JP2013509026A - Mimo−ofdmaシステムのための適応ビーム形成及び空間周波数ブロック符号化送信方式 - Google Patents

Mimo−ofdmaシステムのための適応ビーム形成及び空間周波数ブロック符号化送信方式 Download PDF

Info

Publication number
JP2013509026A
JP2013509026A JP2012534247A JP2012534247A JP2013509026A JP 2013509026 A JP2013509026 A JP 2013509026A JP 2012534247 A JP2012534247 A JP 2012534247A JP 2012534247 A JP2012534247 A JP 2012534247A JP 2013509026 A JP2013509026 A JP 2013509026A
Authority
JP
Japan
Prior art keywords
channel
frame
symbol
transmission mode
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012534247A
Other languages
English (en)
Inventor
チャーチン チョン,
フレイン ミン,
富士雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Publication of JP2013509026A publication Critical patent/JP2013509026A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0606Space-frequency coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】信頼性を増加させた無線通信システムが、本明細書で開示される。
【解決手段】この方法は、(a)データフレームの始まりに、チャネルのそれぞれについてチャネル状態を表しているメトリクスを集めるステップと、(b)集められたメトリクスに基づいて、各移動局を1つ又は複数の通信チャネルに割り当てるステップと、(c)フレームのシンボルごとに、いくつかの送信モードのそれぞれの平均ビット誤り率を算出し、そのシンボルについての算出された最低の平均ビット誤り率に対応する送信モードをそのシンボルに割り当てるステップと、(d)それぞれの割り当てられた送信モードに従ってフレームのシンボルを送信するステップとを含む。さらに、ビットローディング最適化ステップは、送信すべきシンボルごとに変調次数を決定するために、方法と連動して実行され得る。
【選択図】図1

Description

本発明は、高データレートの無線通信に関する。特に、本発明は、ビーム形成及び符号化方式を使用した高データレートの無線通信に関する。
〔関連出願の相互参照〕
本発明は、(a)2009年10月14日に出願された「MIMO−OFDMAシステムのための適応ビーム形成及び空間周波数ブロック符号化送信方式(An Adaptive Beam−forming and Space−Frequency Block Coding Transmission Scheme for MIMO−OFDMA Systems)」という名称の米国特許仮出願第61/251,428号、及び(b)2010年10月6日に出願された「MIMO−OFDMAシステムのための適応ビーム形成及び空間周波数ブロック符号化送信方式(An Adaptive Beam−Forming and Space−Frequency Block Coding Transmission Scheme For MIMO−OFDMA Systems)」という名称の米国特許非仮出願第12/899,394号に関し、その優先権を主張する。これらの米国特許仮出願及び非仮出願の開示は、全体として参照により本明細書に組み込まれる。
米国を指定国とする場合、本発明は、上記米国特許出願第12/899,394号の継続出願である。
無線通信システムは、多様な伝搬環境において、データレートがより高く、より信頼性がある通信に向けて発展してきている。良好な通信システム設計の重要な側面は、システムにおける使用可能なダイバーシティの効率的な使用である。多入力多出力(MIMO)及び直交周波数分割多元接続(OFDMA)の原理は、チャネルの周波数ダイバーシティ及び空間ダイバーシティを利用することができる柔軟なシステム設計を可能にする。チャネルが周波数選択的であるとき、使用可能なサブチャネルのうちのその最良のチャネルに各移動局(MS)を割り当てることによって、周波数ダイバーシティを利用することができる(「マルチユーザダイバーシティ」としても知られる)。一方、複数のアンテナを様々な方法で使用して、リンク品質を向上させることができる。例えば、送信機でのチャネル知識(channel knowledge)が使用可能であるとき、ビーム形成(BF)及び事前符号化技術はアレイ利得を提供する。あるいは、送信機でチャネル情報を必要とすることなく、チャネルにおける空間ダイバーシティのために、空間周波数符号化方式を利用することができる。
周波数分割二重(FDD)及び時分割二重(TDD)システムにおける受信機からのフィードバックによって、又はTDDシステムにおけるアップリンクチャネルを測定することによって、チャネル情報を取得することができる。送信機で、推定誤差、量子化誤差、又はフィードバック遅延によるチャネル知識の不完全性は、システム設計に影響を及ぼしている重要な要因である。近年、研究者は、送信機での不完全なチャネル知識により多重アンテナ送信を最適化することに焦点を置いていた。こうした研究は、例えば、(a)「多重アンテナシステムのための送信機最適化とビーム成形の最適性(Transmitter optimization and optimality of beamforming for multiple antenna systems)」、S.A.Jafar及びA.Goldsmith、IEEE Trans.Wireless Commun.、第3巻、4号、1165〜1175頁、2004年7月、(b)「不完全フィードバックのある時空間送信事前符号化(Space−time transmit precoding with imperfect feedback)」、E.Visotsky及びU.Madhow、IEEE Trans.Inform.Theo.、第47巻、6号、2632〜2638頁、2001年9月、(c)「不完全チャネル状態情報に基づくロバストな固有送信ビーム形成(Robust transmit eigen beamforming based on imperfect channel state information)」、A.Abdel−Samad、T.N.Davidson及びA.−B.Gershman、IEEE Trans.Sig.Process.、第54巻、5号、1596〜1609頁、2006年5月、(d)「凸最適化によるマルチユーザ多重アンテナダウンリンク通信システムのロバストな電力割当設計法(Robust power allocation designs for multiuser and multiantenna downlink communication systems through convex optimization)」M.Payaro、A.Pascual−Inserte及びM.A.Lagunas、IEEE Journal Select.Area.Commun.、第25巻、7号、2007年9月で発表されている。これらの例は、部分的なチャネル知識が送信機で使用可能であるとき、最適な送信戦略を示す。
あるいは、チャネル品質に基づいて強力な送信を提供するために、空間ダイバーシティ方式がBFと結合され得る。こうした手法の例は、例えば、(a)「ビーム形成及び直交時空間ブロック符号化の結合(Combining beamforming and orthogonal space−time block coding)」、G.Jongren及びM.Skoglung、IEEE Trans.Inform.Theory、第48巻、3号、611〜627頁、2002年3月、(b)「チャネル平均フィードバックに基づく最適送信機固有ビーム成形及び時空間ブロック符号化(Optimal transmitter eigen−beamforming and space−time block coding based on channel mean feedback)」、S.Zhou及びG.B.Giannakis、IEEE Trans.Sig.Process.、第50巻、10号、2599〜2613頁、2002年10月、及び(c)「量子化フィードバックを使用したビーム形成と時空間符号化との組み合わせ(Combining beamforming and space−time coding using quantized feedback)」、S.Ektabani及びH.Jafarkhani、IEEE Trans.Wireless Commun.、第7巻、3号、898〜908頁、2008年3月で報告されている。BF空間ダイバーシティ方式においては、チャネルがフレーム全体にわたって固定されているとする準静的フェージングが仮定される。したがって、これらの分析は、一定のチャネルの不完全性に基づき、これは長いフレームの間、又は高いドップラー周波数で有効ではない可能性がある。事実、様々なチャネルの不完全性の状態がモバイルユーザによってしばしば経験される。
時空間符号化又は空間周波数符号化設計、又はBF設計に焦点を置く多数の技術が報告されている。しかし、送信フレーム内で空間周波数符号化とBFとの間を切り替える設計は、知られていない。例えば、2009年4月21日発行のG.Giannakis、S.Zhouの「推定されたチャネル情報を使用した時空間符号化(Space−time coding using estimated channel information)」という名称の米国特許第7,522,673号は、複数の送信アンテナを有する無線通信システムにおける時空間符号化のみの技術を開示する。こうしたシステムでは、送信機は、受信機からフィードバックされるチャネル情報を使用する。
2008年6月19日に出願された、A.Naguibによる「ビーム時空間符号化及び送信ダイバーシティ(Beam space time coding and transmit diversity)」という名称の米国特許出願公開第2008/0144738号は、BFを送信ダイバーシティ時空間符号化信号に適用することによって、受信機でダイバーシティ利得を増加させるための方法及び装置を開示する。この技術を使用することによって、信号を時空間符号化することによって、送信ダイバーシティを信号源で利用することができる。送信信号は、特定の時空間符号にそれぞれ関連した複数の時空間アンテナグループを介して時空間符号化される。次いで、各時空間アンテナグループの信号は、時空間アンテナグループのアンテナを介してビーム形成される。時空間アンテナグループ内の各アンテナは、時空間グループ内の他のアンテナに対して、個別の重みで重み付けされる。
2008年5月1日に出願されたH.Niu、C.Ngoによる「無線通信システムにおける時空間符号化のための空間拡散行列を計算するための方法及びシステム(Method and system for computing a spatial spreading matrix for space−time coding in wireless communication systems)」という名称の米国特許出願公開第2008/0101493号は、時空間符号化を統計的な送信BFと結合する無線通信のための方法及びシステムを開示する。統計的な送信BFは、瞬間的なチャネル状態情報(CSI)を必要とすることなく、送信相関行列の関数として最適な拡張行列を使用する。高移動性環境において、無線チャネル利得は、送信フレーム内で変化する可能性があり、それによってBFの手法における性能のかなりの低下をもたらす。
しかし、上記の技術は、送信フレーム内のチャネルの時間的変化に対処しておらず、したがって、フレーム内の時空間符号化とBFとの間の切替機構の望ましさも手段も示唆していない。
2007年10月9日に発行された、G.Giannakis、X.Maの「時間選択無線通信チャネルのための時空間ドップラー符号化方式(Space−time doppler coding schemes for time−selective wireless communication channels)」という名称の米国特許第7,280,604号は、時間選択及び高ドップラー拡散チャネルについての、時空間ドップラー(STDO)符号化技術を開示する。特に、STDO符号化システムは、時間選択周波数フラットチャネル(time−selective frequency−flat channels)についての最大ドップラーダイバーシティを達成することができる。2007年5月29日に発行された、G.Giannakis、X.Maによる「無線通信システムのための時空間マルチパス符号化方式(Space−time multipath coding schemes for wireless communication systems)」という名称の米国特許第7,224,744号は、周波数選択チャネルのための時空間マルチパス(STM)符号化技術を開示する。記載されているSTM符号化システムは、全空間マルチパスダイバーシティを保証し、帯域幅効率が高い大きい符号化利得を達成する。しかし、STMにおける周波数ダイバーシティにもかかわらず、開示された技術のいずれも、周波数ダイバーシティ及びマルチユーザダイバーシティを同時に利用することができない。
2009年9月10に出願された、J.Ylitaloによる「方法を使用した適応送信方式及び基地局(Adaptive transmission method and a base station using the method)」(「Ylitalo」)という名称の米国特許出願公開第200/0227249号は、BSにおける次のダウンリンク送信の空間送信方法を選択するための技術に関連する。Ylitaloにおいて、BSは、次のダウンリンクフレームについて、BF、時空間符号化(STC)、又はMIMOの間の選択を行う。選択は、次のダウンリンクフレームが送信されることになっている特定のMSからのフィードバック及びアップリンク測定に基づく。しかし、Ylitaloは、高移動性環境を表す送信フレーム内のチャネルの時間的変化を考慮しない。BF手法はチャネル知識の不整合に影響されるため、フレーム内のチャネルの変化は、Ylitaloの手法下で性能の低下を引き起こす。
本発明は、信号対雑音比(SNR)、変調次数(modulation order)、及びドップラー周波数に基づいて、代替の複数のアンテナ送信モードを割り振るための多数の方法を提供する。これらの方法は、信頼性を増加させる(すなわち、ビット誤り率(BER)を低下させる)。
従来技術の方法とは異なり、本発明の方法は、単一のフレームの間、そのフレーム内のチャネルの変化に応答して、異なる送信モードを可能にする。本発明の一実施形態では、方法は、チャネル知識が現在のままである限り、BF送信モードを割り振ることによって所与のチャネルにおける使用可能なチャネル知識を利用し、しかし、チャネル知識が古くなると、空間周波数ブロック符号化(SFBC)送信モードに切り替える。これらの方法で適用されるために、SNR、変調次数、及びドップラー周波数の関数である近似のBER式が、BF及びSFBCについても提供される。最初のチャネル知識は、フレーム全体にわたるモード割り振りの決定メトリクスを提供する。これらの方法は、すべてのSNR値において、BFとSFBCのうちの優れた方と同じように機能することが示されている。
本発明の第2の実施形態によれば、マルチユーザダイバーシティを利用する方法は、フレーム内で時間に応じて単調に減少する平均チャネル電力のチャネルモデルに基づいて、フレームにおけるシンボルにわたってレート及び送信モードを適応させる。こうした方法は、チャネル状態のより効率的な使用のため、上記のBF−SFBC方法よりさらに高い性能を提供する。
本発明は、添付の図面に関連して下記の詳細な説明を考察すると、よりよく理解される。
本発明の一実施形態による、OFDMAシステムにおけるフレーム構造の割り振りを示す図である。 本発明の一実施形態による、初期チャネル知識を条件としたMIMO送信モードを割り振るための第1の方法を示すフローチャートである。 本発明の一実施形態による第2の方法における送信モード割り振りの後のビットローディングアルゴリズムの適用を示す図である。 本発明の一実施形態による第2の方法における初期チャネル知識を条件とした多入力単出力(MISO)送信モードの割り振りを示す図である。
本発明の一実施形態では、OFDMA無線マルチユーザアクセスネットワークのダウンリンク(DL)は、n本のアンテナを有している送信機を、それぞれn本の受信アンテナを有している各MSに関与させる。シンボル時間nのサブチャネルqにおけるユーザkによる受信信号のローパス等価モデルは、以下によって得られる。
Figure 2013509026

式中、
Figure 2013509026

は、サブチャネルqにおけるユーザkについての送信信号ベクトルであり、
Figure 2013509026

は、サブチャネルqにおけるユーザkについてのチャネル係数のn×nの行列(「チャネル行列」)であり、
Figure 2013509026

は、n×1のノイズベクトルである。このモデルでは、チャネル係数及びノイズはそれぞれ、ゼロ平均、単位分散、円対称の複素ガウス分布を有している確率変数としてモデル化される。また、ノイズは、アンテナにわたって相関関係がないと想定され、チャネルは、異なるユーザの間で統計的に独立で同一の分布に従う(iid)と想定される。したがって、送信信号の平均電力
Figure 2013509026

は、受信アンテナ当たりの平均SNRでもある。
高速フェージングチャネル(すなわち、フレームの間は変化するが、OFDMシンボル時間の間は相関が高いままである動作条件を有しているチャネル)は、高いドップラー周波数、又は長いフレーム持続時間の場合に、観察され得る効果を有する。シンボル時間nの高速フェージングチャネルについてのチャネル行列
Figure 2013509026

は、以下によってモデル化することができる。
Figure 2013509026

式中、
Figure 2013509026

は、フレームの始まりにおけるチャネル係数を表し、
Figure 2013509026

は、n個のシンボル時間にわたるチャネルにおける無相関化による摂動項(perturbation term)であり、ρは、シンボル時間nでの初期チャネル行列
Figure 2013509026

とチャネル行列
Figure 2013509026

との間の相関係数である。チャネルはフレーム内で変化するが、受信機は、時間周波数グリッドにおいてフレームにわたって拡散するパイロットシンボルを調べることによって、チャネルを推定することができる。したがって、このモデルは、フレーム全体にわたる受信機のチャネル知識を提供する。
適応チャネル割り当てを使用することによって、OFDMAシステムは、伝搬環境で周波数ダイバーシティ及びマルチユーザダイバーシティを利用することができる。図1は、本発明の一実施形態による、OFDMAシステムにおけるフレーム構造の割り振りを示す。図1に示すように、OFDMAスペクトルを、連続的なサブキャリアのQ個のサブチャネルに分割することができ、経験するチャネル状態に応じて、各MSを異なるサブチャネルに割り当てることができる。チャネル及び送信モードの選択を存在するMSに割り当てるために、基地局(BS)は、各フレームの始まりにチャネル情報を取得することができる。BSが任意の時間遅延無しにフレームの始まりにチャネル情報を取得すると仮定すると、本発明の方法は、フレームの期間にわたるチャネルの不完全性に応じることを対処する。フレームの始まりにおける完全なチャネル情報は、必要ではない。例えば、フレームの始まりの前のシンボル時間の数を表している負の数である時刻μに、チャネル情報が既知である場合、ρの値に対応して変化する式(2)で、チャネル行列
Figure 2013509026


Figure 2013509026

の代わりに使用することができる。BSが、フレームの始めにおけるすべてのユーザ(すなわちq=1,...,Q)について、チャネル知識
Figure 2013509026

を有すると仮定すると、BSは、遅延なくチャネルをユーザに割り当てることができる。上記の方程式(2)のチャネルモデル下で、チャネルの時間選択性によって決定される任意の相関係数であるパラメータρに従って、シンボル時間nに、チャネルが無相関となる(最初のチャネル知識に関して)。最初のチャネル知識
Figure 2013509026

が古くなるにつれて、適応チャネル割り当ての利益は時間によって減少する。したがって、フレームの始めにおいて、周波数ダイバーシティ及びマルチユーザダイバーシティをフレームの一部分に利用することができ、その一部分は、ドップラー周波数に依存する。
実用的なシステムにおいて、チャネルは、例えば、メディアアクセス制御(MAC)及びスケジューリングプロトコルによって課されるサービス品質要件及び公平性制約に基づいて割り当てられ得る。MAC層プロトコルを最適化することさえなく、他の割り当て基準を使用することもできる。下記の説明において、MSは、常にその最良のチャネルに割り当てられると仮定される。シングルユーザの観点から分析が行われるという文脈が明白であるとき、ユーザインデックスk及びそのチャネルインデックスqは省略され得る。しかし、以下のシングルユーザ分析は、複数ユーザのために容易に一般化することができる。
各フレームの始まりに、BSは、ユーザに最良のチャネルを割り当て、MIMO送信モードを割り当てる。シングルモードBFでは、最大の固有値を有するチャネルが最良の性能を提供するので、送信機は最大の最大固有値を有するチャネルを選択する。換言すれば、こうしたシステムでは、選択されたチャネルインデックスqは、以下によって得られる。
Figure 2013509026

式中、λmax,q,0は、行列H q,0q,0の最大固有値である。しかし、SFBC送信モードでは、SNR最大化チャネルは、最大のフロベニウスノルムを有する。したがって、SFBC送信方式のチャネル割り当て基準は、
Figure 2013509026

であり、式中、||・||は、は、フロベニウスノルム演算子を示す。この説明において、表記g0,bf及びg0,sfbcはそれぞれ、BF下での最大固有値
Figure 2013509026

及びSFBC下でのフロベニウスノルム
Figure 2013509026

を示す。しかし、単一の受信アンテナシステム(例えば、多入力単出力(MISO)システムにおいて)では、チャネル選択基準は、BF及びSFBCの両方について同じである。具体的には、最良のチャネルは、最大のフロベニウスノルムを有するものである。
本発明の一実施形態における第1の方法によれば、MIMO送信モードは、フレームの始まりのチャネル知識、チャネル劣化係数、平均SNR、各モバイルユーザのドップラー周波数、及びデータレートに基づいて、フレームにわたって割り振られる。この実施形態において、例示の目的で、シングルモードBF及び直交SFBCは、代替の送信方法として提供される。フレームの始まりにおけるすべてのサブチャネルのそのチャネル知識を使用することによって、BSは、最良のサブチャネルを選択し、シンボルごとにMIMO送信モードを決定する。選択されたサブチャネルのチャネル知識及び各シンボルの相関係数を使用することによって、BSは、フレームにおけるシンボルごとに平均BERを計算し、最小平均BER基準に基づいて、各シンボルでの送信モードを割り振る。
以下の方法は、BF及びSFBCの送信モードのそれぞれについて、初期チャネル知識に基づいて、フレームにおけるシンボルごとに、平均BERを引き出す。これらのBER式は、各シンボルでの2つの送信モードの間での選択を行うために使用される。この分析において、M値直交振幅変調(M−QAM)信号のみが考えられるが、この方法は、他の変調方式にも適用可能である。次数Mの変調方式でのBER式は、次のように近似される。
Figure 2013509026

式中、γは、シンボル当たりのSNRである。初期チャネル知識を取得した後、所与のSNRについて、BF及びSFBCの送信モード下での平均BER性能が算出され、最小BER要件に基づいて、固定レート送信での適切なMIMO送信モードがシンボルごとに選択される。送信モードは、BSから制御チャネル又はメッセージを介してMSに伝えられる、又は同じ選択基準を使用してMSによって導出される。
送信機のチャネル知識は、例えばチャネル行列の支配的固有ベクトルの方向に送信することによって、アレイ利得を提供するために使用することができる。不完全なチャネル知識により、性能は、初期チャネル行列Hと実際のチャネル行列Hとの間の固有ベクトルの不整合のために低下し得る。シングルモードのBFにおいて、支配的固有ベクトルを使用して受信されたSNRを最大にするために、送信機は、行列
Figure 2013509026

の最大固有値の方向にBFを選択する。現在のシステムにおいて、送信機は、フレームの始まりに(すなわち、対応するρを有する、n=0又はいくらかの遅延n=μにおいて)チャネル知識を有する。BFでは、シンボルnでの平均BERは、現在のチャネル実現(channel realization)Hに基づいて、以下によって得られることがわかり、
Figure 2013509026

したがって、現在のチャネル実現Hに基づくフレーム全体にわたる平均BERは、以下によって得られる。
Figure 2013509026

式中、Nは、フレームにおけるOFDMシンボルの数、Mは、n番目のシンボルに使用されるM−QAMアルファベットサイズ、γは、シンボル時間n=0でのSNRである。γは、γ=ηg0,bfによって得られ、式中、ηは、送信信号の平均電力である。
上記したように、SFBC送信モードは、チャネル知識が送信機で使用可能でないとき、チャネルの空間ダイバーシティを利用する。SFBCにおいて、m個の変調されたシンボルのブロックは、n個のサブキャリアにわたって符号化され、符号化されたベクトルは、n個のアンテナから同時に送信される。こうしたSFBCの有効な送信レートは、R=m/nである。
この実施形態において、送信モードは、固定送信レート及び固定電力に合わせて最適化される。SFBC送信モードの送信レートが1未満(すなわち、R<1)である場合、一定の送信レートを維持するために、SFBC送信モードの変調次数が増加されるものとする。この実施形態において、直交SFBC送信モードは、復号の複雑さを非常に低いものにする。シンボルの期間内に、チャネルが連続的なサブキャリアにわたって高い相関性を有すると仮定すると、受信機は、線形複雑度により受信シンボルを復号することができる。各アンテナからのシンボルは、一定の電力(すなわち、
Figure 2013509026

)を維持するために、
Figure 2013509026

によって正規化される。したがって、シンボルnにおいて受信されたSNRは、
Figure 2013509026

によって得られ、式中、ηは、シンボル当たりの平均SNRである。したがって、第1のシンボル時間の間の受信されたSNRは、
Figure 2013509026

によって得られる。次いで、M−QAM方式でのシンボルnのSFBC送信モードの平均的なBER性能は、
Figure 2013509026

によって得られ、所与のSNRηでのフレームにわたる平均BERは、
Figure 2013509026

によって得られる。
準静的な想定が持続しない高速フェージングチャネルにおいて、BS局は、いくつかの方法でチャネル情報を取得することができる。例えば、不可逆チャネル(non−reciprocal channel)(例えば、FDDシステムで)では、受信機からのフィードバックが使用され得る。同様に、可逆チャネル(reciprocal channel)(例えば、TDDシステムで)では、アップリンク測定が使用され得る。しかし、受信機は、常にチャネル情報に素早くアクセスすることができる。したがって、フレームの始まりに、BS及び各MSは、チャネル情報を有する(すなわち、チャネル行列Hを決定することができる)。さらに、環境に基づく平均移動速度を設計において使用することもできる。その結果、BF及びSFBCの送信モードの平均BERは、式(6)及び(8)を使用して、BS及びMSで算出することができる。したがって、MIMO送信モードを、以下に基づいてシンボルnにおいて割り当てることができる。
Figure 2013509026

式中、m(n)は、シンボルnの送信モードインデックスである。あるいは、BSは、初期送信モード及びその後モードを切り替えるための基準を(例えば、パケットヘッダに含まれる制御情報を介して)MSに通知することができる。このように、本発明を実施する複雑度及び誤差の確率(すなわち、切替ポイントについてのBSとMSとの間の不整合の可能性)は、MS側においてかなり低減することができる。
図2は、本発明の一実施形態による、上記の方法を示すフローチャートである。図2に示すように、各フレームの始まり(すなわち、ステップ201)に、BSは、CSI、チャネルにおける時間的相関、平均SNR、及び変調次数を取得する。ステップ202で、各MSは、(例えば、チャネル行列の最大固有値に従って、又はチャネル行列のフロベニウスノルムに従って)その最良のチャネルが割り当てられる。次いで、ステップ203で、フレームのシンボルごとに、BF及びSFBC送信モード下でのそのシンボルについての平均BERが、上記の式(6)及び(8)に従って算出される。BF送信モードについての平均BERがSFBC送信モードについての平均BER未満である場合、BF送信モードが選択される(ステップ204)。そうでなければ、ステップ205で、SFBC送信モードが選択される。BF及びSFBCの性能特性、及び送信フレーム内の時間に伴うCSIの知識の低下の増加のため、送信モード切替ポイント(BFからSFBC)が生じると、シンボルのそれぞれでの上記の計算を停止することができる。切替ポイント後の送信モードはすべて、SFBCである。フレーム内の送信モードの可能性がある選択は、(i)CSIの知識がフレーム全体にわたって信頼できる場合、すべてのシンボルについてBF、(ii)CSIの知識がフレーム全体にわたって十分に信頼できない場合、すべてのシンボルについてSFBC、又は(iii)フレーム内でかなりのCSIの知識の低下が生じる場合、信頼できるCSIの知識を有する初期のシンボルについてはBF、残りのシンボルについてはSFBC、である。次いで、ステップ206で、例えばDL制御チャネルを介して、予め定められた方法を使用して、受信機(すなわち、MS)に、割り振られた送信モードが伝えられる。この方法下で、変調次数Mは、フレーム全体にわたって固定される。
本発明の一実施例形態による第2の方法は、平均BERを最低限に抑える最適化を提供する。この第2の方法下で、送信モードは、まず、上記の方法と同様、平均BERに基づいてフレームに割り振られる。しかし、この第2の方法下で、CSIの知識は、送信モードの割り振りにおいてでなく、チャネル選択においてのみ使用される。第2の方法は、さらに高い性能を可能にするために、シンボルごとに変調次数選択を提供する。次いで、送信モードの割り振り後、変調次数をフレームの各シンボルに割り当てるために、統計ビットローディングアルゴリズムが実施される。チャネル知識がフレームの始まりにBF及びチャネル選択(マルチユーザダイバーシティ及び周波数ダイバーシティ)によって依然として利用されることに留意されたい。フレーム全体にわたって、チャネルが無相関化するにつれて、チャネル状態情報(CSI)は古くなり、平均受信電力は低減する。チャネル品質が変化すると、性能を向上させるために、適応ビットローディングを使用することができる。フレームの始まりにより高いデータレートで送信することによって、ビットローディングアルゴリズムは、各フレームの始まりにおけるより良好なチャネル状態を利用する。最適化問題は、以下によって要約することができ、
Figure 2013509026

式中、Mは、n番目のシンボルの変調次数、Rは、(フレーム当たりのビット数における)送信レート制約、rmaxは、(ビット数における)瞬間レート制約である。この最適化問題に対するソリューションは、反復的に見つけることができる。ビットが、各ステップで、BERの最小限の増加を引き起こす方法でシンボルにロードされるように、反復型アルゴリズムは、各ステップでフレームに予め定められた数のビットを追加する。各ステップでロードされるビット数は、Mの範囲によって決まる。換言すれば、log(M)がrビットずつ増加する場合、各ステップでrビットがロードされる。このアルゴリズムは、BER式が初期チャネル統計にわたって平均されることを必要とする。
2つ又は4つの送信アンテナを有するMISOシステム(すなわち、実用上重要であるn=2、4)では、この第2の方法は、閉形式のBER式で示され得る。n=2では、BF送信モードでの平均BERは、以下の通りとなることがわかる。
Figure 2013509026

式中、Γ(・)は、ガンマ関数、dは、周波数ダイバーシティ及びマルチユーザダイバーシティを利用することによるダイバーシティ次数である。ダイバーシティ次数は、d≒Ntapによって近似することができ、Ntapは時間領域チャネルタップの数である。類似のステップの後、SFBC送信モードについての対応する平均BERは、以下によって得られる。
Figure 2013509026

同様に、n=4を有するMISOのケースでは、BF送信モードについての平均BERは、以下によって得られ、
Figure 2013509026

一方、SFBC送信モードについての平均BERは、以下によって得られる。
Figure 2013509026
図3及び図4は、本発明の一実施形態によるこの第2の方法を示しているフローチャートである。具体的には、図4は、本発明の一実施形態による第2の方法における初期チャネル知識を条件とするMISO送信モードの割り振りを示す。図3は、本発明の一実施形態による第2の方法における送信モード割り振りの後のビットローディングアルゴリズムを適用することを示す。
図4に示すように、各フレームの始まり(すなわち、ステップ401)に、BSは、CSI、チャネルにおける時間的相関、平均SNR、及び初期固定変調次数を取得する。ステップ402で、各MSは、(例えば、チャネル行列のフロベニウスノルムに従って)その最良のチャネルが割り当てられる。次いで、ステップ403で、フレームのシンボルごとに、BF及びSFBC送信モード下でのそのシンボルについての平均BERが、必要に応じて、上記の式(12)又は(13)及び(14)又は(15)を使用して、アンテナ構造に従って算出される。BF送信モードについての平均BERがSFBC送信モードについての平均BER未満である場合、BF送信モードが選択される(ステップ404)。そうでなければ、ステップ405で、SFBC送信モードが選択される。フレームにおけるすべてのN個のシンボルについての送信モードが割り当てられるまで、送信モードの選択が続く。次いで、ステップ406で、ビットローディング最適化が必要ない場合、例えばDL制御チャネルを介して、予め定められた方法を使用して、受信機(すなわち、MS)に、割り振られた送信モードが伝えられる。
図3に示すように、ステップ301で、図4の送信モードの割り振りが完了した後、送信データレート情報が確認される。ステップ302で、ビットローディング最適化(上記の一組の式(11)においてまとめられた)は、例えば、反復型アルゴリズムを使用することによって実施される。ステップ303で、例えばDL制御チャネルを介して、予め定められた方法を使用して、受信機(すなわち、MS)に、フレームにおけるシンボルごとのビット数及び割り振られた送信モードが伝えられる。
チャネルの時間的相関、平均SNR、及びダイバーシティ次数が与えられると、送信モード及び変調次数は、オフラインで予め計算することができ、コードブックで提供することができ、これはBS及び各MSに格納することができる。あるいは、コードブックを使用することなく、BSは、同じ送信フレーム内で制御チャネルを介してMSにモード及び変調次数情報を伝えることができる。
上述のYlitalo特許出願に開示されたシステムとは異なり、本発明の方法は、マルチユーザダイバーシティ及び周波数ダイバーシティの両方を利用する。その結果、本発明の方法は、例えば、フレーム内のOFDMシンボルにわたる統計ビットローディングを利用することができる。さらに、Ylitaloは、チャネル知識の遅れを想定しない。しかし、実際には、フィードバック遅延、信号処理遅延、又はその両方のために、何らかの遅延は不可避であり、したがって、Ylitaloのシステムの性能の低下を引き起こす。チャネル知識の遅延を、本発明の方法に組み込むことができる。さらに、Ylitaloの適合基準はSNRに基づき、一方、本発明の方法の適合基準はBERに基づく。
上述したように、チャネル状態がシンボル間で変わるときでさえも、本発明は適応する。初期チャネル知識のなしでの適合は、極端に複雑な最適化技術を必要とする可能性があり、それはリアルタイムの遅延に影響される用途では非実用的である。しかし、本発明のMIMO切替方法によって、送信機は、送信モードごとの算出された平均BERに基づいて、空間周波数ブロック符号化(SFBC)とBF送信モードとの間の選択を簡単に行うことができる。チャネル品質がフレームの間で低下し得る高移動性の用途で、単一のフレームで許容される異なる送信モードは、最も低い平均BERを達成する。複数のアンテナ送信モードの他に、本発明によって、データレートを所与のフレームにおけるシンボルにわたって変えることができる。
上記の詳細な説明は、本発明の特定の実施形態を例示するために提供されており、限定のためのものではない。本発明の範囲内の多数の変形及び変更が可能である。本発明は、添付の請求の範囲に記載されている。

Claims (1)

  1. 基地局及び複数の移動局を含む無線通信システムにおいて、直交周波数分割多元接続(OFDMA)データフレームを前記移動局に送信するための方法であって、前記データフレームが複数の通信チャネルを介して送信される複数のシンボルを備えており、前記方法が、
    前記データフレームの始まりに、チャネルのそれぞれについてチャネル状態を表しているメトリクスを集めるステップと、
    集められた前記メトリクスに基づいて、各移動局を1つ又は複数の通信チャネルに割り当てるステップと、
    前記フレームのシンボルごとに、複数の送信モードのそれぞれの平均ビット誤り率を算出し、そのシンボルについての算出された最低の平均ビット誤り率に対応する前記送信モードをそのシンボルに割り当てるステップと、
    それぞれの割り当てられた送信モードに従って前記フレームの前記シンボルを送信するステップと
    を含む方法。
JP2012534247A 2009-10-14 2010-10-08 Mimo−ofdmaシステムのための適応ビーム形成及び空間周波数ブロック符号化送信方式 Withdrawn JP2013509026A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US25142809P 2009-10-14 2009-10-14
US61/251,428 2009-10-14
US12/899,394 US20110085504A1 (en) 2009-10-14 2010-10-06 Adaptive beam-forming and space-frequency block coding transmission scheme for mimo-ofdma systems
US12/899,394 2010-10-06
PCT/US2010/051982 WO2011046825A1 (en) 2009-10-14 2010-10-08 An adaptive beam-forming and space-frequency block coding transmission scheme for mimo-ofdma systems

Publications (1)

Publication Number Publication Date
JP2013509026A true JP2013509026A (ja) 2013-03-07

Family

ID=43854792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012534247A Withdrawn JP2013509026A (ja) 2009-10-14 2010-10-08 Mimo−ofdmaシステムのための適応ビーム形成及び空間周波数ブロック符号化送信方式

Country Status (3)

Country Link
US (1) US20110085504A1 (ja)
JP (1) JP2013509026A (ja)
WO (1) WO2011046825A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8644181B2 (en) * 2011-08-16 2014-02-04 Hong Kong Applied Science and Technology Research Institute Company Limited Method and apparatus for estimation of channel temporal correlation and MIMO mode selection in LTE system
CN103138821B (zh) * 2011-11-30 2017-02-08 华为技术有限公司 一种数据传输方法、装置及系统
WO2013181825A1 (en) * 2012-06-07 2013-12-12 Qualcomm Incorporated Systems and methods for selection of wireless communication transmission modes
US9167621B2 (en) * 2012-07-09 2015-10-20 Broadcom Corporation Communication device with phase/angle transformation and methods for use therewith
US9337982B2 (en) * 2013-04-05 2016-05-10 Qualcomm Incorporated Adaptive antenna management in LTE

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6493331B1 (en) * 2000-03-30 2002-12-10 Qualcomm Incorporated Method and apparatus for controlling transmissions of a communications systems
US7181167B2 (en) * 2001-11-21 2007-02-20 Texas Instruments Incorporated High data rate closed loop MIMO scheme combining transmit diversity and data multiplexing
US7280604B2 (en) * 2002-04-22 2007-10-09 Regents Of The University Of Minnesota Space-time doppler coding schemes for time-selective wireless communication channels
US7522673B2 (en) * 2002-04-22 2009-04-21 Regents Of The University Of Minnesota Space-time coding using estimated channel information
US7224744B2 (en) * 2002-04-22 2007-05-29 Regents Of The University Of Minnesota Space-time multipath coding schemes for wireless communication systems
ITPI20030063A1 (it) * 2003-08-21 2005-02-22 Consorzio Pisa Ricerche Metodo di trasmissione vdsl utilizzante una modulazione
US8160121B2 (en) * 2007-08-20 2012-04-17 Rearden, Llc System and method for distributed input-distributed output wireless communications
KR20050117445A (ko) * 2004-06-10 2005-12-14 삼성전자주식회사 직교 주파수 분할 다중 접속 방식의 무선 통신 시스템에서핸드오버 방법
KR20050119590A (ko) * 2004-06-16 2005-12-21 삼성전자주식회사 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서채널 품질 정보 피드백 장치 및 방법
US7933628B2 (en) * 2004-08-18 2011-04-26 Ruckus Wireless, Inc. Transmission and reception parameter control
US7469152B2 (en) * 2004-11-30 2008-12-23 The Regents Of The University Of California Method and apparatus for an adaptive multiple-input multiple-output (MIMO) wireless communications systems
US20060209970A1 (en) * 2005-01-11 2006-09-21 Emmanuel Kanterakis Adaptive transmission rate communication system
US8515359B2 (en) * 2005-03-09 2013-08-20 Intel Corporation Method and apparatus to provide low cost transmit beamforming for network devices
EP1734666A1 (en) * 2005-06-17 2006-12-20 Fujitsu Limited Resource management in multi-hop communication system
EP1780929A1 (en) * 2005-10-25 2007-05-02 BRITISH TELECOMMUNICATIONS public limited company Method for adapting digital data transmission parameters to measured repetitive noise
EP2039202B1 (en) * 2006-07-07 2017-12-13 Telefonaktiebolaget LM Ericsson (publ) Resource allocation for co-existin networks
US20080056343A1 (en) * 2006-08-30 2008-03-06 Ravikiran Rajagopal Frame synchronization
US20080101493A1 (en) * 2006-10-27 2008-05-01 Samsung Electronics Co., Ltd. Method and system for computing a spatial spreading matrix for space-time coding in wireless communication systems
US20100067601A1 (en) * 2006-12-06 2010-03-18 Joshua Lawrence Koslov Reduction of overhead in a multiple-input multiple-output (mimo) system
US9106296B2 (en) * 2006-12-19 2015-08-11 Qualcomm Incorporated Beam space time coding and transmit diversity
EP1993225B1 (en) * 2007-05-15 2012-04-25 STMicroelectronics Srl Reconfigurable Alamouti/ABBA decoder
KR100904295B1 (ko) * 2007-08-07 2009-06-25 한국전자통신연구원 공간 분할 다중 접속을 위한 기지국과 중계기의 연결방법과 이에 따른 중계 방법
US8085721B2 (en) * 2008-03-10 2011-12-27 Elektrobit Wireless Communications Oy Adaptive transmission method and a base station using the method
US20090238086A1 (en) * 2008-03-19 2009-09-24 Telefonaktiebolaget Lm Ericsson (Publ) Rank Dependent CQI Back-Off
US8233926B2 (en) * 2008-05-22 2012-07-31 Futurewei Technologies, Inc. Spatial mode adaptation at the cell edge using interferer spatial correlation

Also Published As

Publication number Publication date
WO2011046825A1 (en) 2011-04-21
US20110085504A1 (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP4173137B2 (ja) データ伝送レートのランクアダプティブな適合化を有するmimo信号処理方法
KR101373951B1 (ko) 다중안테나 시스템에서 프리코딩 정보 전송방법
US7907677B2 (en) Open loop MU-MIMO
EP2002560B1 (en) Method for transmitting channel state information in multiple antenna system
US7778342B2 (en) Method and apparatus in a MIMO based communication system
EP2227869B1 (en) Method for reducing inter-cell interference
JP4776685B2 (ja) 無線通信システムおよび通信制御方法
KR100790165B1 (ko) 통신 시스템에서 데이터 전송 방법 및 시스템
KR100842619B1 (ko) 분산 무선 통신 시스템에서 심볼 에러율의 기반 직교 공간시간 블록 코드 겸 빔 형성을 위한 적응식 전송 파워 할당방법
JP5059013B2 (ja) 多重ユーザ多重アンテナ通信システムの送・受信機及び送・受信方法
JP5036860B2 (ja) マルチユーザ通信ネットワークにおいて信号を送信する方法
KR101241910B1 (ko) 다중 셀 환경에서 사운딩 채널을 이용한 협력적 mimo 기법
JP5560369B2 (ja) 多入力多出力システム用ダウンリンク伝送方法及び基地局
JP4945333B2 (ja) 無線システム、基地局装置および端末装置
Li et al. Advancement of MIMO technology in WiMAX: from IEEE 802.16 d/e/j to 802.16 m
US20060209764A1 (en) User scheduling method for multiuser MIMO communication system
US20080192683A1 (en) Apparatus and Method for Transmitting and Receiving Packet Data Using Multiple Antennas in a Wireless Communication System
JP2009542157A (ja) 閉ループ多重アンテナシステムにおけるデータ送受信装置及びその方法
WO2020088489A1 (en) Channel Prediction for Adaptive Channel State Information (CSI) Feedback Overhead Reduction
US20130022142A1 (en) Base station and method for implementing an adaptive closed-loop mimo and open-loop mimo technique in a wireless communication system
KR100809016B1 (ko) 빔 형성, mimo, 다이버서티 기법이 결합된 다중 안테나전송 기술을 이용하는 송신 방법 및 장치
JP2013509026A (ja) Mimo−ofdmaシステムのための適応ビーム形成及び空間周波数ブロック符号化送信方式
US20130016680A1 (en) Systems and Methods for Multi-User MIMO
CN110011706B (zh) 一种优化协作传输的方法及装置
Chehri et al. Phy-MAC MIMO precoder design for sub-6 GHz backhaul small cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130925

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140117