以下に添付図面を参照して、この発明にかかる画像形成装置および画像形成方法の最良な実施の形態を詳細に説明する。以下の実施の形態においては、本発明における機器を、コピー機能、プリンタ機能、スキャナ機能、およびファクシミリ機能のうち少なくとも2つの機能を有する複合機(MFP:Multi Function Peripherals)に適用した例を示すが、これに限定されない。
(実施の形態1)
図1は、実施の形態1の画像形成装置の機械的構成を示す模式図である。図1に示すように、実施の形態1の画像形成装置100は、VCSEL200(図2、図3参照)、ポリゴンミラー102aなどの光学要素を含む光学装置102と、感光体ドラム、帯電装置、現像装置などを含む画像形成部112と、中間転写ベルトなどを含む転写部122を主に備える。光学装置102は、半導体レーザとしてVCSEL200を含んで構成される。図1に示すように、VCSEL200(図1では不図示)から照射された光ビームは、一旦、第1シリンドリカルレンズ(不図示)により集光され、ポリゴンミラー102aにより、反射ミラー102bへと偏向される。
ここで、VCSEL(VERTICAL CAVITY SURFACE EMITTING LASER)200とは、同一チップ上に複数の光源(半導体レーザ)を格子状に配置した面発光型半導体レーザである。このようなVCSEL200を使用した画像形成装置としては様々な技術が知られており、本実施の形態の画像形成装置100の光学装置102には、これらの公知技術と同様の構成で、VCSEL200が組み込まれている。図2は、本実施の形態の光学装置102に組み込まれたVICSEL200の構成図である。本実施の形態のVCSEL200は、図2に示すように、格子状に複数の光源1001(複数の半導体レーザ)が格子状に配置された半導体レーザアレイを構成している。そして、複数の光源1001の配列方向が偏向器としてのポリゴンミラー102aの回転軸に対して所定の角度θで傾斜して設けられている。
図2では、光源の縦配列方向をa〜c、横配列方向を1〜4とし、例えば、図2の左上の光源1001をa1のように表記する。光源1001がポリゴンミラー角度θをもって配置されていることにより、光源a1と光源a2とは異なる走査位置を露光し、この2光源により1つの画素(1画素)を構成する場合、すなわち、図2において、2光源で1画素を実現する場合を考える。例えば2光源a1,a2で1画素、2光源a3,a4で1画素を構成していくとすると、図中の光源によって図2右端に示すような画素が形成される。図の縦方向を副走査方向としたとき、2光源により構成される画素の中心間距離が600dpi相当であるとする。このとき、1画素を構成する2光源の中心間隔は1200dpi相当となり、画素密度に対して光源密度が2倍となっている。よって1画素を構成する光源の光量比を変えることで、画素の重心位置を副走査方向にずらすことが可能となり、高精度な画像形成が実現できる。
画像形成装置100は、fθレンズを使用しないポストオブジェクト型の光学装置102を構成する。光ビームLは、図示した実施形態ではシアン(C)、マゼンタ(M)、イエロー(Y)、ブラック(K)の各色に対応した数発生されていて、反射ミラー102bで反射され、第2シリンドリカルレンズ102cで再度集光された後に感光体ドラム104a、106a、108a、110aを露光している。
光ビームLの照射は、上述したように複数の光学要素を使用して行われるため、主走査方向および副走査方向に関して、タイミング同期が行われている。なお、以下、主走査方向を、光ビームの走査方向として定義し、副走査方向を、主走査方向に対して直交する方向として定義する。
感光体ドラム104a、106a、108a、110aは、アルミニウムなどの導電性ドラム上に、少なくとも電荷発生層と、電荷輸送層とを含む光導電層を備えている。光導電層は、それぞれ感光体ドラム104a、106a、108a、110aに対応して配設され、コロトロン、スコロトロン、または帯電ローラなどを含んで構成される帯電器104b、106b、108b、110bにより表面電荷が付与される。
各帯電器104b、106b、108b、110bにより感光体ドラム104a、106a、108a、110a上に付与された静電荷は、光ビームLにより像状露光され、静電潜像が形成される。感光体ドラム104a、106a、108a、110a上に形成された静電潜像は、現像スリーブ、現像剤供給ローラ、規制ブレードなどを含む現像器104c、106c、108c、110cにより現像され、現像剤像が形成される。
感光体ドラム104a、106a、108a、110a上に担持された現像剤は、搬送ローラ114a、114b、114cにより矢線Aの方向に移動する中間転写ベルト114上に転写される。中間転写ベルト114は、C、M、Y、Kの現像剤を担持した状態で2次転写部へと搬送される。2次転写部は、2次転写ベルト118と、搬送ローラ118a、118bと含んで構成される。2次転写ベルト118は、搬送ローラ118a、118bにより矢線Bの方向に搬送される。2次転写部には、給紙カセットなどの受像材収容部128から上質紙、プラスチックシートなどの受像材124が搬送ローラ126により供給される。
2次転写部は、2次転写バイアスを印加して、中間転写ベルト114上に担持された多色現像剤像を、2次転写ベルト118上に吸着保持された受像材124に転写する。受像材124は、2次転写ベルト118の搬送と共に定着装置120へと供給される。定着装置120は、シリコーンゴム、フッソゴムなどを含む定着ローラなどの定着部材130を含んで構成されていて、受像材124と多色現像剤像とを加圧加熱し、印刷物132として画像形成装置100の外部へと出力する。多色現像剤像を転写した後の転写ベルト114は、クリーニングブレードを含むクリーニング部116により転写残現像剤が除去された後、次の像形成プロセスへと供給される。
図3は、VCSEL200を含む光学装置102が感光体ドラム104aを露光する場合の概略的な斜視図を示す。VCSEL200から射出された光ビームLは、光ビーム束を整形するために使用される第1シリンドリカルレンズ202により集光され、反射ミラー204および結像レンズ206を経た後、ポリゴンミラー102aにより偏向される。ポリゴンミラー102aは、数千〜数万回転するスピンドルモータなどにより回転駆動されている。ポリゴンミラー102aで反射された光ビームLは、反射ミラー102bで反射された後、第2シリンドリカルレンズ102cにより再整形され、感光体ドラム104a上を露光する。
また、光ビームLの副走査方向への走査開始タイミングを同期するため、反射ミラー208が配置されている。反射ミラー208は、副走査方向の走査を開始する以前で、光ビームLを、フォトダイオードなどを含む同期検出装置210へと反射させる。同期検出装置210は、当該光ビームを検出すると、副走査を開始させるために同期信号を発生させ、VCSEL200への駆動制御信号の生成処理などの処理を同期する。
VCSEL200は、後述するGAVD310から送付されるパルス信号により駆動され、後述するように、画像データの所定の画像ビットに対応する位置に光ビームLが露光され、感光体ドラム104a上に静電潜像を形成する。
図4は、本画像形成装置100の制御ユニット300の概略的な機能ブロック図を示す。制御ユニット300は、スキャナ部302と、プリンタ部308と、主制御部330として構成されている。スキャナ部302は、画像を読み取る手段として機能しており、スキャナが読み取った信号をA/D変換して黒オフセット補正、シェーディング補正、画素位置補正を行うVPU304と、主に取得された画像を、RGB表色系からCMYK表色系での画像データとしてディジタル変換するための画像処理を行うIPU306とを含んで構成されている。スキャナ部302が取得した読み取り画像は、ディジタルデータとしてプリンタ部308へと送られる。
プリンタ部308は、VCSEL200の駆動制御を行う制御手段として機能するGAVD310と、GAVD310が生成した駆動制御信号により半導体レーザ素子を駆動させるための電流を、半導体レーザ素子に供するLDドライバ312と、2次元的に配置された半導体レーザ素子を実装するVCSEL200とを含んで構成される。本実施形態のGAVD310は、スキャナ部302から送られた画像データについて、画素データにVCSEL200の射出する半導体レーザ素子の空間的なサイズに対応するように画素データを分割して高解像度化処理を実行する。
また、スキャナ部302とプリンタ部308は、システムバス316を介して主制御部330と接続されていて、主制御部330の指令により、画像読み取りおよび画像形成が制御されている。主制御部330は、中央処理装置(以下、CPUとして参照する。)320と、CPU320が処理のために使用する処理空間を提供するRAM322とを含んでいる。CPU320は、これまで知られたいかなるCPUでも使用することができ、例えば、PENTIUM(登録商標)シリーズ、またはその互換CPUなどCISC(Complex Instruction Set Computer)、MIPSなどのRISC(Reduced Instruction Set Computer)などを使用することができる。CPU320は、インタフェース328を介してユーザからの指令を受け付け、指令に対応する処理を実行するプログラムモジュールを呼び出して、コピー、ファクシミリ、スキャナ、イメージストレージなどの処理を実行させる。さらに、主制御部330は、ROM324を含んでおり、CPU320の初期設定データ、制御データ、プログラムなどをCPU320が利用可能に格納する。イメージストレージ326は、ハードディスク装置、SDカード、USBメモリなどの固定または着脱自在のメモリ装置として構成され、画像形成装置100が取得した画像データを、格納して、ユーザによる各種処理のために利用可能としている。
スキャナ部302が取得した画像データについてプリンタ部308を駆動して感光体ドラム104aなどに静電潜像として画像を出力する場合、CPU320は、上質紙、プラスチックフィルムなどの受像材の主走査方向制御および副走査位置制御を実行する。CPU320は、副走査方向のスキャンを開始させる場合、GAVD310にスタート信号を出力する。GAVD310は、スタート信号を受領すると、IPU306がスキャン処理を開始する。その後、GAVD310は、バッファメモリなどに格納した画像データを受信し、その後、その受信した画像データを処理し、処理した画像データをLDドライバ312に出力する。LDドライバ312は、GAVD310から画像データを受け取ると、VCSEL200の駆動制御信号を生成する。その後、LDドライバ312は、この駆動制御信号をVCSEL200に送出することにより、VCSEL200を点灯させる。なお、LDドライバ312は、半導体レーザ素子を、PWM制御などを使用して駆動させる。本実施形態で説明するVCSEL200は、半導体レーザ素子を8ch備えるが、VCSEL200のチャネル数は限定されるものではない。
図5は、GAVD310のより詳細な機能ブロックを示す。GAVD310は、同期信号を受信して、IPU306から送付される画像データを格納して記憶するFIFOバッファなどのメモリ340を備えていて、IPU306から送信された画像データを先入れ/先出し方式で画像処理部342に渡している。画像処理部342は、メモリ340から画像データを読み込んで、画像データの解像度変換、半導体レーザ素子チャネルの割当て、および画像ビット(すなわち、画像データを変倍するための補正画素)の追加・削除の処理(すなわち、画像データの補正処理)を実行する。画像データは、主走査方向に規定される主走査ラインアドレス値および副走査方向に規定される副走査ラインアドレス値により、感光体ドラム104aに対して露光される位置が規定されている。以下、本実施形態では、アドレス座標とは、画像データを主走査ラインアドレス値(Rアドレス値)および副走査ラインアドレス値(Fアドレス値)で指定した場合の特定の画像ビットを与える各アドレス値のセットとして定義する。なお、これらのアドレス値は、後述するように、アドレス生成部354によって決定される。また、これらのアドレス座標は、主走査方向および副走査方向のラインに並んだ画素(すなわち画素列)ごとに定められている。そして、画像パスセレクタ358(後述)は、この画素列毎に、後述するアドレス生成部354によってRアドレス値およびFアドレス値で指定された座標のアドレス(すなわち、画素位置)に位置する画素に対して、画素ビットを挿入する等の補正処理を行う。
出力データ制御部344は、画像処理部342が生成した画像データに対応する書き込み信号とされる出力データを、Fアドレス値および副走査速度から時系列的な駆動パルスに変換し、さらに同期検出装置210に対して同期信号を与えるための同期制御信号を追加して生成する。生成された駆動制御信号は、LDドライバ312に伝送され、VCSEL(図示せず)を駆動する。また、出力データ制御部344には、同期検出装置210からの同期信号が入力され、LDドライバ312への駆動制御信号の伝送を同期させている。なお、メモリ340、画像処理部342、出力データ制御部344の処理は、PLL346により動作クロックに同期している。
図6は、画像処理部342aの機能ブロック図を示す。画像処理部342aは、図6に示すように、解像度変換部350aと、副走査変倍制御部352aとを主に備えている。
解像度変換部350aは、メモリ340から取得した画像データについて単位画素を、VCSEL200のチャネル数およびサイズに対応して分割して分割画素を作成する。その後、分割画素に対して当該画素の照射を行うレーザ素子チャネルの割当てを行う。また、解像度変換部350aは、高解像度化を行う場合、2n倍密度処理(nは、正の整数)または2nライン化処理を選択し、レーザ素子チャネルの駆動割当てを決定する。ここでは、解像度変換部350aは、入力画像1200dpi、出力解像度4800dpiの8chVCSELによる複数ライン同時書込みを決定する。
解像度変換部350は、入力された画像データ(以下、入力データという。)を、入力画像の解像度(以下、入力解像度という。)よりも高い解像度を(以下、出力解像度という。)に変換する。図7は、解像度変換部350による高解像度化処理を説明するための模式図である。図7に示すように、解像度変換部350は、左側に示す入力データD0[1:0]を、入力データの濃度に応じて右側に示す出力データDc0[3:0]〜Dc3[3:0]のいずれかに変換する。ここでは、解像度変換部350は、入力解像度1200dpiのD0[1:0]を、出力解像度4800dpiのDc0[3:0]〜Dc3[3:0]に変換する。解像度変換部350は、他のD1[1:0]〜D5[1:0]についても同様に処理する。例えば、解像度変換部350は、D1[1:0]を、Dc4[3:0]〜Dc7[3:0]に変換する。
解像度変換部350aは、入力データからVCSEL200に点灯させるデータを決定する。例えば、D0[1:0]からD5[1:0]の6ラインを入力データとした場合、D2[1:0]とD3[1:0]を注目ライン、その他を参照用ラインとする。解像度変換部350aは、VCSEL200に点灯させるデータを、後述する副走査変倍処理におけるシフト動作が行われない場合は、注目ラインのデータとし、副走査変倍処理におけるシフト動作が行われる場合は、参照用画像データとする。
副走査変倍制御部352aは、アドレス生成部354と、濃度決定部355aと、メモリ356と、画像パスセレクタ358とを主に備える。
アドレス生成部354は、像拡大処理において画像データに画像ビットが追加される追加アドレス値を決定する。なお、アドレス生成部354は、本発明の位置決定部に相当する。
メモリ356は、画像ビットのシフト量を格納し、後述する画像パスセレクタ358による変倍処理において使用される変倍指令信号をカウントし保持する。また、メモリ356は、濃度データを保持する。ここで、濃度データとは、参照画像の画素濃度と、変換後の画像データにおける追加画素のずれ量と、追加画素の濃度を対応付けたデータのことである。
図8は、実施の形態1の濃度データの一例を示す図である。図8に示すように、濃度データは、参照画像の画素濃度と、変換後の画像データにおける追加画素の副走査方向におけるずれ量(以下、位相という。)と、追加画素の濃度とを対応付けている。追加アドレス値に対応する参照画像の画素アドレスは、濃度データに予め対応付けられていても良いし、計算により求めても良い。例えば、計算により求める場合としては、アドレス生成部354により決定されたFアドレスは4800dpiなので、入力解像度が1200dpi単位のFアドレスは、Fアドレス(1200)=Fアドレス/4となる。なお、図9に示す濃度データにおいて予め決められる追加画素の濃度は、図7に示した解像度変換により対応する画素の濃度と同一の濃度として決められてもよいし、異なる濃度が決められても良い。
また、1200dpi画素における副走査方向の位相は、Phase=Fアドレス%4となる。なお、%は剰余を表す。なお、本実施の形態では追加画素の濃度を決定に際し位相を考慮するが、位相を考慮せず、追加アドレス値に対応する参照画像の画素の濃度だけに基づいて追加画素の濃度を決定することとしてもよい。
濃度決定部355aは、追加アドレス値と、追加アドレス値に対応する参照画像の画素濃度から追加画素の濃度を決定する。ここで、参照画像とは、副走査変倍制御部352aによる変換前の、すなわち入力解像度の画像データである。また、追加画素とは、追加アドレス値に追加される画素のことである。
例えば、濃度決定部355aは、図8に示す濃度データから、アドレス生成部354により決定された追加アドレス値に対応する参照画像の画素濃度を特定し、対応する追加画素の濃度を取得する。なお、濃度決定部355aは、追加アドレス値に対応する参照画像の画素濃度を特定する際、追加アドレス値と追加アドレス値の周辺の画素(以下、周辺の画素という。)に対応する参照画像の画素濃度を特定することとしてもよい。また、周辺の画素としては、追加アドレス値に隣接する画素だけとしてもよいし、追加アドレス値を基準としてRアドレス値、Fアドレス値ともに2〜3列周辺の画素としてもよい。
具体的には、濃度決定部355aは、追加アドレス値と、追加アドレス値に対応する参照画像の画素濃度から追加画素の濃度を決定する。例えば、濃度決定部355aは、追加アドレス値に対応する参照画像の画素濃度と同一の濃度を追加画素の濃度と決定する。
画像パスセレクタ358は、解像度変換部350aで変換された画像データを変倍する。具体的には、画像パスセレクタ358は、アドレス生成部354から、決定された追加アドレス値(Fアドレス値およびRアドレス値)を取得する。また、画像パスセレクタ358は、処理対象となっているアドレス値が追加アドレス値を含むか否かを判断する。例えば、画像パスセレクタ358は、追加アドレス値を含む場合は、追加フラグなどの変倍指令信号を生成し、メモリ356に渡す。
画像パスセレクタ358は、処理対象となっているアドレス値が追加アドレス値を含むと判断した場合、すなわち変倍指令信号が設定されている場合、濃度決定部355aにより決定された濃度の追加画素を追加アドレス値に追加し、以後の画像データを1ビット分ずつシフトさせる。
一方、画像パスセレクタ358は、処理対象となっているアドレス値が追加アドレス値を含まないと判断した場合、すなわち変倍指令信号が設定されていない場合は、メモリ356からのシフト量を元に、解像度変換部350aからの入力データを選択し、出力する。なお、本実施形態で、半導体レーザとして8chVCSEL200が使用される場合、追加・削除する位置を示す信号およびシフト量を示す信号は8ch分割り当てられ(Ch0〜ch7)、VCSEL200の駆動のために使用される。なお、画像ビットの追加・削除の計は、画像処理部342の適切な機能部であれば、専用モジュールとして構成することができるし、他のモジュールの一部として構成することもできる。尚、変倍命令信号をカウントする構成としたのは、画像ビットをシフトさせる場合に、例えば、1走査目に画像ビットを追加した後、2走査目の最初に画像ビットを追加する位置を特定するためである。
次に、画像パスセレクタ358の動作について説明する。図9−1、9−2は、画像パスセレクタ358の動作を示す説明図である。図9−1、9−2の注目データ602は、1画素分のビット値を示しており、1画素分のデータは、8ch分の副座標で示されている。特定の主走査の座標位置に割り当てられたビットデータである。入力データ600としては、注目データ602と、副走査変倍用のシフト単位を指定する変倍用データとが常に前段のメモリ340から読み出されており、全ライン同じ処理がなされて解像度変換部350に入力されている。図9−1に示す未変倍時には、変倍指令信号が設定されていないので、シフト保持用メモリ356からのシフト量(shift)=0とされ、図9−1に示すように、注目データ602の画像データを、この実施形態の場合の書き込み信号とされる出力データ604として渡す。
次に、図9−2を使用して変倍指令信号が設定されている場合の動作を説明する。図9−2では、1走査目(A)において、注目データ602の副座標1に白が追加された場合を示している。Ch1に対応したアドレス値で、画像ビットの追加を示す信号が設定され、Ch1のビットデータを白画素に対応させるように置換して出力データ606のCh1にデータとして設定する。そして、Ch1に対応した追加に対応するカウント値1がメモリ356に登録される。
Ch2〜Ch7のデータについては、出力データ606の副座標の値としてチャネルシフト量−1とした副座標値にシフトさせる。このとき画像パスセレクタ358は、出力データ606のCh2〜Ch7に対しチャネルシフト量−1に相当するチャネルの注目データのビットデータを割当てることにより、画像ビットの追加を行うことができる。出力データ606は、白に対応する画像ビットが注目データに対して追加されており、書き込み信号として使用される、出力データ制御部344は、書き込み信号を時系列的に変換してVCSEL200の駆動パルスを生成し、画像形成が行われる。上述した処理は、主走査単位で行われ、主走査方向の次の画素についてのデータが順次、メモリ340から読み込まれ、主走査方向について画像形成が行われる。
上述したように、1走査目(A)において白画素を追加して出力データ606のCh1〜Ch7の副座標値がシフトしたことによって、2走査目(B)では、図9−2に示すように、白画素を追加しない場合であっても、出力データ606のCh8〜Ch15の副座標値が−1ずつシフトし、さらに3走査目(C)において1走査目と同様に白画素を追加する場合には、図9−2に示すように、出力データ606のCh16〜Ch23の副座標値は、−2ずつシフトすることとなる。
次に、以上のように構成された画像形成処理部342aによる追加画素濃度決定処理の手順について説明する。図10は、画像形成処理部342aによる追加画素濃度決定処理の手順を示すフローチャートである。
解像度変換部350は、メモリ340から画像データを入力データとして取得する(ステップS1)。解像度変換部350は、取得した入力データの解像度を変換する(ステップS2)。ここで、解像度変換部350は、変換後の出力解像度は、変換前の入力解像度よりも高い解像度に変換する。アドレス生成部354は、Rアドレス値を設定する(ステップS3)。アドレス生成部354は、Rアドレス値からFアドレス値を計算し、Fアドレス値を決定する(ステップS4)。例えば、アドレス生成部354は、Fアドレス値を画像処理部342で使用される変倍方式によりRアドレス値を使用して計算する。
次に、濃度決定部355は、決定されたFアドレス値に対応する参照画像からFアドレス値に追加する追加画素の濃度を決定する(ステップS5)。画像パスセレクタ358は、濃度決定部355により決定された濃度の追加画素をFアドレスに追加し、画像データを変倍する(ステップS6)。
次に、画像パスセレクタ358は、処理対象のFアドレス値のビットデータを読み出して、出力データ制御部344に転送する(ステップS7)。出力データ制御部344は、画素位置に対応するタイミングのパルス信号を生成し、LDドライバ312に送り、半導体レーザ素子を駆動させる。
そして、画像パスセレクタ358は、1200dpiで割り当てたデフォルトのFアドレス範囲の画素データの転送が終了したか否かをFアドレス値の比較または終了キャラクタビットの受領により判断し(ステップS8)、副走査範囲の走査が終了したと判断した場合(ステップS8:Yes)、アドレス生成部354は、次のRアドレス値を設定する(ステップS9)。その後、画像パスセレクタ358は、主走査範囲の走査が終了したか否かを判断する(ステップS10)。画像パスセレクタ358が主走査方向の走査範囲が終了していないと判断した場合(ステップS10:No)、処理をステップS4に分岐させて、ステップS4からS10までの処理を繰り返す。
一方、ステップS8で、画像パスセレクタ358は、副走査範囲の走査が終了していないと判断した場合(ステップS8:No)、ステップS4に分岐させ、走査範囲のFアドレス値が終了するまで、ステップS4からS8までの処理を繰り返す。画像パスセレクタ358は、ステップS10で最終的に処理するべきアドレス範囲が終了したと判断した場合(ステップS10:Yes)、処理を終了する。
図11は、スキャナ部302により読み取られた元画像データと、従来の変倍処理により拡大された画像データと、本実施の形態における変倍処理により拡大された画像データの一例を示す図である。図11の上段に示すように、従来の変倍処理においては、元画像データに追加画素aの濃度を一律白画素として追加し元画像データを拡大していた。このため、従来の変倍処理では、例えば、黒線中に白画素が追加されると濃度の低下などによりバンディングとして見える場合がある。一方、図11の下段は、本実施の形態における変倍処理により拡大された画像データを示す。図11に示すように、本実施の形態における変倍処理は、追加画素aの濃度を追加アドレス値の濃度に基づいて決定し追加する。例えば、黒画素中は、黒を、中間調中に中間調を、白データ中は白を追加することとなりバンディングが目立ちにくくなる。つまり、本実施の形態によれば、従来の変倍処理により拡大された画像データと比較して、バンディングが顕著に少なく、高品質な画像となっている。
このように、本実施の形態によれば、追加アドレス値の画素の濃度に基づいて追加画素の濃度を決定するので、大域的な画像劣化を生じさせることなく、両面対応を考えた場合の高速印刷および高精細な画像形成を実現するとともに、バンディングの発生を防止することができる。
(実施の形態2)
実施の形態1では、濃度決定部355aは、追加アドレス値または追加アドレス値と周辺の画素の濃度に基づいて追加画素の濃度を決定した。これに対し、実施の形態2では、追加画素の濃度は、追加アドレス値と周辺の画素の濃度の平均値に基づいて決定される。
図12は、実施の形態2にかかる画像処理部342bの機能ブロック図を示す。画像処理部342bは、図12に示すように、解像度変換部350bと、副走査変倍制御部352bとを主に備えている。そして、副走査変倍制御部352bは、アドレス生成部354と、濃度決定部355bと、平均化部357と、メモリ356bと、画像パスセレクタ358とを主に備える。ここで、濃度決定部355bと、メモリ356の機能および構成について説明する。なお、濃度決定部355bと、平均化部357以外の各部の構成および機能については実施の形態1と同様である。
平均化部357は、メモリ340から入力データ(参照画像)を取得し、変換対象の画素と周辺の画素の濃度の平均値を算出する。平均化部357は上記平均値算出処理を全画素について行う。
なお、平均化部357は、周辺の画素の濃度を取得するために、実施の形態1で解像度変換部350aが取得した入力データよりも多い入力データを取得する。例えば、副走査先端側、後端側ともに1ライン以上ずつ余分にデータを取得する。例えば、平均化部357は、図7に示した入力データよりも多いD6[1:0]と、D7[1:0]を取得する。つまり、D0とD7は参照データとして取得する。なお、解像度変換部350が取得する入力データは、図7と同様D1からD6までのデータである。
また、平均化部357は、参照画像から、変換対象の画素と画素の周辺の画素(以下、周辺の画素という。)の濃度を取得し、平均値を算出する。ここで、周辺の画素としては、追加アドレス値に隣接する画素だけとしてもよいし、追加アドレス値を基準としてRアドレス値、Fアドレス値ともに2〜3列周辺の画素としてもよい。
図13は、平均化部357による動作の説明図である。図13に示すように、追加アドレス値に位置する画素9を注目画素とし、追加アドレス値に隣接する画素1〜8を周辺の画素とした場合、平均化部357は、1〜9の画素の濃度を平均する。ここで、1〜9に対応する画素を、それぞれ濃度1〜濃度9として示す。具体的には、下記の(1)式により追加画素の濃度を決定する。なお、小数点以下は、四捨五入する。
D0[1:0]=濃度1+濃度2+濃度3+濃度4+濃度5+濃度6+濃度7+濃度8+濃度9/9・・・(1)
濃度決定部355bは、平均化部357から平均値を取得し、アドレス生成部354から取得した追加アドレス値から対象の平均値を追加画素の濃度と決定する。
以上のように構成された画像処理部342bにより、追加画素濃度決定処理が実行される。なお、実施の形態2における追加画素濃度決定処理の手順は実施の形態1と同様である。
このように、本実施の形態によれば、追加アドレス値および追加アドレス値の周辺の画素の濃度に基づいて、追加画素の濃度を決定するので、大域的な画像劣化を生じさせることなく、両面対応を考えた場合の高速印刷および高精細な画像形成を実現するとともに、バンディングの発生を防止することができる。
(実施の形態3)
実施の形態1では、追加画素の濃度を追加アドレス値に対応する参照画像の画素濃度に基づいて決定した。これに対し、実施の形態3では、追加アドレス値に位置する画素を所定のコードに変換し、変換したコードに基づいて追加画素濃度を決定する。
図14は、実施の形態3にかかる画像処理部342cの機能構成を示すブロック図である。図14に示すように、画像処理部342cは、解像度変換部350cと、副走査変倍制御部352cとを主に備える。そして、副走査変倍制御部352cは、濃度決定部355cと、アドレス生成部354と、メモリ356と、画像パスセレクタ358とを主に備える。ここで、濃度決定部355cの機能および構成について説明する。なお、濃度決定部355c以外の各部の機能および構成については実施の形態1と同様である。
図14に示すように、濃度決定部355cは、コード生成部355xと、濃度生成部355yとを主に備える。コード生成部354cは、変換前の画像データにより、所定のパターンに対応するコードデータに変換する。図15は、コード生成部354cによるコード生成において使用されるパターンの一例を示す図である。図15では、例1から例3まで3つの例を示す。図15に示すように、3×3マトリクスの真ん中が注目画素であり、コードを出力する対象の画素である。本実施の形態では、注目画素と周囲8画素を参照しコードを出力する。例1のパターンと一致した場合は、D1code[5:0]=1となる。また、例2のパターンと一致した場合は、D1code[5:0]=2となる。また、例3のパターンと一致した場合は、D1code[5:0]=3となる。なお、所定のパターンは、予めハードウェア構成において決められてもよいし、任意に設定可能としてもよい。
濃度生成部355yは、コード生成部355xにより変換されたコードと、メモリ356cに保持されている濃度データとに基づいて追加画素の濃度を決定する。図16は、実施の形態3の濃度データの一例を示す図である。図16に示すように、濃度データは、コードと、位相と、追加画素の濃度とを対応付けている。例えば、濃度生成部355yは、code[5:0]=02[hex]であり、位相=1である場合、4´b1100の追加画素の濃度を出力する。また、濃度生成部355yは、code[5:0]=02[hex]であり、位相=2である場合、4´b1000の追加画素の濃度を出力する。また、濃度生成部355yは、code[5:0]=00[hex]であり、位相は不問の場合、4’b0000の追加画素の濃度を出力する。なお、濃度データの追加画素の濃度は、ハードウェア構成として予め決められていてもよいし、任意に設定可能としてもよい。
以上のように構成された画像処理部342cにより追加画素濃度決定処理が実行される。なお、追加画素濃度決定処理の手順については、実施の形態1と同様である。
このように、本実施の形態によれば、追加アドレス値および追加アドレス値の周辺の画素の濃度に基づいて、追加画素の濃度を決定するので、大域的な画像劣化を生じさせることなく、両面対応を考えた場合の高速印刷および高精細な画像形成を実現するとともに、バンディングの発生を防止することができる。
(実施の形態4)
実施の形態1では、解像度変換部350は解像度変換する対象となる注目画素に基づいて変換した。これに対して、本実施の形態4では、解像度変換部350は、注目画素が中間調データである場合は、注目画素の周辺の画素の中でより濃度が濃い画素に寄せて変換する。
図17は、実施の形態4にかかる画像処理部342dの機能構成を示すブロック図である。図17に示すように、画像処理部342dは、解像度変換部350dと、副走査変倍制御部352dとを主に備える。そして、副走査変倍制御部352dは、濃度決定部355dと、アドレス生成部354と、メモリ356と、画像パスセレクタ358とを主に備える。ここで、解像度変換部350dと濃度決定部355dの機能および構成について説明する。なお、解像度変換部350dと濃度決定部355d以外の各部の機能および構成については実施の形態1と同様である。
解像度変換部350dは、メモリ340から取得した画像データについて単位画素を、VCSEL200のチャネル数およびサイズに対応して分割して分割画素を作成する。その後、分割画素に対して当該画素の照射を行うレーザ素子チャネルの割当てを行う。また、解像度変換部350dは、高解像度化を行う場合、2n倍密度処理(nは、正の整数)または2nライン化処理を選択し、レーザ素子チャネルの駆動割当てを決定する。ここでは、解像度変換部350dは、入力画像1200dpi、出力解像度4800dpiの8chVCSELによる複数ライン同時書込みを決定する。
解像度変換部350dは、入力データを、入力解像度よりも高い出力解像度に変換する。ここで、解像度変換部350dは、注目画素が白画素と黒画素の間の濃度を示す中間調の画素である場合は、注目画素の周辺の画素を参照し、注目画素を周辺の画素のうちより濃度が濃い画素に寄せて変換する。解像度変換部350dは、注目画素を寄せた場合、寄せ方向を示す寄せ情報をphs[3:0]信号としてメモリ356および濃度決定部355dに渡す。メモリ356は、解像度変換部350dから受け取ったphs[3:0]信号を濃度データに対応付けて保持してもよい。
ここで、寄せ情報の詳細について説明する。図18は、寄せ情報の一例を示す説明図である。図18に示すように、解像度変換部350dは、注目画素と注目画素の周辺の画素を取得する。注目画素を寄せる方向としては、上寄せ、下寄せ、左上寄せ、右上寄せ、左下寄せ、右下寄せの6通りがある。なお、図18では、注目画素の周辺の画素として注目画素に隣接する画素を取得しているが、隣接している画素には限定されず注目画素の周辺に位置する画素であればよい。
寄せ方向を判定する判定条件については、注目画素の左右に位置する画素を基準に判定する左右判定と、注目画素の上下に位置する画素を基準に判定する上下判定とがある。まず、左右判定については、以下のように判定する。
a+b+c>f+g+h→左寄せ
a+b+c<f+g+h→右寄せ
a+b+c=f+g+h→左右寄せ無し
また、上下判定については、以下のように判定する。
a+d+f>c+e+h→上寄せ
a+d+f<c+e+h→下寄せ
a+d+f=c+e+h→上下寄せ無し
図19は、解像度変換部350dによる寄せ変換を示す説明図である。図19では、2´b00は、白画素、2´b01と2´b10は中間調の画素、2´b11は黒画素を示す。解像度変換部350dは、中間調の画素2´b01と2´b10を、寄せ判定の結果に従って図19のようにそれぞれ変換する。なお、寄せ判定に応じた変換態様は、ハードウェアで固定する構成としてもよいし、ソフトウェアで任意に設定可能としてもよい。
濃度決定部355dは、解像度変換部350dからphs[3:0]信号を取得し、追加画素の濃度をphs[3:0]信号と、位相の値とに基づいて決定する。例えば、濃度決定部355dは、濃度データに基づいて追加画素の濃度を決定する。図20は、実施の形態4の濃度データの一例を示す図である。図20に示すように、図19で示した中間調の画素2´b01は、phs[3:0]信号と、位相の値とが追加画素濃度に対応付けられている。また、図20に示すように、図19で示した白画素2´b00と、2´b11については、phs[3:0]信号と、位相の値とは無関係に定められた追加画素濃度が決定される。ここでは、図19で示した解像度変換と同じ位相が割り当てられている。
以上のように構成された画像処理部342dにより追加画素濃度決定処理が実行される。なお、画像処理部342dによる追加画素濃度決定処理の手順については実施の形態1と同様である。
このように、本実施の形態によれば、追加アドレス値および追加アドレス値の周辺の画素の濃度に基づいて、追加画素の濃度を決定するので、大域的な画像劣化を生じさせることなく、両面対応を考えた場合の高速印刷および高精細な画像形成を実現するとともに、バンディングの発生を防止することができる。
(実施の形態5)
実施の形態4では、解像度変換部350dは、中間調の画素については寄せ処理により変換した。これに対して、実施の形態5では、解像度変換部350eは、中間調の画素についてはディザ情報に基づいて変換する。
図21は、実施の形態5にかかる画像処理部342eの機能構成を示すブロック図である。図21に示すように、画像処理部342eは、解像度変換部350eと、副走査変倍制御部352eとを主に備える。そして、副走査変倍制御部352eは、濃度決定部355eと、アドレス生成部354と、メモリ356と、画像パスセレクタ358とを主に備える。ここで、解像度変換部350eと、濃度決定部355eの機能および構成について説明する。なお、濃度決定部355e以外の各部の機能および構成については実施の形態1と同様である。
解像度変換部350eは、メモリ340から画像データと画像データに対して処理されたディザ情報とを取得する。解像度変換部350eは、取得した画像データについて単位画素を、VCSEL200のチャネル数およびサイズに対応して分割して分割画素を作成する。その後、分割画素に対して当該画素の照射を行うレーザ素子チャネルの割当てを行う。また、解像度変換部350eは、高解像度化を行う場合、2n倍密度処理(nは、正の整数)または2nライン化処理を選択し、レーザ素子チャネルの駆動割当てを決定する。ここでは、解像度変換部350eは、入力画像1200dpi、出力解像度4800dpiの8chVCSELによる複数ライン同時書込みを決定する。
解像度変換部350eは、入力データを、入力解像度よりも高い出力解像度に変換する。ここで、解像度変換部350eは、注目画素が中間調の画素である場合は、ディザ情報を基にして変換する。例えば、ディザ情報は、色版ごとに予め設定されている。この設定値は、ソフトウェアにより設定変更を可能とし、PC上でアプリケーションにて設定変更可能としてもよい。
図22は、ディザ情報に基づく画素の配列指定の一例を示す説明図である。例えば、ディザ情報はスクリーン角を含み、図22に示すように、設定値がスクリーン角に応じて予め決められている。一例として、解像度変換部350eは、画素2´b01のスクリーン角が135°である場合、図22に示すような配列に変換する。また、図22に示すように、解像度変換においてディザ情報が考慮されるのは、中間調の画素についてだけであり、白画素2´b00および黒画素2´b11についてはディザ情報は考慮されない。
濃度決定部355eは、追加画素の濃度をディザ情報と、追加アドレス値に対応する参照画像の画素濃度とに基づいて決定する。濃度決定部355eは、メモリ340からディザ情報を取得し、中間調の画素については、画素データと、ディザ情報と、アドレス生成部354から取得した追加アドレス値により追加画素の濃度を決定する。また、濃度決定部355eは、中間調でない画素、すなわち、白画素と黒画素については、ディザ情報を考慮せず、追加アドレス値の画素濃度を追加画素の濃度と決定する。
図23は、実施の形態5の濃度データの一例を示す図である。図23に示すように、濃度データは、ディザ情報と、位相と、追加画素濃度が対応付けられている。例えば、濃度決定部355eは、中間調の画素2´b01のディザ情報がスクリーン角135°で、位相が1である場合は、4´b0100を追加画素の濃度と決定する。なお、濃度決定部355eは、白画素2´b00と、黒画素2´b11については、図23に示すようにディザ情報と位相については考慮しない。
次に、中間調の画素に対して行う解像度変換および追加画素の濃度決定の方法の他の例について説明する。まず、解像度変換部350eは、中間調の画素を上記のとおりディザ情報に基づいて変換する他、中間調の画素を縦基調の濃度に変換することもできる。ここで、縦基調の濃度に変換するとは、注目対象である中間調の画素を副走査方向に配列することである。図24は、縦基調への変換の一例を示す説明図である。図24に示すように、解像度変換部350eは、中間調の画素2´b01と2´b10は、縦基調、すなわち副走査方向に画素を並べて配列している。なお、縦基調に配列される画素Dc0[3:0]〜Dc3[3:0]の濃度は、全て同一のデータとしてもよいし、異なるデータとしてもよい。しかし、異なるデータとする場合、バンディングを回避するためできるだけ差が少ない方がよい。また、解像度変換部350eは、縦基調に変換する際、寄せ処理を実行してもよい。
濃度決定部355eは、解像度変換部350eにより縦基調に変換されたデータと、位相に基づいて追加画素の濃度を決定する。なお、濃度決定部355eは、位相を考慮せずに縦基調に変換されたデータから直接追加画素の濃度を決定することも可能である。この場合、図25に示すように、白画素2´b00、中間調の画素2´b01、2´b10、黒画素2´b11いずれも位相を不問とし、各画素の濃度を追加画素濃度と決定する。この場合、濃度決定部355eは、追加位置の位相を考慮せずに変換することができるので、回路規模を小さくすることができる。
なお、解像度変換部350eは、中間調の画素を横基調の濃度に変換した場合、すなわち主走査方向の濃度に変換した場合、図26に示すように例えばDc2[3:0]が削除されると、濃度変化が大きくなる。このため、解像度変換部350eは、中間調の画素を縦基調の濃度に変換することで、横基調の濃度に変換した場合よりもバンディングを目立たなくすることができる。
以上のように構成された画像処理部342eにより追加画素濃度決定処理が実行される。なお、画像処理部342eによる追加画素濃度決定処理の手順については、実施の形態1と同様である。
このように、本実施の形態によれば、追加アドレス値および追加アドレス値の周辺の画素の濃度に基づいて、追加画素の濃度を決定するので、大域的な画像劣化を生じさせることなく、両面対応を考えた場合の高速印刷および高精細な画像形成を実現するとともに、バンディングの発生を防止することができる。
また、本実施の形態では、ディザ情報に基づいて追加画素の濃度を決定しているので、万線に限らず、ディザへの副作用も低減することができる。
また、本実施の形態では、縦基調の濃度に基づいて変換するので、回路構成を簡略化でき、回路規模を小さくすることができる。
図27は、画像形成装置100のハードウェア構成を示すブロック図である。本図に示すように、この画像形成装置100(以下、複合機100という。)は、コントローラ10とエンジン部(Engine)60とをPCI(Peripheral Component Interface)バスで接続した構成となる。コントローラ10は、複合機100体の制御と描画、通信、図示しない操作部からの入力を制御するコントローラである。エンジン部60は、PCIバスに接続可能なプリンタエンジンなどであり、たとえば白黒プロッタ、1ドラムカラープロッタ、4ドラムカラープロッタ、スキャナまたはファックスユニットなどである。なお、このエンジン部60には、プロッタなどのいわゆるエンジン部分に加えて、誤差拡散やガンマ変換などの画像処理部分が含まれる。
コントローラ10は、CPU11と、ノースブリッジ(NB)13と、システムメモリ(MEM−P)12と、サウスブリッジ(SB)14と、ローカルメモリ(MEM−C)17と、ASIC(Application Specific Integrated Circuit)16と、ハードディスクドライブ(HDD)18とを有し、ノースブリッジ(NB)13とASIC16との間をAGP(Accelerated Graphics Port)バス15で接続した構成となる。また、MEM−P12は、ROM(Read Only Memory)12aと、RAM(Random Access Memory)12bと、をさらに有する。
CPU11は、複合機100の全体制御をおこなうものであり、NB13、MEM−P12およびSB14からなるチップセットを有し、このチップセットを介して他の機器と接続される。
NB13は、CPU11とMEM−P12、SB14、AGP15とを接続するためのブリッジであり、MEM−P12に対する読み書きなどを制御するメモリコントローラと、PCIマスタおよびAGPターゲットとを有する。
MEM−P12は、プログラムやデータの格納用メモリ、プログラムやデータの展開用メモリ、プリンタの描画用メモリなどとして用いるシステムメモリであり、ROM12aとRAM12bとからなる。ROM12aは、プログラムやデータの格納用メモリとして用いる読み出し専用のメモリであり、RAM12bは、プログラムやデータの展開用メモリ、プリンタの描画用メモリなどとして用いる書き込みおよび読み出し可能なメモリである。
SB14は、NB13とPCIデバイス、周辺デバイスとを接続するためのブリッジである。このSB14は、PCIバスを介してNB13と接続されており、このPCIバスには、ネットワークインターフェース(I/F)部なども接続される。
ASIC16は、画像処理用のハードウェア要素を有する画像処理用途向けのIC(Integrated Circuit)であり、AGP15、PCIバス、HDD18およびMEM−C17をそれぞれ接続するブリッジの役割を有する。このASIC16は、PCIターゲットおよびAGPマスタと、ASIC16の中核をなすアービタ(ARB)と、MEM−C17を制御するメモリコントローラと、ハードウェアロジックなどにより画像データの回転などをおこなう複数のDMAC(Direct Memory Access Controller)と、エンジン部60との間でPCIバスを介したデータ転送をおこなうPCIユニットとからなる。このASIC16には、PCIバスを介してFCU(Facsimile Control Unit)30、USB(Universal Serial Bus)40、IEEE1394(the Institute of Electrical and Electronics Engineers 1394)インタフェース50が接続される。操作表示部20はASIC16に直接接続されている。
MEM−C17は、コピー用画像バッファ、符号バッファとして用いるローカルメモリであり、HDD(Hard Disk Drive)18は、画像データの蓄積、プログラムの蓄積、フォントデータの蓄積、フォームの蓄積を行うためのストレージである。
AGP15は、グラフィック処理を高速化するために提案されたグラフィックスアクセラレーターカード用のバスインターフェースであり、MEM−P12に高スループットで直接アクセスすることにより、グラフィックスアクセラレーターカードを高速にするものである。