JP2013255373A - モータ駆動装置および空気調和装置 - Google Patents

モータ駆動装置および空気調和装置 Download PDF

Info

Publication number
JP2013255373A
JP2013255373A JP2012130399A JP2012130399A JP2013255373A JP 2013255373 A JP2013255373 A JP 2013255373A JP 2012130399 A JP2012130399 A JP 2012130399A JP 2012130399 A JP2012130399 A JP 2012130399A JP 2013255373 A JP2013255373 A JP 2013255373A
Authority
JP
Japan
Prior art keywords
motor
current
temperature
value
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012130399A
Other languages
English (en)
Inventor
Shusaku Nakase
周作 中▲瀬▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012130399A priority Critical patent/JP2013255373A/ja
Publication of JP2013255373A publication Critical patent/JP2013255373A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】モータの減磁を防止すると共に、モータの駆動範囲を向上することができるモータ駆動装置および空気調和装置を得る。
【解決手段】モータ20に印加された電圧とモータ電流とに基づき、モータ20の巻線35の抵抗値Reを求め、巻線35の抵抗値Reと巻線の温度係数とに基づき、ロータ31の磁石の温度を推定し、減磁電流値と磁石の温度との関係に基づき、過電流保護設定値を、推定した永久磁石の温度における減磁電流値を下回るように設定し、推定した永久磁石の温度の変化に応じて、過電流保護設定値を変更する。
【選択図】図1

Description

本発明は、磁界を発生する巻線と永久磁石とを有するモータを駆動するモータ駆動装置、およびそれを備えた空気調和装置に関するものである。
近年、地球温度化や電力不足により空気調和装置での省エネ化への更なる取り組みは重要となっており、空気調和装置の省エネルギー化のためには、圧縮機やファンモータを高効率で駆動させることが重要となる。省エネルギー化を進めるために、空気調和装置に搭載されているファンモータに、誘導モータと比較して高効率駆動が可能な同期モータであるブラシレスモータ(以下、DCBLMという)を採用していく必要がある。
DCBLMは回転を発生するロータと回転を発生させるために磁界を発生させるステータとから構成されている。ステータにはステータ鉄心と電機子巻線(以下、巻線ともいう)にて主に構成されており、電機子巻線に電流を流すことで磁界が発生する。その磁界とロータに搭載した磁石の磁力により、ロータを回転させる。
電機子巻線に電流を流すと、巻線自身の抵抗により巻線が発熱する。その熱により電機子巻線自身の温度や巻線からの伝熱によりステータ鉄心の温度が上昇し、ステータ自身の温度が上昇する。ステータの温度が上昇すると、伝熱によりロータの温度も上昇する。
ロータに搭載した磁石には、主にフェライト磁石や希土類磁石などを使用する。一般的に、希土類磁石の方がフェライト磁石より磁力は強いが価格が高いため、使用する用途により最適な磁石を選定する。磁石は、磁束密度(φ)と温度(t)の間に依存性があり、ある温度条件を超えて使用すると磁力が減り、温度が元に戻っても磁力が戻らない減磁現象(不可逆減磁)が発生する。
ビオ・サバールの法則により磁束密度(φ)と電流(I)には比例関係がある。そのため、減磁には温度(t)と電流(I)に依存する。ここでの電流(I)は電機子巻線に流れる電流(以下、モータ電流ともいう)である。この減磁に対する温度(t)と電流(I)の依存性は、磁石の種類により異なる。フェライト磁石の場合、低温になるほど低い電流値で減磁する。希土類磁石の場合は、高温になるほど低い電流値で減磁する。
ファンモータに搭載するDCBLMは、減磁による磁力が低下すると効率が悪化するため、減磁しないように制御する必要がある。つまり、減磁する電流値(減磁電流値)以下の電流で駆動させ、万が一、電流値が大きくなってしまった場合でも、減磁電流値に達する前に、制御器側で電流を検知して保護停止(過電流保護)する必要がある。
この過電流保護の設定値(以下、過電流保護設定値という)は、空気調和装置を運転させる温度の範囲で、減磁電流値が最小となる値を閾値として設定している。
また、電流値がブラシレスモータの減磁電流を超えることを防止するモータ駆動装置として、ブラシレスモータの雰囲気温度を検出する温度検出手段を設け、温度検出手段によって検出される雰囲気温度が低くなるに従って、保護回路の電流遮断閾値を小さく設定するものが提案されている(例えば、特許文献1参照)。
特開2006−217674号公報(段落[0007]〜[0009])
減磁電流は温度に依存しており、フェライト磁石の場合は低温になるほど減磁電流が低くなり、希土類磁石の場合は高温になるほど減磁電流が低くなる。このため、減磁を防止するには、モータを運転する際に想定する温度の範囲(以下、運転温度範囲という)において、減磁電流が最小となる電流値よりも低い過電流保護設定値を設定し、この過電流保護設定値を超えないように制御する必要がある。例えば、図13(a)に示すように、フェライト磁石の場合は運転温度範囲の最低温度における減磁電流値よりも低い温度の過電流保護設定値を設定する必要がある。また例えば、図13(b)に示すように、希土類磁石の場合は運転温度範囲の最大温度における減磁電流値よりも低い温度の過電流保護設定値を設定する必要がある。
特に、空気調和装置の室外機に搭載されたファンを駆動するモータの場合、空気調和装置の室外機は室外環境におかれるため、気候の異なる国や地域によって−25〜55℃までの気温に適応する必要がある。さらに、近年では低温地域や高温地域での要求もあるため、−40℃や65℃などの極低温や高温に適用することが求められている。このため、極低温や高温になった場合には、過電流保護設定値をより低い値に設定する必要がある。
このように、モータの運転温度範囲における減磁電流の最小値によりモータ電流の最大値を制限すると、温度変化により減磁電流値が上昇したのにも拘わらず、モータの回転数やトルクが制限されモータの駆動範囲が減少するという課題があった。また、モータの駆動範囲を広げるため、減磁電流値の温度による低下が少ない磁石を用いることが考えられるが、このような磁石は価格コストが高くなる課題がある。
また特許文献1に記載の技術では、モータが設置される雰囲気温度(外気温度)を検出し、その雰囲気温度により電流遮断閾値を設定している。しかしながら、減磁が生じるロータの磁石の温度と、雰囲気温度(外気温度)とは必ずしも一致せず、減磁電流を超えるモータ電流が流れる可能性があるという課題がある。
また例えば、モータの筐体内部にロータの磁石の温度を検出する温度センサを設けることが考えられるが、回転駆動するロータ自体に温度センサを設けることはできず、また、ロータとステータとの間に温度センサを設けることも困難である。また例えば、ステータの巻線端部側の近傍に温度センサを設けたとしても、設置位置により検知温度にバラツキがあり、ロータの磁石の温度を精度良く検出することはできない。
このように、ロータの磁石の温度を精度良く検出することができず、温度変化により減磁電流値が上昇した際に、過電流保護設定値を上昇させて、モータの回転数やトルクの制限を緩和してモータの駆動範囲を広げることができないという課題があった。
本発明は、上記のような課題を解決するためになされたもので、モータの減磁を防止すると共に、モータの駆動範囲を向上することができるモータ駆動装置および空気調和装置を得るものである。
また、モータの磁石の温度を精度良く推定することができるモータ駆動装置および空気調和装置を得るものである。
本発明に係るモータ駆動装置は、磁界を発生する巻線と永久磁石とを有するモータを駆動するモータ駆動装置であって、直流電圧を交流電圧に変換して前記モータに印加するインバータ回路と、前記モータに流れるモータ電流を検出する電流検出手段と、前記モータ電流が過電流保護設定値を超えないように、前記インバータ回路を制御して前記モータの運転を制御する制御部と、前記永久磁石に減磁を発生させる前記巻線の減磁電流値と、前記永久磁石の温度との関係が記憶される記憶部と、を備え、前記制御部は、前記モータに印加された電圧と前記モータ電流とに基づき、前記モータの巻線の抵抗値を求め、前記巻線の抵抗値と前記巻線の温度係数とに基づき、前記永久磁石の温度を推定し、前記減磁電流値と前記永久磁石の温度との関係に基づき、前記過電流保護設定値を、推定した前記永久磁石の温度における前記減磁電流値を下回るように設定し、推定した前記永久磁石の温度の変化に応じて、前記過電流保護設定値を変更するものである。
本発明に係る空気調和装置は、磁界を発生する巻線と永久磁石とを有し、室外機に搭載されたファンを回転駆動するモータと、上記のモータ駆動装置とを備えたものである。
本発明は、過電流保護設定値を、推定した永久磁石の温度における減磁電流値を下回るように設定し、推定した永久磁石の温度の変化に応じて、過電流保護設定値を変更する。このため、モータの減磁を防止すると共に、温度変化により減磁電流値が変化する際に過電流保護設定値を変化することができ、モータの駆動範囲を向上することができる。
また、モータに印加された電圧とモータ電流とに基づき、モータの巻線の抵抗値を求め、この抵抗値と巻線の温度係数とに基づき、永久磁石の温度を推定する。このため、モータの磁石の温度を精度良く推定することができる。
本発明の実施の形態1に係るモータ駆動装置の構成を示す図である。 本発明の実施の形態1に係るモータの構成を示す概略分解斜視図である。 本発明の実施の形態1に係る空気調和装置の概略構成図である。 本発明の実施の形態1に係る空気調和装置の室外機の概略構成図である。 本発明の実施の形態1に係る過電流設定値の設定動作を示すフローチャートである。 本発明の実施の形態1に係る温度と減磁電流値と過電流設定値との関係を示す図である。 本発明の実施の形態1に係る抵抗値Raと温度と過電流設定値との対応テーブルを示す図である。 本発明の実施の形態2に係る外風によるトルクの影響を説明する図である。 本発明の実施の形態2に係るトルクと回転数との関係を示す図である。 本発明の実施の形態2に係る過電流設定値の設定動作を示すフローチャートである。 本発明の実施の形態2に係るトルクと回転数と電圧値との関係を示す図である。 本発明の実施の形態2に係る外風により生じたトルクの算出方法を説明する図である。 従来の技術における温度と減磁電流値と過電流設定値との関係を示す図である。
実施の形態1.
(モータ駆動装置の構成)
図1は、本発明の実施の形態1に係るモータ駆動装置の構成を示す図である。
モータ駆動装置10は、例えば直流電源から供給され電解コンデンサ17により平滑された直流電圧(母線電圧)を交流電圧に変換し、後述するモータ20のステータ32に供給する装置である。このモータ駆動装置10は、インバータ回路11と、モータ電流検出回路14と、制御部15とを備えている。
インバータ回路11は、電解コンデンサ17により平滑された直流電圧が入力され、制御部15の動作によりPWM制御を行い、入力された直流電圧を任意電圧、任意周波数の3相交流に変換する。インバータ回路11は、複数のスイッチング素子11a〜11f(例えばIGBT)と、スイッチング素子11a〜11fがオフしたとき還流電流を流す複数のダイオード素子12a〜12fと、ドライブ回路13とを備えている。インバータ回路11は、一つのパッケージ内に組み込まれてパワーモジュール41(図2参照)を構成している。なお、ドライブ回路13はパワーモジュール41内ではなく制御部15側に含めた構成としてもよい。
ドライブ回路13は、制御部15から送られる制御信号に基づいて動作信号(PWM信号、ゲート信号)を生成して各スイッチング素子11a〜11fに出力し、各スイッチング素子11a〜11fのスイッチング動作を行う。
モータ電流検出回路14は、モータ20に流れるモータ電流を検出するものである。
このモータ電流検出回路14は、例えば、モータ20の三相のうち任意の一相に流れる電流(交流)を、DCCT(DC Current Transformer)にて電圧(交流)に変換し、この電圧をオペアンプにより増幅して出力電圧を変換することで、マイコンにより構成された制御部15に入力する電圧値(0〜5V)の範囲に変換する。そして、マイコンにより構成された制御部15のA/D入力ポートに入力され、マイコン内では、デジタル値として電圧値を読み込む。例えば、入力された電圧値に所定の定数を掛けて、モータ20に流れている電流値に変換する。このようにして検出された電流は交流のため、時間毎に電流値が変動するが、短期的には周期が一定のため、その実効値を算出することでモータ電流(実効値)を得ることができる。
なお、モータ電流検出回路14の構成はこれに限るものではなく、モータ20に流れる電流を検出するものであればよい。
例えば、モータ20に流れた電流をセンス抵抗で電圧値に変換し、その変換した電圧値をアイソレーションアンプにより絶縁させて、マイコン側へ送付するようにしても良い。アイソレーションアンプを用いることで、モータ20側と制御部15側とを絶縁させることができ、マイコンの電位側に合わせることができる。
なお、モータ電流検出回路14は、本発明における「電流検出手段」に相当する。
制御部15は、例えばマイコンにより構成され、外部から入力される制御信号やモータ電流検出回路14からの信号に応じてドライブ回路13に制御信号を出力し、ドライブ回路13を制御する。この制御部15は、モータ電流が後述する過電流保護設定値を超えないように、インバータ回路11を制御してモータ20の運転を制御する。
また、制御部15には、記憶部16が設けられている。この記憶部16は、後述するロータ31の磁石に減磁を発生させる巻線35の減磁電流値と、ロータ31の温度との関係が記憶される。詳細は後述する。
(モータの構成)
次に、モータ20の構成について説明する。
図2は、本発明の実施の形態1に係るモータの構成を示す概略分解斜視図である。
モータ20は、例えば3相の同期モータ(ブラシレスモータ:DCBLM)であり、後述する室外機117のプロペラファン108Fを駆動する。
モータ20は、ロータ31と、ステータ32と、パワーモジュール41が実装されたプリント配線基板40と、これらを収納する金属製の上ケース50a及び下ケース50bとを有し、全体的に略円柱状を成している。
下ケース50b、プリント配線基板40及びステータ32のそれぞれの外周部には複数の取り付け穴21が設けられており、この取り付け穴21にネジ22を挿通し、上ケース50aに設けたネジ穴(図示せず)に螺合することで全体が一体化されている。
上ケース50a、下ケース50b及びプリント配線基板40のそれぞれには、ロータ31の回転軸31aを通すための開孔23が設けられており、上ケース50a及び下ケース50bの開孔23から突出した回転軸31aの端部にプロペラファン108F(後述)が接続される。
ロータ31は、磁力を発生させる磁石(永久磁石)を有している。ロータ31の磁石は、フェライト磁石、または、希土類磁石(ネオジムやジスプロシウムなどの材質である)が用いられる。フェライト磁石は、温度の上昇に従って減磁電流が増加する特性を有している。また、希土類磁石は、温度の低下に従って減磁電流が増加する特性を有している。
このように、ロータ31の磁石の減磁電流値は、温度による依存性をもっており、フェライト磁石では低温の場合に減磁電流値は最小となり、希土類磁石の場合は高温の場合に減磁電流値は最小となる。減磁電流の温度依存性は使用する磁石の材質や大きさによりことなるが、温度差Δtが50℃程度異なると減磁電流の耐量は2倍程度変動する。例えば、フェライト磁石で、−25℃のとき17Aの電流値で1%減磁する場合、25℃のときは34Aの電流値で1%減磁となる。
ステータ32は、ロータ31の外周部に配置され、ロータ31を回転駆動する磁界を発生する。ステータ32は、積層鉄心からなる円筒状のステータ鉄心33の内周から突出した複数のティース部34に絶縁層(図示せず)を介して、例えば銅ワイヤを使用した巻線35が巻装された構成を有している。なお、ティース部34の個数は通常6個〜20個であるが図2には9個の例を示している。
巻線35には、抵抗成分であるRaとインダクタンス成分であるLaが存在する。Ra、Laの値はステータ32の構造や巻線35を構成する銅ワイヤの巻数に依存するため、モータ固有の値である。
プリント配線基板40には、パワーモジュール41と、ホールセンサ42とが設けられている。ホールセンサ42は、ロータ31の磁石の磁束からS極またはN極を検出し、制御部15に入力する。制御部15は、ホールセンサ42の検知信号から、ロータ31の回転位置と回転数nを検出する。
このように構成されたモータ20は、ステータ32の巻線35へ電流を流し回転磁界を発生させることでロータ31が回転し、ロータ31の回転軸31aに取り付けられたファンが回転して空気循環を行う。
(空気調和装置の構成)
次に、空気調和装置の構成について説明する。
図3は本発明の実施の形態1に係る空気調和装置の概略構成図である。
図3において、空気調和装置は、冷凍サイクルを構成する圧縮機103、四方弁104、室外熱交換器105、膨張弁106、室内熱交換器107、室外ファン108及び室内ファン109を備えている。さらに空気調和装置は、商用電源1に接続され、圧縮機103のモータ駆動を行う圧縮機インバータ102、室外ファン108を回転させるモータ20を駆動するモータ駆動装置10、室内ファン109の速度制御回路112、空気調和装置全体を制御する制御装置113、使用者が操作を行うための操作部114により構成されている。
図4は本発明の実施の形態1に係る空気調和装置の室外機の概略構成図である。
図4において、室外機117は、屋外に設置され、その内部の左側部と後背部に室外熱交換器105が配置され、右側部に圧縮機103が配置される。そして、室外熱交換器105の内側に室外ファン108が設けられている。室外ファン108は、プロペラファン108Fと、モータ駆動装置10により駆動されるモータ20とにより構成されており、プロペラファン108Fを回転することにより、図4に示すA及びB矢印方向から外気を吸い込みC矢印方向に吐出することによって室外熱交換器105の熱交換を促進するように構成されている。
つまり、モータ駆動装置10は、通常運転時には、図4に示すA及びB矢印方向からC矢印方向へ風を発生させる回転方向(正方向)にプロペラファン108Fを回転させて室外熱交換器105の冷却を行う。即ちモータ20が正方向に回転するようにモータトルクを発生させる。
(モータの駆動制御)
制御部15は、モータ20のステータ32に印加するモータ電圧Vの指令値〔Vrms〕を設定し、この指令値〔Vrms〕に基づき、所定のキャリア周波数でPWM(パルス幅変調:Pulse Width Modulation)を行い、そのPWM制御信号をPWMバッファ出力回路(図示せず)にて、パワーモジュール41の入力に適した信号へ変換し、パワーモジュール41内のドライブ回路13に入力する。
インバータ回路11は、入力されたPWM制御信号に従い、複数のスイッチング素子11a〜11fをスイッチング動作させ、モータ20のステータ32に設けられた巻線35に電圧を印加する。このようにモータ20のステータ32の巻線電流を制御することで、ロータ31に同期した回転磁界を発生し、モータ20を駆動制御する。その際にモータ20内部にあるホールセンサ42の信号を制御部15が読み取り、回転数やロータ31の回転位置を読み取る。モータ20が回転する際に流れるモータ電流は、モータ電流検出回路14で読み込み、制御部15へ検出値が入力される。また、モータ電圧Vの指令値〔Vrms〕は制御部15内にデータとして格納される。
(過電流保護設定値の設定動作)
次に、ロータ31の磁石の温度に応じた過電流保護設定値の設定動作について説明する。
図5は、本発明の実施の形態1に係る過電流設定値の設定動作を示すフローチャートである。図6は、本発明の実施の形態1に係る温度と減磁電流値と過電流設定値との関係を示す図である。図7は、本発明の実施の形態1に係る抵抗値Raと温度と過電流設定値との対応テーブルを示す図である。
以下、図5の各ステップに基づき、図6、図7を参照しつつ説明する。
(S1)
制御部15は、モータ20が運転中においては、モータ電圧Vの指令値〔Vrms〕から、モータ20に印加された電圧値を取得する。
また、モータ20を停止状態から起動させる場合には、パルス入力により予め決めている電圧をモータに印加し、この電圧値をモータ20に印加された電圧値として取得する。起動時においては、このパルス入力によりモータ20に瞬時的に電流が流れる。
なお、過電流保護設定値の初期値は、モータ20の運転温度範囲の減磁電流の最小値以下に設定する。
(S2)
制御部15は、モータ電流検出回路14の検出値からモータ電流を取得する。
(S3)
制御部15は、モータ20に印加された電圧V〔Vrms〕とモータ電流I〔A〕とに基づき、式(1)により、モータ20の巻線35の抵抗値Ra〔Ω〕を求める。
Ra=V/I ・・・(1)
(S4)
次に、制御部15は、ロータ31の磁石の温度を推定する。
ここで、ステータ32とロータ31とは共に鋼板という熱伝導の良い金属でできているため、モータ20の巻線35で発生した熱は、モータ20内のステータ32からロータ31への熱伝導により熱が伝わる。このため、モータ20の巻線35の温度と、ロータ31の磁石の温度との温度差は数℃程度となる。従って、モータ20の巻線35の温度が解ればロータ31の磁石の温度も推定できる。
このようなことから、制御部15は、モータ20の巻線35の抵抗値Ra〔Ω〕と、巻線35の温度係数〔1/℃〕とに基づき、式(2)により、ロータ31の磁石の温度を推定する。記憶部16には、予め巻線35の材質に応じた温度係数〔1/℃〕の情報が記憶されている。
Ra=R0(1+α20(t−20)) ・・・(2)
R20:20℃のときの巻線の抵抗値、α20:20℃のときの温度係数
例えば、20℃のときの抵抗値を10Ω、α20を3.96×10-3とすると、45℃のときの抵抗値は、
Ra=10(1+3.96×10-3(45−20))=10.99Ω
と求まる。すなわち、抵抗値Raが10.99Ωのとき、巻線35の温度が45℃と求まる。
なお、抵抗値Raやα20は、モータ20に使用する巻線35(銅ワイヤ)の材質や径、長さにより異なるが、温度差が25℃程度異なれば、Raの値は10%程度の差異が発生する。このため、記憶部16に、予め、抵抗値Raの値と、温度tとの対応関係のデータを記憶させておき、Ra値の値から温度tを算出するようにしても良い。
なお、ステータ32の巻線35とロータ31の磁石との温度差を考慮し、上記式(2)を用いて算出した温度から所定の値を差し引いた温度を、ロータ31の磁石の温度として推定しても良い。
(S5)
次に、制御部15は、記憶部16に記憶された減磁電流値と磁石の温度との関係に基づき、推定した磁石の温度に応じて、減磁電流値を下回るように過電流保護設定値を設定する。
例えば、記憶部16に、予め、温度に対応する減磁電流値の情報を記憶させ、上記ステップS4で推定した温度に対応する減磁電流値よりも所定値(例えば2℃)低い温度を、過電流保護設定値として設定する。
図6(a)に示すフェライト磁石の例では、温度と減磁電流との関係が離散的に設定されており、温度が0℃以下の場合は減磁電流値が17Aとして、過電流遮断設定値を15Aに設定する。また、温度が0℃を超え25℃以下の場合には、減磁電流が25Aとして、過電流遮断設定値を23Aに設定する。また、温度が25℃を超え100℃以下の場合には、減磁電流が34Aとして、過電流遮断設定値を32Aに設定する。さらに、温度が100℃を超えた場合には、減磁電流が60Aとして、過電流遮断設定値を58Aに設定する。
また図6(b)に示す希土類磁石の例においても、温度と減磁電流との関係が離散的に設定されており、温度が100℃以上の場合は減磁電流値が14Aとして、過電流遮断設定値を12Aに設定する。また、温度が100℃を下回り25℃以上の場合には、減磁電流が35Aとして、過電流遮断設定値を32Aに設定する。また、温度が25℃を下回り0℃以上の場合には、減磁電流が42Aとして、過電流遮断設定値を40Aに設定する。さらに、温度が−25℃を下回る場合には、減磁電流が49Aとして、過電流遮断設定値を47Aに設定する。
このように、温度と減磁電流との関係が離散的に設定することで、記憶部16の記憶容量を軽減すると共に、制御部15の演算処理の負荷を軽減することができる。
なお、図7に示すように、巻線35の抵抗値Raと温度と過電流保護設定値との対応テーブルを、予め記憶部16に記憶させ、上記ステップS3で求めた抵抗値Raに応じて過電流保護設定値を設定するようにしても良い。
例えば、算出した抵抗値Raが9Ωの場合、図7に示す対応テールを参照すると、対応する温度が−25℃と0℃の間の温度である。モータがフェライト磁石を使用している場合、−25℃と0℃では、減磁電流は−25℃のほうが厳しい特性であるため、過電流保護設定値は−25℃のときの過電流保護設定値に設定する。
なお、過電流保護設定値の設定はこれに限らず、例えば記憶部16に予め、温度と減磁電流との関係を一次関数で近似した計算式を記憶させ、この関数に、ステップS3で推定した温度を代入することで、当該温度における減磁電流値を演算により求め、その減磁電流値から所定の余裕値を差し引いた値を、過電流保護設定値としても良い。
なお、過電流保護設定値の定数に合う起動定数を記憶部16に設定しておき、制御部15はモータ20を起動する際にはこの起動定数を参照して、起動時の電圧指令値を設定することで、モータ20を起動時から出力を最大まで出せるようになる。
制御部15は、上記ステップS5の後、再びステップS1に戻り、上述した動作を繰り返し実行する。例えば、モータ20の運転中においては、1〜3秒毎に繰り返し実行する。これにより、ロータ31の磁石の温度の変化に応じて、過電流保護設定値を変更することが可能となる。
制御部15は、モータ20が運転中において、モータ電流検出回路14の検出値からモータ電流を検知し、上記により設定した過電流遮断値を超えないように、インバータ回路11を制御する。例えば、モータ電流が過電流遮断値を超えた場合、インバータ回路11へのPWM制御信号を停止し、モータ20の運転を停止させる。
以上のように本実施の形態においては、減磁電流値と磁石の温度との関係に基づき、過電流保護設定値を、推定した磁石の温度における減磁電流値を下回るように設定し、推定した磁石の温度の変化に応じて、過電流保護設定値を変更する。
このため、モータ20の減磁を防止すると共に、温度変化により減磁電流値が変化する際に過電流保護設定値を変化することができ、モータ20の駆動範囲を向上することができる。すなわち、温度変化により減磁電流値が上昇した際に、過電流保護設定値を上昇させて、モータ20の回転数やトルクの制限を緩和してモータ20の駆動範囲を広げることができる。
また、モータ20に印加された電圧Vとモータ電流Iとに基づき、モータ20の巻線35の抵抗値Raを求め、巻線35の抵抗値Raと巻線35の温度係数とに基づき、ロータ31の磁石の温度を推定する。
このため、ロータ31の磁石の温度を精度良く推定することができる。したがって、磁石の温度変化に応じて過電流保護設定値を設定する場合であっても、モータ20の減磁を防止することができる。
実施の形態2.
本実施の形態2では、外風によりモータ20に生じたトルクに起因する外乱電流を考慮して、モータ20の巻線の抵抗値を求め、磁石の温度を推定する形態について説明する。
なお、上記実施の形態1と同様の構成には同様の符号を付し、上記実施の形態1との相違点を中心に説明する。
図8は、本発明の実施の形態2に係る外風によるトルクの影響を説明する図である。
モータ20は、図4に示したように、室外機117に外気が通風可能に配置されたプロペラファン108Fを回転駆動する。このような構成においては、外風などの外乱の影響により室外機117のプロペラファン108Fに回転力(負荷)が加わり、モータ20の起動時や運転中のトルクが変動する。
モータ20が、図8(a)に示すような回転方向(正方向)にプロペラファン108Fを回転させている際に、図8(b)に示すような正方向に回転させる順風方向の外風(図4に示すA及びB矢印方向からC矢印方向へ流通する風)が生じた場合、外風による負荷がモータ20の回転力と同一方向に加わり、モータ20のトルクが小さくても所望の回転数でプロペラファン108Fを回転させることができる。
一方、図8(c)に示すような逆方向に回転させる逆風方向の外風(図4に示すC矢印の逆方向からA及びB矢印の逆方向へ流通する風)が生じた場合、外風による負荷がモータ20の回転力とは逆方向に加わり、所望の回転数でプロペラファン108Fを回転させるために必要となるトルクが大きくなる。このようなプロペラファン108Fにかかる負荷とトルクと回転数との関係を図9により説明する。
図9は、本発明の実施の形態2に係るトルクと回転数との関係を示す図である。
図9に示すように、モータ20の回転数を一定となるように制御する際、定常負荷(風無し)の場合は、トルクT0であるのに対し、重負荷(逆風)の場合はそれよりΔT1だけ大きなトルク(T0+ΔT1)が必要となる。一方、軽負荷(順風)の場合はトルクT0よりΔT2だけ小さいトルク(T0−ΔT2)でよい。
モータのトルクとモータ電流との間には、以下の式(3)が成り立つことが知られている。
T=Kr・I ・・・(3)
T:トルク、Kr:モータ固有の定数、I:モータ電流
すなわち、モータ20のトルクはモータ固有の特性とモータ20に流れる電流値(モータ電流)とに比例するので、負荷が大きくなったときはモータ電流が大きくなり、負荷が小さくなったときにはモータ電流は小さくなる。
このようなことから、本実施の形態2では、外風などの外乱の影響によるモータに生じた電流である外乱電流を求め、この外乱電流を考慮してロータ31の磁石の温度を推定して過電流設定値を設定する。以下、本実施の形態2における過電流設定値の設定動作を説明する。
(過電流保護設定値の設定動作)
図10は、本発明の実施の形態2に係る過電流設定値の設定動作を示すフローチャートである。図11は、本発明の実施の形態2に係るトルクと回転数と電圧値との関係を示す図である。図12は、本発明の実施の形態2に係る外風により生じたトルクの算出方法を説明する図である。
以下、図10の各ステップに基づき、図11、図12を参照しつつ説明する。なお、図10のフローチャートにおいて上記実施の形態1(図5)の動作と同一のステップには同一のステップ番号を付し説明を省略する。
(S21)
ステップS1、S2のあと、制御部15は、ホールセンサ42の検知信号から、モータ20の回転数(ロータ31の回転数)を取得する。そして、例えば空気調和装置の制御装置113からの制御により指示された所望の回転数となるように、モータ20のステータ32に印加するモータ電圧の指令値を設定する。
モータ電圧と回転数とトルクの特性はモータの特性に起因し、それぞれ相関関係がある。例えば、図11に示すように、モータ電圧毎に回転数とトルクとが略比例する特性として近似できる。つまり、回転数とトルクとが大きい程、モータ電圧が大きくなる。
制御部15は、外風などの外乱の影響により、プロペラファン108Fに重負荷が生じ、回転数が下がる場合は、モータ20に印加するモータ電圧の指令値を上げ、モータ電流を増加させることでトルクを増加させる。逆に、プロペラファン108Fに軽負荷が生じ、回転数が上がる場合には、モータ20に印加するモータ電圧の指令値を下げ、モータ電流を減少させることでトルクを減少させる。
(S22)
次に、制御部15は、外風などの外乱の影響によりモータ20に生じたトルク(以下、外乱によるトルクΔTという)を求める。
上述したように、モータ電圧と回転数とトルクとには相関関係がある。つまり、モータ20の回転数とモータ電圧とから、トルクを算出することが可能となる。
例えば、図12に示すように、回転数が600〔rpm〕、電圧が200〔Vrms〕とした場合のトルクはTaであることがわかる。また、回転数が600〔rpm〕、電圧が220〔Vrms〕とした場合のトルクはTbとなる。
このようなことから、記憶部16に、予め、モータ電圧毎の回転数とトルクとの関係の情報を記憶させ、取得したモータ電圧と回転数とから、外乱によるトルクΔTを求めることができる。
例えば、回転数600rpmで定常負荷(風無し)のときのトルクT0は、モータ単体の特性に起因するため、予め評価によりデータとして確認できるので、トルクT0の値を予め記憶部16に格納しておく。
そして、順風(軽負荷)の場合(T0≧Ta)の外乱によるトルクΔTは、ΔT=T0−Ta、となり、逆風(重負荷)の場合(T0≦Tb)の外乱によるトルクΔTは、ΔT1=Tb−T0となる。Ta、Tbは、回転数とモータ電圧の指令値から算出でき、T0は記憶部16に記憶された情報を用いることができるので、ΔTも算出可能である。
(S23)
次に、制御部15は、モータ20の巻線35の抵抗値Ra〔Ω〕を求める。
本実施の形態2においては、外乱の影響を考慮して、外風によりモータ20に生じた電流(以下、外乱電流Iaという)を、下記式(4)により外乱によるトルクΔTに基づき求める。
Ia=ΔT/Kr ・・・(4)
Ia:外乱電流、ΔT:外乱によるトルク、Kr:モータ固有の定数
なお、Krはモータ単体の特性となるため、予め、記憶部16に記憶させる。
モータ電流Iには、インバータ回路11から印加したモータ電圧Vに起因する電流に加え、外乱電流Iaが流れるため、以下の式(5)が成立する。
I=V/Ra+Ia ・・・(5)
この式(5)より、巻線35の抵抗値Ra〔Ω〕は、
Ra=V/(I−Ia) ・・・(6)
により求まる。
すなわち、制御部15は、モータ電流検出回路14により検出されたモータ電流Iから外乱電流Iaを差し引いた電流と、モータ電圧Vとに基づき、モータ20の巻線の抵抗値Raを求める。
以降の動作は、上記実施の形態1と同様に、ステップS4で、上記により算出した抵抗値Raを用いて磁石の温度を推定し、ステップS5でその温度を用いて過電流保護設定値を設定する。
以上のように本実施の形態においては、モータ20の回転数と、モータ電圧の指令値とに基づき、外風によりモータ20に生じたトルクΔTを求め、そのトルクΔTに基づき、外風によりモータ20に生じた電流である外乱電流Iaを求める。そして、モータ電流Iから外乱電流Iaを差し引いた電流と、モータ電圧Vとに基づき、モータ20の巻線の抵抗値Raを求める。
このため、外風などの外乱の影響により負荷が変動し、外乱に起因する電流が生じる場合であっても、ロータ31の磁石の温度を精度良く推定することができる。したがって、磁石の温度変化に応じて過電流保護設定値を設定する場合であっても、モータ20の減磁を防止することができる。
実施の形態3.
本実施の形態3では、インバータ回路11のパワーモジュール41にワイドバンドギャップ半導体を用いた形態について説明する。
本実施の形態3における、スイッチング素子11a〜11f及びダイオード素子12a〜12fは、それぞれワイドバンドギャップ半導体で構成されている。ワイドバンドギャップ半導体とは、シリコン(Si)素子と比較して、バンドギャップが大きい半導体素子の総称であり、炭化ケイ素(SiC)素子の他、例えば、窒化ガリウム(GaN)、ダイヤモンド素子等が挙げられる。
例えば、SiC素子は、そのバンドギャップが約2.2〜3.0eV、耐熱温度が約400℃という特性を有している。つまり、SiC素子は、バンドギャップが約1.1eV、耐熱温度が約150℃という特性を有するSi(シリコン)素子等の従来素子よりも耐熱温度が高い特性を有しており、高温での動作が可能であるといった特徴がある。
また、本実施の形態3における制御部15は、インバータ回路11を、20kHz以上のキャリア周波数でPWM動作させる。
一般に、直流の電流から交流の電流へ変換(インバータ)するとき、スイッチング素子11a〜11fをオン/オフすることにより、擬似的に交流電流となるようにしている。このオン/オフの回数を一定時間で割ったものをキャリア周波数と呼ぶ。キャリア周波数が高い場合、擬似的に流れる電流がより交流電流に近い電流となる。
このキャリア周波数はスイッチング素子11a〜11fがオン/オフする回数であり、この回数はスイッチング素子11a〜11fの材料により設定する。
一般的に、Si材料の場合、キャリア周波数は20kHzまでが限界といわれているが、SiCを適用するとキャリア周波数は20kHz以上の周波数でも対応が可能である。そのため、SiCを利用することにより、モータ20に流れる電流値をより正確に捉えることができ、モータ20の巻線の抵抗値Raをより正確に求めることが可能となる。
これにより、上記実施の形態1で説明したように、離散的に複数段階に設定した過電流保護設定値の、設定段階を増加させることが可能となる。例えば、Si材料の場合、過電流保護設定値を3段階設定とすると、SiCを利用することで、過電流保護設定値を5段階設定とできる。
なお、スイッチング素子11a〜11fやダイオード素子12a〜12fの両方がワイドバンドギャップ半導体によって形成されていることが望ましいが、いずれか一方の素子がワイドバンドギャップ半導体によって形成されていてもよく、この実施の形態3に記載の効果を得ることができる。
1 商用電源、10 モータ駆動装置、11 インバータ回路、11a〜11f スイッチング素子、12a〜12f ダイオード素子、13 ドライブ回路、14 モータ電流検出回路、15 制御部、16 記憶部、17 電解コンデンサ、20 モータ、21 取り付け穴、22 ネジ、23 開孔、31 ロータ、31a 回転軸、32 ステータ、33 ステータ鉄心、34 ティース部、35 巻線、40 プリント配線基板、41 パワーモジュール、42 ホールセンサ、50a 上ケース、50b 下ケース、102 圧縮機インバータ、103 圧縮機、104 四方弁、105 室外熱交換器、106 膨張弁、107 室内熱交換器、108 室外ファン、108F プロペラファン、109 室内ファン、112 速度制御回路、113 制御装置、114 操作部、117 室外機。

Claims (9)

  1. 磁界を発生する巻線と永久磁石とを有するモータを駆動するモータ駆動装置であって、
    直流電圧を交流電圧に変換して前記モータに印加するインバータ回路と、
    前記モータに流れるモータ電流を検出する電流検出手段と、
    前記モータ電流が過電流保護設定値を超えないように、前記インバータ回路を制御して前記モータの運転を制御する制御部と、
    前記永久磁石に減磁を発生させる前記巻線の減磁電流値と、前記永久磁石の温度との関係が記憶される記憶部と、
    を備え、
    前記制御部は、
    前記モータに印加された電圧と前記モータ電流とに基づき、前記モータの巻線の抵抗値を求め、
    前記巻線の抵抗値と前記巻線の温度係数とに基づき、前記永久磁石の温度を推定し、
    前記減磁電流値と前記永久磁石の温度との関係に基づき、前記過電流保護設定値を、推定した前記永久磁石の温度における前記減磁電流値を下回るように設定し、
    推定した前記永久磁石の温度の変化に応じて、前記過電流保護設定値を変更する
    ことを特徴とするモータ駆動装置。
  2. 前記モータの回転数を検出する回転数検出手段を備え、
    前記モータは、
    外風が通風可能に配置されたファンを回転駆動し、
    前記制御部は、
    前記インバータ回路が前記モータに印加するモータ電圧の指令値を変化させることで、前記モータの回転数を制御し、
    前記回転数検出手段により検出された前記モータの回転数と、前記モータ電圧の指令値とに基づき、前記外風により前記モータに生じたトルクを求め、
    前記トルクに基づき、前記外風により前記モータに生じた電流である外乱電流を求め、
    前記電流検出手段により検出された前記モータ電流から前記外乱電流を差し引いた電流と、前記モータ電圧とに基づき、前記モータの巻線の抵抗値を求める
    ことを特徴とする請求項1記載のモータ駆動装置。
  3. 前記制御部は、
    前記モータの回転数が一定となるように前記モータ電圧の指令値を制御し、
    前記モータ電圧の指令値の変化量に基づき、前記外風により前記モータに生じたトルクを求める
    ことを特徴とする請求項2記載のモータ駆動装置。
  4. 前記永久磁石は、温度の上昇に従って前記減磁電流値が増加する特性を有し、
    前記制御部は、
    推定した前記永久磁石の温度の上昇に伴い、前記過電流保護設定値を増加させる
    ことを特徴とする請求項1〜3の何れか一項に記載のモータ駆動装置。
  5. 前記永久磁石は、温度の低下に従って前記減磁電流値が増加する特性を有し、
    前記制御部は、
    推定した前記永久磁石の温度の低下に伴い、前記過電流保護設定値を増加させる
    ことを特徴とする請求項1〜3の何れか一項に記載のモータ駆動装置。
  6. 前記インバータ回路は、ワイドバンドギャップ半導体により形成されたスイッチング素子のオンオフ動作により、前記モータに交流電力を供給する
    ことを特徴とする請求項1〜5の何れか一項に記載のモータ駆動装置。
  7. 前記制御部は、
    前記インバータ回路を、20kHz以上のキャリア周波数でPWM動作させる
    ことを特徴とする請求項6記載のモータ駆動装置。
  8. 前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム系材料、またはダイヤモンドである
    ことを特徴とする請求項6または7記載のモータ駆動装置。
  9. 磁界を発生する巻線と永久磁石とを有し、室外機に搭載されたファンを回転駆動するモータと、
    請求項1〜8の何れか一項に記載のモータ駆動装置と
    を備えたことを特徴とする空気調和装置。
JP2012130399A 2012-06-08 2012-06-08 モータ駆動装置および空気調和装置 Pending JP2013255373A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012130399A JP2013255373A (ja) 2012-06-08 2012-06-08 モータ駆動装置および空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012130399A JP2013255373A (ja) 2012-06-08 2012-06-08 モータ駆動装置および空気調和装置

Publications (1)

Publication Number Publication Date
JP2013255373A true JP2013255373A (ja) 2013-12-19

Family

ID=49952444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012130399A Pending JP2013255373A (ja) 2012-06-08 2012-06-08 モータ駆動装置および空気調和装置

Country Status (1)

Country Link
JP (1) JP2013255373A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105490606A (zh) * 2015-12-25 2016-04-13 杭州乾景科技有限公司 用于潜油交流永磁同步电机防退磁的保护方法
WO2016104319A1 (ja) * 2014-12-25 2016-06-30 株式会社小糸製作所 点灯回路および車両用灯具
JP2018011403A (ja) * 2016-07-12 2018-01-18 コニカミノルタ株式会社 永久磁石同期電動機の制御装置、画像形成装置、および制御方法
WO2020044508A1 (ja) * 2018-08-30 2020-03-05 三菱電機株式会社 モータ駆動装置、モータ制御方法および冷凍サイクル装置
WO2020105131A1 (ja) * 2018-11-21 2020-05-28 三菱電機株式会社 駆動装置、圧縮機、及び空気調和機
CN112737426A (zh) * 2020-12-29 2021-04-30 新乡市夏烽电器有限公司 基于温升模型重构的深井永磁同步电机防退磁控制方法
WO2023162029A1 (ja) * 2022-02-22 2023-08-31 三菱電機株式会社 駆動装置および空気調和装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104319A1 (ja) * 2014-12-25 2016-06-30 株式会社小糸製作所 点灯回路および車両用灯具
JPWO2016104319A1 (ja) * 2014-12-25 2017-10-05 株式会社小糸製作所 点灯回路および車両用灯具
US10661701B2 (en) 2014-12-25 2020-05-26 Koito Manufacturing Co., Ltd. Lighting circuit and vehicular lighting device
CN105490606A (zh) * 2015-12-25 2016-04-13 杭州乾景科技有限公司 用于潜油交流永磁同步电机防退磁的保护方法
JP2018011403A (ja) * 2016-07-12 2018-01-18 コニカミノルタ株式会社 永久磁石同期電動機の制御装置、画像形成装置、および制御方法
WO2020044508A1 (ja) * 2018-08-30 2020-03-05 三菱電機株式会社 モータ駆動装置、モータ制御方法および冷凍サイクル装置
WO2020105131A1 (ja) * 2018-11-21 2020-05-28 三菱電機株式会社 駆動装置、圧縮機、及び空気調和機
JPWO2020105131A1 (ja) * 2018-11-21 2021-04-30 三菱電機株式会社 駆動装置、圧縮機、及び空気調和機
CN112997397A (zh) * 2018-11-21 2021-06-18 三菱电机株式会社 驱动装置、压缩机以及空调机
JP7166358B2 (ja) 2018-11-21 2022-11-07 三菱電機株式会社 駆動装置、圧縮機、及び空気調和機
US11916501B2 (en) 2018-11-21 2024-02-27 Mitsubishi Electric Corporation Driving device, compressor, and air conditioner
CN112737426A (zh) * 2020-12-29 2021-04-30 新乡市夏烽电器有限公司 基于温升模型重构的深井永磁同步电机防退磁控制方法
CN112737426B (zh) * 2020-12-29 2022-10-18 新乡市夏烽电器有限公司 基于温升模型重构的深井永磁同步电机防退磁控制方法
WO2023162029A1 (ja) * 2022-02-22 2023-08-31 三菱電機株式会社 駆動装置および空気調和装置

Similar Documents

Publication Publication Date Title
JP5628233B2 (ja) モータ駆動装置、流体圧縮システム、及び空気調和機
JP2013255373A (ja) モータ駆動装置および空気調和装置
JP5127612B2 (ja) モータ駆動制御装置並びに空気調和機、換気扇及びヒートポンプタイプの給湯機
JP5893127B2 (ja) 空気調和機
US10090793B2 (en) Electric motor, compressor, and method for controlling electric motor or compressor
JP5098599B2 (ja) 空気調和機の圧縮機用ブラシレスモータ駆動装置
JP2009198139A (ja) 空気調和機の圧縮機用ブラシレスモータ駆動装置
WO2018078849A1 (ja) 電動機駆動装置及び空気調和機
US20140368144A1 (en) Thermal protection of a brushless motor
CN113615025B (zh) 驱动装置以及空气调节装置
JP7166358B2 (ja) 駆動装置、圧縮機、及び空気調和機
JP2007028781A (ja) 空気調和機の直流電源装置
JPH07337072A (ja) 密閉型コンプレッサの保護装置
KR101790650B1 (ko) 브러시리스 모터의 전력 소모 감소
JPWO2018078843A1 (ja) 電動機駆動装置及び空気調和機
JP2008245353A (ja) モータ及びモータ駆動制御装置並びに換気扇、液体用ポンプ、冷媒圧縮機、送風機、空気調和機及び冷蔵庫
JP2012070530A (ja) モータ駆動装置
JP2015029395A (ja) 空気調和機
JP2010063200A (ja) 駆動回路内蔵モータ、並びにそれを備えた空気調和機、換気扇及びヒートポンプタイプの給湯機
JP2008011662A (ja) 空気調和機の室外ファン用ブラシレスモータ駆動装置
JP2008005639A (ja) ブラシレスdcモータの駆動方法およびその装置
JP5960009B2 (ja) 冷凍装置
JP6396679B2 (ja) 過電流検出回路、空気調和機、サーミスタの取り付け構造、及び電気機器
KR100848157B1 (ko) 비엘디씨 모터의 제어방법 및 이를 이용한 공기조화기
JP6487093B2 (ja) 空気調和機