JP5521989B2 - Battery system, vehicle equipped with battery system, and method for heating secondary battery - Google Patents

Battery system, vehicle equipped with battery system, and method for heating secondary battery Download PDF

Info

Publication number
JP5521989B2
JP5521989B2 JP2010254975A JP2010254975A JP5521989B2 JP 5521989 B2 JP5521989 B2 JP 5521989B2 JP 2010254975 A JP2010254975 A JP 2010254975A JP 2010254975 A JP2010254975 A JP 2010254975A JP 5521989 B2 JP5521989 B2 JP 5521989B2
Authority
JP
Japan
Prior art keywords
battery
secondary battery
heating
temperature
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010254975A
Other languages
Japanese (ja)
Other versions
JP2012109045A (en
Inventor
智行 水野
曜 辻子
景子 和佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010254975A priority Critical patent/JP5521989B2/en
Publication of JP2012109045A publication Critical patent/JP2012109045A/en
Application granted granted Critical
Publication of JP5521989B2 publication Critical patent/JP5521989B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Automation & Control Theory (AREA)

Description

本発明は、二次電池と、この二次電池を充電する充電手段と、この充電手段による二次電池の充電を制御する充電制御手段とを備える電池システムに関する。また、この電池システムを搭載した電池システム搭載車両に関する。また、上記二次電池の加熱方法に関する。   The present invention relates to a battery system including a secondary battery, charging means for charging the secondary battery, and charging control means for controlling charging of the secondary battery by the charging means. The present invention also relates to a vehicle equipped with the battery system. The present invention also relates to a method for heating the secondary battery.

リチウムイオン二次電池などの二次電池は、例えば−30〜−10℃といった低温環境下では、出力特性が大きく低下することが知られている。このため、二次電池を搭載した電気自動車やプラグインハイブリッド自動車等の電池システム搭載車両は、冬季の低温環境下、特に始動時やその直後などに、十分な走行性能を発揮できない場合があり得る。   It is known that the output characteristics of a secondary battery such as a lithium ion secondary battery greatly deteriorates under a low temperature environment such as −30 to −10 ° C., for example. For this reason, a vehicle equipped with a battery system such as an electric vehicle or a plug-in hybrid vehicle equipped with a secondary battery may not be able to exhibit sufficient running performance under a low temperature environment in winter, particularly at the start or immediately after that. .

このような問題に対し、例えば下記の特許文献1〜3では、二次電池の外部または内部に加熱装置等を別途設け、この加熱装置等により二次電池を加熱することが提案されている。具体的には、特許文献1には、二次電池に空気を通気する通気ファン、この空気を加温する空気加温手段等を備える二次電池温度調整装置を二次電池の外部に設け、二次電池の温度が低い場合に、空気加温手段により空気を加温して、この空気により二次電池を加熱することが開示されている(特許文献1の特許請求の範囲等を参照)。   For example, Patent Documents 1 to 3 listed below propose to separately provide a heating device or the like outside or inside the secondary battery and heat the secondary battery using the heating device or the like. Specifically, in Patent Document 1, a secondary battery temperature adjusting device including a ventilation fan that ventilates air to the secondary battery, an air heating means that warms the air, and the like is provided outside the secondary battery, It is disclosed that when the temperature of the secondary battery is low, the air is heated by the air heating means and the secondary battery is heated by this air (refer to the claims of Patent Document 1). .

また、特許文献2には、凝固点以下になっても液体状態を保つ過冷却の状態にし得る物質を、二次電池の周囲に配置し、この物質が過冷却状態の液体から固体に相転移する際の凝固潜熱を利用して、二次電池を加熱することが開示されている。
また、特許文献3には、過冷却にし得る物質を収容した容器を、二次電池の内部に配置し、この物質が過冷却状態の液体から固体に相転移する際の凝固潜熱を利用して、二次電池の内部から二次電池を加熱することが開示されている。
In Patent Document 2, a substance that can be kept in a supercooled state that maintains a liquid state even when the temperature is below the freezing point is arranged around the secondary battery, and this substance undergoes a phase transition from a supercooled liquid to a solid. It is disclosed that the secondary battery is heated by using the latent heat of solidification.
In Patent Document 3, a container containing a substance that can be supercooled is placed inside a secondary battery, and the solidification latent heat when this substance undergoes a phase transition from a supercooled liquid to a solid is utilized. It is disclosed that the secondary battery is heated from the inside of the secondary battery.

一方、電解液にレドックスシャトル剤を添加した二次電池も知られている(特許文献4〜6を参照)。これらでは、レドックスシャトル剤は、過充電の防止を目的として添加されている。即ち、過充電時にレドックスシャトル剤に酸化還元反応を生じさせて、過充電状態で入力される電池エネルギを化学的に消費して熱エネルギーに変換する。この熱は電池外部に放出されるので、二次電池の過充電を防止できるとされている。   On the other hand, secondary batteries in which a redox shuttle agent is added to an electrolytic solution are also known (see Patent Documents 4 to 6). In these, the redox shuttle agent is added for the purpose of preventing overcharge. That is, an oxidation-reduction reaction is caused in the redox shuttle agent at the time of overcharge, and the battery energy input in the overcharge state is chemically consumed and converted into heat energy. Since this heat is released to the outside of the battery, overcharge of the secondary battery can be prevented.

特開2007−323810号公報JP 2007-323810 A 特開2005−141929号公報JP 2005-141929 A 特開2008−198390号公報JP 2008-198390 A 特開2000−277147号公報JP 2000-277147 A 特開平9−17447号公報Japanese Patent Laid-Open No. 9-17447 特開2000−156243号公報JP 2000-156243 A

しかしながら、特許文献1,2のように、二次電池の外部に加熱装置等を別途設けると、二次電池を加熱するための熱エネルギの一部が電池外の機材や電池のうちの外装材の昇温に用いられるため、電池加熱の効率が悪い。また、加熱装置等を別途設けるために、電池システムが大型化すると共にコスト高を招く。また、特許文献3のように、二次電池
の内部に加熱装置等を別途設けた場合でも、二次電池自身及び電池システムが大型化すると共にこれらのコスト高を招く。
なお、特許文献4〜6に記載の、電解液にレドックスシャトル剤を添加した二次電池
は、低温時の電池加熱のために用いられるものではない。
However, as in Patent Documents 1 and 2, if a heating device or the like is separately provided outside the secondary battery, a part of the thermal energy for heating the secondary battery is part of the equipment outside the battery or the exterior material of the battery. Therefore, the battery heating efficiency is poor. In addition, since a heating device or the like is separately provided, the battery system is increased in size and costs are increased. Further, as in Patent Document 3, even when a heating device or the like is separately provided inside the secondary battery, the secondary battery itself and the battery system increase in size and increase the cost.
In addition, the secondary battery which added the redox shuttle agent to the electrolyte solution of patent documents 4-6 is not used for the battery heating at the time of low temperature.

本発明は、かかる現状に鑑みてなされたものであって、二次電池を容易かつ効率よく加熱できる電池システム、及び、この電池システムを搭載した電池システム搭載車両を提供することを目的とする。また、二次電池を容易かつ効率よく加熱できる二次電池の加熱方法を提供することを目的とする。   This invention is made | formed in view of this present condition, Comprising: It aims at providing the battery system vehicle which mounts this battery system and the battery system which can heat a secondary battery easily and efficiently. Moreover, it aims at providing the heating method of a secondary battery which can heat a secondary battery easily and efficiently.

上記課題を解決するための本発明の一態様は、レドックスシャトル剤を添加した電解液を有する二次電池と、前記二次電池を充電する充電手段と、前記充電手段による前記二次電池の充電を制御する充電制御手段と、を備える電池システムであって、前記充電制御手段は、前記充電手段により、前記二次電池の電池電圧Vaを、満充電時の電池電圧である通常使用上限電圧Vbを越え、かつ、前記レドックスシャトル剤に酸化還元反応が生じる電池電圧である酸化還元電圧Vc(但し、Vc>Vb)以上の値に維持することにより、前記酸化還元反応に伴う発熱を起こさせて、前記二次電池を直接加熱する直接加熱手段を有する電池システムである。   In one embodiment of the present invention for solving the above-described problems, a secondary battery including an electrolytic solution to which a redox shuttle agent is added, a charging unit that charges the secondary battery, and charging of the secondary battery by the charging unit Charge control means for controlling the battery, wherein the charge control means uses the charging means to change the battery voltage Va of the secondary battery to a normal use upper limit voltage Vb that is a battery voltage at full charge. And a value equal to or higher than the oxidation-reduction voltage Vc (where Vc> Vb), which is a battery voltage at which the redox shuttle agent causes an oxidation-reduction reaction, causes heat generation associated with the oxidation-reduction reaction. A battery system having direct heating means for directly heating the secondary battery.

この電池システムの充電制御手段は、充電手段により、二次電池の電池電圧Vaを、通常使用上限電圧Vbを越え、酸化還元電圧Vc以上の値に維持する(Va≧Vc>Vb)ことにより、レドックスシャトル剤の酸化還元反応に伴う発熱を起こさせて、電解液、従って二次電池を直接加熱する直接加熱手段を有する。このため、二次電池を容易かつ効率よく加熱できる。   The charging control means of this battery system maintains the battery voltage Va of the secondary battery at a value exceeding the normal use upper limit voltage Vb and not less than the oxidation-reduction voltage Vc (Va ≧ Vc> Vb). There is a direct heating means for directly generating heat in the redox shuttle agent due to the oxidation-reduction reaction, and thus directly heating the electrolytic solution and thus the secondary battery. For this reason, a secondary battery can be heated easily and efficiently.

なお、「レドックスシャトル剤」は、電解液に添加し得る物質であって、通常使用上限電圧Vbを超える酸化還元電圧Vcにおいて、正極で酸化反応、負極で還元反応を生じることにより、過充電状態で二次電池に入力される電気エネルギを熱エネルギに変換できる特性を有する物質である。「レドックスシャトル剤」は、1種類の物質のみを用いることもできるし、複数種の物質を混合して用いることもできる。
「レドックスシャトル剤」としては、例えば、上述の特性を有する、芳香族化合物、ラジカル化合物、複素環錯体、メタロセン錯体、Ce化合物などを用いることができる。芳香族化合物、ラジカル化合物、メタロセン錯体及びCe化合物からなるレドックスシャトル剤は、その酸化還元電圧Vcの大きさから、通常使用上限電圧Vbが4.0〜4.5V程度の二次電池に、複素環錯体からなるレドックスシャトル剤は、通常使用上限電圧Vbが3.0V程度の二次電池に用いるのが特に好ましい。
Note that the “redox shuttle agent” is a substance that can be added to the electrolyte, and at an oxidation-reduction voltage Vc exceeding the normal use upper limit voltage Vb, an oxidation reaction occurs at the positive electrode and a reduction reaction occurs at the negative electrode, resulting in an overcharged state It is a substance having the characteristic that the electric energy input to the secondary battery can be converted into thermal energy. As the “redox shuttle agent”, only one kind of substance can be used, or a plurality of kinds of substances can be mixed and used.
As the “redox shuttle agent”, for example, an aromatic compound, a radical compound, a heterocyclic complex, a metallocene complex, a Ce compound and the like having the above-described properties can be used. A redox shuttle agent composed of an aromatic compound, a radical compound, a metallocene complex, and a Ce compound can be used for a secondary battery having a normal use upper limit voltage Vb of about 4.0 to 4.5 V because of its redox voltage Vc. It is particularly preferable to use the redox shuttle agent composed of a ring complex for a secondary battery having a normal use upper limit voltage Vb of about 3.0V.

芳香族化合物からなるレドックスシャトル剤としては、例えば、1,4−ジメトキシ−2−フルオロベンゼン、1,3−ジメトキシ−5−クロロベンゼン、3,5−ジメトキシ−1−フルオロベンゼン、1,2−ジメトキシ−4−フルオロベンゼン1,2−ジメトキシ−4−ブロモベンゼン、1,3−ジメトキシ−4−ブロモベンゼン、2,5−ジメトキシ−1−ブロモベンゼンなどが挙げられる。   Examples of the redox shuttle agent comprising an aromatic compound include 1,4-dimethoxy-2-fluorobenzene, 1,3-dimethoxy-5-chlorobenzene, 3,5-dimethoxy-1-fluorobenzene, and 1,2-dimethoxy. Examples include -4-fluorobenzene 1,2-dimethoxy-4-bromobenzene, 1,3-dimethoxy-4-bromobenzene, 2,5-dimethoxy-1-bromobenzene, and the like.

また、ラジカル化合物からなるレドックスシャトル剤としては、例えば、トリス(4−フルオロフェニル)アミン、トリス(4−トリフルオロメチルフェニル)アミン、トリス(2,4,6−トリフルオロフェニル)アミン、トリス(4−メチル−2,3,5,6−テトラフルオロフェニル)アミン、トリス(2,3,5,6−テトラフルオロフェニル)アミン、トリス(2,3,4,5,6−ペンタフルオロフェニル)アミン、トリス(4−トリフルオロメチル−2,3,5,6−テトラフルオロフェニル)アミン、トリス(2,6−ジフルオロ−4−ブロモフェニル)アミン、トリス(2,4,6−トリブロモフェニル)アミン、トリス(2,4,6−トリクロロフェニル)アミン等のトリフェニルアミン化合物などが挙げられる。   Examples of the redox shuttle agent composed of a radical compound include tris (4-fluorophenyl) amine, tris (4-trifluoromethylphenyl) amine, tris (2,4,6-trifluorophenyl) amine, tris ( 4-methyl-2,3,5,6-tetrafluorophenyl) amine, tris (2,3,5,6-tetrafluorophenyl) amine, tris (2,3,4,5,6-pentafluorophenyl) Amines, tris (4-trifluoromethyl-2,3,5,6-tetrafluorophenyl) amine, tris (2,6-difluoro-4-bromophenyl) amine, tris (2,4,6-tribromophenyl) ) Triphenylamine compounds such as amine and tris (2,4,6-trichlorophenyl) amine.

また、複素環錯体からなるレドックスシャトル剤としては、TEMPO(2,2,6,6−テトラメチル−1−ピペリジニロキシ,フリーラジカル)、4−ヒドロキシ−TEMPO、4−アミノ−TEMPO、4−シアノ−TEMPO、4−カルボキシ−TEMPO、4−(2−ブロモアセタミド)−TEMPO、4−(2−ヨードアセタミド)−TEMPO、3−ヒドロキシ−TEMPO、3−アミノ−TEMPO、3−シアノ−TEMPO、3−(2−ブロモアセタミド)−TEMPO、3−(2−ヨードアセタミド)−TEMPO、プロキシル、β−ヒドロキシ−プロキシル、β−(2−ブロモアセタミド)−プロキシル、β−(2−ヨードアセタミド)−プロキシル等のN−オキシル化合物などが挙げられる。   In addition, as a redox shuttle agent comprising a heterocyclic complex, TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy, free radical), 4-hydroxy-TEMPO, 4-amino-TEMPO, 4-cyano- TEMPO, 4-carboxy-TEMPO, 4- (2-bromoacetamide) -TEMPO, 4- (2-iodoacetamide) -TEMPO, 3-hydroxy-TEMPO, 3-amino-TEMPO, 3-cyano-TEMPO, 3- (2 N-oxyl compounds such as -bromoacetamide) -TEMPO, 3- (2-iodoacetamide) -TEMPO, proxyl, β-hydroxy-proxyl, β- (2-bromoacetamide) -proxyl, β- (2-iodoacetamide) -proxyl Is mentioned.

また、メタロセン錯体からなるレドックスシャトル剤としては、Fe(5−Cl−1,10−phenanthroline)32 、Ru(phenanthroline)32 (但し、式中の「X」はアニオン性分子を示す)等の金属錯体が挙げられる。
また、Ce化合物からなるレドックスシャトル剤としては、Ce(NH42(NO35 等のセリウム塩などが挙げられる。
Moreover, as a redox shuttle agent consisting of a metallocene complex, Fe (5-Cl-1,10-phenanthroline) 3 X 2 , Ru (phenanthroline) 3 X 2 (wherein “X” in the formula represents an anionic molecule) ) And the like.
Examples of the redox shuttle agent made of Ce compound include cerium salts such as Ce (NH 4 ) 2 (NO 3 ) 5 .

更に、上記の電池システムであって、前記二次電池の電池温度Taを検知する温度検知手段を更に備え、前記充電制御手段は、前記電池温度Taが第1所定温度Tbよりも低い場合に、前記電池温度Taが第2所定温度Tc(但し、Tc≧Tb)となるまで、前記直接加熱手段に前記二次電池の加熱を行わせる温度管理手段を更に有する電池システムとすると良い。   Furthermore, in the battery system described above, the battery system further includes a temperature detection unit that detects a battery temperature Ta of the secondary battery, and the charge control unit is configured such that when the battery temperature Ta is lower than a first predetermined temperature Tb, The battery system may further include a temperature management unit that causes the direct heating unit to heat the secondary battery until the battery temperature Ta reaches a second predetermined temperature Tc (where Tc ≧ Tb).

この電池システムでは、二次電池の電池温度Taが第1所定温度Tbよりも低くなった場合に、温度検知手段及び温度管理手段により、二次電池の電池温度Taを第2所定温度Tcまで、自動的に昇温させることができる。   In this battery system, when the battery temperature Ta of the secondary battery becomes lower than the first predetermined temperature Tb, the battery temperature Ta of the secondary battery is set to the second predetermined temperature Tc by the temperature detection means and the temperature management means. The temperature can be raised automatically.

更に、上記の電池システムであって、前記二次電池に蓄えられた電気エネルギを用いて駆動される被駆動装置を更に備え、前記充電制御手段は、前記電池温度Taが前記第1所定温度Tbよりも低い場合に、前記被駆動装置の駆動を開始する駆動開始予定時刻Ha、及び、前記電池温度Taに基づいて、前記直接加熱手段による前記二次電池の加熱開始のタイミングを調整するタイミング調整手段を更に有する電池システムとすると良い。   Furthermore, the battery system further includes a driven device that is driven using electric energy stored in the secondary battery, and the charge control means is configured such that the battery temperature Ta is equal to the first predetermined temperature Tb. A timing adjustment for adjusting the timing of starting the heating of the secondary battery by the direct heating means based on the scheduled driving start time Ha for starting the driving of the driven device and the battery temperature Ta, The battery system may further include means.

この電池システムは、被駆動装置を更に備え、充電制御手段がタイミング調整手段を更に有するので、駆動開始予定時刻Ha及び電池温度Taに基づいて、二次電池の加熱開始のタイミングを適切に調整できる。
「加熱開始のタイミング」としては、例えば、直接加熱手段による加熱で駆動開始予定時刻Haにおける電池温度Taがちょうど第2所定温度Tcとなるタイミング(例えば駆動開始予定時刻Haの45分前)の他、駆動開始予定時刻Haの少し前に(例えば5分前に)電池温度Taが第2所定温度Tcとなるタイミングが挙げられる。このように駆動開始予定時刻Haの時点あるいはその少し前に、電池温度Taが第2所定温度Tcとなるようにすれば、二次電池を暖めておく必要がない期間まで二次電池を昇温させておかなくても済むので、無駄なエネルギ消費を抑えることができる。
This battery system further includes a driven device, and the charging control unit further includes a timing adjustment unit, so that the timing for starting the heating of the secondary battery can be appropriately adjusted based on the scheduled drive start time Ha and the battery temperature Ta. .
As the “heating start timing”, for example, other than the timing at which the battery temperature Ta at the drive start scheduled time Ha is exactly the second predetermined temperature Tc by heating by the direct heating means (for example, 45 minutes before the drive start scheduled time Ha) A timing when the battery temperature Ta becomes the second predetermined temperature Tc slightly before the scheduled drive start time Ha (for example, 5 minutes before) is given. As described above, if the battery temperature Ta is set to the second predetermined temperature Tc at or slightly before the scheduled drive start time Ha, the temperature of the secondary battery is increased to a period when it is not necessary to warm the secondary battery. Since it is not necessary to let it go, useless energy consumption can be suppressed.

なお、駆動開始予定時刻Haの到来後、実際に被駆動装置が駆動を開始するまでの間、電池温度Taを第2所定温度Tcに保つ保温手段を備えるのが好ましい。   In addition, it is preferable to include a heat retaining unit that keeps the battery temperature Ta at the second predetermined temperature Tc until the driven device actually starts driving after the scheduled driving start time Ha.

更に、上記のいずれかに記載の電池システムであって、前記充電制御手段は、前記直接加熱手段により前記二次電池を加熱する直前に、前記二次電池が満充電となるパターンで前記二次電池を充電する直前満充電手段を更に有する電池システムとすると良い。   Furthermore, in the battery system according to any one of the above, the charge control unit includes a pattern in which the secondary battery is fully charged immediately before the secondary battery is heated by the direct heating unit. The battery system may further include a full charging unit immediately before charging the battery.

リチウムイオン二次電池など、満充電の状態で放置すると劣化が進行し易い二次電池がある。これに対し、この電池システムでは、直前満充電手段により、二次電池を加熱する直前に二次電池が満充電となるように二次電池を充電できる。従って、満充電状態の期間が長くなることに伴う二次電池の劣化を抑制できる。   Some secondary batteries, such as lithium ion secondary batteries, tend to deteriorate when left in a fully charged state. In contrast, in this battery system, the secondary battery can be charged by the immediately preceding full charging means so that the secondary battery is fully charged immediately before heating the secondary battery. Accordingly, it is possible to suppress the deterioration of the secondary battery due to the long period of the fully charged state.

また、他の態様は、上記のいずれかに記載の電池システムを搭載した電池システム搭載車両である。   Another aspect is a battery system-equipped vehicle equipped with any of the battery systems described above.

前述の電池システムは、二次電池を容易かつ効率よく加熱できるので、これを搭載した電池システム搭載車両の電費を良くすることができる。
なお、「電池システム搭載車両」としては、例えば、電気自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、フォークリフト、電気車いす、電動アシスト自転車、電動スクータなどが挙げられる。
Since the battery system described above can easily and efficiently heat the secondary battery, it is possible to improve the power consumption of a vehicle equipped with the battery system.
Examples of the “battery system-equipped vehicle” include an electric vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, a forklift, an electric wheelchair, an electrically assisted bicycle, and an electric scooter.

なお、この電池システム搭載車両において、前述の被駆動装置に対応するのは、この電池システム搭載車両を駆動し走行させるモータである。また、前述の充電手段に対応するのは、この電池システム搭載車両外の外部電源からの電気エネルギを二次電池に充電する外部電源充電装置である。   In this battery system-equipped vehicle, a motor that drives and runs the battery system-equipped vehicle corresponds to the aforementioned driven device. Further, corresponding to the above-mentioned charging means is an external power supply charging device for charging the secondary battery with electric energy from an external power supply outside the vehicle equipped with the battery system.

また、他の態様は、レドックスシャトル剤を添加した電解液を有する二次電池を加熱する二次電池の加熱方法であって、前記二次電池の電池電圧Vaを、満充電時の電池電圧である通常使用上限電圧Vbを越え、かつ、前記レドックスシャトル剤に酸化還元反応が生じる電池電圧である酸化還元電圧Vc(但し、Vc>Vb)以上の値に維持することにより、前記酸化還元反応に伴う発熱を起こさせて、前記二次電池を直接加熱する直接加熱ステップを備える二次電池の加熱方法である。   Further, another aspect is a method of heating a secondary battery having an electrolyte solution to which a redox shuttle agent is added, wherein the battery voltage Va of the secondary battery is a battery voltage at full charge. By maintaining a value that exceeds a certain normal use upper limit voltage Vb and at least a redox voltage Vc (where Vc> Vb), which is a battery voltage at which the redox shuttle agent undergoes a redox reaction, The secondary battery heating method includes a direct heating step in which the secondary battery is directly heated by causing the accompanying heat generation.

この二次電池の加熱方法では、二次電池の電池電圧Vaを、通常使用上限電圧Vbを越え、酸化還元電圧Vc以上の値に維持する(Va≧Vc>Vb)ことにより、レドックスシャトル剤の酸化還元反応に伴う発熱を起こさせて、電解液、従って二次電池を直接加熱する。このため、二次電池を容易かつ効率よく加熱できる。   In this secondary battery heating method, the battery voltage Va of the secondary battery exceeds the normal use upper limit voltage Vb and is maintained at a value equal to or higher than the oxidation-reduction voltage Vc (Va ≧ Vc> Vb). The heat generated by the oxidation-reduction reaction is caused to heat the electrolytic solution and thus the secondary battery directly. For this reason, a secondary battery can be heated easily and efficiently.

更に、上記の二次電池の加熱方法であって、前記二次電池の電池温度Taを検知する温度検知ステップと、前記電池温度Taが第1所定温度Tbよりも低い場合に、前記電池温度Taが第2所定温度Tc(但し、Tc≧Tb)となるまで、前記直接加熱ステップで前記二次電池の加熱を行わせる温度管理ステップと、を更に備える二次電池の加熱方法とすると良い。   Furthermore, in the heating method of the secondary battery, the battery temperature Ta when detecting the battery temperature Ta of the secondary battery, and when the battery temperature Ta is lower than the first predetermined temperature Tb. It is preferable that the secondary battery heating method further includes a temperature management step of heating the secondary battery in the direct heating step until the temperature reaches a second predetermined temperature Tc (where Tc ≧ Tb).

この二次電池の加熱方法では、二次電池の電池温度Taを検知し、この電池温度Taが第1所定温度Tbよりも低い場合に、電池温度Taが第2所定温度Tcとなるまで、二次電池を加熱する。従って、電池温度Taが第1所定温度Tbよりも低くなった場合に、電池温度Taを第2所定温度Tcまで自動的に昇温させることができる。   In this secondary battery heating method, the battery temperature Ta of the secondary battery is detected, and when the battery temperature Ta is lower than the first predetermined temperature Tb, the battery temperature Ta becomes the second predetermined temperature Tc. The next battery is heated. Therefore, when the battery temperature Ta becomes lower than the first predetermined temperature Tb, the battery temperature Ta can be automatically raised to the second predetermined temperature Tc.

更に、上記の二次電池の加熱方法であって、前記電池温度Taが前記第1所定温度Tbよりも低い場合に、前記二次電池に蓄えられた電気エネルギを用いて駆動される被駆動装置の駆動を開始する駆動開始予定時刻Ha、及び、前記電池温度Taに基づいて、前記直接加熱ステップによる前記二次電池の加熱開始のタイミングを調整するタイミング調整ステップを更に備える二次電池の加熱方法とすると良い。   Furthermore, in the heating method for the secondary battery described above, when the battery temperature Ta is lower than the first predetermined temperature Tb, the driven device is driven using the electrical energy stored in the secondary battery. The secondary battery heating method further comprising a timing adjustment step of adjusting the timing of starting the heating of the secondary battery by the direct heating step based on the scheduled drive start time Ha for starting the driving of the battery and the battery temperature Ta And good.

この二次電池の加熱方法では、タイミング調整ステップにより、駆動開始予定時刻Ha及び電池温度Taに基づいて、二次電池の加熱開始のタイミングを適切に調整できる。   In this secondary battery heating method, the timing of the secondary battery heating start can be appropriately adjusted by the timing adjustment step based on the scheduled drive start time Ha and the battery temperature Ta.

更に、上記のいずれかに記載の二次電池の加熱方法であって、前記直接加熱ステップを行う直前に、前記二次電池が満充電となるパターンで前記二次電池を充電する直前満充電ステップを更に備える二次電池の加熱方法とすると良い。   Furthermore, in the method for heating a secondary battery according to any one of the above, a full charge step immediately before charging the secondary battery in a pattern in which the secondary battery is fully charged immediately before performing the direct heating step. It is good to set it as the heating method of the secondary battery further equipped with these.

リチウムイオン二次電池など、満充電の状態で放置すると劣化が進行し易い二次電池がある。これに対し、この二次電池の加熱方法では、直接加熱ステップを行う直前に二次電池が満充電となるように二次電池を充電するので、満充電状態の期間が長くなることに伴う二次電池の劣化を抑制できる。   Some secondary batteries, such as lithium ion secondary batteries, tend to deteriorate when left in a fully charged state. On the other hand, in this heating method of the secondary battery, the secondary battery is charged so that the secondary battery is fully charged immediately before performing the direct heating step. Degradation of the secondary battery can be suppressed.

実施形態1に係り、電池システムを搭載したプラグインハイブリッド自動車の概略を示す説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram illustrating an outline of a plug-in hybrid vehicle equipped with a battery system according to a first embodiment. 実施形態1に係り、リチウムイオン二次電池の縦断面図である。1 is a longitudinal sectional view of a lithium ion secondary battery according to Embodiment 1. FIG. 実施形態1に係り、捲回型電極体を示す斜視図である。FIG. 3 is a perspective view showing a wound electrode body according to the first embodiment. 実施例1及び比較例1について、入力電気量と電池電圧Vaとの関係を示すグラフである。6 is a graph showing a relationship between an input electric quantity and a battery voltage Va for Example 1 and Comparative Example 1. 実施例2及び比較例2について、加熱時間と電池温度Taとの関係と示すグラフである。It is a graph which shows the relationship between heating time and battery temperature Ta about Example 2 and Comparative Example 2. FIG. 実施例3及び比較例3〜5について、電池出力及び電池温度Taを示すグラフである。It is a graph which shows a battery output and battery temperature Ta about Example 3 and Comparative Examples 3-5. 実施形態1に係り、電池システムによる充電制御を示すフローチャートである。4 is a flowchart illustrating charge control by the battery system according to the first embodiment. 実施形態1に係り、電池システムによる充電制御のうち、充電・加熱処理について示すフローチャートである。4 is a flowchart illustrating charging / heating processing in the charging control by the battery system according to the first embodiment. 実施形態2に係り、電池システムによる充電制御を示すフローチャートである。10 is a flowchart illustrating charge control by the battery system according to the second embodiment. 実施形態2に係り、電池システムによる充電制御のうち、加熱処理について示すフローチャートである。6 is a flowchart illustrating heat treatment in charge control by the battery system according to the second embodiment.

(実施形態1)
以下、本発明の実施の形態を、図面を参照しつつ説明する。図1に、本実施形態1に係る電池システム200を搭載したプラグインハイブリッド自動車(電池システム搭載車両)300を示す。このプラグインハイブリッド自動車300は、その車体310に、エンジン320と、フロントモータ330及びリアモータ340(被駆動装置)と、電池システム200とを搭載する。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a plug-in hybrid vehicle (battery system-equipped vehicle) 300 equipped with the battery system 200 according to the first embodiment. The plug-in hybrid vehicle 300 includes an engine 320, a front motor 330 and a rear motor 340 (driven device), and a battery system 200 mounted on a vehicle body 310.

このうち、電池システム200は、組電池210と、ECU220と、インバータ230と、AC−DCコンバータ(充電手段)240と、これらを接続するケーブル250と、外部電源XVとの接続に用いるプラグ付きケーブル260とを有する。このうち、組電池210は、複数のリチウムイオン二次電池(二次電池)100,100,…と、リチウムイオン二次電池100の電池温度Taを検知する温度センサ(温度検知手段)190とを有する。   Among these, the battery system 200 includes an assembled battery 210, an ECU 220, an inverter 230, an AC-DC converter (charging means) 240, a cable 250 for connecting them, and a cable with a plug used for connection to an external power source XV. 260. Among these, the assembled battery 210 includes a plurality of lithium ion secondary batteries (secondary batteries) 100, 100,... And a temperature sensor (temperature detection means) 190 that detects the battery temperature Ta of the lithium ion secondary battery 100. Have.

本実施形態1では、この電池システム200により、外部電源XVから組電池210(リチウムイオン二次電池100)へ充電でき、また、組電池210(リチウムイオン二次電池100)に蓄えたれた電気エネルギを用いて、フロントモータ330及びリアモータ340を駆動できる。なお、ECU220が、AC−DCコンバータ240によるリチウムイオン二次電池100の充電を制御する「充電制御手段」に相当する。   In the first embodiment, the battery system 200 can charge the assembled battery 210 (lithium ion secondary battery 100) from the external power source XV, and the electric energy stored in the assembled battery 210 (lithium ion secondary battery 100). Can be used to drive the front motor 330 and the rear motor 340. The ECU 220 corresponds to “charging control means” that controls charging of the lithium ion secondary battery 100 by the AC-DC converter 240.

次に、組電池210を構成するリチウムイオン二次電池100について説明する。このリチウムイオン二次電池100は、正極板121の理論容量より推測される電池容量が14Ahであり、満充電(SOC100%)時の電池電圧である通常使用上限電圧Vbが4.1Vである。
このリチウムイオン二次電池100は、角型電池であり、角型の電池ケース110、この電池ケース110内に収容された捲回型電極体120、電池ケース110に支持された正極電極端子部材150及び負極電極端子部材160等から構成されている(図2及び図3参照)。また、電池ケース110内には、電解液117が注入されている。
Next, the lithium ion secondary battery 100 constituting the assembled battery 210 will be described. The lithium ion secondary battery 100 has a battery capacity estimated from the theoretical capacity of the positive electrode plate 121 of 14 Ah, and a normal use upper limit voltage Vb that is a battery voltage at full charge (SOC 100%) is 4.1 V.
The lithium ion secondary battery 100 is a rectangular battery, and includes a rectangular battery case 110, a wound electrode body 120 accommodated in the battery case 110, and a positive electrode terminal member 150 supported by the battery case 110. And the negative electrode terminal member 160 and the like (see FIGS. 2 and 3). In addition, an electrolytic solution 117 is injected into the battery case 110.

このうち、電解液117は、レドックスシャトル剤を添加したものである。具体的には、エチレンカーボネートとエチルメチルカーボネートとを1:1の割合(体積比)で混合し、LiPF6を1Mとなるように溶解させた電解液に、レドックスシャトル剤として1,2−ジ(メトキシ)−4−(フッ化)ベンゼンを0.01Mとなるようにように溶解させたものである。このレドックスシャトル剤の酸化還元電圧Vcは4.2Vである。   Among these, the electrolyte solution 117 is a solution to which a redox shuttle agent is added. Specifically, ethylene carbonate and ethylmethyl carbonate are mixed at a ratio (volume ratio) of 1: 1, and LiPF6 is dissolved to 1 M in an electrolytic solution, and 1,2-di ( Methoxy) -4- (fluorinated) benzene is dissolved so as to be 0.01M. The redox shuttle agent has a redox voltage Vc of 4.2V.

また、捲回型電極体120は、帯状の正極板121と帯状の負極板131とを通気性を有する帯状のセパレータ141を介して互いに重ねて軸線AX周りに捲回し、扁平状に圧縮したものである。
このうち、正極板121は、芯材として、帯状のアルミニウム箔からなる集電板122を有する。この集電板122の両主面のうち、幅方向の一部でかつ長手方向に延びる領域上には、それぞれ正極活物質層が長手方向に帯状に設けられている。この正極活物質層は、正極活物質、導電助剤及び結着剤から構成されている。本実施形態1では、正極活物質としてLiFePO4 、導電助剤としてアセチレンブラック(AB)、結着剤としてポリフッ化ビニリデン(PVDF)を用いている。
Further, the wound electrode body 120 is obtained by winding a belt-like positive electrode plate 121 and a belt-like negative electrode plate 131 on each other with a breathable belt-like separator 141 around the axis AX, and compressing them flatly. It is.
Among these, the positive electrode plate 121 has a current collector plate 122 made of a strip-shaped aluminum foil as a core material. On both main surfaces of the current collector plate 122, a positive electrode active material layer is provided in a band shape in the longitudinal direction on a part extending in the longitudinal direction and extending in the longitudinal direction. This positive electrode active material layer is comprised from the positive electrode active material, the conductive support agent, and the binder. In the first embodiment, LiFePO 4 is used as the positive electrode active material, acetylene black (AB) is used as the conductive auxiliary agent, and polyvinylidene fluoride (PVDF) is used as the binder.

また、負極板131は、芯材として、帯状の銅箔からなる集電板132を有する。この集電板132の両主面のうち、幅方向の一部でかつ長手方向に延びる領域上には、それぞれ負極活物質層が長手方向に帯状に設けられている。この負極活物質層は、負極活物質、結着剤及び増粘剤から構成されている。本実施形態1では、負極活物質として天然黒鉛系の炭素材料、結着剤としてスチレン−ブタジエン共重合体(SBR)、増粘剤としてカルボキシメチルセルロース(CMC)を用いている。
セパレータ141は、樹脂、具体的にはポリプロピレン(PP)とポリエチレン(PE)からなる多孔質膜であり、帯状をなす。
Moreover, the negative electrode plate 131 has the current collection plate 132 which consists of strip | belt-shaped copper foil as a core material. On both main surfaces of the current collector plate 132, a negative electrode active material layer is provided in a strip shape in the longitudinal direction on a part extending in the longitudinal direction and extending in the longitudinal direction. The negative electrode active material layer is composed of a negative electrode active material, a binder, and a thickener. In the first embodiment, a natural graphite-based carbon material is used as the negative electrode active material, a styrene-butadiene copolymer (SBR) is used as the binder, and carboxymethyl cellulose (CMC) is used as the thickener.
The separator 141 is a porous film made of resin, specifically, polypropylene (PP) and polyethylene (PE), and has a strip shape.

ここで、このリチウムイオン二次電池100について行った種々の試験結果について説明する。まず、実施例1として、このリチウムイオン二次電池100を充電して、入力電気量と電池電圧(端子間電圧)Vaとの関係を調べた。また、比較例1として、電解液にレドックスシャトル剤を添加しないで、それ以外は上記実施形態1と同様にしたリチウムイオン二次電池を用意し、これについても同様に、入力電気量と電池電圧Vaとの関係を調べた。その結果を図4に示す。   Here, various test results performed on the lithium ion secondary battery 100 will be described. First, as Example 1, the lithium ion secondary battery 100 was charged, and the relationship between the input electric quantity and the battery voltage (inter-terminal voltage) Va was examined. In addition, as Comparative Example 1, a lithium ion secondary battery is prepared in the same manner as in Embodiment 1 except that no redox shuttle agent is added to the electrolytic solution. The relationship with Va was investigated. The result is shown in FIG.

図4のグラフより、比較例1に係るリチウムイオン二次電池は、充電が進み、満充電となった電池電圧Va=Vb(4.1V)を越えると、入力電気量の増加に対し電池電圧Vaが急激に上昇する。
一方、実施例1に係るリチウムイオン二次電池100では、満充電である電池電圧Va=Vbを越え、更に電池電圧Va=Vc(4.2V)に達するまで、入力電気量と電池電圧Vaとの関係は、比較例1に係るリチウムイオン二次電池と同じである。しかし、電池電圧Va=Vcに達すると、もはや入力電気量の増加に対し電池電圧Vaは増加せず、電池電圧Vaはこの値Vcを維持する。この電圧値Vcは、電解液117中のレドックスシャトル剤に酸化還元反応が生じる酸化還元電圧である。レドックスシャトル剤は、この酸化還元電圧Vcにおいて、正極板121で酸化反応、負極板131で還元反応を生じることにより、過充電状態で入力される電気エネルギを熱エネルギに変換している。この熱は、電池ケース110等を通じて電池外部に放出される。
From the graph of FIG. 4, when the lithium ion secondary battery according to Comparative Example 1 is charged and exceeds the fully charged battery voltage Va = Vb (4.1 V), the battery voltage is increased with respect to the increase in the amount of input electricity. Va rises rapidly.
On the other hand, in the lithium ion secondary battery 100 according to the first embodiment, the input electric quantity and the battery voltage Va exceed the fully charged battery voltage Va = Vb and further reaches the battery voltage Va = Vc (4.2 V). This relationship is the same as that of the lithium ion secondary battery according to Comparative Example 1. However, when the battery voltage Va = Vc is reached, the battery voltage Va no longer increases with the increase of the input electric quantity, and the battery voltage Va maintains this value Vc. This voltage value Vc is an oxidation-reduction voltage at which an oxidation-reduction reaction occurs in the redox shuttle agent in the electrolytic solution 117. The redox shuttle agent converts electric energy input in an overcharged state into heat energy by causing an oxidation reaction at the positive electrode plate 121 and a reduction reaction at the negative electrode plate 131 at the oxidation-reduction voltage Vc. This heat is released outside the battery through the battery case 110 and the like.

次に、実施例2として、上記実施形態1に係るリチウムイオン二次電池100を直接加熱して、加熱時間と電池温度Taとの関係を調べた。具体的には、25℃の恒温槽内で、定電流−定電圧方式(上限電圧4.1V、電流値(1/80)Cが充電終了条件)により、リチウムイオン二次電池100を満充電となるまで充電した。その後、この満充電とされたリチウムイオン二次電池100を、−20℃の恒温槽内に置いた。
その後、このリチウムイオン二次電池100に1Cの定電流で通電することにより、レドックスシャトル剤の酸化還元反応に伴う発熱を起こさせて、リチウムイオン二次電池100をその内部から直接加熱した。この実施例2では、電池温度Taが−20℃から25℃となるまでに20分間要した。
Next, as Example 2, the lithium ion secondary battery 100 according to Embodiment 1 was directly heated, and the relationship between the heating time and the battery temperature Ta was examined. Specifically, the lithium ion secondary battery 100 is fully charged in a constant temperature bath at 25 ° C. by a constant current-constant voltage method (upper limit voltage 4.1 V, current value (1/80) C is a charge termination condition). Charged until Thereafter, the fully charged lithium ion secondary battery 100 was placed in a constant temperature bath at -20 ° C.
Thereafter, the lithium ion secondary battery 100 was energized with a constant current of 1 C to generate heat associated with the redox shuttle agent oxidation-reduction reaction, and the lithium ion secondary battery 100 was directly heated from the inside. In Example 2, it took 20 minutes for the battery temperature Ta to change from -20 ° C to 25 ° C.

一方、比較例2として、容器に30mlの液体(具体的には水)とこれを加熱可能なヒータ(180Wのニクロム線)とを収容し、この液体中に上記比較例1に係るリチウムイオン二次電池を浸漬したものを用意した。そして、予めリチウムイオン二次電池100を25℃の環境温度下で上記のように満充電にしておき、容器中の液体及びリチウムイオン二次電池100の温度を−20℃とした。
その後、実施例1に係るリチウムイオン二次電池100と消費電力が同じになるようにヒータに通電して、液体を加熱することにより、リチウムイオン二次電池100を間接的に加熱した。この比較例2では、電池温度Taが−20℃から25℃となるまでに35分間要した。その結果を図5に示す。
On the other hand, as Comparative Example 2, 30 ml of liquid (specifically, water) and a heater (180 W nichrome wire) capable of heating the container are accommodated in the container, and the lithium ion 2 according to Comparative Example 1 is contained in this liquid. What dipped the next battery was prepared. The lithium ion secondary battery 100 was fully charged in advance as described above at an ambient temperature of 25 ° C., and the temperature of the liquid in the container and the lithium ion secondary battery 100 was −20 ° C.
Thereafter, the lithium ion secondary battery 100 was indirectly heated by energizing the heater so that the power consumption was the same as that of the lithium ion secondary battery 100 according to Example 1 and heating the liquid. In Comparative Example 2, it took 35 minutes for the battery temperature Ta to change from -20 ° C to 25 ° C. The result is shown in FIG.

図5のグラフから判るように、実施例2に係るリチウムイオン二次電池100も比較例2に係るリチウムイオン二次電池も、加熱時間の経過に伴って、電池温度Taが直線的に上昇する。但し、比較例2に比して実施例2の方が、上昇のスピードが速い。即ち、実施例2に係るリチウムイオン二次電池100は、25℃に到達するのに20分間で済んだのに対し、比較例2に係るリチウムイオン二次電池は、25℃に到達するのに35分間も掛かった。
このことから、リチウムイオン二次電池の外部に加熱装置を別途設置して、これによりリチウムイオン二次電池を加熱する(比較例2)よりも、リチウムイオン二次電池100を内部から直接加熱する(実施例2)方が、効率よく加熱できることが判る。
As can be seen from the graph of FIG. 5, in both the lithium ion secondary battery 100 according to Example 2 and the lithium ion secondary battery according to Comparative Example 2, the battery temperature Ta increases linearly as the heating time elapses. . However, the speed of the rise in Example 2 is faster than that in Comparative Example 2. That is, the lithium ion secondary battery 100 according to Example 2 took 20 minutes to reach 25 ° C., whereas the lithium ion secondary battery according to Comparative Example 2 reached 25 ° C. It took 35 minutes.
Therefore, rather than separately installing a heating device outside the lithium ion secondary battery and thereby heating the lithium ion secondary battery (Comparative Example 2), the lithium ion secondary battery 100 is directly heated from the inside. It can be seen that (Example 2) can be heated more efficiently.

次に、実施例3として、上記実施例2と同様に、上記実施形態1に係るリチウムイオン二次電池100を満充電とし、−20℃とした後に20分間加熱して、電池温度Taと電池出力を測定した。電池出力は、加熱終了後、1分間経過した時点で測定した。
なお、電池出力は、次のようにして算出した。即ち、上記リチウムイオン二次電池100を、定電流方式により1Cで30秒間放電させた。放電前の電池電圧(開放電圧)をV0、放電開始から20秒後の電池電圧をV1とし、(V1−V0)/Iをこのリチウムイオン二次電池100の内部抵抗Rとした。更にシステムの下限電圧V2(本実施形態ではV2=3.0V)から(V2×V2)/Rを求め、更にこれを正極活物質の重量で割って、この値を電池出力(W/g)とした。
Next, as Example 3, as in Example 2, the lithium ion secondary battery 100 according to Embodiment 1 was fully charged, and was heated to −20 ° C., and then heated for 20 minutes. The output was measured. The battery output was measured when 1 minute passed after the heating was completed.
The battery output was calculated as follows. That is, the lithium ion secondary battery 100 was discharged at 1 C for 30 seconds by a constant current method. The battery voltage (open voltage) before discharge was V0, the battery voltage 20 seconds after the start of discharge was V1, and (V1-V0) / I was the internal resistance R of the lithium ion secondary battery 100. Further, (V2 × V2) / R is obtained from the lower limit voltage V2 of the system (V2 = 3.0 V in this embodiment), and further divided by the weight of the positive electrode active material, and this value is obtained as the battery output (W / g). It was.

また、比較例3として、前述の比較例1に係るリチウムイオン二次電池(電解液にレドックスシャトル剤を含まない)を用意し、満充電とし、−20℃とした後に、実施例3のような加熱のための「通電を行うことなく」、電池温度Taを測定し、更に電池出力を測定した。
また、比較例4として、前述の比較例1に係るリチウムイオン二次電池(電解液にレドックスシャトル剤を含まない)を用意し、満充電とし、−20℃とした後に、更に実施例3と同様な「通電を行って」、電池温度Taと電池出力を測定した。
また、比較例5として、前述の実施例3に係るリチウムイオン二次電池100(電解液にレドックスシャトル剤を含む)を用意し、満充電とし、−20℃とした後に、実施例3のような加熱のための「通電を行うことなく」、電池温度Taと電池出力を測定した。
その結果を図6に示す。なお、電池出力は、比較例3を基準(基準値「1」)とし、実施例3,比較例4,5は、比較例3に対する相対値で示してある。
In addition, as Comparative Example 3, a lithium ion secondary battery according to Comparative Example 1 described above (a redox shuttle agent is not included in the electrolytic solution) is prepared, fully charged, and set to −20 ° C., and then as in Example 3. The battery temperature Ta was measured “without energization” for proper heating, and the battery output was further measured.
In addition, as Comparative Example 4, a lithium ion secondary battery according to Comparative Example 1 described above (a redox shuttle agent is not included in the electrolytic solution) is prepared, fully charged, and set to −20 ° C. The battery temperature Ta and the battery output were measured in the same manner as “energized”.
Further, as Comparative Example 5, the lithium ion secondary battery 100 (including the redox shuttle agent in the electrolytic solution) according to Example 3 described above was prepared, fully charged, and set to −20 ° C., and then as in Example 3. The battery temperature Ta and the battery output were measured “without energization” for proper heating.
The result is shown in FIG. The battery output is based on Comparative Example 3 (reference value “1”), and Examples 3, Comparative Examples 4 and 5 are shown as relative values with respect to Comparative Example 3.

図6より、比較例3,5では、上記の試験後も、電池温度Taは環境温度(−20℃)と変わらず、電池出力は基準値「1」であった。また、比較例4では、電池温度Taが環境温度(−20℃)から僅かに上昇(電池温度Ta=−15℃)し、また、電池出力も比較例3に比べて僅かに上昇(電池出力=1.3)した。これらに対し、実施例3では、電池温度Taが環境温度(−20℃)から大幅に上昇(電池温度Ta=25℃)し、また、電池出力も大幅に上昇(電池出力=5.0)した。   From FIG. 6, in Comparative Examples 3 and 5, the battery temperature Ta did not change from the environmental temperature (−20 ° C.) after the above test, and the battery output was the reference value “1”. In Comparative Example 4, the battery temperature Ta slightly increased from the environmental temperature (−20 ° C.) (battery temperature Ta = −15 ° C.), and the battery output also increased slightly compared to Comparative Example 3 (battery output). = 1.3). In contrast, in Example 3, the battery temperature Ta significantly increased from the environmental temperature (−20 ° C.) (battery temperature Ta = 25 ° C.), and the battery output also increased significantly (battery output = 5.0). did.

このことから、満充電後に加熱のための通電を別途行わないと(比較例3,5)、電解液にレドックスシャトル剤が添加されているか否かに拘わらず、電池温度Taに変化がなく、従って電池出力も上昇しないことが判る。また、満充電後に加熱のために通電(過充電)を行っても、電解液にレドックスシャトル剤が添加されていないリチウムイオン二次電池では(比較例4)、電池温度Taが僅かしか上昇せず、電池出力も僅かしか上昇しないことが判る。一方、電解液にレドックスシャトル剤が添加されたリチウムイオン二次電池100を用いて、満充電後に加熱のための通電を行えば(実施例3)、電池温度Taが大幅に上昇し、電池出力も大幅に上昇させ得ることが判る。   From this, unless energization for heating is performed separately after full charge (Comparative Examples 3 and 5), regardless of whether or not a redox shuttle agent is added to the electrolyte, there is no change in the battery temperature Ta, Therefore, it can be seen that the battery output does not increase. In addition, even when energization (overcharge) is performed for heating after full charge, the battery temperature Ta is slightly increased in the lithium ion secondary battery in which the redox shuttle agent is not added to the electrolyte (Comparative Example 4). It can also be seen that the battery output increases only slightly. On the other hand, if the lithium-ion secondary battery 100 in which the redox shuttle agent is added to the electrolytic solution is energized for heating after full charge (Example 3), the battery temperature Ta increases significantly, and the battery output is increased. It can also be seen that it can be significantly increased.

次いで、前述のプラグインハイブリッド自動車300における、電池システム200による組電池210(リチウムイオン二次電池100)の充電制御について説明する。このプラグインハイブリッド自動車300は、例えば−30〜−10℃といった低温環境下で、組電池210(リチウムイオン二次電池100)の出力が大きく低下するため、十分な走行性能を発揮できないおそれがある。この問題を解決するために、このプラグインハイブリッド自動車300では、電池システム200において図7及び図8のフローチャートを示す充電制御を行って、低温状態にあるリチウムイオン二次電池100(組電池210)を加熱する。   Next, charging control of the assembled battery 210 (lithium ion secondary battery 100) by the battery system 200 in the plug-in hybrid vehicle 300 described above will be described. In this plug-in hybrid vehicle 300, for example, the output of the assembled battery 210 (lithium ion secondary battery 100) is greatly reduced under a low temperature environment of −30 to −10 ° C., for example, there is a possibility that sufficient running performance cannot be exhibited. . In order to solve this problem, in the plug-in hybrid vehicle 300, the battery system 200 performs the charge control shown in the flowcharts of FIGS. 7 and 8 so that the lithium ion secondary battery 100 (the assembled battery 210) is in a low temperature state. Heat.

ユーザは、プラグインハイブリッド自動車300を外部電源XVに接続し、プラグインハイブリッド自動車300の運転を開始する運転開始予定時刻(駆動開始予定時刻)Haを入力する。この運転開始予定時刻Haは、ECU220に記憶される。
まず、ステップS1において、運転開始予定時刻(駆動開始予定時刻)Haが設定されているか否かを判断する。ここで、YES、即ち、運転開始予定時刻Haが設定されている場合は、ステップS2に進む。一方、NO、即ち、運転開始予定時刻Haが設定されていない場合は、ステップS10の充電処理に進む。
The user connects the plug-in hybrid vehicle 300 to the external power source XV, and inputs a scheduled operation start time (estimated drive start time) Ha at which the operation of the plug-in hybrid vehicle 300 is started. This scheduled operation start time Ha is stored in the ECU 220.
First, in step S1, it is determined whether or not a scheduled operation start time (estimated drive start time) Ha is set. If YES, that is, if the scheduled operation start time Ha is set, the process proceeds to step S2. On the other hand, if NO, that is, if the scheduled operation start time Ha is not set, the process proceeds to the charging process in step S10.

ステップS2に進むと、リチウムイオン二次電池100の充電状態(SOC)を検知する。本実施形態1では、リチウムイオン二次電池100の電池電圧Vaを測定し、この値から充電状態を検知している。
次に、ステップS3に進み、温度センサ190によりリチウムイオン二次電池100の電池温度Taを測定する。このステップS3が前述の「温度検知ステップ」に相当する。
In step S2, the state of charge (SOC) of the lithium ion secondary battery 100 is detected. In the first embodiment, the battery voltage Va of the lithium ion secondary battery 100 is measured, and the state of charge is detected from this value.
Next, it progresses to step S3 and the battery temperature Ta of the lithium ion secondary battery 100 is measured with the temperature sensor 190. FIG. This step S3 corresponds to the aforementioned “temperature detection step”.

次に、ステップS4において、ステップS3で得られた電池温度Taが、第1所定温度Tb(本実施形態1では5℃)よりも低いか否かを判断する。ここで、YES、即ち、電池温度Taが第1所定温度Tbよりも低い場合には、ステップS5に進む。リチウムイオン二次電池100が低温状態にあり、加熱を必要とする場合である。一方、NO、即ち、電池温度Taが第1所定温度Tb以上の場合には、ステップS8に進む。リチウムイオン二次電池100を加熱する必要がない場合である。   Next, in step S4, it is determined whether or not the battery temperature Ta obtained in step S3 is lower than a first predetermined temperature Tb (5 ° C. in the first embodiment). If YES, that is, if the battery temperature Ta is lower than the first predetermined temperature Tb, the process proceeds to step S5. This is a case where the lithium ion secondary battery 100 is in a low temperature state and requires heating. On the other hand, if NO, that is, if the battery temperature Ta is equal to or higher than the first predetermined temperature Tb, the process proceeds to step S8. This is a case where the lithium ion secondary battery 100 does not need to be heated.

ステップS5に進むと、ユーザが設定した運転開始予定時刻Ha、ステップS2で得られた充電状態、及び、後述する第2所定温度TcとステップS3で得られた電池温度Taとの温度差ΔTに基づいて、後述する充電・加熱処理を開始する時刻である充電・加熱開始時刻Hbを決定する。具体的には、充電状態から、リチウムイオン二次電池100を満充電まで充電するのに必要な充電時間Jaを求めると共に、温度差ΔTから、リチウムイオン二次電池100を第2所定温度Tcまで加熱するのに必要な加熱時間Jbを求める。そして、運転開始予定時刻Haにおいてリチウムイオン二次電池100が暖められた状態となるように(電池温度Taが第2所定温度Tcとなっているように)、運転開始予定時刻Haから充電時間Ja及び加熱時間Jbを差し引いて、充電・加熱開始時刻Hbとする。   In step S5, the estimated operation start time Ha set by the user, the state of charge obtained in step S2, and the temperature difference ΔT between the second predetermined temperature Tc described later and the battery temperature Ta obtained in step S3 are set. Based on this, a charging / heating start time Hb, which is a time for starting a charging / heating process described later, is determined. Specifically, the charging time Ja required to fully charge the lithium ion secondary battery 100 from the charged state is obtained, and the lithium ion secondary battery 100 is moved from the temperature difference ΔT to the second predetermined temperature Tc. The heating time Jb necessary for heating is obtained. Then, the charging time Ja from the scheduled operation start time Ha so that the lithium ion secondary battery 100 is in a warmed state at the scheduled operation start time Ha (so that the battery temperature Ta becomes the second predetermined temperature Tc). And the heating time Jb is subtracted to obtain the charging / heating start time Hb.

次に、ステップS6に進み、現在の時刻が充電・加熱開始時刻Hbになったか否かを判断する。ここで、YES、即ち、充電・加熱開始時刻Hbになっている場合には、ステップS7に進み、充電・加熱処理を行う。一方、NO、即ち、まだ充電・加熱開始時刻Hbになっていない場合には、充電・加熱開始時刻Hbになるまで待機する。なお、ステップS5,S6が、前述の「タイミング調整ステップ」に相当し、また、ステップS5,S6を実行しているECU220が前述の「タイミング調整手段」に相当する。   Next, the process proceeds to step S6, and it is determined whether or not the current time is the charging / heating start time Hb. If YES, that is, if the charging / heating start time Hb is reached, the process proceeds to step S7 to perform the charging / heating process. On the other hand, if NO, that is, if charging / heating start time Hb has not yet been reached, the system waits until charging / heating start time Hb. Steps S5 and S6 correspond to the “timing adjustment step” described above, and ECU 220 executing steps S5 and S6 corresponds to the “timing adjustment unit” described above.

次に、ステップS7に進み、図8に示す充電・加熱処理のサブルーチンを行う。このサブルーチンでは、リチウムイオン二次電池100の充電に続いてリチウムイオン二次電池100の加熱も行う。電池温度Taが低すぎるからである(電池温度Ta<第1所定温度Tb)。
まず、ステップS71において、リチウムイオン二次電池100の充電を開始する。本実施形態1では、定電流方式により0.5〜2C(本実施形態1では0.5C)で充電を行う。
Next, the process proceeds to step S7, and the charging / heating processing subroutine shown in FIG. 8 is performed. In this subroutine, the lithium ion secondary battery 100 is also heated following the charging of the lithium ion secondary battery 100. This is because the battery temperature Ta is too low (battery temperature Ta <first predetermined temperature Tb).
First, in step S71, charging of the lithium ion secondary battery 100 is started. In the first embodiment, charging is performed at 0.5 to 2 C (0.5 C in the first embodiment) by a constant current method.

次に、ステップS72に進み、リチウムイオン二次電池100の電池電圧Vaを測定する。その後、ステップS73において、ステップS72で得られた電池電圧Vaが、酸化還元電圧Vc以上となったか否かを判断する。ここで、YES、即ち、電池電圧Vaが酸化還元電圧Vc以上である場合には、ステップS74に進む。一方、NO、即ち、電池電圧Vaが酸化還元電圧Vcよりも小さい場合には、ステップS72に戻り、充電を続ける。
ステップS74に進むと、リチウムイオン二次電池100の充電を終了する。この時点でリチウムイオン二次電池100は、満充電の状態を過ぎ、若干過充電の状態となっている。なお、ステップS71〜S74が前述の「直前満充電ステップ」に相当し、また、これらのステップS71〜S74を実行しているECU220が前述の「直前満充電手段」に相当する。
Next, it progresses to step S72 and the battery voltage Va of the lithium ion secondary battery 100 is measured. Thereafter, in step S73, it is determined whether or not the battery voltage Va obtained in step S72 is equal to or higher than the oxidation-reduction voltage Vc. If YES, that is, if the battery voltage Va is greater than or equal to the redox voltage Vc, the process proceeds to step S74. On the other hand, if NO, that is, if the battery voltage Va is smaller than the oxidation-reduction voltage Vc, the process returns to step S72 and charging is continued.
If it progresses to step S74, charge of the lithium ion secondary battery 100 will be complete | finished. At this time, the lithium ion secondary battery 100 has passed the fully charged state and is slightly overcharged. Steps S71 to S74 correspond to the aforementioned “immediate full charge step”, and the ECU 220 executing these steps S71 to S74 corresponds to the “immediate full charge unit” described above.

次に、ステップS75において、リチウムイオン二次電池100の加熱を開始する。即ち、電池電圧Vaを、満充電時の通常使用上限電圧Vbを越え、かつ、レドックスシャトル剤の酸化還元電圧Vc以上の値に維持して通電することにより、レドックスシャトル剤の酸化還元反応に伴う発熱を起こさせて、電解液117、従ってリチウムイオン二次電池100を直接加熱する。具体的には、定電流方式により0.1〜0.2C(本実施形態1では0.1C)の通電を行うことにより、リチウムイオン二次電池100を内部から直接加熱する。なお、このステップS75が前述の「直接加熱ステップ」に相当し、また、このステップS75を実行しているECU220が前述の「直接加熱手段」に相当する。   Next, heating of the lithium ion secondary battery 100 is started in step S75. That is, the battery voltage Va exceeds the normal use upper limit voltage Vb at the time of full charge and is maintained at a value equal to or higher than the redox shuttle agent's oxidation-reduction voltage Vc, thereby causing an oxidation-reduction reaction of the redox shuttle agent. Heat generation is caused to directly heat the electrolytic solution 117, and thus the lithium ion secondary battery 100. Specifically, the lithium ion secondary battery 100 is directly heated from the inside by energizing 0.1 to 0.2 C (0.1 C in the first embodiment) by a constant current method. This step S75 corresponds to the above-mentioned “direct heating step”, and the ECU 220 executing this step S75 corresponds to the above-mentioned “direct heating means”.

次に、ステップS76に進み、電池温度Taを測定する。このステップS76も前述の温度検知ステップに相当する。
その後、ステップS77において、ステップS76で得られた電池温度Taが第2所定温度Tc(但し、Tc≧Tb、本実施形態1では5℃)以上であるか否かを判断する。ここで、YES、即ち、電池温度Taが第2所定温度Tc以上である場合には、ステップS78に進む。一方、NO、即ち、電池温度Taが第2所定温度Tcよりも小さい場合には、ステップS79に進む。
Next, it progresses to step S76 and battery temperature Ta is measured. This step S76 also corresponds to the above-described temperature detection step.
Thereafter, in step S77, it is determined whether or not the battery temperature Ta obtained in step S76 is equal to or higher than a second predetermined temperature Tc (where Tc ≧ Tb, 5 ° C. in the first embodiment). If YES, that is, if the battery temperature Ta is equal to or higher than the second predetermined temperature Tc, the process proceeds to step S78. On the other hand, if NO, that is, if the battery temperature Ta is lower than the second predetermined temperature Tc, the process proceeds to step S79.

ステップS78では、リチウムイオン二次電池100の通電及びこれによる加熱を終了する。なお、前述のステップS4とステップS77とステップS78とが、「温度管理ステップ」に相当する。また、ステップS3,S4,S76〜S78を実行しているECU220が前述の「温度管理手段」に相当する。
その後、図7のメインルーチンに戻り、この充電制御を終了する。この終了時点で、時刻はちょうど運転開始予定時刻Ha或いはその前後の時刻となっており、また、リチウムイオン二次電池100は満充電の状態で、かつ、第2所定温度Tcまで昇温している。従って、ユーザがプラグインハイブリッド自動車300の運転を開始する運転開始予定時刻Haの時点から、組電池210(リチウムイオン二次電池100)の出力が十分に得られ、十分な走行性能を発揮できる。
In step S78, the energization of the lithium ion secondary battery 100 and the heating thereby are terminated. The above-described step S4, step S77, and step S78 correspond to the “temperature management step”. The ECU 220 executing steps S3, S4, S76 to S78 corresponds to the above-mentioned “temperature management means”.
Thereafter, the process returns to the main routine of FIG. At this end time, the time is exactly the scheduled operation start time Ha or a time before and after it, and the lithium ion secondary battery 100 is fully charged and raised to the second predetermined temperature Tc. Yes. Therefore, the output of the assembled battery 210 (lithium ion secondary battery 100) can be sufficiently obtained from the scheduled operation start time Ha when the user starts the operation of the plug-in hybrid vehicle 300, and sufficient running performance can be exhibited.

一方、ステップS79に進むと、電池電圧Vaを測定する。その後、ステップS80において、ステップS79で得られた電池電圧Vaが、電池加熱時の上限電圧である加熱上限電圧Vd以上であるか否かを判断する。ここで、YES、即ち、電池電圧Vaが加熱上限電圧Vd以上である場合には、ステップS78に進んで加熱を終了する。これにより、電池電圧Vaが異常に上昇した状態で加熱されるのを防止できる。その後、図7のメインルーチンに戻り、この充電制御を終了する。一方、NO、即ち、電池電圧Vaが加熱上限電圧Vdよりも小さい場合には、ステップS76まで戻り、リチウムイオン二次電池100の加熱を続ける。   On the other hand, when proceeding to step S79, the battery voltage Va is measured. Thereafter, in step S80, it is determined whether or not the battery voltage Va obtained in step S79 is equal to or higher than the heating upper limit voltage Vd that is the upper limit voltage during battery heating. If YES, that is, if the battery voltage Va is equal to or higher than the heating upper limit voltage Vd, the process proceeds to step S78 and the heating is terminated. Thereby, it can prevent that the battery voltage Va is heated in the abnormally raised state. Thereafter, the process returns to the main routine of FIG. On the other hand, if NO, that is, if the battery voltage Va is smaller than the heating upper limit voltage Vd, the process returns to step S76 and the heating of the lithium ion secondary battery 100 is continued.

次に、図7のメインルーチンのステップS4において、NOと判断され、ステップS8に進んだ場合には、ユーザが設定した運転開始予定時刻Haと、ステップS2で得られた充電状態とに基づいて、後述する充電処理を開始する時刻である充電開始時刻Hcを決定する。具体的には、充電状態から、リチウムイオン二次電池100を満充電まで充電するのに必要な前述の充電時間Jaを求め、運転開始予定時刻Haにリチウムイオン二次電池100が満充電となるように、運転開始予定時刻Haから充電時間Jaを差し引いて、充電開始時刻Hcとする。   Next, if NO is determined in step S4 of the main routine of FIG. 7 and the process proceeds to step S8, based on the scheduled operation start time Ha set by the user and the state of charge obtained in step S2. Then, a charging start time Hc that is a time for starting a charging process described later is determined. Specifically, the above-described charging time Ja necessary for charging the lithium ion secondary battery 100 to a fully charged state is obtained from the charged state, and the lithium ion secondary battery 100 becomes fully charged at the scheduled operation start time Ha. As described above, the charging time Ja is subtracted from the scheduled operation start time Ha to obtain the charging start time Hc.

次に、ステップS9に進み、現在の時刻が充電開始時刻Hcになったか否かを判断する。ここで、YES、即ち、充電開始時刻Hcになっている場合には、ステップS10に進み、充電処理を行う。一方、NO、即ち、まだ充電開始時刻Hcになっていない場合には、充電開始時刻Hcになるまで待機する。   Next, it progresses to step S9 and it is judged whether the present time became charge start time Hc. If YES, that is, if the charging start time Hc is reached, the process proceeds to step S10, where the charging process is performed. On the other hand, if NO, that is, if the charging start time Hc has not yet been reached, the system waits until the charging start time Hc is reached.

ステップS10では、リチウムイオン二次電池100の充電のみを行い、加熱は行わない。電池温度Taが加熱を要するほど低くないからである(電池温度Ta≧第1所定温度Tb)。具体的には、定電流−定電圧方式(上限電圧4.1V、電流値(1/80)Cが充電終了条件)により、リチウムイオン二次電池100を満充電となるまで充電する。この充電が終了した時点で、時刻は運転開始予定時刻Haとなっている。   In step S10, only the lithium ion secondary battery 100 is charged and not heated. This is because the battery temperature Ta is not so low as to require heating (battery temperature Ta ≧ first predetermined temperature Tb). Specifically, the lithium ion secondary battery 100 is charged until it is fully charged by a constant current-constant voltage method (upper limit voltage 4.1 V, current value (1/80) C is a charge termination condition). When this charging is completed, the time is the scheduled operation start time Ha.

以上で説明したように、本実施形態1に電池システム200では、ECU220によって制御されたAC−DCコンバータ240により、リチウムイオン二次電池100の電池電圧Vaを、通常使用上限電圧Vbを越え、酸化還元電圧Vc以上の値に維持する(Va≧Vc>Vb)通電を行う。これにより、レドックスシャトル剤の酸化還元反応に伴う発熱を起こさせて、リチウムイオン二次電池100を内部から直接加熱する。このため、従来技術として説明したような、電池外部または電池内部に電池を暖めるための加熱装置等を別途設ける必要がないので、電池システム200を小型化でき、また、安価にすることができる。   As described above, in the battery system 200 according to the first embodiment, the battery voltage Va of the lithium ion secondary battery 100 exceeds the normal use upper limit voltage Vb and is oxidized by the AC-DC converter 240 controlled by the ECU 220. Energization is performed to maintain a value equal to or higher than the reduction voltage Vc (Va ≧ Vc> Vb). As a result, heat is generated due to the redox shuttle agent redox reaction, and the lithium ion secondary battery 100 is directly heated from the inside. For this reason, there is no need to separately provide a heating device or the like for heating the battery outside or inside the battery as described in the prior art, so that the battery system 200 can be reduced in size and made inexpensive.

また、電池外部に加熱装置等を設けると、加熱時の熱エネルギの一部が電池外の機材やリチウムイオン二次電池100のうちの電池ケース110等の昇温に用いられるため、電池加熱の効率が悪い。これに対し、この電池システム200では、リチウムイオン二次電池100をその内部から直接加熱できるので、加熱のためのエネルギが少なくて済む。このように、この電池システム200では、リチウムイオン二次電池100を容易かつ効率よく加熱できる。   In addition, when a heating device or the like is provided outside the battery, a part of the heat energy at the time of heating is used for raising the temperature of the battery case 110 of the lithium ion secondary battery 100 or the equipment outside the battery. ineffective. On the other hand, in the battery system 200, the lithium ion secondary battery 100 can be directly heated from the inside thereof, so that energy for heating can be reduced. Thus, in this battery system 200, the lithium ion secondary battery 100 can be heated easily and efficiently.

更に、この電池システム200では、リチウムイオン二次電池100の電池温度Taを検知し、この電池温度Taが第1所定温度Tbよりも低い場合に、電池温度Taが第2所定温度Tcとなるまで、リチウムイオン二次電池100を加熱する。従って、電池温度Taが第1所定温度Tbよりも低くなった場合に、電池温度Taを第2所定温度Tcまで自動的に昇温させることができる。   Further, in this battery system 200, the battery temperature Ta of the lithium ion secondary battery 100 is detected, and when the battery temperature Ta is lower than the first predetermined temperature Tb, the battery temperature Ta becomes the second predetermined temperature Tc. The lithium ion secondary battery 100 is heated. Therefore, when the battery temperature Ta becomes lower than the first predetermined temperature Tb, the battery temperature Ta can be automatically raised to the second predetermined temperature Tc.

また、この電池システム200では、電池温度Taが第1所定温度Tbよりも低い場合に、運転開始予定時刻Haに電池温度Taが第2所定温度Tcなるように、運転開始予定時刻Ha、及び、電池温度Taに基づいて、リチウムイオン二次電池100の加熱開始のタイミングを調整している。従って、運転開始予定時刻Haにおける電池温度Taを、ちょうど第2所定温度Tcに、或いはそれに近い温度にすることができる。また、リチウムイオン二次電池100を暖めておく必要がない期間までリチウムイオン二次電池100を加熱しなくても済むので、無駄なエネルギを使わなくて済ますことができる。   Further, in this battery system 200, when the battery temperature Ta is lower than the first predetermined temperature Tb, the scheduled operation start time Ha and the battery temperature Ta become the second predetermined temperature Tc at the scheduled operation start time Ha, and Based on the battery temperature Ta, the heating start timing of the lithium ion secondary battery 100 is adjusted. Accordingly, the battery temperature Ta at the scheduled operation start time Ha can be set to the second predetermined temperature Tc or a temperature close thereto. Further, since it is not necessary to heat the lithium ion secondary battery 100 until a period during which the lithium ion secondary battery 100 does not need to be warmed, useless energy can be saved.

また、リチウムイオン二次電池100は、満充電の状態で放置すると劣化が進行し易いが、この電池システム200では、リチウムイオン二次電池100を加熱する直前にリチウムイオン二次電池100が満充電となるように、リチウムイオン二次電池100を充電できる。従って、満充電状態の期間が長くなることに伴うリチウムイオン二次電池100の劣化を抑制できる。   Further, although the lithium ion secondary battery 100 is likely to deteriorate when left in a fully charged state, in this battery system 200, the lithium ion secondary battery 100 is fully charged immediately before the lithium ion secondary battery 100 is heated. Thus, the lithium ion secondary battery 100 can be charged. Therefore, it is possible to suppress the deterioration of the lithium ion secondary battery 100 due to the long period of the fully charged state.

また、このような電池システム200を搭載することにより、プラグインハイブリッド自動車300の電費を良くすることができる。また、プラグインハイブリッド自動車300は、電池システム200を搭載するためのスペースを小さくでき、また、車両を安価にすることできる。   Moreover, by installing such a battery system 200, the power consumption of the plug-in hybrid vehicle 300 can be improved. Moreover, the plug-in hybrid vehicle 300 can reduce the space for mounting the battery system 200, and can reduce the vehicle cost.

(実施形態2)
次いで、第2の実施の形態について説明する。本実施形態2に係る電池システム202及びこれを搭載したプラグインハイブリッド自動車302は、充電制御が開始されると直ちにリチウムイオン二次電池100を満充電まで充電する点が、運転開始予定時刻Haに基づいて充電を開始する上記実施形態1に係る電池システム200及びプラグインハイブリッド自動車300と異なる。
(Embodiment 2)
Next, a second embodiment will be described. The battery system 202 according to the second embodiment and the plug-in hybrid vehicle 302 equipped with the battery system 202 are charged at the scheduled operation start time Ha when the lithium ion secondary battery 100 is charged to the full charge immediately after the charge control is started. This is different from the battery system 200 and the plug-in hybrid vehicle 300 according to the first embodiment that start charging based on the above.

本実施形態2の充電制御を、図9及び図10のフローチャートを参照しつつ説明する。ユーザがプラグインハイブリッド自動車300を外部電源XVに接続し、運転開始予定時刻Haを入力すると、上記実施形態1と同様に運転開始予定時刻HaがECU220に記憶される。
まず、ステップS21において、充電処理を行う。この充電処理は、上記実施形態1の充電処置(ステップS10)と同じである(図7参照)。このステップS21を終えた時点で、リチウムイオン二次電池100は満充電の状態になっている。
The charge control of the second embodiment will be described with reference to the flowcharts of FIGS. When the user connects the plug-in hybrid vehicle 300 to the external power source XV and inputs the scheduled operation start time Ha, the scheduled operation start time Ha is stored in the ECU 220 as in the first embodiment.
First, in step S21, a charging process is performed. This charging process is the same as the charging procedure (step S10) of the first embodiment (see FIG. 7). When this step S21 is completed, the lithium ion secondary battery 100 is in a fully charged state.

次に、ステップS22に進み、運転開始予定時刻Haが設定されているか否かを判断する。ここで、YES、即ち、運転開始予定時刻Haが設定されている場合は、ステップS23進む。一方、NO、即ち、運転開始予定時刻Haが設定されていない場合は、この充電制御を終了する。   Next, it progresses to step S22 and it is judged whether the driving | operation scheduled start time Ha is set. If YES, that is, if the scheduled operation start time Ha is set, the process proceeds to step S23. On the other hand, if NO, that is, if the scheduled operation start time Ha is not set, this charging control is terminated.

次に、ステップS23に進み、温度センサ190により電池温度Taを測定する。このステップS23が前述の「温度検知ステップ」に相当する。
その後、ステップS24において、ステップS23で得た電池温度Taが、第1所定温度Tb(本実施形態2では5℃)よりも低いか否かを判断する。ここで、YES、即ち、電池温度Taが第1所定温度Tbよりも低い場合には、ステップS25に進む。リチウムイオン二次電池100が低温状態にあり、加熱を必要とする場合である。一方、NO、即ち、電池温度Taが第1所定温度Tb以上の場合には、この充電制御を終了する。リチウムイオン二次電池100を加熱する必要がないからである。
Next, it progresses to step S23 and the battery temperature Ta is measured by the temperature sensor 190. FIG. This step S23 corresponds to the aforementioned “temperature detection step”.
Thereafter, in step S24, it is determined whether or not the battery temperature Ta obtained in step S23 is lower than a first predetermined temperature Tb (5 ° C. in the second embodiment). If YES, that is, if the battery temperature Ta is lower than the first predetermined temperature Tb, the process proceeds to step S25. This is a case where the lithium ion secondary battery 100 is in a low temperature state and requires heating. On the other hand, when the battery temperature Ta is equal to or higher than the first predetermined temperature Tb, the charging control is terminated. This is because there is no need to heat the lithium ion secondary battery 100.

次に、ステップS25に進むと、運転開始予定時刻Haと、後述する第2所定温度TcとステップS23で得られた電池温度Taとの温度差ΔTに基づいて、後述する加熱処理を開始する時刻である加熱開始時刻Hdを決定する。具体的には、温度差ΔTから、リチウムイオン二次電池100を第2所定温度Tcまで加熱するのに必要な加熱時間Jbを求める。そして、運転開始予定時刻Haにおいて電池温度Taが第2所定温度Tcとなるように、運転開始予定時刻Haから加熱時間Jbを差し引いて、加熱開始時刻Hdとする。   Next, when proceeding to step S25, the heat treatment start time described later is started based on the scheduled operation start time Ha and the temperature difference ΔT between the second predetermined temperature Tc described later and the battery temperature Ta obtained in step S23. The heating start time Hd is determined. Specifically, the heating time Jb required to heat the lithium ion secondary battery 100 to the second predetermined temperature Tc is obtained from the temperature difference ΔT. Then, the heating time Jb is subtracted from the scheduled operation start time Ha so that the battery temperature Ta becomes the second predetermined temperature Tc at the scheduled operation start time Ha to obtain a heating start time Hd.

次に、ステップS26に進み、現在の時刻が加熱開始時刻Hdになったか否かを判断する。ここで、YES、即ち、加熱開始時刻Hdになっている場合には、ステップS27に進み、加熱処理を行う。一方、NO、即ち、まだ加熱開始時刻Hdになっていない場合には、加熱開始時刻Hdになるまで待機する。なお、ステップS25,S26が、前述の「タイミング調整ステップ」に相当し、また、ステップS25,S26を実行しているECU222が前述の「タイミング調整手段」に相当する。   Next, it progresses to step S26 and it is judged whether the present time became the heating start time Hd. Here, if YES, that is, if the heating start time Hd is reached, the process proceeds to step S27 and a heating process is performed. On the other hand, if NO, that is, if the heating start time Hd is not yet reached, the process waits until the heating start time Hd is reached. Steps S25 and S26 correspond to the “timing adjustment step” described above, and the ECU 222 executing steps S25 and S26 corresponds to the “timing adjustment unit” described above.

ステップS27に進むと、図10に示す加熱処理のサブルーチンに進む。
まず、ステップS271において、リチウムイオン二次電池100の加熱を開始する。この加熱は、上記実施形態1の加熱(ステップS75)と同じである(図7及び図8参照)。即ち、電池電圧Vaを、満充電時の通常使用上限電圧Vbを越え、かつ、レドックスシャトル剤の酸化還元電圧Vc以上の値に維持して通電することにより、レドックスシャトル剤の酸化還元反応に伴う発熱を起こさせて、電解液117、従ってリチウムイオン二次電池100を直接加熱する。具体的には、定電流方式により0.1〜0.2C(本実施形態2では0.1C)の通電を行うことにより、リチウムイオン二次電池100を内部から直接加熱する。なお、このステップS271が前述の「直接加熱ステップ」に相当し、また、このステップS271を実行しているECU222が前述の「直接加熱手段」に相当する。
When the processing proceeds to step S27, the processing proceeds to a heating processing subroutine shown in FIG.
First, in step S271, heating of the lithium ion secondary battery 100 is started. This heating is the same as the heating in the first embodiment (step S75) (see FIGS. 7 and 8). That is, the battery voltage Va exceeds the normal use upper limit voltage Vb at the time of full charge and is maintained at a value equal to or higher than the redox shuttle agent's oxidation-reduction voltage Vc, thereby causing an oxidation-reduction reaction of the redox shuttle agent. Heat generation is caused to directly heat the electrolytic solution 117, and thus the lithium ion secondary battery 100. Specifically, the lithium ion secondary battery 100 is directly heated from the inside by energizing 0.1 to 0.2 C (0.1 C in the second embodiment) by a constant current method. The step S271 corresponds to the above-described “direct heating step”, and the ECU 222 executing the step S271 corresponds to the above-mentioned “direct heating unit”.

次に、ステップS272に進み、電池温度Taを測定する。このステップS272も前述の「温度検知ステップ」に相当する。
その後、ステップS273において、ステップS272で得られた電池温度Taが第2所定温度Tc(本実施形態2では5℃)以上であるか否かを判断する。ここで、YES、即ち、電池温度Taが第2所定温度Tc以上である場合には、ステップS274に進む。一方、NO、即ち、電池温度Taが第2所定温度Tcよりも小さい場合には、ステップS275に進む。
Next, it progresses to step S272 and battery temperature Ta is measured. This step S272 also corresponds to the aforementioned “temperature detection step”.
Thereafter, in step S273, it is determined whether or not the battery temperature Ta obtained in step S272 is equal to or higher than a second predetermined temperature Tc (5 ° C. in the second embodiment). If YES, that is, if the battery temperature Ta is equal to or higher than the second predetermined temperature Tc, the process proceeds to step S274. On the other hand, if NO, that is, if the battery temperature Ta is lower than the second predetermined temperature Tc, the process proceeds to step S275.

ステップS274では、リチウムイオン二次電池100の通電及びこれによる加熱を終了する。なお、前述のステップS24とステップS273とステップS274とが、前述の「温度管理ステップ」に相当する。また、ステップS23,S24,S272〜S274を実行しているECU222が前述の「温度管理手段」に相当する。
その後、図9のメインルーチンに戻り、この充電制御を終了する。この終了時点で、上記実施形態1と同様に、時刻はちょうど運転開始予定時刻Ha或いはその前後の時刻となっており、また、リチウムイオン二次電池100は満充電の状態で、かつ、第2所定温度Tcまで昇温している。従って、ユーザがプラグインハイブリッド自動車300の運転を開始する運転開始予定時刻Haの時点から、組電池210(リチウムイオン二次電池100)の出力が十分に得られ、十分な走行性能を発揮できる。
In step S274, the energization and heating by the lithium ion secondary battery 100 are terminated. The above-described step S24, step S273, and step S274 correspond to the above-described “temperature management step”. The ECU 222 executing steps S23, S24, S272 to S274 corresponds to the above-mentioned “temperature management means”.
Thereafter, the process returns to the main routine of FIG. At this end time, as in the first embodiment, the time is exactly the scheduled operation start time Ha or a time before and after it, and the lithium ion secondary battery 100 is fully charged and the second The temperature is raised to a predetermined temperature Tc. Therefore, the output of the assembled battery 210 (lithium ion secondary battery 100) can be sufficiently obtained from the scheduled operation start time Ha when the user starts the operation of the plug-in hybrid vehicle 300, and sufficient running performance can be exhibited.

一方、ステップS275では、電池電圧Vaを測定する。その後、ステップS276において、ステップS275で得られた電池電圧Vaが加熱上限電圧Vd以上であるか否かを判断する。ここで、YES、即ち、電池電圧Vaが加熱上限電圧Vd以上である場合には、ステップS274に進んで加熱を終了する。その後、図9のメインルーチンに戻り、この充電制御を終了する。一方、NO、即ち、電池電圧Vaが加熱上限電圧Vdよりも小さい場合には、ステップS272まで戻り、リチウムイオン二次電池100の電池の加熱を続ける。   On the other hand, in step S275, the battery voltage Va is measured. Thereafter, in step S276, it is determined whether or not the battery voltage Va obtained in step S275 is equal to or higher than the heating upper limit voltage Vd. If YES, that is, if the battery voltage Va is equal to or higher than the heating upper limit voltage Vd, the process proceeds to step S274 and the heating is terminated. Thereafter, the process returns to the main routine of FIG. On the other hand, if NO, that is, if the battery voltage Va is smaller than the heating upper limit voltage Vd, the process returns to step S272 and the heating of the battery of the lithium ion secondary battery 100 is continued.

以上で説明したように、本実施形態2に電池システム202も、ECU222によって制御されたAC−DCコンバータ240により、リチウムイオン二次電池100の電池電圧Vaを、通常使用上限電圧Vbを越え、酸化還元電圧Vc以上の値に維持する(Va≧Vc>Vb)通電を行う。これにより、レドックスシャトル剤の酸化還元反応に伴う発熱を起こさせて、リチウムイオン二次電池100を直接加熱する。このため、電池外部または電池内部に電池を暖めるための加熱装置等を別途設ける必要がないので、電池システム202を小型化でき、また、安価にすることができる。また、この電池システム202も、リチウムイオン二次電池100をその内部から直接加熱できるので、容易かつ効率よく加熱できる。   As described above, the battery system 202 according to the second embodiment is also oxidized by the AC-DC converter 240 controlled by the ECU 222 so that the battery voltage Va of the lithium ion secondary battery 100 exceeds the normal use upper limit voltage Vb. Energization is performed to maintain a value equal to or higher than the reduction voltage Vc (Va ≧ Vc> Vb). As a result, heat is generated due to the redox shuttle agent redox reaction, and the lithium ion secondary battery 100 is directly heated. For this reason, since it is not necessary to separately provide a heating device or the like for heating the battery outside or inside the battery, the battery system 202 can be reduced in size and made inexpensive. Moreover, since this battery system 202 can also heat the lithium ion secondary battery 100 directly from the inside, it can be heated easily and efficiently.

また、この電池システム202も、電池温度Taが第1所定温度Tbよりも低い場合に、運転開始予定時刻Haに電池温度Taが第2所定温度Tcなるように、運転開始予定時刻Ha及び電池温度Taに基づいて、リチウムイオン二次電池100の加熱開始のタイミングを調整している。従って、運転開始予定時刻Haにおける電池温度Taを、ちょうど第2所定温度Tcに、或いはそれに近い温度にすることができる。また、リチウムイオン二次電池100を暖めておく必要がない期間までリチウムイオン二次電池100を加熱しなくても済むので、無駄なエネルギを使わなくて済ますことができる。その他、上記実施形態1と同様な部分は、上記実施形態1と同様な作用効果を奏する。   In addition, when the battery temperature Ta is lower than the first predetermined temperature Tb, the battery system 202 also has the scheduled operation start time Ha and the battery temperature so that the battery temperature Ta becomes the second predetermined temperature Tc at the scheduled operation start time Ha. Based on Ta, the heating start timing of the lithium ion secondary battery 100 is adjusted. Accordingly, the battery temperature Ta at the scheduled operation start time Ha can be set to the second predetermined temperature Tc or a temperature close thereto. Further, since it is not necessary to heat the lithium ion secondary battery 100 until a period during which the lithium ion secondary battery 100 does not need to be warmed, useless energy can be saved. In addition, the same parts as those of the first embodiment have the same effects as those of the first embodiment.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態1,2に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、上記実施形態1,2では、ステップS5(実施形態1)またはステップS25(実施形態2)で、運転開始予定時刻Haにおける電池温度Taが第2所定温度Tcとなるように、充電・加熱開始時刻Hb(実施形態1)または加熱開始時刻Hd(実施形態2)を決定しているが、加熱開始のタイミングは適宜調整できる。例えば、ステップS5またはステップS25において、運転開始予定時刻Haの少し前に(例えば5分前に)電池温度Taが第2所定温度Tcとなるように、充電・加熱開始時刻Hbや加熱開始時刻Hdを決定してもよい。
In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the above-described first and second embodiments, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof. Yes.
For example, in the first and second embodiments, charging and heating are performed so that the battery temperature Ta at the scheduled operation start time Ha becomes the second predetermined temperature Tc in Step S5 (Embodiment 1) or Step S25 (Embodiment 2). Although the start time Hb (Embodiment 1) or the heating start time Hd (Embodiment 2) is determined, the heating start timing can be adjusted as appropriate. For example, in step S5 or step S25, the charging / heating start time Hb or the heating start time Hd is set so that the battery temperature Ta becomes the second predetermined temperature Tc slightly before the scheduled operation start time Ha (for example, 5 minutes before). May be determined.

また、上記実施形態1,2では、電池温度Taが第2所定温度Tcまで加熱されるとその時点で加熱を終了しているが、その後更に、実際にユーザが運転を開始するまでの間、連続して或いは間欠的に、リチウムイオン二次電池100に通電して直接加熱を行い、電池温度Taを第2所定温度Tcに保つようにしてもよい。
また、ユーザの指示によって、満充電状態のリチウムイオン二次電池100について、直接加熱のための通電を行ったり、或いは、リチウムイオン二次電池100を満充電にすると共に、これに続けて直接加熱のための通電を行うようにしてもよい。
In the first and second embodiments, when the battery temperature Ta is heated to the second predetermined temperature Tc, the heating is finished at that time, but after that, until the user actually starts operation, Continuously or intermittently, the lithium ion secondary battery 100 may be energized and heated directly to keep the battery temperature Ta at the second predetermined temperature Tc.
Further, according to the user's instruction, the lithium ion secondary battery 100 in a fully charged state is energized for direct heating, or the lithium ion secondary battery 100 is fully charged and then directly heated. You may make it perform electricity supply for.

また、上記実施形態1,2では、ステップS5(実施形態1)またはステップS25(実施形態2)において、充電・加熱開始時刻Hb(実施形態1)または加熱開始時刻Hd(実施形態2)を決定した後は、これらを変更することはない。しかし、外気温の変化に伴うその後の電池温度Taの変化に適応すべく、充電・加熱開始時刻Hb(実施形態1)や加熱開始時刻Hd(実施形態2)を繰り返し設定するようにしてもよい。   In the first and second embodiments, the charging / heating start time Hb (first embodiment) or the heating start time Hd (second embodiment) is determined in step S5 (first embodiment) or step S25 (second embodiment). After that, you will not change them. However, the charging / heating start time Hb (Embodiment 1) and the heating start time Hd (Embodiment 2) may be set repeatedly in order to adapt to subsequent changes in the battery temperature Ta accompanying changes in the outside air temperature. .

また、上記実施形態1,2では、ステップS7(実施形態1)またはステップS27(実施形態2)における電池加熱のための通電を定電流で行っているが、これに限られない。例えば、その時点での電池温度Taと運転開始予定時刻Haまでの時間に応じて、電池温度Taが運転開始予定時刻Haにちょうど第2所定温度Tcとなるように、途中で電流値を増加或いは減少させてもよい。   In Embodiments 1 and 2, energization for battery heating in Step S7 (Embodiment 1) or Step S27 (Embodiment 2) is performed with a constant current. However, the present invention is not limited to this. For example, in accordance with the battery temperature Ta at that time and the time until the scheduled operation start time Ha, the current value is increased in the middle so that the battery temperature Ta becomes exactly the second predetermined temperature Tc at the scheduled operation start time Ha. It may be decreased.

100 リチウムイオン二次電池(二次電池)
117 電解液
190 温度センサ(温度検知手段)
200 電池システム
210 組電池
220,222 ECU(充放電制御手段)
240 AC−DCコンバータ(充電手段)
300,302 プラグインバイブリッド自動車(電池システム搭載車両)
330 フロントモータ(被駆動装置)
340 リアモータ(被駆動装置)
Ha 駆動開始予定時刻(運転開始予定時刻)
Ta 電池温度
Tb 第1所定温度
Tc 第2所定温度
ΔT 温度差
Va 電池電圧
Vb 通常使用上限電圧
Vc 酸化還元電圧
XV 外部電源
100 Lithium ion secondary battery (secondary battery)
117 Electrolyte 190 Temperature sensor (temperature detection means)
200 battery system 210 assembled battery 220, 222 ECU (charge / discharge control means)
240 AC-DC converter (charging means)
300,302 Plug-in hybrid automobile (vehicle with battery system)
330 Front motor (driven device)
340 Rear motor (driven device)
Ha scheduled drive start time (scheduled start time)
Ta battery temperature Tb first predetermined temperature Tc second predetermined temperature ΔT temperature difference Va battery voltage Vb normal use upper limit voltage Vc oxidation reduction voltage XV external power source

Claims (9)

レドックスシャトル剤を添加した電解液を有する二次電池と、
前記二次電池を充電する充電手段と、
前記充電手段による前記二次電池の充電を制御する充電制御手段と、を備える
電池システムであって、
前記充電制御手段は、
前記充電手段により、前記二次電池の電池電圧Vaを、満充電時の電池電圧である通常使用上限電圧Vbを越え、かつ、前記レドックスシャトル剤に酸化還元反応が生じる電池電圧である酸化還元電圧Vc以上の値に維持することにより、前記酸化還元反応に伴う発熱を起こさせて、前記二次電池を直接加熱する直接加熱手段を有する
電池システム。
A secondary battery having an electrolyte solution to which a redox shuttle agent is added;
Charging means for charging the secondary battery;
Charge control means for controlling charging of the secondary battery by the charging means, and a battery system comprising:
The charge control means includes
A redox voltage that is a battery voltage at which the battery voltage Va of the secondary battery exceeds a normal use upper limit voltage Vb that is a battery voltage at the time of full charge and a redox shuttle reaction occurs in the redox shuttle by the charging means. A battery system comprising a direct heating means for directly heating the secondary battery by causing heat generation associated with the oxidation-reduction reaction by maintaining the value at Vc or higher.
請求項1に記載の電池システムであって、
前記二次電池の電池温度Taを検知する温度検知手段を更に備え、
前記充電制御手段は、
前記電池温度Taが第1所定温度Tbよりも低い場合に、前記電池温度Taが第2所定温度Tc(但し、Tc≧Tb)となるまで、前記直接加熱手段に前記二次電池の加熱を行わせる温度管理手段を更に有する
電池システム。
The battery system according to claim 1,
A temperature detecting means for detecting a battery temperature Ta of the secondary battery;
The charge control means includes
When the battery temperature Ta is lower than the first predetermined temperature Tb, the secondary battery is heated by the direct heating means until the battery temperature Ta reaches the second predetermined temperature Tc (where Tc ≧ Tb). A battery system further comprising a temperature management means.
請求項2に記載の電池システムであって、
前記二次電池に蓄えられた電気エネルギを用いて駆動される被駆動装置を更に備え、
前記充電制御手段は、
前記電池温度Taが前記第1所定温度Tbよりも低い場合に、前記被駆動装置の駆動を開始する駆動開始予定時刻Ha、及び、前記電池温度Taに基づいて、前記直接加熱手段による前記二次電池の加熱開始のタイミングを調整するタイミング調整手段を更に有する
電池システム。
The battery system according to claim 2,
Further comprising a driven device that is driven using electrical energy stored in the secondary battery;
The charge control means includes
When the battery temperature Ta is lower than the first predetermined temperature Tb, the secondary heating by the direct heating means based on the scheduled drive start time Ha for starting the drive of the driven device and the battery temperature Ta. A battery system further comprising timing adjusting means for adjusting a timing of starting heating of the battery.
請求項1〜請求項3のいずれか一項に記載の電池システムであって、
前記充電制御手段は、
前記直接加熱手段により前記二次電池を加熱する直前に、前記二次電池が満充電となるパターンで前記二次電池を充電する直前満充電手段を更に有する
電池システム。
It is a battery system as described in any one of Claims 1-3,
The charge control means includes
The battery system further comprising a full charge unit immediately before charging the secondary battery in a pattern in which the secondary battery is fully charged immediately before the secondary battery is heated by the direct heating unit.
請求項1〜請求項4のいずれか一項に記載の電池システムを搭載した電池システム搭載車両。 A battery system-equipped vehicle equipped with the battery system according to any one of claims 1 to 4. レドックスシャトル剤を添加した電解液を有する二次電池を加熱する
二次電池の加熱方法であって、
前記二次電池の電池電圧Vaを、満充電時の電池電圧である通常使用上限電圧Vbを越え、かつ、前記レドックスシャトル剤に酸化還元反応が生じる電池電圧である酸化還元電圧Vc以上の値に維持することにより、前記酸化還元反応に伴う発熱を起こさせて、前記二次電池を直接加熱する直接加熱ステップを備える
二次電池の加熱方法。
A heating method of a secondary battery for heating a secondary battery having an electrolyte solution to which a redox shuttle agent is added,
The battery voltage Va of the secondary battery exceeds a normal use upper limit voltage Vb that is a battery voltage at the time of full charge, and a value equal to or higher than a redox voltage Vc that is a battery voltage at which an oxidation-reduction reaction occurs in the redox shuttle agent. A heating method of a secondary battery, comprising a direct heating step of heating the secondary battery directly by causing heat generation due to the oxidation-reduction reaction by maintaining.
請求項6に記載の二次電池の加熱方法であって、
前記二次電池の電池温度Taを検知する温度検知ステップと、
前記電池温度Taが第1所定温度Tbよりも低い場合に、前記電池温度Taが第2所定温度Tc(但し、Tc≧Tb)となるまで、前記直接加熱ステップで前記二次電池の加熱を行わせる温度管理ステップと、を更に備える
二次電池の加熱方法。
The method for heating a secondary battery according to claim 6,
A temperature detection step of detecting a battery temperature Ta of the secondary battery;
When the battery temperature Ta is lower than the first predetermined temperature Tb, the secondary battery is heated in the direct heating step until the battery temperature Ta reaches a second predetermined temperature Tc (where Tc ≧ Tb). And a temperature control step for heating the secondary battery.
請求項7に記載の二次電池の加熱方法であって、
前記電池温度Taが前記第1所定温度Tbよりも低い場合に、前記二次電池に蓄えられた電気エネルギを用いて駆動される被駆動装置の駆動を開始する駆動開始予定時刻Ha、及び、前記電池温度Taに基づいて、前記直接加熱ステップによる前記二次電池の加熱開始のタイミングを調整するタイミング調整ステップを更に備える
二次電池の加熱方法。
A method for heating a secondary battery according to claim 7,
When the battery temperature Ta is lower than the first predetermined temperature Tb, the drive start scheduled time Ha for starting the drive of the driven device driven using the electrical energy stored in the secondary battery, and A method for heating a secondary battery, further comprising a timing adjustment step of adjusting a timing of starting the heating of the secondary battery in the direct heating step based on a battery temperature Ta.
請求項6〜請求項8のいずれか一項に記載の二次電池の加熱方法であって、
前記直接加熱ステップを行う直前に、前記二次電池が満充電となるパターンで前記二次電池を充電する直前満充電ステップを更に備える
二次電池の加熱方法。
A method for heating a secondary battery according to any one of claims 6 to 8,
A method for heating a secondary battery, further comprising a full charge step immediately before charging the secondary battery in a pattern in which the secondary battery is fully charged immediately before performing the direct heating step.
JP2010254975A 2010-11-15 2010-11-15 Battery system, vehicle equipped with battery system, and method for heating secondary battery Expired - Fee Related JP5521989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010254975A JP5521989B2 (en) 2010-11-15 2010-11-15 Battery system, vehicle equipped with battery system, and method for heating secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010254975A JP5521989B2 (en) 2010-11-15 2010-11-15 Battery system, vehicle equipped with battery system, and method for heating secondary battery

Publications (2)

Publication Number Publication Date
JP2012109045A JP2012109045A (en) 2012-06-07
JP5521989B2 true JP5521989B2 (en) 2014-06-18

Family

ID=46494469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010254975A Expired - Fee Related JP5521989B2 (en) 2010-11-15 2010-11-15 Battery system, vehicle equipped with battery system, and method for heating secondary battery

Country Status (1)

Country Link
JP (1) JP5521989B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101449164B1 (en) * 2012-12-13 2014-10-15 현대자동차주식회사 Battery managing method for vehicle
KR102636361B1 (en) * 2016-01-05 2024-02-14 삼성전자주식회사 Battery control appratus and battery control system
JPWO2019220981A1 (en) * 2018-05-15 2021-02-12 株式会社村田製作所 How to charge solid-state batteries, battery modules and solid-state batteries
CN109449532B (en) * 2018-11-06 2020-07-03 深圳市韦尔控制系统有限公司 Cooling system for driving type battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3884572T2 (en) * 1987-11-30 1994-02-03 Eic Lab Inc Overcharge protection for non-aqueous secondary batteries.
JP3259436B2 (en) * 1993-05-31 2002-02-25 ソニー株式会社 Non-aqueous electrolyte secondary battery
JP3809657B2 (en) * 1994-03-07 2006-08-16 ソニー株式会社 Non-aqueous electrolyte secondary battery
JP3509382B2 (en) * 1995-04-27 2004-03-22 日産自動車株式会社 Charge control system
JP3493873B2 (en) * 1995-04-28 2004-02-03 ソニー株式会社 Non-aqueous electrolyte secondary battery
JP3367289B2 (en) * 1995-08-03 2003-01-14 日産自動車株式会社 Electric vehicle charging device
JP3477966B2 (en) * 1995-12-25 2003-12-10 日産自動車株式会社 Secondary battery charge control device
JP4296620B2 (en) * 1998-11-18 2009-07-15 ソニー株式会社 Non-aqueous electrolyte battery
KR20050096401A (en) * 2004-03-30 2005-10-06 삼성에스디아이 주식회사 Electrolyte for lithium battery and lithium battery comprising same
JP4936017B2 (en) * 2008-10-06 2012-05-23 株式会社デンソー Battery temperature rise control device

Also Published As

Publication number Publication date
JP2012109045A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP6634453B2 (en) Power consumption control device
US10770766B2 (en) Heating control device
US10011184B2 (en) Power supply system for vehicle
US8283878B2 (en) Battery storage device system, and motor driving body and moving body using the system
US8084988B2 (en) Power supply system
JP4905609B2 (en) Battery system and automobile
US11097634B2 (en) Start control system of vehicle and vehicle having the same
JP2002125326A (en) Battery charge control method
US10971767B2 (en) Charge voltage controller for energy storage device, energy storage apparatus, battery charger for energy storage device, and charging method for energy storage device
JP2012191785A (en) Battery charge control device
JP2012191782A (en) Battery charge control device
JP2013201880A (en) Vehicle operation system and control method of the same
JP5521989B2 (en) Battery system, vehicle equipped with battery system, and method for heating secondary battery
JP2014023231A (en) Onboard charge control unit
WO2023123775A1 (en) Battery heating control method and apparatus, and electronic device
JP6332131B2 (en) Electric vehicle
JP2018033256A (en) Electric vehicle
JP5622705B2 (en) Charge / discharge control device and charge / discharge control method
JP2010124652A (en) Charge controller
JP2017216785A (en) Power supply system, mobile body, and control method
US20150004443A1 (en) Apparatus for controlling lithium-ion battery and method of recovering lithium-ion battery
JP2017117637A (en) Power supply device
JP2017132398A (en) Battery control system for plug-in hybrid vehicle
JP2019154167A (en) Charging system of electric vehicle
JP2016111721A (en) Charge control device of vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

LAPS Cancellation because of no payment of annual fees