JP2013255086A - マルチレートponシステム、その局側及び宅内光回線終端装置 - Google Patents

マルチレートponシステム、その局側及び宅内光回線終端装置 Download PDF

Info

Publication number
JP2013255086A
JP2013255086A JP2012129434A JP2012129434A JP2013255086A JP 2013255086 A JP2013255086 A JP 2013255086A JP 2012129434 A JP2012129434 A JP 2012129434A JP 2012129434 A JP2012129434 A JP 2012129434A JP 2013255086 A JP2013255086 A JP 2013255086A
Authority
JP
Japan
Prior art keywords
onu
wavelength
signal
olt
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012129434A
Other languages
English (en)
Inventor
Yu Matsunaga
悠 松永
Toru Kazawa
徹 加沢
Yoshinobu Morita
佳伸 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012129434A priority Critical patent/JP2013255086A/ja
Publication of JP2013255086A publication Critical patent/JP2013255086A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】複数の伝送速度の宅内光回線終端装置(ONU)が混在収容されるマルチレートPONシステムにおけるASE雑音の悪影響を抑制し、光ファイバ1本当たりの最大分岐数や最大伝送距離を増大させる。
【解決手段】局側光回線終端装置(OLT)100は、光信号を増幅する利得が可変の光アンプ350と、通過波長帯が可変の波長フィルタ340とを備え、各ONU110の伝送速度や送信波長に応じて、光アンプ350の利得及び波長フィルタ340の通過波長帯の切り替えを指示する。このとき、OLT100のグラント生成部260は、この切り替え回数が少なくなるように、伝送速度毎に、さらには送信波長帯毎にまとめて時分割多重制御のタイムスロットを各ONU110に割り当てる。
【選択図】図2

Description

本発明は、10G−EPON(10Gigabit-Ethernet Passive Optical Network)等、複数の通信レートを有する端末から上り信号が時分割多重されて送信されるマルチレートPON(Passive Optical Network)システム、その局側及び宅内に備える光回線終端装置に係り、特に光信号の最大分岐数を増大させるための技術に関する。
通信データ量の大幅な増加に伴い、広帯域かつ長距離の伝送が可能な光ファイバによる通信が一般化している。センタ局と加入者端末とを光ファイバで結ぶ光アクセスネットワークを実現する方式の1つとして、受動光網(Passive Optical Network:以下PONと称する)システムがある。PONシステムとは、1つの局側光回線終端装置(Optical Line Terminal:以下、OLTと称する)と複数の宅内光回線終端装置(Optical Network Unit:以下、ONUと称する)とを、一芯式光ファイバと光スプリッタによって接続することで、複数の加入者間でOLTと光スプリッタまでの設備を共用し、経済化が図れるシステムである。
PONシステムの代表的な規格として、IEEE802.3で標準化されたEPON(Ethernet PON)、ITU−T G.984で標準化されたGPON(Gigabit Capable PON)がある。これらのPONシステムにおいては、ONUからOLTに向かって送信される上り信号と、OLTからONUに向かって送信される下り信号とは、波長分割多重(Wavelength Division Multiplexing:以下、WDMと称する)によって多重される。下り信号は、OLTから光ファイバで接続された全てのONUに対して同じ信号が同報配信される。下り信号を受信した各ONUは、信号中に含まれる宛先情報を参照して自分宛のデータ以外を破棄し、自分宛のデータのみを加入者端末に転送する。
一方、上り信号は、各ONUがOLTから指定された別々の時間帯(タイムスロット)にデータを送信する時分割多重アクセス(Time Division Multiple Access:以下TDMAと称する)により多重される。また、PONシステムの通信レート(以下、伝送速度ともいう)は、64kbit/sのような低速から始まり、固定長のATM(Asynchronous Transfer Mode)セルを最大約600Mbit/sで送受信するBPON(Broadband PON)、及びEthernet(登録商標)の可変長パケットを最大約1Gbit/s(以下、適宜1Gと略す)の通信レートで送受信するGE―PON(Gigabit Ethernet-PON)が実現されている。
さらに、今後のトラフィック量の増加に対処すべく、次期PONシステムとして、10Gbit/s(以下、適宜10Gと略す)の通信レートでEthernetの可変長パケットを送受信する10G−EPONの標準化が進められている。この標準化において、10G−EPONシステムが円滑に導入できるように、既存のGE−PON対応のONUと、新たに規定される10G−EPON対応のONUとを混在して収容するマルチレートの10G−EPONシステムが標準化された。具体的には、GE−PONシステムが下り信号、上り信号ともに1波長を用いたTDMA方式を採用しているのに対し、10G−EPONシステムでは、下り信号は10G用波長(1577nm)と1G用波長(1490nm)との2波長を用いてWDMで多重する方式を採用し、上り方向は既に1260nm〜1360nmの波長規定にて導入済の1G用ONUと新規に導入される10G用ONUとの混在収容を実現するために、10G用波長も同一波長帯を用いるTDMA方式を採用することとなった。
このようなPONシステムにおける光ファイバ1本当たりのONUの最大接続台数である最大分岐数は、現標準ではケーブル長20kmで32分岐が目安となっている。一方、この最大分岐数を増やすことができれば加入者当たりの設備コストや消費電力の削減が可能となるため、PONシステムの最大分岐数を拡大する技術が注目されている。
また、特許文献1には、複数の伝送速度を有する光信号が混在するネットワークシステムにおいて、最大伝送距離と最大分岐数とを増やすために、複数の伝送速度の光信号を中継する光中継器において、1G信号の直後に消光期間を設けることで10G信号のみ光増幅器を通過させる技術が記載されている。
特開2011−109494号公報
ONUの接続台数を増やすことによって生じる課題として、最小受光感度の低下が考えられる。一般に光信号伝送では伝送速度が大きいほど広帯域特性の電気増幅回路が必要なことから、電気回路の雑音帯域が広がって最小受光感度が低下する傾向がある。1G信号と10G信号とが混在するPONシステム、あるいは将来のさらなる高速化のための25G信号なども混在するPONシステムでは、全ての伝送速度の信号を光増幅しつつ、特に伝送速度の大きい信号を高いゲインで光増幅する方法が求められる。
一方で、高いゲインで光増幅することにより、自然放出光(Amplified Spontaneous Emission:以下、ASEと称する)雑音も増大する。10G以上の高速光信号は分布帰還型(Distributed Feedback:以下、DFBと称する)レーザにより狭い波長範囲で発信されるため、このASE雑音を波長フィルタにより大幅に低減できる。しかし、低速な1G光信号には安価なファブリペロー(Fabry-Perot:以下、FPと称する)レーザが使用されることが多く、波長範囲も広く設定されているため、波長フィルタによるASE雑音の低減が困難である。
本発明は、前記の課題を解決するためになされたものであり、複数の伝送速度のONUが混在収容されるマルチレートPONシステムにおけるASE雑音の悪影響を抑制し、光ファイバ1本当たりの最大分岐数や最大伝送距離を増大させることを目的とする。
前記の目的を達成するために、本発明に係るマルチレートPONシステムは、少なくとも1台の局側光回線終端装置(OLT)と、光ファイバ及び光スプリッタを介して前記OLTにポイント・ツー・マルチポイント接続され、伝送速度の異なる複数の宅内光回線終端装置(ONU)と、を備え、前記OLTは、光信号を増幅する利得が可変の光増幅器と、増幅された前記光信号のうち通過波長帯以外の波長成分を除去する前記通過波長帯が可変の波長フィルタと、前記ONUの伝送速度に応じて、前記光増幅器の前記利得と、前記波長フィルタの前記通過波長帯との切り替えを指示する切り替え指示手段と、前記光増幅器の前記利得と前記波長フィルタの前記通過波長帯との切り替えの回数を少なくするように、時分割多重の制御周期毎における前記各ONUからの信号受信順序と、前記切り替えを指示するタイミングとを決定して、前記各ONUに通知する送信許可情報を生成するグラント生成手段と、を有するものとした。
本発明によれば、複数の伝送速度のONUが混在収容されるマルチレートPONシステムにおけるASE雑音の悪影響を抑制し、光ファイバ1本当たりの最大分岐数や最大伝送距離を増大させることができる。
マルチレートPONシステムを用いた光アクセス網の構成例である。 実施形態に係るOLTのブロック構成図である。 光アンプの利得とASE雑音の増加との関係を示す模式図である。 各信号伝送速度における光アンプ及び波長フィルタの制御方法を示す模式図である。 各伝送速度において送信される波長範囲と、対応する波長フィルタ特性との関係を示す説明図である。 本発明の実施形態に係るOLTと複数のONUとの接続構成例を示す模式図である。 第1実施形態に係るOLTのディスカバリ処理のフローチャートである。 第1実施形態に係る1GディスカバリでONU1台分の往復遅延時間を測定する処理の詳細を示すフローチャートである。 第1実施形態に係るONUテーブルの構成及びデータ例である。 DBAによるグラント送信処理の概略フローチャートである。 第1実施形態に係るDBAにより光アンプ及び波長フィルタの特性の切り替え回数が削減される例を示す模式図であり、(a)は従来のDBAを用いた場合の比較例の信号送信シーケンス、(b)は本発明に係るDBAを用いた場合の信号送信シーケンスである。 第1実施形態に係るDBAによる1G信号のグラント計算処理のフローチャートである。 第1実施形態に係るグラント設定処理の結果を示すデータ例である。 OLTによる信号受信処理の概略フローチャートである。 第1実施形態に係る1G上り信号の受信処理のフローチャートである。 可変波長フィルタを用いた波長検出部の構成と動作の説明図である。 アレイ導波路回折格子(AWG)を用いた波長検出部の構成と動作の説明図である。 第2実施形態に係るOLTのディスカバリ処理のフローチャートである。 第2実施形態に係る1GディスカバリでONU1台分の往復遅延時間及び波長を測定する処理の詳細を示すフローチャートである。 第2実施形態に係るONUテーブルの構成及びデータ例である。 第2実施形態に係るDBAを用いた場合に選択される波長フィルタ特性の構成と、信号送信シーケンスの例である。 第2実施形態に係るDBAによる1G信号のグラント計算処理のフローチャートである。 第2実施形態に係るグラント設定処理の結果を示すデータ例である。 第2実施形態に係る1G上り信号の受信処理のフローチャートである。 第3実施形態に係る1GディスカバリでONU1台分の往復遅延時間を測定しフィルタ特性を選択する処理の詳細を示すフローチャートである。 温度測定値からフィルタ特性を選択するための温度−フィルタ特性対応テーブルの構成及びデータ例と、各フィルタ特性の通過波長帯を示す模式図である。 第3実施形態に係るONUテーブルの構成及びデータ例である。
前記のような従来技術の課題を解決するためには、OLTにゲイン(利得)が可変の光増幅器(以下、光アンプとも称する)と通過波長帯が可変の波長フィルタとを搭載し、信号伝送速度に応じて光アンプのゲインと波長フィルタの通過波長帯とを変更すればよい。以下、具体的な制御方法について説明する。
まず、10G信号のような高速で波長範囲の狭い信号光をOLTが受信する場合について説明する。10G信号の最小受光感度は1G信号の最小受光感度に比べて低いため、OLT側で光アンプのゲインを高く設定することで信号強度を大きくし、受信感度を向上する。また、10G信号の信号光は波長範囲が狭いので、波長フィルタの通過波長帯を狭めることで、ASE雑音を低減する。
次に、1G信号のような低速で波長範囲の広い信号光をOLTが受信する場合について説明する。1G信号の最小受光感度は高くて良好なため、OLT側で光アンプのゲインを低く設定しても、必要な受信感度を満たすことができる。1G信号の信号光は波長範囲が広いので、波長フィルタの通過波長帯を広くする。
ところで、光アンプのゲインを高(低)ゲインから低(高)ゲインへ変更する、または波長フィルタの通過波長帯を広(狭)帯域から狭(広)帯域へ変更するには、それぞれ一定の時間を要する。従来の方法では、ディスカバリと呼ばれるONUの初期登録手順の実行時に、OLTがONUの登録順に一連番号のロジカルリンクID(Logical Link Identifier:以下、LLIDと称する)を付与し、OLTはこのLLIDの昇順で各ONUからの信号を受信する。そのため、受信信号の伝送速度はONUの登録順序に応じて不規則に変化し、OLTにおいて光アンプや波長フィルタの特性を変更する回数が多くなってしまう。
そこで、本発明では、OLTが行っている動的帯域割当(Dynamic Bandwidth Allocation:以下、DBAと称する)の機能を利用して、同一伝送速度の信号をそれぞれ連続した順序でOLTが受信できるように、伝送速度毎にまとめてTDMAの時間帯(タイムスロット)を各ONUに割り当てる。それにより、伝送速度の切り替えが発生する回数を減らし、伝送速度の切り替え時に必要となる光アンプや波長フィルタの特性変更時間のオーバーヘッドを減少させて、上り信号の伝送効率を高める。本発明によれば、10G信号などの高速信号の最小受光感度が向上するので、光ファイバ1本当たりの最大分岐数や最大伝送距離を増大することが可能となる。
また、波長範囲が広い1G信号は、個々のONUが実際に送信する信号の波長帯は狭いが、発信に用いられるFPレーザの個体差や使用温度に応じて、中心波長が大きく変動するため、OLTは広い波長範囲の信号を受信可能である旨が規定されている。これに対し、本発明では、稼働中のONUから実際に送信される信号波長をONU毎に測定し、それに応じて波長フィルタの通過波長帯を狭くするように特性を変更することにより、1G信号の受信感度をさらに向上させる。この場合においても、上り信号の伝送効率を高めるために、波長フィルタの同じ通過波長帯に含まれる波長の信号を発信しているONUに、連続して時間帯(タイムスロット)を割り当てることで、波長フィルタ特性の変更回数を減らし、波長フィルタの特性変更時間のオーバーヘッドを減少させる。
さらに、本発明では、各ONUが実際に送信している信号の波長範囲を推定するための情報として、ONUに自身のFPレーザの使用温度を測定する手段を付与し、各ONUが測定した使用温度の情報をディスカバリ時または通常運用時にOLTに通知する。OLTは、事前に登録済みの温度範囲と当該温度範囲で発信される波長帯を通過させる波長フィルタ特性との対応表を参照して、各ONUに対して適用する波長フィルタ特性を決定することにより、1G信号の受信感度を向上させる。この際に、測定した使用温度の情報をOLTに通知する信号には、100Mbit/sなどの低速の信号を用いることにより、OLTの波長フィルタに広い通過波長帯を設定した状態でも、温度情報を受信するために十分な受光感度を確保することができる。
以下、本発明を実施するための形態を適宜図面を参照しながら説明する。
図1は、マルチレートPONシステム10を用いた光アクセス網1の構成例である。光アクセス網1に収容される加入者端末(電話(TEL)180、PC(Personal Computer)190等)は、マルチレートPONシステム10を介して上位の通信網である公衆通信網(この例では、PSTN(Public Switched Telephone Network)/インターネット20)に接続されて、データを送受信する。マルチレートPONシステム10は、光スプリッタ120、幹線光ファイバ130、支線光ファイバ140、OLT100、及び、加入者端末を収容する複数台のONU110を備える。幹線光ファイバ130と光スプリッタ120と複数の支線光ファイバ140とを有してなる受動光網(PON)によってOLT100と各ONU110間が接続され、上位の通信網と加入者端末との間の通信、または、加入者端末間の通信が行われる。
OLT100には、1本の幹線光ファイバ130と光スプリッタ120、及び複数本の支線光ファイバ140を介して、複数台(n台、例えば32台等)のONU110が接続可能である。図1には、一例として、5台(n=5)のONU110が図示されており、それぞれOLT100からのファイバ長や通信レートが異なっている。図示された例では、ONU#1(110−1)は通信レートが1Gbit/sでOLT100からのファイバ長が1km、ONU#2(110−2)は通信レートが25Gbit/sでOLT100からのファイバ長が10km、ONU#3(110−3)は通信レートが10Gbit/sでOLT100からのファイバ長が20km、ONU#4(110−4)は通信レートが10Gbit/sでOLT100からのファイバ長が10km、ONU#n(110−n)は通信レートが1Gbit/sでOLT100からのファイバ長が15kmである。なお、図中、各ONUを示すブロック内の(XG,Ykm)は、当該ONUの通信レートと、OLT−ONU間のファイバ長を表している。
符号150に示すように、OLT100からONU110に向かって送信される下り信号は、全てのONU110に対して同じ信号が同報配信される。一方、符号160及び符号170に示すように、上り信号は、各ONU110がOLT100から指定された別々の時間帯(タイムスロット)にデータを送信するTDMAにより多重される。このとき、OLT100が受信する光信号の波長はONU110の通信レート(伝送速度)毎に異なり、またファイバ長が長くなるほど信号強度が小さくなる。
図2は、本発明の実施形態に係るOLT100のブロック構成図である。OLT100の送信側は、上位の通信網の中継装置との通信を行う網IF(Interface)200−1、一時的に信号を保存しておくパケットバッファ210−1、ONU110へ送信するデータを生成するPONフレーム生成部220、及びONU110と光信号により通信を行う電気/光変換部230から成る。
一方、OLT100の受信側は、ONU110から受信した光信号の波長を検出する波長検出部310、ONU110からの登録要求信号を処理するディスカバリ処理部301、波長検出部310及びディスカバリ処理部301で得られた情報を保存するONUテーブル302、受信した光信号を増幅する光アンプ350、増幅した光信号のASE雑音を軽減する波長フィルタ340、波長フィルタ340を透過した光信号を電気信号に変換する光/電気変換部330、電気に変換した信号を受け、各ONU110の往復遅延時間を算出してONUテーブル302へ格納するメッセージ受信部320、メッセージ受信部320からの信号をグラント生成部260へのキュー長レポートとONU−ID照合部270への主信号に分解するPONフレーム分解部290、PONフレーム分解部290からキュー長レポートを受け、切り替えタイミング生成部280に信号の波長を通知し、かつ各ONU110をDBAにより通信速度毎に並べ換えて送信許可時間を決定しグラント(送信許可)を生成するグラント生成部260、グラント生成部260から通知されたタイミングで光アンプ350のゲイン及び波長フィルタ340の通過波長範囲を制御する切り替えタイミング生成部280、PONフレーム分解部290から受けた信号とグラント生成部260から受けたONU−IDが一致することを確認するONU−ID照合部270、グラント生成部260へ帯域設定信号を送る監視制御部250、上位ネットワークへの信号を一時的に保存しておくパケットバッファ210−2、上位の通信網の中継装置との通信を行う網IF200−2から成る。
また、OLT100とONU110からの光信号を合分波するWDM(Wavelength Division Multiplexing)フィルタ240を備える。
上位の通信網から受信したユーザ信号は、PONフレーム生成部220で生成されるPONフレーム内に格納され、電気/光変換部230において電気信号から光信号へ変換される。変換された光信号は、WDMフィルタ240を通過し、幹線光ファイバ130、光スプリッタ120及び支線光ファイバ140を介して各ONU110に同報配信される。
一方、ONU110から受信した光信号は、WDMフィルタ240から光アンプ350に送られ、ディスカバリ時にディスカバリ処理部301において取得された伝送速度などに基づいて動作特性が設定された光アンプ350と波長フィルタ340とにより、信号強度の増幅と波長成分のフィルタリングが行われる。ここで、低速信号の場合には低ゲイン制御を行い、高速信号の場合には高ゲイン制御を行う。光アンプ350で増幅された光信号は、波長フィルタ340において、波長範囲が広い低速信号の場合には通過波長帯を広く設定してフィルタリングし、波長領域の狭い高速信号の場合には通過波長帯狭くしてフィルタリングすることで、ASE雑音を軽減する。波長フィルタ340によってフィルタリングされた光信号は、光/電気変換部330において電気信号へ変換され、メッセージ受信部320を介してPONフレーム分解部290に送られる。PONフレーム分解部290は、グラント生成部260にキュー長レポートを通知しする。この通知を受けたグラント生成部260は、監視制御部250より帯域設定の指示を受けてDBAを実行することにより、伝送速度毎にONU110をまとめて各ONU110への送信許可時間を決定するとともに、ONU−ID照合部270には送信許可したONU110と同一であるかを識別するためのID情報を送信し、切り替えタイミング生成部280には光アンプ350のゲイン、及び波長フィルタ340の通過波長帯を切り替えるフィルタ情報を送信する。ONU−ID照合部270でIDが照合された信号は、パケットバッファ210−2、網IF200−2を介して、上位の通信網の中継装置に送信される。
図3は、光アンプ350の利得(ゲイン)とASE雑音の増加との関係を示す模式図である。図中の各グラフの横軸は光信号の波長を、縦軸は光信号の強度を表す。光アンプ350に入力する光信号360の強度を一定とし、光アンプ350の利得(ゲイン)を大390、中380、小370として説明する。光アンプ350の利得が小370のときには、符号400に示すように、増幅度が小さいがASE雑音の影響も小さいので、ASE雑音の影響を極力小さくする際に使用する。光アンプ350の利得が中380のときには、符号410に示すように、増幅度は小370に比べて大きい一方でASE雑音の影響も大きくなる。光アンプ350の利得が大390のときには、符号420に示すように、増幅度が大きくなるがASE雑音も大きくなってしまうため、高い光強度が必要かつ、波長フィルタ340で狭帯域に信号を切り出すことが可能な場合に使用する。
図4は、各伝送速度における光アンプ350及び波長フィルタ340の制御方法を示す模式図である。図中の各グラフの横軸は光信号の波長を、縦軸は光信号の強度を表す。例として、1G信号430、10G信号450、25G信号470について説明する。
まず、1G信号430を受信したときの光アンプ350及び波長フィルタ340の特性について説明する。1G信号430は安価なFPレーザから出力されるものと仮定すると、波長の変動範囲が広いため、波長フィルタ340の通過波長帯を広くする必要がある。しかしながら、1G信号430は最小受光感度が良好なため、光アンプ350のゲインをあまり大きくする必要がない。そこで、1G信号430を受信した際には、符号440のグラフにて模式的に示すように、光アンプ350の利得が小さい低ゲイン制御とし、波長フィルタ340の通過波長帯は広帯域とする。
次に、10G信号450を受信したときの光アンプ350及び波長フィルタ340の特性について説明する。10G信号450はDFBレーザから出力されるものと仮定すると、波長の変動範囲が狭いため、波長フィルタ340の通過波長帯を狭く設定することができる。しかしながら、10G信号450は1G信号430に比べて高速なため、最小受光感度が低い。そこで、10G信号450を受信した際には、符号460に示すように、光アンプ350の利得が中程度の中ゲイン制御とし、波長フィルタ340の通過波長帯も中帯域とする。また、25G信号470の出力にも、10G信号450と同じく、DFBレーザが用いられるものと仮定すると、波長の変動範囲が狭いため、波長フィルタ340の通過波長帯は狭く設定できる。25G信号470は10G信号450よりさらに高速であるため、10G信号450よりも最小受光感度はさらに低くなる。そこで、25G信号470を受信した際には、符号480に示すように、光アンプ350の利得が大きい大ゲイン制御とし、波長フィルタ340の通過波長帯は狭帯域とする。
図5は、各伝送速度において送信される波長範囲と、対応する波長フィルタ特性との関係を示す説明図である。10G−EPONの標準化においては、低速の1G信号の波長範囲は1260〜1360nmと規定され、高速の10G信号の波長範囲は1260〜1280nmと規定されている。さらに高速の25G信号の中心波長は現在規定されていないため、以下の実施形態では1330nmと仮定する。これらに対応して、1G信号に対して適用する広フィルタの通過波長帯は1260〜1360nmとし、10G信号に対して適用する中フィルタの通過波長帯は1260〜1280nmとし、25G信号に対して適用する狭フィルタの通過波長帯は1325〜1335nmとするものとして、以降の説明を行う。
図6は、本発明の実施形態に係るOLT100と複数のONU110との接続構成例を示す模式図である。この例では、伝送速度が1Gの3台のONU#11(110−5)、ONU#12(110−6)、ONU#13(110−10)と、信号伝送速度が10Gの3台のONU#21(110−7)、ONU#22(110−9)、ONU#23(110−13)と、信号伝送速度が25Gの3台のONU#31(110−8)、ONU#32(110−11)、ONU#33(110−12)との計9台のONU110が、OLT100とのファイバ長がそれぞれ1km、10km、20kmとなる位置に設置されている。また、各ONU110には、図の上側から昇順に「1」から「9」までのLLIDが付されているものとする。
<第1実施形態>
第1実施形態では、ディスカバリ処理時等に各ONU110から取得した伝送速度に応じて光アンプ350のゲインと波長フィルタ340の通過波長帯とを変更する方法を説明する。
図7は、第1実施形態に係るOLT100のディスカバリ処理のフローチャートである。OLT100のディスカバリ処理部301は、ディスカバリ処理を開始すると、まず、1GディスカバリでONU1台分の往復遅延時間測定を行う(ステップ490)。図8は、その処理の詳細を示すフローチャートである。具体的には、最初にOLT100から全ONU110へ向けて上り伝送速度が1GのONU(以下、1G−ONUと称する)へのディスカバリ要求である1Gフラグ信号を送信する(ステップ550)。1Gフラグ信号とは、伝送速度が1GのONU110だけが登録要求信号を送信するように指示する信号である。次に、ディスカバリ処理部301は、往復遅延時間を測定するためのカウンタを起動する(ステップ560)。
この1Gフラグ信号を受信した1G−ONUであるファイバ長が1kmのONU#11(110−5)と、ファイバ長が10kmのONU#12(110−6)と、ファイバ長が20kmのONU#13(110−10)との3台は、それぞれOLT100に対して登録要求信号を送信する。このとき、ディスカバリ処理部301は、ファイバ長が最も短く最も早く受信したONU#11(110−5)からの登録要求信号のみを受信し(ステップ570)、往復遅延時間カウンタを停止して(ステップ580)往復遅延時間を確定する(ステップ590)。
図7に戻って、次に、ディスカバリ処理部301は、未割当のLLID(ここでは、1台目であるため、LLIDを「1」とする。)を1つ選んで対象のONU#11(110−5)に付与し、伝送速度「1G」と、登録要求信号から取得したMAC(Media Access Control)アドレスと、測定した往復遅延時間とを、ONUテーブル302に登録する(ステップ500)。
次に、ディスカバリ処理部301は、10GディスカバリでONU1台分の往復遅延時間測定を行う(ステップ510)。具体的には、前記と同様に、OLT100から全ONU110へ向けて10Gフラグ信号を送信し、最も早く受信した上り伝送速度が10GのONU(以下、10G−ONUと称する)であるファイバ長が1kmのONU#21(110−7)からの登録要求信号のみを受信し、当該ONUとの間の往復遅延時間を測定する。次に、ディスカバリ処理部301は、未割当のLLID(ここでは、2台目であるため、LLIDを「2」とする。)を1つ選んで対象のONU#21(110−7)に付与し、伝送速度「10G」と、登録要求信号から取得したMACアドレスと、測定した往復遅延時間とを、ONUテーブル302に登録する(ステップ520)。
次に、ディスカバリ処理部301は、25GディスカバリでONU1台分の往復遅延時間測定を行う(ステップ530)。具体的には、前記と同様に、OLT100から全ONU110へ向けて25Gフラグ信号を送信し、最も早く受信した上り伝送速度が25GのONU(以下、25G−ONUと称する)であるファイバ長が1kmのONU#31(110−8)からの登録要求信号のみを受信し、当該ONUとの間の往復遅延時間を測定する。次に、ディスカバリ処理部301は、未割当のLLID(ここでは、3台目であるため、LLIDを「3」とする。)を1つ選んで対象のONU#31(110−8)に付与し、伝送速度「25G」と、登録要求信号から取得したMACアドレスと、測定した往復遅延時間とを、ONUテーブル302に登録する(ステップ540)。
ディスカバリ処理部301は、同様の処理を、全てのONU110にLLIDが付与されてONUテーブル302に登録されるまで繰り返す。このように、1G、10G、25Gの伝送速度毎に1台ずつファイバ長が短い順番に各ONU110を登録していくことにより、伝送速度の速い10G−ONUや25G−ONUの登録が遅れることを防ぐことができる。図9は、このようにして得られた第1実施形態に係るONUテーブル302の構成及びデータ例600である。
OLT100のグラント生成部260は、データ例600のようなONUテーブル302から各ONU110のLLID、MACアドレス、伝送速度、往復遅延時間を取得することにより、グラント生成時に1G、10G、25Gの信号が連続して受信されるように、各LLIDへのタイムスロットの割り当てを行うことができる。
図10は、DBAによるグラント送信処理の概略フローチャートである。OLT100のグラント生成部260は、上りDBA計算周期を開始すると、各伝送速度のONU110の台数を考慮し、各ONU110へ割り当てる帯域を計算する(ステップ610)。続いて、ONUテーブル302のデータを基に、1G−ONUへのグラント設定(ステップ620)、10G−ONUへのグラント設定(ステップ630)、25G−ONUへのグラント設定(ステップ640)を行う。全てのONU110のグラント(送信許可)を設定後、LLID毎の往復遅延時間補正を行い(ステップ650)、同報配信により全ONU110にグラント送信して(ステップ660)、上りDBA計算の次周期へ移行する。
次に、ONUテーブル302に登録された各ONU110のデータを基に、第1実施形態に係るDBAを実行してグラント設定することで、光アンプ350及び波長フィルタ340の特性の切り替え回数が削減される例について説明する。
図11は、第1実施形態に係るDBAにより光アンプ350及び波長フィルタ340の特性の切り替え回数が削減される例を示す模式図であり、(a)は従来のDBAを用いた場合の比較例の信号送信シーケンス、(b)は本発明に係るDBAを用いた場合の信号送信シーケンスである。ここでは、図6に示したように、1G−ONUが3台、10G−ONUが3台、25G−ONUが3台の計9台が同じOLT100に接続されており、各ONU110には、図の上側から昇順に「1」から「9」までのLLIDが付されているものとする。
従来のDBAでは、LLIDの昇順で各ONUにTDMAのタイムスロットを割り当てるため、図11(a)の信号送信シーケンスに示すように、タイムスロット間で伝送速度が切り替わる毎に光アンプ350のゲイン制御と波長フィルタ340の通過波長帯制御を行うと、ONU#11(110−5)からの1G信号#11の前に10Gから1Gへの1回目の切り替え、ONU#21(110−7)からの10G信号#21の前に1Gから10Gへの2回目の切り替え、ONU#31(110−8)からの25G信号#31の前に10Gから25Gへの3回目の切り替えが必要となるなど、TDMAの制御周期毎に合計で7回の切り替えが発生する。
これに対して、本発明に係るDBAでは、同じ伝送速度のタイムスロットが連続するように順番を入れ替えて割り当てを行うことにより、例えば、最初に1Gの3つのタイムスロットを割り当て、次に10Gの3つのタイムスロットを割り当て、最後に25Gの3つのタイムスロットを割り当てる。これにより、図11(b)の信号送信シーケンスに示すように、タイムスロット間で伝送速度が切り替わるのは、ONU#11(110−5)からの1G信号#11の前と、ONU#21(110−7)からの10G信号#21の前と、ONU#31(110−8)からの25G信号#31の前との3回だけで済むようになる。
図12は、第1実施形態に係るDBAによる1G信号のグラント計算処理のフローチャートである。10G信号や25G信号のグラント計算処理もこれと同様である。OLT100のグラント生成部260が1G信号のグラント計算を開始すると、まず、図9のデータ例600のようなONUテーブル302のデータ中に、伝送速度が1GのLLIDがあるか否かを調べる(ステップ670)。該当するLLIDがない場合には(ステップ670でNo)、計算対象となる1G−ONUが存在しないので、1G信号のグラント計算処理を終了する。該当するLLIDがある場合には(ステップ670でYes)、登録されている最初のLLIDを選択する(ステップ680)。次に、TDMAの制御周期における相対時刻を表す変数「Start」を用意し、光アンプ350の特性変更に要する時間を「a」、波長フィルタ340の特性変更に要する時間を「b」とすると、両方の変更が完了して受信準備が整う時刻、つまり、当該LLIDに対応する1G−ONUからの信号の受信開始時刻として、Startにmax(a,b)を代入し、その値を1つ目のLLIDに割り当てるタイムスロットの開始時刻とする(ステップ690)。
次に、伝送速度が1Gでタイムスロットが未割当のLLIDがあるか否かを調べる(ステップ700)。該当するLLIDがない場合には(ステップ700でNo)、計算対象となる1G−ONUが存在しないので、1G信号のグラント計算処理を終了する。該当するLLIDがある場合には(ステップ700でYes)、タイムスロットが未割当の次のLLIDを選択する(ステップ710)。同一伝送速度の2台目以降のONUについては、光アンプ350及び波長フィルタ340の特性変更は不要であるため、Startには、前Startの値に1つ前のデータ長Lengthと、信号の衝突防止用のガードタイム「d」とを加算した値を代入し、その値を対応するLLIDのタイムスロットの開始時刻とする(ステップ720)。よって最初のLLIDに割り当てた帯域に該当するタイムスロット長を「c1」、2つ目のLLIDに割り当てた帯域に該当するタイムスロット長を「c2」、・・・とすると、2つ目のLLIDに割り当てるタイムスロットの開始時刻は、max(a,b)+c1+dとなり、3つ目のLLIDに割り当てるタイムスロットの開始時刻は、max(a,b)+c1+c2+2dとなる。タイムスロットが未割当の1G−ONUがなくなるまで同様の処理を繰り返し、全ての1G−ONUへの割り当てが終了した後、1G信号のグラント計算を終了する。
図13は、前記の例について生成される第1実施形態に係るグラント計算処理の結果を示すデータ例730である。各LLIDに割り当てられたタイムスロットの開始時刻を示すStartの値は、1台毎にデータ長「c1,c2,・・・」とガードタイム「d」を足し合わせた分ずつ増加していくことがわかる。これらのグラント計算処理の結果は、ONU毎の往復遅延時間に基づく補正が行われた後、全ONU110に同報配信される。
図14は、OLT100による信号受信処理の概略フローチャートである。各ONU110から送信される光信号は、前記のDBAによるグラント計算処理の結果にしたがって、図11の(b)に示した信号送信シーケンスのような順序とタイミングでOLT100に到着する。そこで、OLT100は、上り信号受信の周期処理を開始すると、初めに1G−ONUからの上り信号を受信し(ステップ740)、次に10G−ONUからの上り信号を受信し(ステップ750)、最後に25G−ONUからの上り信号を受信する(ステップ760)。全てのONU110からの受信を完了したのち、上り信号受信の次周期へ移行する。
図15は、第1実施形態に係る1G上り信号の受信処理のフローチャートである。10G上り信号や25G上り信号を受信する処理もこれと同様である。OLT100は、1G上り信号の受信処理を開始すると、グラント計算処理の結果(図13のデータ例730を参照)から伝送速度が1Gの割当LLIDがあるか否かを調べる(ステップ770)。該当するLLIDがない場合には(ステップ770でNo)、受信対象となる1G−ONUが存在しないので、1G上り信号の受信処理を終了する。該当するLLIDがある場合には(ステップ770でYes)、光アンプ350に1G用の利得を、波長フィルタ340に1G用の通過波長帯を設定する(ステップ780)。次に、最初の未受信のLLIDを選択し(ステップ790)、その対象LLIDのStart時刻になるまで待機する(ステップ800でNo)。Start時刻になると(ステップ800でYes)、Start時刻にタイムスロット長であるLength時間を足し合わせた時刻になるまで(ステップ820でNo)、対象LLIDに対応する1G−ONUからのデータ信号を受信する(ステップ810)。当該時刻になると(ステップ820でYes)、伝送速度が1Gで未受信のLLIDがあるか否かを調べる(ステップ830)。該当するLLIDがない場合には(ステップ830でNo)、受信対象となる1G−ONUはないので、1G上り信号の受信処理を終了する。該当するLLIDがある場合には(ステップ830でYes)、ステップ790に戻って次の未受信のLLIDを選択し、LLIDが登録済みの全ての1G−ONUからの信号の受信を終了するまで同様の処理を繰り返し、未受信のLLIDがなくなれば1G上り信号の受信処理を終了する。
<第2実施形態>
第2実施形態では、OLT100に波長検出部310を備え、各ONU110からの送信波長を検出して送信波長の順にタイムスロットを割り当てるとともに、波長フィルタ340の通過波長帯を狭めることにより、ASE雑音を軽減して受信感度を高める方法を説明する。波長検出の方法には、可変波長フィルタを用いる方法とアレイ導波路回折格子(Array Waveguide Grating:以下AWGと称する)を用いる方法とがある。
図16は、可変波長フィルタ880を用いた波長検出部310の構成と動作の説明図である。可変波長フィルタ880は、中心波長を指示するスキャン指示信号にしたがって、通過波長の範囲を所定の波長帯幅(例:10nm)で、短波長側(1260nm)から長波長側(1360nm)へ順次切り替える。可変波長フィルタ880を透過した光信号は、検出回路870が備えるフォトダイオード860で光電変換され、トランスインピーダンスアンプ850(Trans Impedance Amplifier:以下、TIAと称する)で電流から電圧に変換され、この電圧を検出器840が受信光有無を示す検出信号に変換して出力する。各ONU110から登録要求信号(Register Request)が送信されるタイミングで、波長検出部310がこのような波長のスキャニングを行うことにより、OLT100は、波長検出部310から出力される検出信号により、当該ONUの送信波長帯を検出する。なお、検出対象の波長帯範囲をすべてスキャンする際には可変波長フィルタ880の特性を逐次変更する必要があるので、登録要求信号は複数回送信するかまたは信号長を長くする必要がある。
図17は、アレイ導波路回折格子(AWG)を用いた波長検出部310の構成と動作の説明図である。AWGを用いた波長フィルタ890に入力された光信号の各波長成分は、異なる複数の波長範囲に対応するいずれかのPortに振り分けられ、前記と同様な検出回路870によってそれぞれのPortの受信光有無を示す検出信号が出力される。OLT100は、いずれのPortからの検出信号が「受信光有」となっているかを判別することで、当該ONU110の送信波長帯を検出する。この図17に示した検出方法は、各波長範囲の検出回路870が並列に動作するので、図16の検出方法に比べて検出時間を短くすることができる。
図18は、第2実施形態に係るOLT100のディスカバリ処理のフローチャートである。ディスカバリ処理の全体フローチャートは、第1実施形態(図7)とぼぼ同様であるが、1Gディスカバリ、10Gディスカバリ、25GディスカバリでONU1台分の往復遅延時間測定を行うときに(ステップ900、ステップ920、ステップ940)、往復遅延時間とともに送信される波長の測定を行い、測定した波長を含めてONUテーブル302に登録する(ステップ910、ステップ930、ステップ950)。
図19は、第2実施形態に係る1GディスカバリでONU1台分の往復遅延時間及び波長を測定する処理の詳細を示すフローチャートである。この処理は第1実施形態(図8)とほぼ同様であるが、往復遅延時間を確定する処理(ステップ1000)の後に、波長検出部310によって送信波長の測定を行う(ステップ1010)ものとなっている。
図20は、第2実施形態に係るONUテーブル302の構成及びデータ例1020である。図20のデータ例1020は、第1実施形態のデータ例600(図9)に波長欄が追加され、この波長欄には波長検出部310が検出した送信波長帯の中心波長が登録されている。
図21は、第2実施形態に係るDBAを用いた場合に選択される波長フィルタ特性の構成と、信号送信シーケンスの例である。図11(b)に示した第1実施形態に係るDBAでは、1G信号には通過波長帯が1260〜1360nmの広フィルタを用いているが、第2実施形態に係るDBAでは、対象となる1G−ONUからの送信波長に応じて、中フィルタと同程度の通過波長範囲をもつ複数の分割広フィルタのなかの1つを用いることにより、ASE雑音を軽減する。このとき、波長フィルタ340の特性切り替え回数の増大を防ぐために、例えば、送信波長が短い順に各1G−ONUにタイムスロットを割り当て、同じフィルタ特性が適用可能な1G−ONU同士のタイムスロットの間ではフィルタ特性の変更を行わない。したがって、図21の信号送信シーケンスでは、図11(b)の信号送信シーケンスと比較すると、1G信号#12と1G信号13との間に、フィルタ特性のみ変更を行う2回目の切り替えが必要となるが、通過波長帯が広い広フィルタではなく、通過波長帯が中程度の分割広フィルタを用いることができるので、1G信号のASE雑音を第1実施形態よりも軽減することができる。
図22は、第2実施形態に係るDBAによる1G信号のグラント計算処理のフローチャートである。10G信号や25G信号のグラント計算処理もこれと同様である。OLT100のグラント生成部260が1G信号のグラント計算を開始すると、まず、図20のデータ例1020のようなONUテーブル302のデータ中に、伝送速度が1GのLLIDがあるか否かを調べる(ステップ1030)。該当するLLIDがない場合には(ステップ1030でNo)、計算対象となる1G−ONUが存在しないので、1G信号のグラント計算処理を終了する。該当するLLIDがある場合には(ステップ1030でYes)、ONUテーブル302に登録されている最小波長のLLIDを選択する(ステップ1040)。次に、第1実施形態(図12)と同様に、TDMAの制御周期における相対時刻を表す変数「Start」に、光アンプ350の変更時間「a」と、波長フィルタ340の変更時間「b」との最大値であるmax(a,b)を代入し、その値を1つ目のLLIDに割り当てるタイムスロットの開始時刻とする(ステップ1050)。
次に、同じフィルタ特性の通過波長帯(図では波長帯と略記)でタイムスロットが未割当のLLIDがあるか否かを調べる(ステップ1060)。該当するLLIDがない場合には(ステップ1060でNo)、次のフィルタ特性の通過波長帯のLLIDがあるか否かを調べる(ステップ1090)。該当するLLIDがある場合には(ステップ1090でYes)、波長フィルタ340の特性変更が必要なため、Startには、前Startの値に波長フィルタ340の変更時間「b」を加算した値を代入した後(ステップ1110)、ステップ1070に戻る。該当するLLIDがない場合には(ステップ1090でNo)、現在の通過波長帯がフィルタ特性の最後の通過波長帯か否かを調べる(ステップ1100)。最後の通過波長帯であれば(ステップ1100でYes)、計算対象となる次のフィルタ特性が存在しないので、1G信号のグラント計算処理を終了する。最後の通過波長帯でなければ(ステップ1100でNo)、ステップ1090に戻って次のフィルタ特性の通過波長帯について同様な処理を繰り返す。
ステップ1070では、次のタイムスロットが未割当のLLIDを選択した後、Startには、前Startの値に1つ前のデータ長Lengthとガードタイム「d」とを加算した値を代入し、その値を対応するLLIDのタイムスロットの開始時刻とする(ステップ1080)。よって最初のLLIDに割り当てたタイムスロット長を「c1」、2つ目のLLIDに割り当てたタイムスロット長を「c2」、・・・とし、例えば、1つ目のLLIDの波長と2つ目のLLIDの波長とが同じ通過波長帯に含まれるものとすると、2つ目のLLIDに割り当てるタイムスロットの開始時刻は、max(a,b)+c1+dとなる。また、2つ目のLLIDの波長と3つ目のLLIDの波長とが同じ通過波長帯に含まれず、その間でフィルタ特性の切り替えが必要であるものとすると、3つ目のLLIDに割り当てるタイムスロットの開始時刻は、max(a,b)+b+c1+c2+2dとなる。さらに、3つ目のLLIDの波長と4つ目のLLIDの波長とが同じ通過波長帯に含まれ、5つ目のLLIDの波長はその通過波長帯に含まれないものとすると、4つ目のLLIDに割り当てるタイムスロットの開始時刻は、max(a,b)+b+c1+c2+c3+3dとなり、5つ目のLLIDに割り当てるタイムスロットの開始時刻は、max(a,b)+2b+c1+c2+c3+c4+4dとなる。
図23は、前記の例について生成される第2実施形態に係るグラント設定処理の結果を示すデータ例1120である。各LLIDに割り当てられたタイムスロットの開始時刻を示すStartの値は、通過波長帯が同一で同一フィルタ特性が適用されるLLID間では、1台毎にタイムスロット長「c1,c2,・・・」とガードタイム「d」とを足し合わせた分ずつ増加していき、通過波長帯が異なるために別フィルタ特性が適用されるLLID間では、タイムスロット長「c1,c2,・・・」とガードタイム「d」と波長フィルタ340の変更時間「b」とを足し合わせた分だけ増加することがわかる。これらのグラント計算処理の結果は、ONU毎の往復遅延時間に基づく補正が行われた後、全ONU110に同報配信される。
図24は、第2実施形態に係る1G上り信号の受信処理のフローチャートである。10G上り信号や25G上り信号を受信する処理もこれと同様である。OLT100は、1G上り信号の受信処理を開始すると、グラント計算処理の結果(図23のデータ例1120を参照)から伝送速度が1GのLLIDがあるか否かを調べる(ステップ1130)。該当するLLIDがない場合には(ステップ1130でNo)、受信対象となる1G−ONUが存在しないので、1G上り信号の受信処理を終了する。該当するLLIDがある場合には(ステップ1130でYes)、光アンプ350に1G用の利得を、波長フィルタ340に1G用の最初の通過波長帯(図では波長帯と略記)を設定する(ステップ1140)。この1G用の最初の通過波長帯とは、ONUテーブルに登録されている最小波長のLLIDに対応するフィルタ特性の通過波長帯である。
次に、最初の未受信のLLIDを選択し(ステップ1150)、その対象LLIDのStart時刻になるまで待機する(ステップ1160でNo)。Start時刻になると(ステップ1160でYes)、Start時刻にタイムスロット長であるLength時間を足し合わせた時刻になるまで(ステップ1180でNo)、対象LLIDに対応する1G−ONUからのデータ信号を受信する(ステップ1170)。当該時刻になると(ステップ1180でYes)、同じ通過波長帯で未受信のLLIDがあるか否かを調べる(ステップ1190)。該当するLLIDがある場合には(ステップ1190でYes)、ステップ1150に戻って次の未受信のLLIDを選択し、前記の処理を繰り返す。該当するLLIDがない場合には(ステップ1190でNo)、現在の通過波長帯が最後のフィルタ特性の通過波長帯か否かを調べる(ステップ1200)。最後の通過波長帯でなければ(ステップ1200でNo)、波長フィルタ340にフィルタ特性の次の通過波長帯を設定した後(ステップ1210)、ステップ1150に戻って次の通過波長帯について前記の処理を繰り返す。最後の通過波長帯であれば(ステップ1200でYes)、受信対象となる次のフィルタ特性が存在しないので、1G上り信号の受信処理を終了する。
<第3実施形態>
第3実施形態では、各ONU110に使用温度を測定する温度センサを備え、ディスカバリ処理時にONU110からOLT100に対して送信する登録要求信号のなかに温度センサで測定した温度測定値を含めて送信することにより、適用すべき波長フィルタ340のフィルタ特性を決定する方法を説明する。なお、前記した第1実施形態または第2実施形態と同様の処理については説明を省略する。
図25は、第3実施形態に係る1GディスカバリでONU1台分の往復遅延時間を測定しフィルタ特性を選択する処理の詳細を示すフローチャートである。この処理は第1実施形態(図8)とほぼ同様であるが、往復遅延時間を確定する処理(ステップ1260)の後に、登録要求信号内の温度測定値を取り出し(ステップ1270)、図26に例示するような温度−フィルタ特性対応テーブル1290を参照して、当該ONUに適用可能なフィルタ特性を選択する(ステップ1280)。
図26は、温度測定値からフィルタ特性を選択するための温度−フィルタ特性対応テーブルの構成及びデータ例1290と、各フィルタ特性の通過波長帯を示す模式図である。伝送速度が1Gの場合には、波長範囲が1260nmから1360nmまでと規定されており、かつFPレーザが使用されるため、温度によって波長が大きく変動する。そこで、図26の例では、1G信号用のフィルタ特性として「フィルタ1」〜「フィルタ4」の4つを用意しておき、温度がa℃からb℃の場合は通過波長帯が1260〜1300nmの「フィルタ1」を、温度がc℃からd℃の場合は通過波長帯が1280〜1320nmの「フィルタ2」を、温度がe℃からf℃の場合は通過波長帯が1300〜1340nmの「フィルタ3」を、温度がg℃からh℃の場合は通過波長帯が1320〜1360nmの「フィルタ4」を選択可能とする。
同じ温度に対して2つのフィルタ特性が選択可能な場合は、いずれを選択してもよく、第3実施形態に係るDBAを実行するときには、フィルタ特性の切り替え回数が最も少なくなるようにいずれかのフィルタ特性を選択する。なお、伝送速度が10Gまたは25Gの場合には、波長範囲が狭く、温度による波長変動が少ないDFBレーザが使用されるので、図26の例では、全温度において同一のフィルタ特性を使用することとし、例えば、10G信号用のフィルタ特性としては通過波長帯が1260〜1280nmの「フィルタ5」を、25G信号用のフィルタ特性としては通過波長帯が1325〜1335nmの「フィルタ6」を選択するものとしている。
図27は、第3実施形態に係るONUテーブル302の構成及びデータ例1300である。図27のデータ例1300は、第1実施形態のデータ例600(図9)に温度欄とフィルタ番号欄とが追加され、温度欄には各ONU110から通知された温度測定値が登録され、フィルタ番号欄には温度−フィルタ特性対応テーブル(図26のデータ例1290を参照)を参照して選択されたフィルタ特性の識別番号が登録されている。この例では、温度が50℃であるLLIDが「1」の1行目の1G−ONUに対しては、「フィルタ4」だけが選択可能であり、温度が35℃であるLLIDが「4」の4行目の1G−ONUに対しては、「フィルタ3」と「フィルタ4」とが選択可能であり、温度が20℃であるLLIDが「6」の6行目の1G−ONUに対しては、「フィルタ1」と「フィルタ2」とが選択可能となっている。
この場合、第3実施形態に係るDBAによる1G信号のグラント計算処理では、連続してタイムスロットを割り当てる2台の1G−ONUに対して、選択可能な共通のフィルタ番号がONUテーブル302に登録されていれば、当該共通のフィルタ特性を選択することで、フィルタ特性の切り替え回数を少なくする。例えば、図27のデータ例1300の場合には、LLIDが「1」と、LLIDが「4」とに対応するの2台の1G−ONUについてはフィルタ番号「4」が共通となっているので、この両者に連続してタイムスロットを割り当て、それらのタイムスロットの直前に両者に共通する「フィルタ4」の通過波長帯にフィルタ特性を切り替えるようにする。
以上説明したように、これらの実施形態によれば、1G、10G及び他の通信レートが混在するマルチレートPONシステムにおいて、光アンプによるゲイン制御と波長フィルタによる通過波長帯制御とを適切に組み合わせることにより、ASE雑音の影響を軽減できるので、光ファイバ1本当たりの最大分岐数を拡大することや20kmを超える伝送距離を達成することが可能となる。またそれらの制御のためのオーバーヘッドに起因する上り信号のスループット低下を減らすことができる。
以上にて、本発明を実施するための形態の説明を終えるが、本発明の実施の態様はこれに限られるものではなく、本発明の趣旨を逸脱しない範囲において各種の変形が可能である。
1 光アクセス網
10 マルチレートPONシステム
20 PSTN/インターネット
100 局側光回線終端装置(OLT)
110 宅内光回線終端装置(ONU)
120 光スプリッタ
130 幹線光ファイバ
140 支線光ファイバ
150 下り信号
160,170 上り信号
180 電話(加入者端末)
190 PC(加入者端末)
200 網IF
210 パケットバッファ
220 PONフレーム生成部
230 電気/光変換部
240 WDMフィルタ
260 グラント生成部(グラント生成手段)
270 ONU−ID照合部
280 切り替えタイミング生成部(切り替え指示手段)
290 PONフレーム分解部
301 ディスカバリ処理部
302 ONUテーブル(ONU情報記憶手段)
310 波長検出部(波長検出手段)
330 光/電気変換部
340 波長フィルタ
350 光アンプ(光増幅器)
870 検出回路
880 可変波長フィルタ
890 波長フィルタ(AWG)

Claims (10)

  1. 少なくとも1台の局側光回線終端装置(OLT)と、
    光ファイバ及び光スプリッタを介して前記OLTにポイント・ツー・マルチポイント接続され、伝送速度の異なる複数の宅内光回線終端装置(ONU)と、を備え、
    前記OLTは、
    光信号を増幅する利得が可変の光増幅器と、
    増幅された前記光信号のうち通過波長帯以外の波長成分を除去する前記通過波長帯が可変の波長フィルタと、
    前記ONUの伝送速度に応じて、前記光増幅器の前記利得と、前記波長フィルタの前記通過波長帯との切り替えを指示する切り替え指示手段と、
    前記光増幅器の前記利得と前記波長フィルタの前記通過波長帯との切り替えの回数を少なくするように、時分割多重の制御周期毎における前記各ONUからの信号受信順序と、前記切り替えを指示するタイミングとを決定して、前記各ONUに通知する送信許可情報を生成するグラント生成手段と、を有する
    ことを特徴とするマルチレートPONシステム。
  2. 請求項1に記載のマルチレートPONシステムにおいて、
    前記切り替え指示手段は、
    伝送速度が小さいONUから前記光信号を受信する際は、前記光増幅器の前記利得を小さくするとともに前記波長フィルタの前記通過波長帯の幅を広くし、伝送速度が大きいONUから前記光信号を受信する際は、前記光増幅器の前記利得を大きくするとともに前記波長フィルタの前記通過波長帯の幅を狭くする
    ことを特徴とするマルチレートPONシステム。
  3. 請求項2に記載のマルチレートPONシステムにおいて、
    前記OLTは、
    前記ONUの情報を登録しておくためのONU情報記憶手段を有し、
    前記ONUの新規登録を行うときに取得した前記各ONUの伝送速度を前記ONU情報記憶手段に登録しておき、
    前記グラント生成手段は、
    前記ONU情報記憶手段から前記各ONUの伝送速度を取得し、同一の伝送速度のONUからの前記光信号を連続して受信するように前記各ONUからの信号受信順序を決定し、
    前記切り替え指示手段は、それぞれの伝送速度に対応して事前に設定済みの利得及び通過波長帯への切り替えを、前記光増幅器及び前記波長フィルタに指示する
    ことを特徴とするマルチレートPONシステム。
  4. 請求項2に記載のマルチレートPONシステムにおいて、
    前記波長フィルタは、事前に設定された複数の通過波長帯のいずれかに切り替えて増幅された前記光信号のフィルタリングを行うものであり、
    前記OLTは、
    前記ONUの情報を登録しておくためのONU情報記憶手段と、前記光信号の波長が前記複数の通過波長帯のなかのいずれに含まれるかを検出する波長検出手段と、を有し、
    前記ONUの新規登録を行うときに取得した前記各ONUの伝送速度と、前記波長検出手段が前記ONUの新規登録を行うときに前記各ONUから送信される登録要求信号、または、前記各ONUから周期的に送信されるメッセージ信号を用いて検出した、当該ONUから受信する前記光信号の波長が含まれる前記複数の通過波長帯のなかの該当する通過波長帯を前記ONU情報記憶手段に登録しておき、
    前記グラント生成手段は、
    前記ONU情報記憶手段から前記各ONUに対応する伝送速度及び前記通過波長帯を取得し、同一の伝送速度で同一の通過波長帯に属するONUからの前記光信号を連続して受信するように前記各ONUからの信号受信順序を決定し、
    前記切り替え指示手段は、それぞれの伝送速度に対応して事前に設定済みの利得、及び前記複数の通過波長帯のなかの該当する通過波長帯への切り替えを、前記光増幅器及び前記波長フィルタに指示する
    ことを特徴とするマルチレートPONシステム。
  5. 請求項4に記載のマルチレートPONシステムにおいて、
    前記波長検出手段は、前記波長フィルタの通過波長帯を、複数の通過波長帯のいずれかの通過波長帯に順番に切り替えることによって、前記複数の通過波長帯のなかの該当する通過波長帯を検出する
    ことを特徴とするマルチレートPONシステム。
  6. 請求項4に記載のマルチレートPONシステムにおいて、
    前記波長検出手段は、複数の通過波長帯を一括して検出するアレイ型検出器を備え、前記複数の通過波長帯のなかの該当する通過波長帯を一括して検出する
    ことを特徴とするマルチレートPONシステム。
  7. 請求項2に記載のマルチレートPONシステムにおいて、
    前記ONUは、自身の温度を測定する温度センサと、前記温度センサで測定した前記温度の情報を前記OLTに通知する手段と、を有し、
    前記OLTは、
    前記ONUの情報を登録しておくためのONU情報記憶手段と、
    それぞれの伝送速度毎に前記ONUの温度範囲に対して適用すべき前記波長フィルタの特性が事前に登録される変換テーブルと、を有し、
    前記ONUの新規登録を行うときに取得した前記各ONUの伝送速度を前記ONU情報記憶手段に登録しておき、
    前記グラント生成手段は、
    前記ONU情報記憶手段から取得した前記各ONUの伝送速度と、前記ONUから通知された前記温度の情報とに基づいて、前記変換テーブルを参照して当該ONUからの前記光信号の受信に適用する前記波長フィルタの特性を選択し、
    前記切り替え指示手段は、選択された前記波長フィルタの特性に該当する通過波長帯への切り替えを前記波長フィルタに指示する
    ことを特徴とするマルチレートPONシステム。
  8. 請求項7に記載のマルチレートPONシステムにおいて、
    前記ONUから前記OLTに通知される前記温度の情報は、伝送速度が小さい光信号によって送信され、前記OLTは、前記波長フィルタの前記通過波長帯を広くして受信する
    ことを特徴とするマルチレートPONシステム。
  9. 請求項1から請求項8のいずれか一項に記載のマルチレートPONシステムに備えられ、
    光信号を増幅する利得が可変の光増幅器と、
    増幅された前記光信号のうち通過波長帯以外の波長成分を除去する前記通過波長帯が可変の波長フィルタと、を有する
    ことを特徴とする局側光回線終端装置(OLT)。
  10. 請求項7または請求項8に記載のマルチレートPONシステムに備えられ、
    自身の温度を測定する温度センサと、
    前記温度センサで測定した前記温度の情報を前記OLTに通知する手段と、を有する
    ことを特徴とする宅内光回線終端装置(ONU)。
JP2012129434A 2012-06-07 2012-06-07 マルチレートponシステム、その局側及び宅内光回線終端装置 Pending JP2013255086A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012129434A JP2013255086A (ja) 2012-06-07 2012-06-07 マルチレートponシステム、その局側及び宅内光回線終端装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012129434A JP2013255086A (ja) 2012-06-07 2012-06-07 マルチレートponシステム、その局側及び宅内光回線終端装置

Publications (1)

Publication Number Publication Date
JP2013255086A true JP2013255086A (ja) 2013-12-19

Family

ID=49952266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012129434A Pending JP2013255086A (ja) 2012-06-07 2012-06-07 マルチレートponシステム、その局側及び宅内光回線終端装置

Country Status (1)

Country Link
JP (1) JP2013255086A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104185095A (zh) * 2014-07-09 2014-12-03 山东大学 基于光纤无线融合组网结构下的光学虚拟专用网ovpn系统及其运行方法
JP2015231221A (ja) * 2014-06-06 2015-12-21 Kddi株式会社 局側光終端装置及び加入者側光終端装置
JP2016134692A (ja) * 2015-01-16 2016-07-25 Kddi株式会社 光通信システム、および光通信方法
JP2018026746A (ja) * 2016-08-12 2018-02-15 三菱電機株式会社 加入者線終端装置、制御方法及び光通信システム
JP2020513102A (ja) * 2017-03-23 2020-04-30 ケーブイエイチ インダストリーズ インク 一体型光学式波長計および光ファイバ・ジャイロスコープのスケール・ファクタ安定化方法
WO2021001868A1 (ja) * 2019-07-01 2021-01-07 日本電信電話株式会社 光受信装置、光伝送システム、光伝送方法及びコンピュータプログラム
US11353655B2 (en) 2019-05-22 2022-06-07 Kvh Industries, Inc. Integrated optical polarizer and method of making same
US11415419B2 (en) 2018-10-11 2022-08-16 Kvh Industries, Inc. Polarizer implemented in a photonic integrated circuit for use in a fiber optic gyroscope
JP7477195B2 (ja) 2022-05-20 2024-05-01 Necプラットフォームズ株式会社 通信装置、通信装置の制御方法、及び、プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295507A (ja) * 2006-03-31 2007-11-08 Furukawa Electric Co Ltd:The 光伝送システム及び光中継装置
JP2008092468A (ja) * 2006-10-04 2008-04-17 Sumitomo Electric Ind Ltd マルチレート光通信用受信回路及び光通信装置
JP2008270898A (ja) * 2007-04-16 2008-11-06 Sumitomo Electric Ind Ltd 光加入者線端局装置
JP2010154404A (ja) * 2008-12-26 2010-07-08 Furukawa Electric Co Ltd:The 加入者宅側光回線終端装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295507A (ja) * 2006-03-31 2007-11-08 Furukawa Electric Co Ltd:The 光伝送システム及び光中継装置
JP2008092468A (ja) * 2006-10-04 2008-04-17 Sumitomo Electric Ind Ltd マルチレート光通信用受信回路及び光通信装置
JP2008270898A (ja) * 2007-04-16 2008-11-06 Sumitomo Electric Ind Ltd 光加入者線端局装置
JP2010154404A (ja) * 2008-12-26 2010-07-08 Furukawa Electric Co Ltd:The 加入者宅側光回線終端装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015231221A (ja) * 2014-06-06 2015-12-21 Kddi株式会社 局側光終端装置及び加入者側光終端装置
CN104185095B (zh) * 2014-07-09 2017-12-05 山东大学 基于光纤无线融合组网结构下的光学虚拟专用网ovpn系统及其运行方法
CN104185095A (zh) * 2014-07-09 2014-12-03 山东大学 基于光纤无线融合组网结构下的光学虚拟专用网ovpn系统及其运行方法
JP2016134692A (ja) * 2015-01-16 2016-07-25 Kddi株式会社 光通信システム、および光通信方法
JP2018026746A (ja) * 2016-08-12 2018-02-15 三菱電機株式会社 加入者線終端装置、制御方法及び光通信システム
US11320267B2 (en) 2017-03-23 2022-05-03 Kvh Industries, Inc. Integrated optic wavemeter and method for fiber optic gyroscopes scale factor stabilization
JP2020513102A (ja) * 2017-03-23 2020-04-30 ケーブイエイチ インダストリーズ インク 一体型光学式波長計および光ファイバ・ジャイロスコープのスケール・ファクタ安定化方法
US11415419B2 (en) 2018-10-11 2022-08-16 Kvh Industries, Inc. Polarizer implemented in a photonic integrated circuit for use in a fiber optic gyroscope
US11353655B2 (en) 2019-05-22 2022-06-07 Kvh Industries, Inc. Integrated optical polarizer and method of making same
JPWO2021001868A1 (ja) * 2019-07-01 2021-01-07
WO2021001868A1 (ja) * 2019-07-01 2021-01-07 日本電信電話株式会社 光受信装置、光伝送システム、光伝送方法及びコンピュータプログラム
US11652554B2 (en) 2019-07-01 2023-05-16 Nippon Telegraph And Telephone Corporation Optical receiving apparatus, optical transmission system, optical transmission method and computer program
JP7311805B2 (ja) 2019-07-01 2023-07-20 日本電信電話株式会社 光受信装置、光伝送システム、光伝送方法及びコンピュータプログラム
JP7477195B2 (ja) 2022-05-20 2024-05-01 Necプラットフォームズ株式会社 通信装置、通信装置の制御方法、及び、プログラム

Similar Documents

Publication Publication Date Title
JP2013255086A (ja) マルチレートponシステム、その局側及び宅内光回線終端装置
JP5097641B2 (ja) 受動光網システム、光多重終端装置及び光網終端装置
JP5286155B2 (ja) 受動光網システムおよびその親局装置
US9967033B2 (en) Flexible TWDM PON with load balancing and power saving
JP5114268B2 (ja) 受動光網システムおよびその運用方法
JP5564393B2 (ja) 受動光網システム
JP4820880B2 (ja) 局側終端装置
JP5314760B2 (ja) 光多重終端装置、波長多重受動光網システム、下り波長送信方法
JP5402556B2 (ja) データ伝送システム,端局装置およびデータ伝送方法
JP5600585B2 (ja) 光アンプを備えたバースト受信機,光アンプ制御方法、および、システム
JP5216656B2 (ja) 受動光網システムおよびその運用方法
KR20130095314A (ko) 수동 광 네트워크를 위한 멀티플렉스 변환
JP2011517865A (ja) 受動光回線網の遠隔プロトコル端局装置
JP2006165953A (ja) 光通信システム
JP2008193271A (ja) 受動光網システムおよびその運用方法
CN101478701A (zh) 上行数据传输的控制方法及装置
JP2016163253A (ja) データ受信装置
US9584249B2 (en) Station-side terminal apparatus, optical access network, and communication method
JP4429988B2 (ja) 受動光網システムの局側通信装置及び上りバースト光信号送信タイミング制御方法
JP5487292B2 (ja) 受動光網システムおよびその運用方法
JP4893589B2 (ja) Ponシステムの局側装置及びフレーム処理方法
JP5411805B2 (ja) 受動光網システム及び送信光制御方法、光多重終端装置及び光網終端装置
JP5487293B2 (ja) 受動光網システムおよびその運用方法
JP2019009500A (ja) 中継ノード装置、ponシステム、およびネットワークシステム
Bianco et al. WONDER: a PON over a folded bus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150428