JP2013258289A - Laminate for thin film solar cell, and method for manufacturing thin film solar cell including the same - Google Patents

Laminate for thin film solar cell, and method for manufacturing thin film solar cell including the same Download PDF

Info

Publication number
JP2013258289A
JP2013258289A JP2012133414A JP2012133414A JP2013258289A JP 2013258289 A JP2013258289 A JP 2013258289A JP 2012133414 A JP2012133414 A JP 2012133414A JP 2012133414 A JP2012133414 A JP 2012133414A JP 2013258289 A JP2013258289 A JP 2013258289A
Authority
JP
Japan
Prior art keywords
film
solar cell
transparent electrode
electrode layer
film solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012133414A
Other languages
Japanese (ja)
Other versions
JP6065419B2 (en
Inventor
Takehiro Yonezawa
岳洋 米澤
Fuyumi Mawatari
芙弓 馬渡
Kazuhiko Yamazaki
和彦 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012133414A priority Critical patent/JP6065419B2/en
Priority to TW102119921A priority patent/TWI593123B/en
Priority to CN201310231152.8A priority patent/CN103489949B/en
Publication of JP2013258289A publication Critical patent/JP2013258289A/en
Application granted granted Critical
Publication of JP6065419B2 publication Critical patent/JP6065419B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022491Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of a thin transparent metal layer, e.g. gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To laminate a metal foil or a metal film formed on a base material as a conductive reflection film, in order to make manufacturing processes of a rear surface electrode of a thin film solar cell simple and efficient, and further improve the conversion efficiency of a thin film solar cell by omitting a thermal treatment process during manufacturing processes of the conductive reflection film.SOLUTION: A laminate 3 for a thin film solar cell includes a substrate 30, a transparent conductive layer 31, a photoelectric conversion layer 32 and a transparent electrode layer 33, in the order. The transparent electrode layer 33 contains a transparent conductive oxide particle comprising an indium tin oxide particle, an antimony doped tin oxide particle or the like, and a light transmitting binder comprising a silicon alkoxide hydrolysate, polystyrene, an acrylic resin or the like, and can laminate a metal foil or a metal film formed on a base material.

Description

本発明は、薄膜太陽電池用積層体、及びこれを用いる薄膜太陽電池の製造方法に関する。   The present invention relates to a laminate for a thin film solar cell and a method for producing a thin film solar cell using the same.

現在、環境保護の立場から、クリーンエネルギーの研究開発、実用化が進められており、太陽電池は、エネルギー源である太陽光が無尽蔵であり、無公害である等ことから注目されている。従来、太陽電池には、単結晶シリコンや多結晶シリコンのバルク太陽電池が用いられてきたが、バルク太陽電池は、製造コストが高く、生産性も低いことから、なるべくシリコン量を節約した太陽電池の開発が急がれている。   Currently, clean energy is being researched and put into practical use from the standpoint of environmental protection, and solar cells are attracting attention because of the inexhaustible and non-polluting nature of solar energy. Conventionally, single-crystal silicon or polycrystalline silicon bulk solar cells have been used for solar cells. However, since the bulk solar cells are high in production cost and low in productivity, the solar cells save as much silicon as possible. The development of is urgent.

そこで、厚さが、例えば、0.3〜2μmのアモルファスシリコン等の半導体を用いた薄膜太陽電池の開発が、精力的に行われている。この薄膜太陽電池は、ガラス基板や耐熱性プラスチック基板上に、光電変換に必要な量の半導体層を形成する構造のため、薄型で軽量、低コスト、大面積化が容易である等の利点がある。   Therefore, development of a thin film solar cell using a semiconductor such as amorphous silicon having a thickness of, for example, 0.3 to 2 μm has been vigorously performed. This thin-film solar cell has the advantage that it is thin, lightweight, low-cost, and easy to increase in area because it has a structure in which a semiconductor layer of an amount necessary for photoelectric conversion is formed on a glass substrate or a heat-resistant plastic substrate. is there.

薄膜太陽電池には、スーパーストレート型構造とサブストレート型構造があり、スーパーストレート型構造は、透光性基板側から太陽光を入射させるため、通常、図1に示すように、基板201−透明導電層202−光電変換層203−裏面電極層204の順に形成される構造をとる。一般的な薄膜太陽電池の製造方法では、従来、透明導電層や、裏面電極層等はスパッタ等の真空成膜法で形成されており、スーパーストレート型薄膜太陽電池200は、真空成膜法を用いて、基板201上に、透明導電層202、光電変換層203、裏面電極層204が、この順に形成される。ここで、真空成膜法を採用するためには大型の真空成膜装置が必要になり、一般に、大型の真空成膜装置の導入、維持、運転には多大なコストが必要である。この点を改良するため、透明導電膜と導電性反射膜からなる複合膜(裏面電極層)を、透明導電膜用組成物と導電性反射膜用組成物を用いて、より安価な製造方法である湿式塗工法で形成する技術が、開示されている(特許文献1)。   The thin film solar cell has a super straight type structure and a substrate type structure. Since the super straight type structure allows sunlight to enter from the translucent substrate side, normally, as shown in FIG. A structure in which the conductive layer 202, the photoelectric conversion layer 203, and the back electrode layer 204 are formed in this order is employed. In a general method for manufacturing a thin film solar cell, a transparent conductive layer, a back electrode layer, and the like have been conventionally formed by a vacuum film formation method such as sputtering, and the super straight type thin film solar cell 200 uses a vacuum film formation method. The transparent conductive layer 202, the photoelectric conversion layer 203, and the back electrode layer 204 are formed in this order on the substrate 201. Here, in order to employ the vacuum film forming method, a large vacuum film forming apparatus is required, and in general, a large cost is required for the introduction, maintenance, and operation of the large vacuum film forming apparatus. In order to improve this point, a composite film (back electrode layer) composed of a transparent conductive film and a conductive reflective film can be produced by using a composition for transparent conductive film and a composition for conductive reflective film with a cheaper manufacturing method. A technique of forming by a certain wet coating method is disclosed (Patent Document 1).

次に、図2に、湿式塗工法で製造された従来のスーパーストレート型薄膜太陽電池の断面の模式図を示す。湿式塗工法で製造されたスーパーストレート型薄膜電池100は、基板110、透明導電層103、光電変換層102、透明導電膜101、導電性反射膜104の順に備えており、基板110側から太陽光が入射する。入射した太陽光の多くは、導電性反射膜104で反射され、光電変換層102に戻り、変換効率を向上させている。ここで、透明導電膜101と光電変換層102の界面でも太陽光の反射は起きており、透明導電膜101の屈折率を下げ、透明導電膜101と光電変換層102の屈折率差を大きくすることで界面での反射光を増加させ、薄膜太陽電池の発電効率を向上させることができる。   Next, FIG. 2 shows a schematic view of a cross section of a conventional super straight type thin film solar cell manufactured by a wet coating method. A super straight type thin film battery 100 manufactured by a wet coating method includes a substrate 110, a transparent conductive layer 103, a photoelectric conversion layer 102, a transparent conductive film 101, and a conductive reflective film 104 in this order. Is incident. Most of the incident sunlight is reflected by the conductive reflective film 104 and returns to the photoelectric conversion layer 102 to improve the conversion efficiency. Here, sunlight is also reflected at the interface between the transparent conductive film 101 and the photoelectric conversion layer 102, the refractive index of the transparent conductive film 101 is lowered, and the refractive index difference between the transparent conductive film 101 and the photoelectric conversion layer 102 is increased. Thus, the reflected light at the interface can be increased, and the power generation efficiency of the thin-film solar cell can be improved.

しかしながら、上記の湿式塗工法によっても、光電変換層上に、直接、透明導電膜用組成物と導電性反射膜用組成物とを、それぞれ塗布した後、焼成するため、薄膜太陽電池の製造工程数が多くなってしまい、製造工程数を短縮化し、簡略化したいとの要望がある。また、従来の上記湿式塗工法で形成された透明導電膜は、透明導電膜が接着性を有さないので、導電性反射膜を形成するために、透明導電膜上に、導電性反射膜用組成物を塗布した後、焼成する熱処理工程が発生し、この熱処理工程で光電変換層を傷めるおそれがある。   However, even by the above wet coating method, since the transparent conductive film composition and the conductive reflective film composition are applied directly on the photoelectric conversion layer, and then fired, the thin film solar cell manufacturing process The number increases, and there is a desire to shorten and simplify the number of manufacturing steps. In addition, since the transparent conductive film formed by the conventional wet coating method does not have adhesiveness, in order to form the conductive reflective film, the conductive film for the conductive reflective film is formed. After applying the composition, a heat treatment step for firing occurs, and the photoelectric conversion layer may be damaged by this heat treatment step.

特開2009−88489号公報JP 2009-88489 A

本発明は、薄膜太陽電池の裏面電極の製造工程の簡略化、効率化を図るため、導電性反射膜として金属箔や基材に形成された金属膜を貼り合わせることができ、さらに、導電性反射膜の製造工程での熱処理過程を省略することにより薄膜太陽電池の変換効率を向上させることを課題とする。   In the present invention, in order to simplify and improve the efficiency of the manufacturing process of the back electrode of the thin-film solar cell, a metal film formed on a metal foil or a base material can be bonded as a conductive reflective film. It is an object to improve the conversion efficiency of a thin film solar cell by omitting the heat treatment process in the manufacturing process of the reflective film.

本発明は、以下に示す構成によって上記課題を解決した薄膜太陽電池用積層体、薄膜太陽電池の製造方法、及び薄膜太陽電池に関する。
〔1〕基板、透明導電層、光電変換層、および透明電極層を、この順に備える薄膜太陽電池用積層体であって、
透明電極層が、インジウム錫酸化物粒子、アンチモンドープ酸化錫粒子、アルミニウムドープ酸化亜鉛粒子およびガリウムドープ酸化亜鉛粒子からなる群より選択される少なくとも1種の透明導電性酸化物粒子と、シリコンアルコキシドの加水分解物、コロイダルシリカ、ポリスチレン、ポリウレタン、ポリアミド、ポリメチルメタクリレートおよびアクリル樹脂からなる群より選択される少なくとも1種の透光性バインダーと、を含有し、金属箔または基材に形成された金属膜を貼り合わせることができることを特徴とする、薄膜太陽電池用積層体。
〔2〕基板、透明導電層、光電変換層、および透明電極層を、この順に備える薄膜太陽電池用積層体であって、
透明電極層が、インジウム錫酸化物、アンチモンドープ酸化錫、アルミニウムドープ酸化亜鉛およびガリウムドープ酸化亜鉛からなる群より選択される少なくとも1種の透明導電性酸化物を含有する透明電極膜と、シリコンアルコキシドの加水分解物、コロイダルシリカ、ポリウレタン、ポリアミド、ポリ酢酸ビニル、ポリオレフィン、ポリビニルアルコールおよびアクリル樹脂からなる群より選択される少なくとも1種であり、金属箔または基材に形成された金属膜を貼り合わせることができる接着層とを、光電変換層側からこの順に備えることを特徴とする、薄膜太陽電池用積層体。
〔3〕基板、透明導電層、光電変換層、および透明電極層を、この順に備える上記〔1〕または〔2〕記載の薄膜太陽電池用積層体に備えられている、透明電極層に、金属箔または基材に形成された金属膜を貼り合わせる工程、を含むことを特徴とする、薄膜太陽電池の製造方法。
〔4〕上記〔1〕または〔2〕記載の薄膜太陽電池用積層体を含む、薄膜太陽電池。
The present invention relates to a laminate for a thin-film solar cell, a method for manufacturing the thin-film solar cell, and a thin-film solar cell that have solved the above problems with the following configuration.
[1] A thin film solar cell laminate comprising a substrate, a transparent conductive layer, a photoelectric conversion layer, and a transparent electrode layer in this order,
A transparent electrode layer comprising at least one transparent conductive oxide particle selected from the group consisting of indium tin oxide particles, antimony-doped tin oxide particles, aluminum-doped zinc oxide particles and gallium-doped zinc oxide particles; and silicon alkoxide A metal formed on a metal foil or substrate, containing at least one translucent binder selected from the group consisting of hydrolyzate, colloidal silica, polystyrene, polyurethane, polyamide, polymethyl methacrylate and acrylic resin A laminate for a thin-film solar cell, characterized in that films can be bonded together.
[2] A laminate for a thin-film solar cell comprising a substrate, a transparent conductive layer, a photoelectric conversion layer, and a transparent electrode layer in this order,
A transparent electrode film in which the transparent electrode layer contains at least one transparent conductive oxide selected from the group consisting of indium tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, and gallium-doped zinc oxide; and silicon alkoxide Hydrolyzate, colloidal silica, polyurethane, polyamide, polyvinyl acetate, polyolefin, polyvinyl alcohol and at least one selected from the group consisting of acrylic resins, and a metal film formed on a metal foil or substrate A laminate for a thin-film solar cell, comprising an adhesive layer that can be formed in this order from the photoelectric conversion layer side.
[3] A substrate, a transparent conductive layer, a photoelectric conversion layer, and a transparent electrode layer, which are provided in the laminate for a thin-film solar cell according to the above [1] or [2], in order, a metal A method for producing a thin-film solar cell, comprising: attaching a metal film formed on a foil or a substrate.
[4] A thin film solar cell including the laminate for a thin film solar cell according to [1] or [2].

本発明〔1〕または〔2〕によれば、薄膜太陽電池の製造工程を簡略化および効率化するために、導電性反射膜として金属箔または基材に形成された金属膜を貼り合わせることができ、さらに、薄膜太陽電池の導電性反射膜の製造工程中での熱処理過程を省略することができるため、光電変換層の劣化の抑制による薄膜太陽電池の変換効率の向上を図ることができる。   According to the present invention [1] or [2], in order to simplify and increase the efficiency of the manufacturing process of the thin-film solar cell, the metal film formed on the metal foil or the substrate can be bonded as the conductive reflective film. Furthermore, since the heat treatment process during the manufacturing process of the conductive reflective film of the thin film solar cell can be omitted, the conversion efficiency of the thin film solar cell can be improved by suppressing the deterioration of the photoelectric conversion layer.

本発明〔3〕によれば、金属箔または基材に形成された金属膜を貼り合わせることにより薄膜太陽電池の製造工程の簡略化および効率化を図り、さらに薄膜太陽電池の変換効率を向上させることが可能となる。   According to the present invention [3], the manufacturing process of the thin-film solar cell is simplified and made efficient by bonding the metal film formed on the metal foil or the base material, and further the conversion efficiency of the thin-film solar cell is improved. It becomes possible.

従来のスーパーストレート型薄膜太陽電池の断面の模式図である。It is a schematic diagram of the cross section of the conventional super straight type thin film solar cell. 従来の湿式塗工法で製造されたスーパーストレート型薄膜太陽電池の断面の模式図である。It is a schematic diagram of the cross section of the super straight type thin film solar cell manufactured by the conventional wet coating method. 本発明の薄膜太陽電池の製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of the thin film solar cell of this invention. 本発明の透明電極層自体が接着性を有する場合の薄膜太陽電池用積層体の断面の模式図である。It is a schematic diagram of the cross section of the laminated body for thin film solar cells in case the transparent electrode layer itself of this invention has adhesiveness. 本発明の透明電極膜の表面に接着層が形成されている場合の薄膜太陽電池用積層体の断面の模式図である。It is a schematic diagram of the cross section of the laminated body for thin film solar cells in case the contact bonding layer is formed in the surface of the transparent electrode film of this invention. 基材に形成された金属膜の断面の模式図である。It is a schematic diagram of the cross section of the metal film formed in the base material. 本発明の薄膜太陽電池の製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of the thin film solar cell of this invention.

以下、本発明を実施形態に基づいて具体的に説明する。なお、%は特に示さない限り、また数値固有の場合を除いて質量%である。   Hereinafter, the present invention will be specifically described based on embodiments. Unless otherwise indicated, “%” means “% by mass” unless otherwise specified.

本発明の薄膜太陽電池用積層体(以下、積層体という)は、基板、透明導電層、光電変換層、および透明電極層を、この順に備える積層体であって、透明電極層が、インジウム錫酸化物粒子、アンチモンドープ酸化錫粒子、アルミニウムドープ酸化亜鉛粒子およびガリウムドープ酸化亜鉛粒子からなる群より選択される少なくとも1種の透明導電性酸化物粒子と、シリコンアルコキシドの加水分解物、コロイダルシリカ、ポリスチレン、ポリウレタン、ポリアミド、ポリメチルメタクリレートおよびアクリル樹脂からなる群より選択される少なくとも1種の透光性バインダーと、を含有し、金属箔または基材に形成された金属膜を貼り合わせることができることを特徴とする。この場合の透明電極層を(1)型という。ここで、貼り合わせることができるとは、積層体に備えられている透明電極層に、金属箔または基材に形成された金属膜を貼った後、透明電極層を備える積層体や金属箔または基材に形成された金属膜にかけた外力を取り除いても、透明電極層から、金属箔または基材に形成された金属膜を剥離しないようにできることをいう。   The laminate for a thin film solar cell of the present invention (hereinafter referred to as laminate) is a laminate comprising a substrate, a transparent conductive layer, a photoelectric conversion layer, and a transparent electrode layer in this order, and the transparent electrode layer is indium tin. At least one transparent conductive oxide particle selected from the group consisting of oxide particles, antimony-doped tin oxide particles, aluminum-doped zinc oxide particles and gallium-doped zinc oxide particles, a hydrolyzate of silicon alkoxide, colloidal silica, Containing at least one translucent binder selected from the group consisting of polystyrene, polyurethane, polyamide, polymethylmethacrylate and acrylic resin, and capable of bonding a metal film or a metal film formed on a substrate. It is characterized by. The transparent electrode layer in this case is referred to as (1) type. Here, being able to be bonded means that after a metal film formed on a metal foil or a substrate is pasted on a transparent electrode layer provided in the laminate, the laminate or metal foil provided with a transparent electrode layer or Even if the external force applied to the metal film formed on the base material is removed, the metal film formed on the metal foil or the base material can be prevented from being peeled from the transparent electrode layer.

また、もう一つの本発明の積層体は、基板、透明導電層、光電変換層、および透明電極層を、この順に備える積層体であって、
透明電極層が、インジウム錫酸化物、アンチモンドープ酸化錫、アルミニウムドープ酸化亜鉛およびガリウムドープ酸化亜鉛からなる群より選択される少なくとも1種の透明導電性酸化物である透明電極膜と、シリコンアルコキシドの加水分解物、コロイダルシリカ、ポリウレタン、ポリアミド、ポリ酢酸ビニル、ポリオレフィン、ポリビニルアルコールおよびアクリル樹脂からなる群より選択される少なくとも1種であり、金属箔または基材に形成された金属膜を貼り合わせることができる接着層とを、光電変換層側からこの順に備えることを特徴とする。この場合の透明電極層を(2)型という。
Moreover, another laminate of the present invention is a laminate comprising a substrate, a transparent conductive layer, a photoelectric conversion layer, and a transparent electrode layer in this order,
A transparent electrode film in which the transparent electrode layer is at least one transparent conductive oxide selected from the group consisting of indium tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, and gallium-doped zinc oxide; and silicon alkoxide At least one selected from the group consisting of hydrolyzate, colloidal silica, polyurethane, polyamide, polyvinyl acetate, polyolefin, polyvinyl alcohol and acrylic resin, and bonding a metal film formed on a metal foil or substrate It is characterized by providing the adhesive layer which can do in this order from the photoelectric converting layer side. The transparent electrode layer in this case is referred to as (2) type.

これらの積層体は、各種薄膜太陽電池に使用することができるが、特に、スーパーストレート型薄膜太陽電池に適している。   Although these laminated bodies can be used for various thin film solar cells, they are particularly suitable for super straight type thin film solar cells.

図3に、積層体を使用した薄膜太陽電池の製造方法の一例を示す模式図を示す。まず、図3(A)に示すように、基板10、透明導電層11、光電変換層12、および透明電極層13を、この順に備えた積層体1と、金属箔または基材に形成された金属膜14を準備する。次に、図3(B)に示すように、透明電極層13に、金属箔または基材に形成された金属膜14を貼った後、透明電極層13を加熱して、図3(C)に示すように、透明電極層13に金属箔または基材に形成された金属膜14を貼り合わせた薄膜太陽電池を製造することができる。   The schematic diagram which shows an example of the manufacturing method of the thin film solar cell which uses a laminated body for FIG. 3 is shown. First, as shown to FIG. 3 (A), it formed in the laminated body 1 provided with the board | substrate 10, the transparent conductive layer 11, the photoelectric converting layer 12, and the transparent electrode layer 13 in this order, and metal foil or a base material. A metal film 14 is prepared. Next, as shown in FIG. 3 (B), after the metal film 14 formed on the metal foil or the substrate is pasted on the transparent electrode layer 13, the transparent electrode layer 13 is heated, and FIG. As shown in FIG. 4, a thin film solar cell in which a metal film 14 formed on a metal foil or a substrate is bonded to the transparent electrode layer 13 can be manufactured.

基板、透明導電層、光電変換層は、特に限定されず、薄膜太陽電池に使用可能なものであればよい。また、透明電極層13を硬化させる方法は、透明電極層の種類に応じて、適宜選択すればよい。   A board | substrate, a transparent conductive layer, and a photoelectric converting layer are not specifically limited, What is necessary is just to be usable for a thin film solar cell. Moreover, what is necessary is just to select the method of hardening the transparent electrode layer 13 suitably according to the kind of transparent electrode layer.

〔透明電極層〕
透明電極層は、接着性を有する。この透明電極層は、(1)型の場合には、透明電極層自体が接着性を有し、(2)型の場合には、透明電極膜の表面に形成された接着層が接着性を有する。ここで、透明電極層の接着性には、(A)透明電極層自体または透明電極膜の表面の接着層自体の粘着性により金属箔または基材に形成された金属膜(以下、金属箔等という)に接着するもの(以下、(A)タイプという)と、(B)透明電極層自体または透明電極膜の表面の接着層自体に粘着性はないが、金属箔等と貼った後、加熱により接着性を発現するもの(以下、(B)タイプという)とがある。(A)タイプの場合には、透明電極層の接着性により、透明電極層に金属箔等を貼り合わせた後、加熱して、透明電極層を硬化させる。(B)タイプの場合には、透明電極層に金属箔等を貼った後、加熱して、金属箔等を貼り合わせる。ここで、図4に、(1)透明電極層自体が接着性を有する場合の薄膜太陽電池用積層体の断面の模式図を、図5に、(2)透明電極膜の表面に接着層が形成されている場合の薄膜太陽電池用積層体の断面の模式図を示す。図4のように、(1)透明電極層自体が接着性を有する場合には、薄膜太陽電池用積層体3は、基板30、透明導電層31、光電変換層32、および透明電極層33を、この順に備える。また、図5のように、(2)透明電極膜の表面に接着層が形成されている場合には、薄膜太陽電池用積層体4は、基板40、透明導電層41、光電変換層42、および透明電極膜431の表面に接着層432が形成された透明電極層43を、この順に備える。
(Transparent electrode layer)
The transparent electrode layer has adhesiveness. In the case of (1) type, the transparent electrode layer itself has adhesiveness. In the case of (2) type, the adhesive layer formed on the surface of the transparent electrode film has adhesiveness. Have. Here, the adhesiveness of the transparent electrode layer includes (A) a metal film or a metal film (hereinafter referred to as a metal foil or the like) formed on a metal foil or a substrate by the adhesiveness of the transparent electrode layer itself or the adhesive layer itself on the surface of the transparent electrode film. (B)) The transparent electrode layer itself or the adhesive layer itself on the surface of the transparent electrode film is not sticky, but it is heated after being attached to a metal foil or the like. There are some which express adhesiveness (hereinafter referred to as (B) type). In the case of the (A) type, a metal foil or the like is bonded to the transparent electrode layer due to the adhesiveness of the transparent electrode layer, and then heated to cure the transparent electrode layer. In the case of the (B) type, a metal foil or the like is pasted on the transparent electrode layer, and then heated to bond the metal foil or the like. Here, FIG. 4 shows (1) a schematic diagram of a cross section of a laminate for a thin film solar cell when the transparent electrode layer itself has adhesive properties, and FIG. 5 shows (2) an adhesive layer on the surface of the transparent electrode film. The schematic diagram of the cross section of the laminated body for thin film solar cells in the case of being formed is shown. As shown in FIG. 4, (1) when the transparent electrode layer itself has adhesiveness, the laminate 3 for a thin film solar cell includes the substrate 30, the transparent conductive layer 31, the photoelectric conversion layer 32, and the transparent electrode layer 33. Prepare in this order. As shown in FIG. 5, (2) in the case where an adhesive layer is formed on the surface of the transparent electrode film, the thin film solar cell laminate 4 includes a substrate 40, a transparent conductive layer 41, a photoelectric conversion layer 42, The transparent electrode layer 43 in which the adhesive layer 432 is formed on the surface of the transparent electrode film 431 is provided in this order.

《(1)型:透明電極層自体が接着性を有する場合》
〈(A)タイプで、透明電極層自体の粘着性により金属箔等上に接着する場合〉
(A)タイプの透明電極層は、スーパーストレート型薄膜太陽電池の場合には、予め、透明導電層、光電変換層が、この順に形成された基材を準備し、光電変換層上に、透明電極層用組成物を、湿式塗工法により塗布して透明電極層用組成物の塗膜を形成した後、この塗膜を半乾燥することにより、製造することができる。ここで、透明電極層用組成物は、透明導電性酸化物粒子と透光性バインダーとを含むため、湿式塗工法に適している。
<< (1) Type: When the transparent electrode layer itself has adhesiveness >>
<(A) type, when the transparent electrode layer itself adheres to the metal foil, etc.>
In the case of a super straight type thin film solar cell, the (A) type transparent electrode layer is prepared in advance by preparing a substrate on which a transparent conductive layer and a photoelectric conversion layer are formed in this order. After the electrode layer composition is applied by a wet coating method to form a coating film of the transparent electrode layer composition, it can be produced by semi-drying the coating film. Here, since the composition for transparent electrode layers contains a transparent conductive oxide particle and a translucent binder, it is suitable for a wet coating method.

透明導電性酸化物粒子は、硬化後の透明電極層に導電性を付与し、この透明導電性酸化物粒子は、インジウム錫酸化物(ITO)粒子、アンチモンドープ酸化錫(ATO)粒子、アルミニウムドープ酸化亜鉛(AZO)粒子およびガリウムドープ酸化亜鉛(GZO)粒子からなる群より選択される少なくとも1種である。また、透明導電性酸化物粒子の平均粒径は、分散媒中で安定性を保つため、10〜100nmの範囲内であることが好ましい。ここで、平均粒径は、QUANTACHROME AUTOSORB−1による比表面積測定によるBET法で測定する。   The transparent conductive oxide particles impart conductivity to the transparent electrode layer after curing. The transparent conductive oxide particles include indium tin oxide (ITO) particles, antimony-doped tin oxide (ATO) particles, and aluminum dope. It is at least one selected from the group consisting of zinc oxide (AZO) particles and gallium-doped zinc oxide (GZO) particles. The average particle diameter of the transparent conductive oxide particles is preferably within a range of 10 to 100 nm in order to maintain stability in the dispersion medium. Here, the average particle diameter is measured by the BET method based on the specific surface area measurement by QUANTACHROME AUTOSORB-1.

(A)タイプで使用される透光性バインダーは、シリコンアルコキシドの加水分解物、コロイダルシリカ、ポリウレタン、ポリアミドおよびアクリル樹脂からなる群より選択される少なくとも1種であると、透明電極層自体の接着性が高く、好ましい。シリコンアルコキシドの加水分解物、コロイダルシリカは、硬化後の透明電極層の経時変化が少なく好適である。ポリスチレン、ポリメチルメタクリレート、アクリル樹脂は、比較的低温で成形可能な熱可塑性樹脂であり、ハンドリング面から好適である。ポリウレタン、ポリアミドは、固形接着剤の代表的なものであり、好適である。   The translucent binder used in the (A) type is at least one selected from the group consisting of hydrolyzate of silicon alkoxide, colloidal silica, polyurethane, polyamide and acrylic resin, and adhesion of the transparent electrode layer itself Highly preferable. A hydrolyzate of silicon alkoxide, colloidal silica, is preferable because the transparent electrode layer after curing hardly changes with time. Polystyrene, polymethyl methacrylate, and acrylic resin are thermoplastic resins that can be molded at a relatively low temperature, and are preferable from the handling surface. Polyurethane and polyamide are typical solid adhesives and are suitable.

透明電極層用組成物は、透明電極層用組成物中の固形分(透明導電性酸化物粒子、およびバインダー等):100質量部に対して、透明導電性酸化物粒子を98〜50質量部含むと好ましい。98質量部を越えると密着性が低下し、50質量部未満では導電性が低下するからである。   The composition for transparent electrode layers is composed of 98 to 50 parts by mass of transparent conductive oxide particles with respect to 100 parts by mass of the solid content in the composition for transparent electrode layers (transparent conductive oxide particles, binder, etc.). It is preferable to include. This is because when 98 parts by mass is exceeded, the adhesiveness is lowered, and when it is less than 50 parts by mass, the conductivity is lowered.

透明電極層用組成物は、成膜を良好にするために、分散媒を含むと好ましい。分散媒としては、水;メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール類;アセトン、メチルエチルケトン、シクロヘキサノン、イソホロン等のケトン類;トルエン、キシレン、ヘキサン、シクロヘキサン等の炭化水素類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類;エチレングリコール等のグリコール類;エチルセロソルブ等のグリコールエーテル類等が挙げられる。分散媒の含有量は、良好な成膜性を得るために、透明電極層用組成物:100質量部に対して、80〜99質量部であると好ましい。   The transparent electrode layer composition preferably contains a dispersion medium in order to improve film formation. As a dispersion medium, water; alcohols such as methanol, ethanol, isopropyl alcohol and butanol; ketones such as acetone, methyl ethyl ketone, cyclohexanone and isophorone; hydrocarbons such as toluene, xylene, hexane and cyclohexane; N, N-dimethyl Examples include amides such as formamide and N, N-dimethylacetamide; sulfoxides such as dimethyl sulfoxide; glycols such as ethylene glycol; glycol ethers such as ethyl cellosolve and the like. In order to obtain good film formability, the content of the dispersion medium is preferably 80 to 99 parts by mass with respect to 100 parts by mass of the transparent electrode layer composition.

透明電極層用組成物は、本発明の目的を損なわない範囲で、さらに必要に応じ、フィラー、応力緩和剤、低抵抗化剤、水溶性セルロース誘導体、その他の添加剤等を配合することができる。   The composition for transparent electrode layer can further contain a filler, a stress relieving agent, a low resistance agent, a water-soluble cellulose derivative, other additives, etc., if necessary, as long as the object of the present invention is not impaired. .

透明電極層用組成物は、所望の成分を、常法により、ペイントシェーカー、ボールミル、サンドミル、セントリミル、三本ロール等によって混合し、透明導電性酸化物粒子、透光性バインダー等を分散させ、製造することができる。無論、通常の攪拌操作によって製造することもできる。   The composition for a transparent electrode layer is prepared by mixing desired components with a paint shaker, a ball mill, a sand mill, a centrimill, a triple roll, etc. in a conventional manner, and dispersing transparent conductive oxide particles, a light-transmitting binder, and the like. Can be manufactured. Of course, it can also be produced by a normal stirring operation.

次に、透明電極層用組成物を、基板の光電変換層上に湿式塗工法で塗布し、半乾燥させることにより、接着性を有する透明電極層を製造することができる。   Next, the transparent electrode layer which has adhesiveness can be manufactured by apply | coating the composition for transparent electrode layers on the photoelectric converting layer of a board | substrate by a wet coating method, and making it semi-dry.

湿式塗工法は、スプレーコーティング法、ディスペンサーコーティング法、スピンコーティング法、ナイフコーティング法、スリットコーティング法、インクジェットコーティング法、スクリーン印刷法、オフセット印刷法、またはダイコーティング法のいずれかであることが好ましいが、これに限られるものではなく、あらゆる方法を利用できる。   The wet coating method is preferably a spray coating method, a dispenser coating method, a spin coating method, a knife coating method, a slit coating method, an inkjet coating method, a screen printing method, an offset printing method, or a die coating method. However, the present invention is not limited to this, and any method can be used.

透明電極層用組成物の塗膜を有する基板を、大気中または窒素やアルゴンなどの不活性ガス雰囲気中で、半乾燥させる工程は、透明電極層をハンドリング可能な強度にし、かつ透明電極層用組成物に粘着性が残留する条件で行えばよく、例えば、透明電極層用組成物中の分散媒の1/2〜2/3程度を揮発させる程度でよいが、残留した分散媒が貼り合わせ後に気泡を発生させる要因となりうるため、バインダーが接着性を有する範囲で、分散媒が少なくなるまで半乾燥させる方が好ましい。透明電極層用組成物の塗膜を半乾燥させる条件の一例は、30〜40℃で10〜30分である。ここで、半乾燥後の透明電極層用組成物の厚さは、0.03〜0.5μmの範囲であると、好ましい。半乾燥後の透明電極層用組成物の厚さが0.03μm未満では、膜の均一性が低下するとともに、密着性が低下し、0.5μmを越えると、透明性および導電性が低下するためである。   The step of semi-drying the substrate having the coating film of the transparent electrode layer composition in the atmosphere or in an inert gas atmosphere such as nitrogen or argon makes the transparent electrode layer strong enough to handle and for the transparent electrode layer. What is necessary is just to carry out on the conditions which adhesiveness remains in a composition, for example, it is sufficient to volatilize about 1/2 to 2/3 of the dispersion medium in the composition for transparent electrode layers, but the remaining dispersion medium is bonded together. Since it may cause bubbles later, it is preferable that the binder is semi-dried until the dispersion medium is reduced within the range where the binder has adhesiveness. An example of conditions for semi-drying the coating film of the transparent electrode layer composition is 10 to 30 minutes at 30 to 40 ° C. Here, the thickness of the composition for a transparent electrode layer after semi-drying is preferably in the range of 0.03 to 0.5 μm. When the thickness of the composition for the transparent electrode layer after semi-drying is less than 0.03 μm, the uniformity of the film is lowered and the adhesion is lowered, and when it exceeds 0.5 μm, the transparency and the conductivity are lowered. Because.

〈(B)タイプで、透明電極層自体に粘着性はないが、金属箔等と貼った後、加熱により接着性を発現する場合〉
(B)タイプの透明電極層は、スーパーストレート型薄膜太陽電池の場合には、予め、透明導電層、光電変換層が、この順に形成された基材を準備し、光電変換層上に、透明電極層用組成物を、湿式塗工法により塗布して透明電極層用組成物の塗膜を形成した後、この塗膜を乾燥することにより、製造することができる。ここで、透明電極層用組成物の塗膜を乾燥させる工程以外は、上記(A)タイプのときと同様である。透明電極層用組成物の塗膜を乾燥させる条件の一例は、不活性ガス雰囲気中、40〜50℃で5〜10分である。ここで、(B)タイプで使用される透明導電性酸化物粒子は、上記(A)タイプの場合と同様である。
<(B) type, the transparent electrode layer itself is not sticky, but after sticking with a metal foil, etc., the adhesiveness is manifested by heating>
In the case of the (B) type transparent electrode layer, in the case of a super straight type thin film solar cell, a transparent conductive layer and a substrate in which a photoelectric conversion layer is formed in this order are prepared in advance, and the transparent electrode layer is transparent on the photoelectric conversion layer. After the electrode layer composition is applied by a wet coating method to form a coating film of the transparent electrode layer composition, it can be produced by drying the coating film. Here, except the process of drying the coating film of the composition for transparent electrode layers, it is the same as that of the said (A) type. An example of the conditions for drying the coating film of the transparent electrode layer composition is 5 to 10 minutes at 40 to 50 ° C. in an inert gas atmosphere. Here, the transparent conductive oxide particles used in the (B) type are the same as in the case of the (A) type.

(B)タイプで使用される透光性バインダーとしては、ポリスチレン、ポリウレタン、ポリアミドおよびポリメチルメタクリレートからなる群より選択される少なくとも1種であると、透明電極層を一度完全に硬化させた後でも加熱により接着可能であるため、ハンドリング面から好ましく、これらのエマルジョンタイプも好ましい。   (B) The translucent binder used in the type is at least one selected from the group consisting of polystyrene, polyurethane, polyamide and polymethyl methacrylate, even after the transparent electrode layer has been completely cured once. Since it can be bonded by heating, it is preferable from the handling surface, and these emulsion types are also preferable.

《(2)型:透明電極膜の表面に接着層が形成されている場合》
透明電極膜は、透明電極膜に導電性を付与する透明導電性酸化物を含有し、透明導電性酸化物は、インジウム錫酸化物、アンチモンドープ酸化錫、アルミニウムドープ酸化亜鉛およびガリウムドープ酸化亜鉛からなる群より選択される少なくとも1種である。この透明電極膜には、上記(1)型で(A)タイプまたは(B)タイプの透明電極層用組成物を乾燥・硬化させたものに加えて、スパッタ、MBE、PLD、蒸着等の真空成膜法やスプレーパイロリシス法で形成されたインジウム錫酸化物、アンチモンドープ酸化錫、アルミドープ酸化亜鉛、ガリウムドープ酸化亜鉛の薄膜を使用することができる。なお、(1)型で(A)タイプまたは(B)タイプの透明電極層用組成物を硬化させる条件の一例は、大気中または窒素やアルゴンなどの不活性ガス雰囲気中、130〜200℃で、5〜60分間である。透明電極膜の厚さは、0.001〜10μmが好ましく、透明性、省資源、工程の観点から0.01〜0.5μmがより好ましい。また、接着層の厚さは、0.001〜1μmが好ましい。これは、接着性を有しつつ、光電変換層とのコンタクトを維持するためである。接着層は、透明電極膜の表面に、湿式塗工法等により形成することができる。
<< (2) Type: When an adhesive layer is formed on the surface of the transparent electrode film >>
The transparent electrode film contains a transparent conductive oxide that imparts conductivity to the transparent electrode film, and the transparent conductive oxide is made of indium tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, and gallium-doped zinc oxide. Is at least one selected from the group consisting of For this transparent electrode film, in addition to the (1) type (A) type or (B) type transparent electrode layer composition dried and cured, vacuum such as sputtering, MBE, PLD, vapor deposition, etc. A thin film of indium tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, or gallium-doped zinc oxide formed by a film formation method or a spray pyrolysis method can be used. An example of the conditions for curing the (A) type or (B) type transparent electrode layer composition of type (1) is 130 to 200 ° C. in the air or in an inert gas atmosphere such as nitrogen or argon. 5-60 minutes. The thickness of the transparent electrode film is preferably 0.001 to 10 μm, and more preferably 0.01 to 0.5 μm from the viewpoint of transparency, resource saving, and process. The thickness of the adhesive layer is preferably 0.001 to 1 μm. This is for maintaining contact with the photoelectric conversion layer while having adhesiveness. The adhesive layer can be formed on the surface of the transparent electrode film by a wet coating method or the like.

接着層は、シリコンアルコキシドの加水分解物、コロイダルシリカ、ポリウレタン、ポリアミド、ポリ酢酸ビニル、ポリオレフィン、ポリビニルアルコールおよびアクリル樹脂からなる群より選択される少なくとも1種である。   The adhesive layer is at least one selected from the group consisting of a hydrolyzate of silicon alkoxide, colloidal silica, polyurethane, polyamide, polyvinyl acetate, polyolefin, polyvinyl alcohol, and acrylic resin.

〈(A)タイプで、透明電極膜の表面の接着層自体の粘着性により金属箔等上に接着する場合〉
接着層は、透明電極膜上に、接着層用組成物を、湿式塗工法により塗布して接着層用組成物の塗膜を形成した後、この塗膜を半乾燥することにより、製造することができる。接着層用組成物には、上述の(1)型で(A)タイプの透明電極層用組成物を使用することができる。
<In case of (A) type, it adheres to metal foil etc. by the adhesiveness of the adhesive layer itself on the surface of the transparent electrode film>
The adhesive layer is produced by applying the adhesive layer composition on the transparent electrode film by a wet coating method to form a coating film of the adhesive layer composition, and then semi-drying the coating film. Can do. As the composition for the adhesive layer, the above-mentioned (1) type (A) type transparent electrode layer composition can be used.

〈(B)タイプで、透明電極膜の表面の接着層自体に粘着性はないが、金属箔等と貼った後、加熱により接着性を発現する場合〉
接着層は、透明電極膜上に、接着層用組成物を、湿式塗工法により塗布して接着層用組成物の塗膜を形成した後、この塗膜を乾燥することにより、製造することができる。(B)タイプで使用される透光性バインダーとしては、ポリウレタン、ポリアミド、ポリ酢酸ビニル、ポリオレフィン、ポリビニルアルコールが、接着層を一度完全に硬化させた後でも加熱により接着可能であるため、ハンドリング面から好ましく、これらのエマルジョンタイプも好ましい。
<(B) type, the adhesive layer itself on the surface of the transparent electrode film is not sticky, but after sticking with a metal foil etc., the adhesiveness is manifested by heating>
The adhesive layer can be produced by applying the adhesive layer composition on the transparent electrode film by a wet coating method to form a coating film of the adhesive layer composition, and then drying the coating film. it can. As the translucent binder used in the (B) type, polyurethane, polyamide, polyvinyl acetate, polyolefin, and polyvinyl alcohol can be bonded by heating even after the adhesive layer is completely cured once. These emulsion types are also preferred.

〔金属箔、基材に形成された金属膜〕
金属箔とは、めっきにより製造される電解金属、および金属を圧延して薄い板状にされたものをいい、金属箔としては、銀箔、アルミニウム箔、銅箔、金箔などが挙げられる。金属箔の厚さは、0.1〜50μmであると、金属箔のハンドリング、コストの観点から好ましい。
[Metal foil, metal film formed on substrate]
The metal foil refers to an electrolytic metal produced by plating, and a metal sheet rolled into a thin plate. Examples of the metal foil include silver foil, aluminum foil, copper foil, and gold foil. The thickness of the metal foil is preferably 0.1 to 50 μm from the viewpoint of handling of the metal foil and cost.

また、基材に形成された金属膜とは、基材にめっきおよび圧延以外の方法で製造された金属製の膜をいい、基材に形成された金属蒸着膜や、基材にスパッタ法、イオンプレーティング法で形成された金属薄膜等が挙げられる。金属蒸着膜とは、真空条件下で金属を加熱し、気化または昇華させ、基材に形成された金属薄膜である。金属膜としては、銀蒸着膜、アルミニウム蒸着膜、銅蒸着膜、金蒸着膜、銀スパッタ膜、銀イオンプレーティング膜等が挙げられる。金属膜の厚さは、0.1〜50μmであると、コストの観点から好ましい。基材としては、PETフィルム、ポリイミドフィルム等が挙げられる。基材の厚さは、50〜250μmであると、ハンドリングの観点から好ましい。図6に、基材に形成された金属膜の断面の模式図を示す。図6に示すように、基材に形成された金属膜5では、金属膜50が、基材51上に形成されている。   Moreover, the metal film formed on the base material refers to a metal film manufactured by a method other than plating and rolling on the base material, a metal vapor deposition film formed on the base material, a sputtering method on the base material, Examples thereof include a metal thin film formed by an ion plating method. A metal vapor deposition film is a metal thin film formed on a substrate by heating and vaporizing or sublimating a metal under vacuum conditions. Examples of the metal film include a silver vapor deposition film, an aluminum vapor deposition film, a copper vapor deposition film, a gold vapor deposition film, a silver sputtered film, and a silver ion plating film. The thickness of the metal film is preferably 0.1 to 50 μm from the viewpoint of cost. Examples of the substrate include PET film and polyimide film. The thickness of the substrate is preferably 50 to 250 μm from the viewpoint of handling. In FIG. 6, the schematic diagram of the cross section of the metal film formed in the base material is shown. As shown in FIG. 6, in the metal film 5 formed on the base material, the metal film 50 is formed on the base material 51.

さらに、金属箔、基材に形成された金属膜の積層体と貼り合わせる面に、透明導電膜が形成されていると、基板から入射した太陽光を、硬化した透明電極層と、透明導電膜との界面での反射光を増加させ、薄膜太陽電池の変更効率を向上させ得るので、好ましい。この透明導電膜は、上述の(2)型の薄膜太陽電池用積層体の透明導電膜と同様である。   Furthermore, when the transparent conductive film is formed on the surface to be bonded to the metal foil and the laminate of the metal film formed on the base material, the transparent electrode layer obtained by curing the sunlight incident from the substrate, and the transparent conductive film This is preferable because the reflected light at the interface between the thin film and the thin film solar cell can be improved. This transparent conductive film is the same as the transparent conductive film of the laminate for a thin film solar cell of type (2) described above.

〔薄膜太陽電池の製造方法〕
本発明の薄膜太陽電池の製造方法は、基板、透明導電層、光電変換層、および透明電極層を、この順に備える上述の薄膜太陽電池用積層体に備えられている、透明電極層に、金属箔または基材に形成された金属膜を貼り合わせる工程、を含むことを特徴とする。図7に、この金属箔または基材に形成された金属膜が透明導電膜を有する場合の薄膜太陽電池の製造方法の一例を示す模式図を示す。まず、図7(A)に示すように、基板20、透明導電層21、光電変換層22、および透明電極層23を、この順に備えた積層体2と、透明導電膜25を有する金属箔または基材に形成された金属膜24を準備する。次に、図7(B)に示すように、透明電極層23に、金属箔または基材に形成された金属膜24に形成された透明導電膜25を貼った後、透明電極層23を加熱して、図7(C)に示すような薄膜太陽電池を製造することができる。透明電極層23を加熱する条件の一例は、(A)タイプの場合、(B)タイプの場合、共に大気中または窒素やアルゴンなどの不活性ガス雰囲気中、130〜200℃で、5〜60分間である。
[Method for producing thin film solar cell]
The method for producing a thin film solar cell of the present invention includes a substrate, a transparent conductive layer, a photoelectric conversion layer, and a transparent electrode layer. A step of bonding a metal film formed on a foil or a substrate. In FIG. 7, the schematic diagram which shows an example of the manufacturing method of a thin film solar cell in case the metal film formed in this metal foil or a base material has a transparent conductive film is shown. First, as shown in FIG. 7A, a metal foil or a laminate 2 having a substrate 20, a transparent conductive layer 21, a photoelectric conversion layer 22, and a transparent electrode layer 23 in this order, and a transparent conductive film 25 or A metal film 24 formed on the substrate is prepared. Next, as shown in FIG. 7B, the transparent electrode layer 23 is heated after the transparent conductive layer 25 formed on the metal film 24 or the metal film 24 formed on the metal foil or substrate is pasted on the transparent electrode layer 23. Thus, a thin film solar cell as shown in FIG. 7C can be manufactured. An example of the conditions for heating the transparent electrode layer 23 is the case of the (A) type, the case of the (B) type, both in the air or in an inert gas atmosphere such as nitrogen or argon, at 130 to 200 ° C., 5 to 60 For minutes.

以下、実施例により、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。また、本発明の評価にはスーパーストレート型薄膜シリコン太陽電池を用いたが、本発明が適用されうる薄膜太陽電池はこれに限定されるものではない。変換効率は、以下により測定した。電極作製後の評価用薄膜シリコン太陽電池について、太陽電池セルのライン加工後の基板にリード線を配線し、ソーラシミュレータとデジタルソースメータを用いて、AM:1.5、100mW/cmの光を照射した時のI−V(電流−電圧)曲線を得た。さらに、得られたI−V(電流−電圧)曲線における電流値(I)を薄膜太陽電池セルの表面積で除することによりJ−V曲線(電流密度−電圧)を求めた。このJ−V曲線において、電圧の軸と電流密度の軸を2辺とし、原点とJ−V曲線上の点を結んで描かれた長方形の面積が最大となったときの面積での出力を最高出力密度(mW/cm)とし、〔最高出力密度(mW/cm)〕/〔100(mW/cm)〕×100を変換効率(%)とする。表1〜3に、それらの結果を示す。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these. Moreover, although the super straight type thin film silicon solar cell was used for the evaluation of the present invention, the thin film solar cell to which the present invention can be applied is not limited to this. The conversion efficiency was measured as follows. About the thin film silicon solar cell for evaluation after electrode preparation, a lead wire is wired to the substrate after the line processing of the solar cell, and light of AM: 1.5, 100 mW / cm 2 is used by using a solar simulator and a digital source meter. IV (current-voltage) curve was obtained. Furthermore, the JV curve (current density-voltage) was calculated | required by remove | dividing the electric current value (I) in the obtained IV (current-voltage) curve by the surface area of a thin film photovoltaic cell. In this JV curve, the output in the area when the area of the rectangle drawn by connecting the origin and the point on the JV curve with the voltage axis and the current density axis as two sides is maximized. The maximum output density (mW / cm 2 ) is set, and [the maximum output density (mW / cm 2 )] / [100 (mW / cm 2 )] × 100 is set as the conversion efficiency (%). Tables 1 to 3 show the results.

実施例1〜22の場合には、図3(A)に示すように、まず一方の主面に厚さ50nmのSiO2層(図示せず)が形成されたガラス基板を基板10として準備し、このSiO2層上に表面に凹凸テクスチャを有しかつF(フッ素)ドープされた厚さ800nmの表面電極層(SnO膜)を、透明導電層11として形成した。この透明導電層11にはレーザー加工法を用いてパターニングすることによりアレイ状とするとともに、それらを電気的に相互接続する配線を形成した。次に透明導電層11上にプラズマCVD法を用いて、光電変換層12を形成した。この光電変換層12は、この実施例では、基板10側から順に、p型a−Si:H(非晶質シリコン)、i型a−Si:H(非晶質シリコン)及びn型μc−Si:H(微結晶シリコン)からなる膜を積層して得た。上記光電変換層12を、レーザー加工法を用いてパターニングした。これを、既に成膜が進んでいる太陽電池セルとして、実施例で示した薄膜太陽電池用積層体の評価に利用した。同様に、実施例23〜35の場合には、図7(A)に示すように、基板20に、透明導電層21、光電変換層22を形成し、既に成膜が進んでいる太陽電池セルとして、実施例で示した薄膜太陽電池用積層体の評価に利用した。 In the case of Examples 1 to 22, as shown in FIG. 3A, first, a glass substrate having a SiO 2 layer (not shown) having a thickness of 50 nm formed on one main surface is prepared as the substrate 10. On this SiO 2 layer, a surface electrode layer (SnO 2 film) having a thickness of 800 nm and having an uneven texture on the surface and doped with F (fluorine) was formed as the transparent conductive layer 11. The transparent conductive layer 11 was patterned using a laser processing method to form an array, and wirings for electrically connecting them were formed. Next, the photoelectric conversion layer 12 was formed on the transparent conductive layer 11 using a plasma CVD method. In this embodiment, the photoelectric conversion layer 12 includes p-type a-Si: H (amorphous silicon), i-type a-Si: H (amorphous silicon), and n-type μc− in order from the substrate 10 side. It was obtained by laminating films made of Si: H (microcrystalline silicon). The photoelectric conversion layer 12 was patterned using a laser processing method. This was utilized for evaluation of the laminated body for thin film solar cells shown in the Examples as a solar cell in which film formation has already progressed. Similarly, in the case of Examples 23 to 35, as shown in FIG. 7A, the transparent conductive layer 21 and the photoelectric conversion layer 22 are formed on the substrate 20, and the solar cell in which film formation has already progressed. As a result, it was used for evaluation of the laminate for a thin-film solar cell shown in the examples.

実施例1〜22の場合には、図3(A)に示すように、この既に成膜が進んでいる太陽電池セルの光電変換層12上に、表1、表2に示す構成で、透明電極層13を形成し、薄膜太陽電池用積層体1を作製した。形成した透明電極層13上に、レーザーや機械スクライブ、エッチングなどによるパターニングを施した金属箔または基材に形成された金属膜14を、図3(B)に示すように貼った。同様に、実施例23〜35の場合には、図7(A)に示すように、既に成膜が進んでいる太陽電池セルの光電変換層22上に、表3に示す構成で、透明電極層23を形成して、薄膜太陽電池用積層体2を作製した。形成した透明電極層23に、金属箔または基材に形成された金属膜24に形成された透明導電膜25を、図7(B)に示すように貼った。ここで、表1〜表3の貼った後の処理方法の列において、熱は(A)タイプの場合を示し、ホットメルトは(B)タイプの場合を示す。   In the case of Examples 1 to 22, as shown in FIG. 3 (A), on the photoelectric conversion layer 12 of the solar cell in which film formation has already progressed, the structure shown in Tables 1 and 2 is transparent. The electrode layer 13 was formed and the laminated body 1 for thin film solar cells was produced. A metal film 14 formed on a metal foil or base material patterned by laser, mechanical scribe, etching or the like was pasted on the formed transparent electrode layer 13 as shown in FIG. Similarly, in the case of Examples 23 to 35, as shown in FIG. 7A, a transparent electrode is formed on the photoelectric conversion layer 22 of the solar battery cell on which film formation has already progressed with the configuration shown in Table 3. The layer 23 was formed and the laminated body 2 for thin film solar cells was produced. A transparent conductive film 25 formed on the metal film 24 formed on the metal foil or the substrate was attached to the formed transparent electrode layer 23 as shown in FIG. 7B. Here, in the row | line | column of the processing method after sticking Table 1-Table 3, a heat | fever shows the case of (A) type and a hot melt shows the case of (B) type.

次いで、太陽電池セルとして発電効率を評価するにあたり、金属箔または基材に形成された金属膜上に補強膜として、補強膜用組成物をダイコーティング装置により、既に金属箔または基材に形成された金属膜の形成が進んでいる太陽電池セル上に塗布して、補強膜用組成物を所定の焼成後の厚さがになるように、真空乾燥により補強膜用塗布膜から溶媒を離脱させた後に、太陽電池セルを熱風乾燥炉内で保持して、補強膜用塗布膜を熱硬化させ、補強膜を得た。   Next, in evaluating power generation efficiency as a solar battery cell, the reinforcing film composition is already formed on the metal foil or base material by a die coating apparatus as a reinforcing film on the metal film formed on the metal foil or base material. The metal film is applied onto a solar cell where formation of the metal film is advanced, and the solvent is removed from the coating film for reinforcing film by vacuum drying so that the thickness of the composition for reinforcing film reaches a predetermined thickness after firing. After that, the solar battery cell was held in a hot air drying furnace, and the coating film for reinforcing film was thermally cured to obtain a reinforcing film.

補強膜まで形成された太陽電池セルの光電変換層、その上に成膜した透明電極層、金属箔または基材に形成された金属膜、および補強膜を、必要に応じてレーザー加工法等を用いてパターニングを実施し、評価用薄膜シリコン太陽電池を作製した。   The photoelectric conversion layer of the solar battery cell formed up to the reinforcing film, the transparent electrode layer formed thereon, the metal film formed on the metal foil or the substrate, and the reinforcing film may be subjected to a laser processing method as necessary. Using this, patterning was performed to produce a thin-film silicon solar cell for evaluation.

<実施例1>
透明電極層、金属箔または基材に形成された金属膜、および補強膜の形成方法を説明する。透明電極層の形成に用いる透明電極層用組成物を、以下のように調製した。透明導電性酸化物粒子として、原子比でGa/(Ga+Zn)=0.02のガリウムドープ酸化亜鉛(GZO)粉末を70質量部、分散媒としてイソプロピルアルコールを加えることで、全体を100質量部とした。この混合物をダイノーミル(横型ビーズミル)により、0.3mm径のジルコニアビーズを使用して、2時間稼働させて、混合物中のGZO粉末を分散させた。この分散液に、バインダーとしてポリスチレンを、質量比でGZO粉末:ポリスチレン=7:3になるように混合し、更にエタノールで、GZO粉末が、透明電極層用組成物100質量部に対して、2質量部になるように希釈し、透明電極層用組成物を得た。この透明電極層用組成物を、既に成膜が進んでいる太陽電池セルの光電変換層上に、熱処理後の膜厚が50nmになるように調製して、ダイコーティング装置で塗工を行い、乾燥して、透明電極層を形成した。一方、基材として用いた厚さ:100μmのPETフィルム(延伸フィルム、耐熱:200℃)上に、金属膜として、スパッタ法で形成された銀薄膜に、機械スクライブでパターニングを施した。透明電極層に、PETフィルム上に形成された銀薄膜を貼った後、180℃で10分間熱処理を行い、PETフィルム上に形成された銀薄膜を貼り合わせた。次に、PETフィルム上に、シリカゾルゲル(三菱マテリアル社製のSB−10A)を熱処理後の膜厚で1μmとなるようにダイコーティング装置で塗工し、120℃で10分間熱処理を行い、補強膜を形成した。
<Example 1>
A method for forming a transparent electrode layer, a metal film formed on a metal foil or a substrate, and a reinforcing film will be described. The composition for transparent electrode layers used for formation of a transparent electrode layer was prepared as follows. As transparent conductive oxide particles, by adding 70 parts by mass of gallium-doped zinc oxide (GZO) powder having an atomic ratio of Ga / (Ga + Zn) = 0.02, and adding isopropyl alcohol as a dispersion medium, the total is 100 parts by mass. did. This mixture was operated with a dyno mill (horizontal bead mill) for 2 hours using zirconia beads having a diameter of 0.3 mm to disperse the GZO powder in the mixture. To this dispersion, polystyrene as a binder is mixed so that the mass ratio is GZO powder: polystyrene = 7: 3, and further with ethanol, the GZO powder is 2 parts per 100 parts by mass of the composition for transparent electrode layer. It diluted so that it might become a mass part, and the composition for transparent electrode layers was obtained. This transparent electrode layer composition is prepared so that the film thickness after the heat treatment is 50 nm on the photoelectric conversion layer of the solar cell in which film formation has already progressed, and is applied with a die coating apparatus. It dried and formed the transparent electrode layer. On the other hand, a silver thin film formed by sputtering as a metal film on a PET film (stretched film, heat resistance: 200 ° C.) having a thickness of 100 μm used as a substrate was patterned by mechanical scribing. After the silver thin film formed on the PET film was pasted on the transparent electrode layer, heat treatment was performed at 180 ° C. for 10 minutes to bond the silver thin film formed on the PET film. Next, silica sol-gel (SB-10A manufactured by Mitsubishi Materials Corporation) is coated on the PET film with a die coating device so that the film thickness after heat treatment is 1 μm, and heat treatment is performed at 120 ° C. for 10 minutes to reinforce. A film was formed.

<実施例2〜14>
表1に示す条件にした以外は、実施例1と同様の方法で試験を行った。ここで、実施例5等で使用したシリコンアルコキシドの加水分解物を含有するシリカゾルゲルは、三菱マテリアル社製のSB−10Aを用いた。また、実施例7等で使用した湿式塗工法には、平均粒子径:0.03μmのAgコロイドが、エタノール溶媒に分散されたAgナノインクを用いた。使用したAgナノインクの組成は、Agコロイドが10質量部で、エタノールが90質量部である。なお、表1の透明導電性酸化物粒子の割合(固形分中の透明導電性酸化物粒子、単位:質量%)は、{(透明導電性酸化物粒子の質量)/〔(透明導電性酸化物粒子の質量)+(バインダーの質量)〕×100}を示す。また、実施例6、11、13の接着層は、乾燥して作製し、実施例2〜5、7〜10、12、14の接着層は、半乾燥して作製した。
<Examples 2 to 14>
The test was performed in the same manner as in Example 1 except that the conditions shown in Table 1 were used. Here, SB-10A manufactured by Mitsubishi Materials Corporation was used as the silica sol gel containing the hydrolyzate of silicon alkoxide used in Example 5 and the like. In addition, in the wet coating method used in Example 7 and the like, Ag nano ink in which an Ag colloid having an average particle size of 0.03 μm was dispersed in an ethanol solvent was used. The composition of the Ag nanoink used was 10 parts by mass of Ag colloid and 90 parts by mass of ethanol. The ratio of transparent conductive oxide particles in Table 1 (transparent conductive oxide particles in solid content, unit: mass%) is {(mass of transparent conductive oxide particles) / [(transparent conductive oxide Mass of product particles) + (mass of binder)] × 100}. Moreover, the adhesive layers of Examples 6, 11, and 13 were produced by drying, and the adhesive layers of Examples 2 to 5, 7 to 10, 12, and 14 were produced by semi-drying.

<実施例15>
透明電極層、金属箔または基材に形成された金属膜、および補強膜の形成方法を説明する。既に成膜が進んでいる太陽電池セルの光電変換層上に、原子比でSn/(Sn+In)=0.05のインジウム錫酸化物(ITO)ターゲットを用い、透明電極膜として分子線エピタキシー法(MBE)によりITO薄膜を成膜した。成膜した透明電極膜上に、ポリアミドをダイコーティング装置で塗工を行い、乾燥して、接着層を形成した。一方、基材として用いた厚さ:100μmのPETフィルム(延伸フィルム、耐熱:200℃)上に、金属膜として、スパッタ法でチタン薄膜を形成し、レーザースクライブでパターニングを施した。接着層に、PETフィルム上に形成されたチタン薄膜を貼った後、180℃で5分間熱処理を行い、PETフィルム上に形成されたチタン薄膜を貼り合わせた。次に、PETフィルム上に、メチルセルロースを、熱処理後の膜厚で1μmとなるようにダイコーティング装置で塗工し、120℃で10分間熱処理を行い、補強膜を形成した。
<Example 15>
A method for forming a transparent electrode layer, a metal film formed on a metal foil or a substrate, and a reinforcing film will be described. An indium tin oxide (ITO) target having an atomic ratio of Sn / (Sn + In) = 0.05 is used on a photoelectric conversion layer of a solar cell that has already been formed, and a molecular beam epitaxy method (as a transparent electrode film) An ITO thin film was formed by MBE). On the formed transparent electrode film, polyamide was applied with a die coating apparatus and dried to form an adhesive layer. On the other hand, a titanium thin film was formed as a metal film by a sputtering method on a PET film (stretched film, heat resistance: 200 ° C.) having a thickness of 100 μm used as a substrate, and patterned by laser scribing. After the titanium thin film formed on the PET film was attached to the adhesive layer, heat treatment was performed at 180 ° C. for 5 minutes, and the titanium thin film formed on the PET film was attached. Next, methylcellulose was coated on the PET film with a die coating apparatus so that the film thickness after heat treatment was 1 μm, and heat treatment was performed at 120 ° C. for 10 minutes to form a reinforcing film.

<実施例16~22>
表2に示す条件にした以外は、実施例15と同様の方法で試験を行った。ここで、実施例16等で使用したシリカゾルゲルは、三菱マテリアル社製のSB−10Aを用いた。また、実施例18等で使用した湿式塗工法には、平均粒子径:0.03μmのAgコロイドが、エタノール溶媒に分散されたAgナノインクを用いた。使用したAgナノインクの組成は、Agコロイドが10質量部で、エタノールが90質量部である。実施例19と21の接着層は、乾燥して作製し、実施例16〜18、20、22の接着層は、半乾燥して作製した。
<Examples 16 to 22>
A test was performed in the same manner as in Example 15 except that the conditions shown in Table 2 were used. Here, the silica sol gel used in Example 16 or the like used SB-10A manufactured by Mitsubishi Materials Corporation. In the wet coating method used in Example 18 and the like, Ag nanoink in which Ag colloid having an average particle size of 0.03 μm was dispersed in an ethanol solvent was used. The composition of the Ag nanoink used was 10 parts by mass of Ag colloid and 90 parts by mass of ethanol. The adhesive layers of Examples 19 and 21 were prepared by drying, and the adhesive layers of Examples 16-18, 20, and 22 were prepared by semi-drying.

<実施例23>
透明電極層、金属箔または基材に形成された金属膜、および補強膜の形成方法を説明する。基材として用いた厚さ:100μmのPETフィルム(延伸フィルム、耐熱:200℃)上に、金属膜として、スパッタ法でチタン薄膜を形成した。形成したチタン薄膜上に、透明導電膜として、原子比でSn/(Sn+In)=0.05のITOターゲットを用い、スパッタリングによりITO薄膜を成膜し、レーザースクライブでパターニングを施した。一方、既に成膜が進んでいる太陽電池セルの光電変換層上に、原子比でSn/(Sn+In)=0.05のITOターゲットを用い、スパッタ法により透明電極膜を形成した。形成した透明電極膜上に、ポリアミドをダイコーティング装置で塗工を行い、乾燥して、接着層を形成した。この接着層に、上記PETフィルム上に形成されたチタン薄膜に成膜されたITO薄膜を貼った後、180℃で5分間熱処理を行い、PETフィルム上に形成されたチタン薄膜を貼り合わせた。次に、PETフィルム上に、メチルセルロースを、熱処理後の膜厚で1μmとなるようにダイコーティング装置で塗工し、120℃で10分間熱処理を行い、補強膜を形成した。
<Example 23>
A method for forming a transparent electrode layer, a metal film formed on a metal foil or a substrate, and a reinforcing film will be described. A titanium thin film was formed by sputtering as a metal film on a PET film (stretched film, heat resistance: 200 ° C.) having a thickness of 100 μm used as a substrate. On the formed titanium thin film, an ITO target having an atomic ratio of Sn / (Sn + In) = 0.05 was used as a transparent conductive film, and an ITO thin film was formed by sputtering and patterned by laser scribing. On the other hand, a transparent electrode film was formed by sputtering using an ITO target having an atomic ratio of Sn / (Sn + In) = 0.05 on the photoelectric conversion layer of a solar cell that has already been formed. On the formed transparent electrode film, polyamide was applied with a die coating apparatus and dried to form an adhesive layer. After sticking the ITO thin film formed on the titanium thin film formed on the PET film to this adhesive layer, heat treatment was performed at 180 ° C. for 5 minutes to bond the titanium thin film formed on the PET film. Next, methylcellulose was coated on the PET film with a die coating apparatus so that the film thickness after heat treatment was 1 μm, and heat treatment was performed at 120 ° C. for 10 minutes to form a reinforcing film.

<実施例24〜35>
表3に示す条件にした以外は、実施例23と同様の方法で試験を行った。ここで、実施例25等で使用したシリカゾルゲルは、三菱マテリアル社製のSB−10Aを用いた。また、実施例30等で使用した湿式塗工法には、平均粒子径:0.03μmのAgコロイドが、エタノール溶媒に分散されたAgナノインクを用いた。使用したAgナノインクの組成は、Agコロイドが10質量部で、エタノールが90質量部である。実施例24、31、33、34の接着層は、乾燥して作製し、実施例25〜30、32、35の接着層は、半乾燥して作製した。
<Examples 24-35>
The test was performed in the same manner as in Example 23 except that the conditions shown in Table 3 were used. Here, SB-10A made by Mitsubishi Materials Corporation was used as the silica sol gel used in Example 25 and the like. In addition, in the wet coating method used in Example 30 and the like, Ag nano ink in which an Ag colloid having an average particle size of 0.03 μm was dispersed in an ethanol solvent was used. The composition of the Ag nanoink used was 10 parts by mass of Ag colloid and 90 parts by mass of ethanol. The adhesive layers of Examples 24, 31, 33, and 34 were produced by drying, and the adhesive layers of Examples 25 to 30, 32, and 35 were produced by semi-drying.

<比較例1>
透明電極層と金属箔等の代わりに、塗布型裏面電極を用いた。塗布型裏面電極の形成方法について説明する。この塗布型裏面電極は、透明導電膜と、反射電極層からなる。まず、裏面側の透明導電膜の形成に用いる透明導電膜用組成物を以下のように調製した。透明導電性酸化物粒子として原子比でSn/(Sn+In)=0.1、平均粒径:0.03μmのITO粉末を1.0質量部、透光性バインダーとしてシリカゾルゲル(三菱マテリアル社製のSB−10A)を0.05質量部、更に分散媒としてエタノールを98.95質量部加えることで、全体を100質量部とした。
<Comparative Example 1>
Instead of the transparent electrode layer and the metal foil, a coating-type back electrode was used. A method for forming the coating-type back electrode will be described. This coating-type back electrode consists of a transparent conductive film and a reflective electrode layer. First, the composition for transparent conductive films used for formation of the transparent conductive film of the back side was prepared as follows. As transparent conductive oxide particles, atomic mass Sn / (Sn + In) = 0.1, average particle diameter: 1.0 part by mass of ITO powder of 0.03 μm, silica sol gel (manufactured by Mitsubishi Materials Corporation) as translucent binder SB-10A) was added in an amount of 0.05 parts by mass, and 98.95 parts by mass of ethanol as a dispersion medium was added to make the whole 100 parts by mass.

この混合物をダイノーミル(横型ビーズミル)により、0.3mm径のジルコニアビーズを使用して、2時間稼働させて、混合物中の微粒子を分散させることにより、透明導電膜用組成物を得た。   This mixture was operated with a dyno mill (horizontal bead mill) for 2 hours using zirconia beads having a diameter of 0.3 mm to disperse fine particles in the mixture, thereby obtaining a transparent conductive film composition.

次に、既に成膜が進んでいる太陽電池セルの光電変換層上に、スピンコーティング法により焼成後の膜厚が80nmとなるように、調製した透明導電膜用組成物を塗工し、塗膜を200℃で30分焼き付けることにより、透明導電膜を形成した。焼成後の膜厚は、断面をSEMにより撮影した写真により測定した。焼成して得られた透明導電膜における微透明導電性酸化物粒子と透光性バインダーの割合は、透明導電性酸化物粒子/透光性バインダー比が2/1であった。なお、焼付け時の温度については、10cm角のガラス板の角の4点の温度を測定し、平均値が設定温度の±5℃に入る条件とした。   Next, the prepared composition for a transparent conductive film is applied onto the photoelectric conversion layer of a solar cell that has already been formed so that the film thickness after firing is 80 nm by a spin coating method. A transparent conductive film was formed by baking the film at 200 ° C. for 30 minutes. The film thickness after firing was measured by a photograph of the cross section taken by SEM. The ratio of the transparent conductive oxide particles / translucent binder in the transparent conductive film obtained by firing was 2/1. In addition, about the temperature at the time of baking, the temperature of 4 points | pieces of the corner | angular corner of a 10 cm square glass plate was measured, and it was set as the conditions which an average value enters into +/- 5 degreeC of preset temperature.

更に、形成した透明導電膜上に、スピンコーティング法により、焼成後の膜厚が200nmとなるように、平均粒子径:0.03μmのAgコロイドが、エタノール溶媒に分散されたAgナノインクを塗工し、塗膜を200℃で30分間焼き付けることにより、導電性反射膜を形成した。なお、使用したAgナノインクの組成は、Agコロイドが10質量部で、エタノールが90質量部である。導電性反射膜層上に、シリカゾルゲル(三菱マテリアル社製のSB−10A)を、熱処理後の膜厚で1μmとなるようにダイコーティング装置で塗工し、120℃で10分間熱処理を行い、補強膜を形成した。   Further, an Ag nano ink in which an Ag colloid having an average particle size of 0.03 μm is dispersed in an ethanol solvent is applied onto the formed transparent conductive film by spin coating so that the film thickness after firing becomes 200 nm. Then, the coating film was baked at 200 ° C. for 30 minutes to form a conductive reflective film. The composition of the Ag nanoink used was 10 parts by mass of Ag colloid and 90 parts by mass of ethanol. On the conductive reflective film layer, silica sol gel (SB-10A manufactured by Mitsubishi Materials Co., Ltd.) was applied with a die coating apparatus so that the film thickness after heat treatment was 1 μm, and heat-treated at 120 ° C. for 10 minutes. A reinforcing membrane was formed.

表1〜3から明らかなように、実施例1〜35の全てにおいて、変換効率が8.2〜9.8%と高かった。これに対して、比較例1では、実施例1〜35より複雑な工程で作製されたにもかかわらず、変換効率が実施例1〜35より低かった。実施例1〜35では、製造工程中での熱処理過程が短縮され、かつ低温化されたため、変換効率が高かった、と考えられる。   As is clear from Tables 1 to 3, the conversion efficiencies of all Examples 1 to 35 were as high as 8.2 to 9.8%. On the other hand, in Comparative Example 1, the conversion efficiency was lower than that of Examples 1 to 35, although it was produced by a more complicated process than that of Examples 1 to 35. In Examples 1 to 35, it is considered that the conversion efficiency was high because the heat treatment process in the manufacturing process was shortened and the temperature was lowered.

以上のように、本発明の薄膜太陽電池用積層体を用いることにより、薄膜太陽電池の製造工程を簡略化および効率化するために、導電性反射膜として金属箔または基材に形成された金属膜を貼り合わせることができ、さらに薄膜太陽電池の変換効率を向上させることができる。   As described above, by using the laminate for a thin film solar cell of the present invention, a metal formed on a metal foil or a substrate as a conductive reflective film in order to simplify and improve the manufacturing process of the thin film solar cell. A film | membrane can be bonded together and the conversion efficiency of a thin film solar cell can be improved further.

1、2、3、4 薄膜太陽電池用積層体
10、20、30、40 基板
11、21、31、41 透明導電層
12、22、32、42 光電変換層
13、23、33、43 透明電極層
13a、23a 加熱された透明電極層
14、24 金属箔または基材に形成された金属膜
25 透明導電膜
5 基材に形成された金属膜
50 金属膜
51 基材
100 スーパーストレート型薄膜太陽電池
110 基板
101 透明導電膜
102 光電変換層
103 透明導電層
104 導電性反射膜
200 スーパーストレート型薄膜太陽電池
201 基板
202 透明導電層
203 光電変換層
204 裏面電極層
431 透明電極膜
432 接着層
1, 2, 3, 4 Laminated body for thin film solar cell 10, 20, 30, 40 Substrate 11, 21, 31, 41 Transparent conductive layer 12, 22, 32, 42 Photoelectric conversion layer 13, 23, 33, 43 Transparent electrode Layers 13a and 23a Heated transparent electrode layers 14 and 24 Metal film formed on metal foil or base material 25 Transparent conductive film 5 Metal film formed on base material 50 Metal film 51 Base material 100 Super straight type thin film solar cell DESCRIPTION OF SYMBOLS 110 Substrate 101 Transparent conductive film 102 Photoelectric conversion layer 103 Transparent conductive layer 104 Conductive reflective film 200 Super straight type thin film solar cell 201 Substrate 202 Transparent conductive layer 203 Photoelectric conversion layer 204 Back electrode layer 431 Transparent electrode film 432 Adhesive layer

Claims (4)

基板、透明導電層、光電変換層、および透明電極層を、この順に備える薄膜太陽電池用積層体であって、
透明電極層が、インジウム錫酸化物粒子、アンチモンドープ酸化錫粒子、アルミニウムドープ酸化亜鉛粒子およびガリウムドープ酸化亜鉛粒子からなる群より選択される少なくとも1種の透明導電性酸化物粒子と、シリコンアルコキシドの加水分解物、コロイダルシリカ、ポリスチレン、ポリウレタン、ポリアミド、ポリメチルメタクリレートおよびアクリル樹脂からなる群より選択される少なくとも1種の透光性バインダーと、を含有し、金属箔または基材に形成された金属膜を貼り合わせることができることを特徴とする、薄膜太陽電池用積層体。
A laminate for a thin-film solar cell comprising a substrate, a transparent conductive layer, a photoelectric conversion layer, and a transparent electrode layer in this order,
A transparent electrode layer comprising at least one transparent conductive oxide particle selected from the group consisting of indium tin oxide particles, antimony-doped tin oxide particles, aluminum-doped zinc oxide particles and gallium-doped zinc oxide particles; and silicon alkoxide A metal formed on a metal foil or substrate, containing at least one translucent binder selected from the group consisting of hydrolyzate, colloidal silica, polystyrene, polyurethane, polyamide, polymethyl methacrylate and acrylic resin A laminate for a thin-film solar cell, characterized in that films can be bonded together.
基板、透明導電層、光電変換層、および透明電極層を、この順に備える薄膜太陽電池用積層体であって、
透明電極層が、インジウム錫酸化物、アンチモンドープ酸化錫、アルミニウムドープ酸化亜鉛およびガリウムドープ酸化亜鉛からなる群より選択される少なくとも1種の透明導電性酸化物を含有する透明電極膜と、シリコンアルコキシドの加水分解物、コロイダルシリカ、ポリウレタン、ポリアミド、ポリ酢酸ビニル、ポリオレフィン、ポリビニルアルコールおよびアクリル樹脂からなる群より選択される少なくとも1種であり、金属箔または基材に形成された金属膜を貼り合わせることができる接着層とを、光電変換層側からこの順に備えることを特徴とする、薄膜太陽電池用積層体。
A laminate for a thin-film solar cell comprising a substrate, a transparent conductive layer, a photoelectric conversion layer, and a transparent electrode layer in this order,
A transparent electrode film in which the transparent electrode layer contains at least one transparent conductive oxide selected from the group consisting of indium tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, and gallium-doped zinc oxide; and silicon alkoxide Hydrolyzate, colloidal silica, polyurethane, polyamide, polyvinyl acetate, polyolefin, polyvinyl alcohol and at least one selected from the group consisting of acrylic resins, and a metal film formed on a metal foil or substrate A laminate for a thin-film solar cell, comprising an adhesive layer that can be formed in this order from the photoelectric conversion layer side.
基板、透明導電層、光電変換層、および透明電極層を、この順に備える請求項1または2記載の薄膜太陽電池用積層体に備えられている、透明電極層に、金属箔または基材に形成された金属膜を貼り合わせる工程、を含むことを特徴とする、薄膜太陽電池の製造方法。   A substrate, a transparent conductive layer, a photoelectric conversion layer, and a transparent electrode layer are provided in this order. The transparent electrode layer provided in the laminate for a thin film solar cell according to claim 1 or 2 is formed on a metal foil or a base material. A method for producing a thin-film solar cell, comprising the step of laminating the formed metal film. 請求項1または2記載の薄膜太陽電池用積層体を含む、薄膜太陽電池。   A thin film solar cell comprising the laminate for a thin film solar cell according to claim 1 or 2.
JP2012133414A 2012-06-13 2012-06-13 Laminate for thin film solar cell and method for producing thin film solar cell using the same Expired - Fee Related JP6065419B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012133414A JP6065419B2 (en) 2012-06-13 2012-06-13 Laminate for thin film solar cell and method for producing thin film solar cell using the same
TW102119921A TWI593123B (en) 2012-06-13 2013-06-05 Laminate for a thin film solar cell and manufacturing method of a thin film solar cell by using the same
CN201310231152.8A CN103489949B (en) 2012-06-13 2013-06-09 Thin-film solar cells layered product, thin-film solar cells and its manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012133414A JP6065419B2 (en) 2012-06-13 2012-06-13 Laminate for thin film solar cell and method for producing thin film solar cell using the same

Publications (2)

Publication Number Publication Date
JP2013258289A true JP2013258289A (en) 2013-12-26
JP6065419B2 JP6065419B2 (en) 2017-01-25

Family

ID=49830043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012133414A Expired - Fee Related JP6065419B2 (en) 2012-06-13 2012-06-13 Laminate for thin film solar cell and method for producing thin film solar cell using the same

Country Status (3)

Country Link
JP (1) JP6065419B2 (en)
CN (1) CN103489949B (en)
TW (1) TWI593123B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111292869A (en) * 2018-12-06 2020-06-16 北京铂阳顶荣光伏科技有限公司 Transparent conductive paste, transparent grid line and solar cell
CN110021675B (en) * 2019-04-17 2021-03-23 京东方科技集团股份有限公司 Solar cell, preparation method thereof and electric equipment
TWI706557B (en) * 2019-08-29 2020-10-01 位速科技股份有限公司 Stacked photovoltaic cell
CN111554763B (en) * 2020-04-01 2023-06-09 南开大学 High-pressure high-efficiency perovskite/crystalline silicon laminated battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193488A (en) * 1985-02-22 1986-08-27 Teijin Ltd Manufacture of amorphous solar cell
JPH01129470A (en) * 1987-11-16 1989-05-22 Fuji Electric Co Ltd Amorphous semiconductor thin-film solar cell
JPH07153313A (en) * 1993-12-01 1995-06-16 Sumitomo Metal Mining Co Ltd Transparent conductive adhesive
JP2000196113A (en) * 1998-12-24 2000-07-14 Sanyo Electric Co Ltd Solar battery
JP2007055207A (en) * 2005-08-26 2007-03-08 Nippon Soda Co Ltd Structure carrying photocatalyst
US20080223436A1 (en) * 2007-03-15 2008-09-18 Guardian Industries Corp. Back reflector for use in photovoltaic device
JP2011231274A (en) * 2010-04-30 2011-11-17 Yokohama Rubber Co Ltd:The Aqueous primer composition
JP2012019128A (en) * 2010-07-09 2012-01-26 Kaneka Corp Thin film photoelectric conversion device
JP2012094830A (en) * 2010-09-30 2012-05-17 Mitsubishi Materials Corp Transparent conductive film composition for solar battery and transparent conductive film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008017971U1 (en) * 2008-12-20 2011-04-14 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Thin-film solar cell with conductor track electrode
JP2010153284A (en) * 2008-12-26 2010-07-08 Hitachi Displays Ltd Organic light-emitting display device
CN102443287A (en) * 2010-09-30 2012-05-09 三菱综合材料株式会社 Transparent conductive film composition for solar cell and transparent conductive film thereof
US8419981B2 (en) * 2010-11-15 2013-04-16 Cheil Industries, Inc. Conductive paste composition and electrode prepared using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193488A (en) * 1985-02-22 1986-08-27 Teijin Ltd Manufacture of amorphous solar cell
JPH01129470A (en) * 1987-11-16 1989-05-22 Fuji Electric Co Ltd Amorphous semiconductor thin-film solar cell
JPH07153313A (en) * 1993-12-01 1995-06-16 Sumitomo Metal Mining Co Ltd Transparent conductive adhesive
JP2000196113A (en) * 1998-12-24 2000-07-14 Sanyo Electric Co Ltd Solar battery
JP2007055207A (en) * 2005-08-26 2007-03-08 Nippon Soda Co Ltd Structure carrying photocatalyst
US20080223436A1 (en) * 2007-03-15 2008-09-18 Guardian Industries Corp. Back reflector for use in photovoltaic device
JP2011231274A (en) * 2010-04-30 2011-11-17 Yokohama Rubber Co Ltd:The Aqueous primer composition
JP2012019128A (en) * 2010-07-09 2012-01-26 Kaneka Corp Thin film photoelectric conversion device
JP2012094830A (en) * 2010-09-30 2012-05-17 Mitsubishi Materials Corp Transparent conductive film composition for solar battery and transparent conductive film

Also Published As

Publication number Publication date
JP6065419B2 (en) 2017-01-25
TWI593123B (en) 2017-07-21
CN103489949B (en) 2017-06-30
TW201403832A (en) 2014-01-16
CN103489949A (en) 2014-01-01

Similar Documents

Publication Publication Date Title
CN104681645B (en) A kind of method preparing composite transparent conductive electrode based on metal grill and metal nanometer line
US20140090699A1 (en) Transparent electroconductive film for solar cell, composition for transparent electroconductive film and multi-junction solar cell
CN102779944A (en) Transparent conductive thin film and preparation method thereof
WO2009157447A1 (en) Substrate provided with transparent conductive film, thin film photoelectric conversion device and method for manufacturing the substrate
JP6065419B2 (en) Laminate for thin film solar cell and method for producing thin film solar cell using the same
CN105355675A (en) Preparation method for high-haze composite transparent conductive electrode
TW201308352A (en) Conductive pastes and solar cells comprising the same
JP2003243676A (en) Thin-film photoelectric converting device
JP5810548B2 (en) Transparent substrate with composite film for solar cell and method for producing the same
JP5544774B2 (en) Multi-junction solar cell
WO2010023920A1 (en) Transparent conductive film for solar cell, composition for said transparent conductive film, and multi-junction solar cell
CN103367479A (en) Conducting substrate of flexible solar cell texture and preparation method thereof
JP5893251B2 (en) Method for producing composite film for solar cell
JPH1012059A (en) Manufacture of transparent conductive film and thin film solar battery using the same
CN111363483A (en) Composite material adhesive film, photovoltaic module structure and preparation method
JP2012190856A (en) Transparent conductive film composition for solar cell and transparent conductive film
JP2012094830A (en) Transparent conductive film composition for solar battery and transparent conductive film
JP2013149645A (en) Transparent conductive film composition for solar cell and transparent conductive film
JP2012151387A (en) Composition for transparent conductive film of solar cell and transparent conductive film
JP6179201B2 (en) Manufacturing method of organic thin film solar cell
CN109346556B (en) Preparation method of optically rough and electrically flat transparent conductive substrate
JP2012094828A (en) Transparent conductive film composition for solar battery and transparent conductive film
Chadha et al. Large area imprinted surface textures for omnidirectional conformal AR coatings on flexible amorphous silicon solar cells
JP2013179174A (en) Composite membrane for solar cell, and production method therefor
JP2012151388A (en) Composition for transparent conductive film of solar cell and transparent conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161031

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161212

R150 Certificate of patent or registration of utility model

Ref document number: 6065419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees