battery and a control unit that controls a charging current of the charger according to a discharge state of the battery, a temperature detection unit that detects a temperature of the battery, and the charging Storage means in which the charging condition of the battery by the battery is stored in advance, the control means is based on the discharge state and the charging condition.
The charging current is controlled based on the
If it is higher than the temperature range, it will cause the battery to absorb heat and
If the temperature of the pond is lower than the temperature range,
The temperature of the battery is kept within the temperature range by heating.
A charging control system characterized by being held in .
【請求項2】 請求項1に記載の充電制御システムにお
いて、 前記制御手段は、前記放電状態,前記電池の温度および
前記充電条件に基づいて、前記電池が発熱となる第1の
充電電流値およびこの第1の充電電流値よりも小さく前
記電池が吸熱となる第2の充電電流値をそれぞれ算出す
る演算部と、 前記電池の温度が前記温度範囲の上限値を越えた場合に
は前記充電電流を前記第2の充電電流値に制御し、前記
電池の温度が前記温度範囲の下限値より低下した場合に
は前記充電電流を前記第1の充電電流値に制御する制御
部とを含むことを特徴とする充電制御システム。
2. The charging control system according to claim 1, wherein the control means sets a first charging current value that causes the battery to generate heat based on the discharge state, the temperature of the battery, and the charging condition. An arithmetic unit that calculates a second charging current value that is smaller than the first charging current value and that absorbs heat from the battery, and the charging current when the temperature of the battery exceeds the upper limit of the temperature range. To a second charging current value, and controlling the charging current to the first charging current value when the temperature of the battery falls below the lower limit value of the temperature range. Characteristic charge control system.
【請求項3】 請求項2に記載の充電制御システムにお
いて、 前記制御手段は、前記電池の温度が前記温度範囲内であ
る場合には、前記充電電流を前記第2の充電電流値より
大きく、かつ前記第1の充電電流値より小さい第3の充
電電流値に保持することを特徴とする充電制御システ
ム。
3. The charging control system according to claim 2, wherein the control means, when the temperature of the battery is within the temperature range, makes the charging current larger than the second charging current value. And a charge control system characterized by holding at a third charge current value smaller than the first charge current value.
【請求項4】 請求項3に記載の充電制御システムにお
いて、 前記第1の充電電流値は前記電池の発熱量が所定値以上
となる電流値であり、前記第2の充電電流値は前記電池
の吸熱量が最大となる電流値であり、前記第3の充電電
流値は前記電池の発熱量または吸熱量が略ゼロとなる電
流値であることを特徴とする充電制御システム。
4. The charging control system according to claim 3, wherein the first charging current value is a current value at which the heat generation amount of the battery is equal to or more than a predetermined value, and the second charging current value is the battery. Is a current value that maximizes the amount of heat absorption, and the third charging current value is a current value that causes the amount of heat generation or the amount of heat absorption of the battery to be substantially zero.
【請求項5】 充電時の化学反応が吸熱反応で所定充電
電流範囲において電池が全体として吸熱状態となるリチ
ウムイオン電池を充電する充電器と、前記電池の放電状
態に応じて前記充電器の充電電流を制御する制御手段と
を備える充電制御システムにおいて、 前記電池へ送風する送風機と、 前記電池および送風の温度を検出する温度検出手段と、 前記充電器による前記電池の充電条件が予め記憶された
記憶手段とを備え、 前記制御手段は、前記放電状態,前記電池の温度,前記
送風の温度および前記充電条件に基づき、充電電流の大
きさを変えて前記電池の冷却および発熱を制御するとと
もに送風機のオン・オフを制御することによって、前記
電池の温度所定の温度範囲内に保持することを特徴と
する充電制御システム。
5. A predetermined charge due to an endothermic chemical reaction during charging.
A battery in which the battery as a whole becomes in an endothermic state in the current range.
In a charging control system including a charger that charges an um-ion battery and a control unit that controls the charging current of the charger according to the discharge state of the battery, a blower that blows to the battery, and the temperature of the battery and the blower. And a storage unit in which the charging condition of the battery by the charger is stored in advance, the control unit includes the discharging state, the temperature of the battery, the temperature of the blown air, and the charging condition. Based on the large charging current
If you control the cooling and heat generation of the battery by changing the size
A charging control system characterized in that the temperature of the battery is maintained within a predetermined temperature range by controlling the on / off of the blower .
【請求項6】 請求項5に記載の充電制御システムにお
いて、 前記制御手段は、前記放電状態,前記電池の温度および
前記充電条件に基づいて、前記電池が発熱となる第1の
充電電流値および前記電池の発熱量が略ゼロとなる第2
の充電電流値をそれぞれ算出し、前記放電状態,前記電
池の温度,前記充電条件および前記送風の温度に基づい
て、前記電池の発熱量と前記送風機による放熱量とが等
しくなる第3の充電電流値を算出する演算部と、 前記電池の温度が前記温度範囲の上限値を越えた場合に
は前記送風機を作動させるとともに前記充電電流を前記
第2の充電電流値に制御し、前記電池の温度が前記温度
範囲内である場合には前記送風機を作動させるとともに
前記充電電流を前記第3の充電電流値に制御し、前記電
池の温度が前記温度範囲の下限値より低下した場合には
前記送風機を停止するとともに前記充電電流を前記第1
の充電電流値に制御する制御部とを備えることを特徴と
する充電制御システム。
6. The charging control system according to claim 5, wherein the control means sets a first charging current value that causes the battery to generate heat based on the discharge state, the temperature of the battery, and the charging condition. Second, when the calorific value of the battery is almost zero
A third charging current in which the heat generation amount of the battery and the heat radiation amount of the blower are equal based on the discharge state, the temperature of the battery, the charging condition, and the temperature of the blower, respectively. A calculation unit for calculating a value; and when the temperature of the battery exceeds an upper limit value of the temperature range, the blower is operated and the charging current is controlled to the second charging current value, and the temperature of the battery is controlled. Is within the temperature range, the blower is operated and the charging current is controlled to the third charging current value, and when the temperature of the battery is lower than the lower limit value of the temperature range, the blower is And the charging current to the first
And a control unit for controlling the charging current value of the charging control system.
【請求項7】 請求項6に記載の充電制御システムにお
いて、 前記第1の充電電流値を、前記電池の許容電流値および
前記充電器の最大電流値のいずれか小さい方の電流値と
等しくしたことを特徴とする充電制御システム。
7. The charging control system according to claim 6, wherein the first charging current value is equal to the smaller one of the allowable current value of the battery and the maximum current value of the charger. A charging control system characterized by the above.
【請求項8】 請求項5〜7のいずれかに記載の充電制
御システムにおいて、 充電開始時の前記電池の温度が前記電池の充電可能温度
を越えた場合、前記制御手段は前記送風機を作動させ、
前記電池の温度が前記充電可能温度以下になったならば
前記電池の充電を開始するように制御することを特徴と
する充電制御システム。
8. The charging control system according to claim 5, wherein when the temperature of the battery at the start of charging exceeds a chargeable temperature of the battery, the control means operates the blower. ,
A charge control system, which controls to start charging of the battery when the temperature of the battery becomes equal to or lower than the chargeable temperature.
JP10733996A 1995-04-27 1996-04-26 Charge control system Expired - Lifetime JP3509382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10733996A JP3509382B2 (en) 1995-04-27 1996-04-26 Charge control system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-104201 1995-04-27
JP10420195 1995-04-27
JP10733996A JP3509382B2 (en) 1995-04-27 1996-04-26 Charge control system

Publications (2)

Publication Number Publication Date
JPH0919074A JPH0919074A (en) 1997-01-17
JP3509382B2 true JP3509382B2 (en) 2004-03-22

Family

ID=26444722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10733996A Expired - Lifetime JP3509382B2 (en) 1995-04-27 1996-04-26 Charge control system

Country Status (1)

Country Link
JP (1) JP3509382B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013174259A1 (en) * 2012-05-22 2013-11-28 Shenzhen Byd Auto R&D Company Limited Power system of electric vehicle, electric vehicle comprising the same and method for heating battery group of electric vehicle
WO2013174277A1 (en) * 2012-05-22 2013-11-28 Shenzhen Byd Auto R&D Company Limited Power system of electric vehicle, electric vehicle comprising the same and method for heating battery group of electric vehicle
WO2013174269A1 (en) * 2012-05-22 2013-11-28 Shenzhen Byd Auto R & D Company Limited Power system of electric vehicle, electric vehicle comprising the same and method for heating battery group of electric vehicle
WO2013174260A1 (en) * 2012-05-22 2013-11-28 Shenzhen Byd Auto R&D Company Limited Power system of hybrid electric vehicle, hybrid electric vehicle comprising the same and method for heating battery group of hybrid electric vehicle
US9973019B2 (en) 2015-12-09 2018-05-15 Honda Motor Co., Ltd. Charging current setting method, a charging method, a charging apparatus, and an actuator

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4730671B2 (en) * 1999-02-26 2011-07-20 日立工機株式会社 Charger
JP3936286B2 (en) * 2002-12-24 2007-06-27 株式会社マキタ Charging apparatus and charging method
JP2006115654A (en) 2004-10-18 2006-04-27 Nec Corp Charging control circuit, electronic apparatus therewith and charging control method
JP4552727B2 (en) * 2005-03-28 2010-09-29 パナソニック電工株式会社 Charging device and rechargeable electric tool set
JP4337848B2 (en) 2006-07-10 2009-09-30 トヨタ自動車株式会社 Power supply system, vehicle including the same, and temperature management method
JP5354846B2 (en) * 2006-08-11 2013-11-27 株式会社東芝 Assembled battery and charging / discharging method of assembled battery
JP5024558B2 (en) * 2008-11-21 2012-09-12 本田技研工業株式会社 Charge control device
FR2942081B1 (en) * 2009-02-09 2011-03-11 Soc De Vehicules Electriques METHOD OF THERMALLY MANAGING AN ELECTRIC BATTERY
FR2942080B1 (en) * 2009-02-09 2011-04-01 Vehicules Electr Soc D METHOD OF THERMALLY MANAGING AN ELECTRIC BATTERY
JP5521989B2 (en) * 2010-11-15 2014-06-18 トヨタ自動車株式会社 Battery system, vehicle equipped with battery system, and method for heating secondary battery
JP5633691B2 (en) * 2010-11-15 2014-12-03 三菱自動車工業株式会社 Electric vehicle charging display device
CN103208824B (en) * 2012-01-16 2016-12-07 华为终端有限公司 A kind of charging circuit and charger
CN103419660B (en) * 2012-05-22 2016-03-30 比亚迪股份有限公司 The power system of electronlmobil, electronlmobil and heating of battery method
WO2017146703A1 (en) * 2016-02-25 2017-08-31 Ford Global Technologies, Llc Entropy driven thermal and electrical management
DE102017204247A1 (en) 2017-03-14 2018-09-20 Robert Bosch Gmbh Method of operating a charger
CN116636065A (en) * 2020-12-21 2023-08-22 日产自动车株式会社 Charging control method and charging control system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
松田好晴,竹原善一朗,電池便覧,日本,丸善株式会社,2001年 2月20日,第3版,296頁
高野清南,リチウム二次電池の電気的熱的挙動とシュミレーション,電総研ニュース,日本,電総研,1996年11月,562号,P5−6

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013174259A1 (en) * 2012-05-22 2013-11-28 Shenzhen Byd Auto R&D Company Limited Power system of electric vehicle, electric vehicle comprising the same and method for heating battery group of electric vehicle
WO2013174277A1 (en) * 2012-05-22 2013-11-28 Shenzhen Byd Auto R&D Company Limited Power system of electric vehicle, electric vehicle comprising the same and method for heating battery group of electric vehicle
WO2013174269A1 (en) * 2012-05-22 2013-11-28 Shenzhen Byd Auto R & D Company Limited Power system of electric vehicle, electric vehicle comprising the same and method for heating battery group of electric vehicle
WO2013174260A1 (en) * 2012-05-22 2013-11-28 Shenzhen Byd Auto R&D Company Limited Power system of hybrid electric vehicle, hybrid electric vehicle comprising the same and method for heating battery group of hybrid electric vehicle
US9308828B2 (en) 2012-05-22 2016-04-12 Byd Company Limited Power system of electric vehicle, electric vehicle comprising the same and method for heating battery group of electric vehicle
RU2584331C1 (en) * 2012-05-22 2016-05-20 Бид Компани Лимитед Power unit of hybrid electric vehicle, hybrid electric vehicle and method for heating accumulator battery of hybrid electric vehicle
US9446756B2 (en) 2012-05-22 2016-09-20 Byd Company Limited Power system of hybrid electric vehicle, hybrid electric vehicle comprising the same and method for heating battery group of hybrid electric vehicle
US9973019B2 (en) 2015-12-09 2018-05-15 Honda Motor Co., Ltd. Charging current setting method, a charging method, a charging apparatus, and an actuator

Also Published As

Publication number Publication date
JPH0919074A (en) 1997-01-17

Similar Documents

Publication Publication Date Title
JP3509382B2 (en) Charge control system
JP4860479B2 (en) Battery temperature control device and battery temperature control method
JP4049959B2 (en) Battery charging method
US7394224B2 (en) Charge control device
US5990660A (en) Process for improving the charging and discharging capacity of storage batteries
USRE39691E1 (en) Battery charger and battery charging method
JPH10290535A (en) Battery charger
JPH11252814A (en) Charging apparatus and method
JP2002125326A (en) Battery charge control method
JP2000023383A (en) Battery charger
US11515587B2 (en) Physics-based control of battery temperature
JP2001314046A (en) Charging apparatus and method of battery pack and electric vehicle
JP2011109802A (en) Battery pack and charging system
JP2002142379A (en) Charging method for battery
JP2007049828A (en) Battery quick charge process, battery quick charger, and battery quick recharging system
JP2003203679A (en) Power source device for automobile
US6495991B2 (en) Charge control apparatus for controlling a charge of a battery pack based upon refrigerant temperature, battery temperature and ambient temperature
JPH077866A (en) Circuit for charging secondary battery
JP2000060020A (en) Method for calibrating capacity of battery
JP2005261034A (en) Controller of electric storage mechanism
JP2017135865A (en) Power storage system
JPH07194015A (en) Charging controller
JP3612460B2 (en) Charger
JP3526277B2 (en) Discharge method of assembled battery and discharge circuit of assembled battery
JPH0956011A (en) Regenerative current charging controller for battery in electric automobile

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 10

EXPY Cancellation because of completion of term