JP2013245963A - 回転翼の形状測定方法および形状測定システムならびに塗布装置 - Google Patents

回転翼の形状測定方法および形状測定システムならびに塗布装置 Download PDF

Info

Publication number
JP2013245963A
JP2013245963A JP2012118060A JP2012118060A JP2013245963A JP 2013245963 A JP2013245963 A JP 2013245963A JP 2012118060 A JP2012118060 A JP 2012118060A JP 2012118060 A JP2012118060 A JP 2012118060A JP 2013245963 A JP2013245963 A JP 2013245963A
Authority
JP
Japan
Prior art keywords
rotor blade
impeller
shape
antireflection material
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012118060A
Other languages
English (en)
Inventor
Takashi Teranishi
崇 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012118060A priority Critical patent/JP2013245963A/ja
Publication of JP2013245963A publication Critical patent/JP2013245963A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】回転翼の表面におけるレーザー光の乱反射を防止して、回転翼の形状を精度よく測定することができる回転翼の形状測定方法と、当該形状測定方法に用いる形状測定装置および該形状測定装置に用いる塗布装置を提供する。
【解決手段】インペラ10に、反射防止材4を塗布する反射防止材塗布工程と、反射防止材4を塗布したインペラ10に対して測定補助光を照射し、投影された干渉縞を撮影し、干渉縞の撮影データに基づきインペラ10の3次元形状を算出する各工程(撮影工程、画像処理工程)と、を備える形状測定方法であって、反射防止材塗布工程では、インペラ10の接線Yに略平行な方向である向きαから、反射防止材4を噴霧して、インペラ10を軸心X回りに回転させるとともに、インペラ10の軸心Xに略平行な方向である向きβから、反射防止材4を噴霧する。
【選択図】図4

Description

本発明は、回転翼の形状測定方法および形状測定システムならびに塗布装置の技術に関する。
回転機械等の軸に固定して使用する回転翼(インペラやプロペラ等)は、形状が所定の設計形状通りになっていないと、軸ブレや振動等が発生する原因となり、当該回転機械等の効率低下を招くため、形状が(所定の閾値の範囲内で)設計形状通りになっているか否かの検査(以下、形状検査と呼ぶ)を行う必要性が高い。
例えば、排気タービン式過給機(所謂ターボチャージャー)を構成する部品として用いられるインペラ等は、より高回転で使用されるため、品質保証を行うために、製品に対して後工程に送る前の段階で形状検査を行うのが一般的である。
従来、このようなインペラは、精密鋳造等の手法によって製造される場合が多く、また、精密鋳造等の手法で製造されるインペラにおける要求精度は、輪郭度において0.1mm程度とするのが一般的である。
そして従来、このようなインペラに対する形状検査は、接触式の形状測定器を用いて行われるのが一般的であった。
近年、インペラの高精度化を図る(例えば、輪郭度において0.05mm程度の要求精度とする)ニーズが増大しており、更なる高精度化を達成すべく、精密鋳造以外の方法(例えば、削り出し等)で、インペラの製造を行う検討がなされている。
しかしながら、従来形状検査で使用してきた接触式の形状測定器では、輪郭度0.05mmの精度で、高精度に形状を測定することができなかった。
即ち、インペラの高精度化を図るためには、インペラの形状を高精度で測定する技術を確立することが不可欠となっている。
回転翼の形状を高精度に測定する技術としては、例えば、以下に示す特許文献1に示す技術が開示され、公知となっている。
特許文献1に開示されている従来技術では、回転翼(ここではプロペラ)へレーザー光を照射しつつ、回転翼上のレーザースポット位置をカメラで撮影して、撮影データを画像処理することによって、回転翼の形状を、非接触で精度よく測定することを可能にしている。
また、非接触で物体の形状を高精度に測定する技術としては、汎用的な光学式形状測定器(所謂、非接触3次元光学デジタイザ)が開発され、市販されるに至っている。
光学式形状測定器は、物体の表面に干渉縞を投影すべく光源(レーザー発生装置やLED照明等)から物体に光(以下、測定補助光と呼ぶ)を照射するとともに、物体に投影された干渉縞を2系統のカメラ(CCDカメラ等)で撮影し、さらに干渉縞を撮影した2種類の撮影データを画像処理することによって、当該物体の3次元形状を非接触で測定することが可能になっている。
特開2000−46529号公報
インペラ等の回転翼は、アルミ等の金属を素材として製造される場合が多く、表面には光沢があるのが一般的である。
そして、このような回転翼に対して光源から測定補助光を照射する場合、回転翼の表面では測定補助光が直接反射し、極めて明るい光をカメラで撮影することとなるため、光学式形状測定器の撮影データにおいてフレア(明るい光の周囲が白くぼやける現象)が生じることとなる。
そして、このようなフレアが生じる状態では、回転翼の像(輪郭)がぼやけてしまうため、フレアの発生を排除しなければ、当該回転翼の形状を高精度に(例えば、輪郭度0.05mm程度の要求精度に見合う精度で)測定することができないという問題があった。
さらに従来、光学式形状測定器で光沢がある物体の形状を測定する場合には、物体表面に、該物体表面における反射を抑制する(換言すれば、乱反射を生じさせる)ための液材(以下、反射防止材と呼ぶ)を塗布しているが、反射防止材はスプレー缶に入れて提供され、手作業で噴霧(塗布)するため、塗りムラが生じることは避けられなかった。
そして、物体に塗布した反射防止材の膜厚がばらついていると、光学式形状測定器による測定精度を確保することができなかった。
このため従来、非接触の光学式形状測定器を用いた3次元形状測定では、金属製(アルミ等)の回転翼(インペラやプロペラ等)の形状を、高精度に測定することが困難であった。
本発明は、斯かる現状の課題を鑑みてなされたものであり、回転翼の表面に反射防止材を均等な膜厚で塗布して、回転翼の形状を精度よく測定することができる回転翼の形状測定方法と、当該形状測定方法を実現する形状測定システムならびに該形状測定システムを構成する塗布装置を提供することを目的としている。
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
即ち、請求項1においては、回転翼に、該回転翼の表面における光の反射を抑制するための液材である反射防止材を塗布する工程と、前記反射防止材を塗布した前記回転翼に対して干渉縞を投影するための光である測定補助光を照射するとともに、前記回転翼に投影された干渉縞を異なる2方向から撮影して、異なる2方向から撮影した2種類の干渉縞の撮影データに基づき前記回転翼の3次元形状を算出する工程と、を備える回転翼の形状測定方法であって、前記回転翼に対して前記反射防止材を塗布する工程では、前記回転翼を、該回転翼の軸心回りに回転可能に支持して、前記回転翼に向けて、該回転翼の接線に略平行な第一の方向から、前記反射防止材を噴霧して、前記回転翼を、該回転翼の軸心回りに回転させるとともに、前記回転翼に向けて、該回転翼の軸心に略平行な第二の方向から、前記反射防止材を噴霧するものである。
請求項2においては、回転翼に対して干渉縞を投影するための光である測定補助光を照射するための部位である照射部と、前記回転翼に投影された干渉縞を異なる2方向から撮影するための部位である一対のカメラと、前記一対のカメラで撮影した2種類の干渉縞に基づき前記回転翼の3次元形状を算出する演算部と、を有する形状測定装置、を備える、前記回転翼の形状を測定するためのシステムである形状測定システムであって、前記回転翼に、該回転翼の表面における光の反射を抑制するための液材である反射防止材を塗布するための装置である塗布装置を備え、前記塗布装置は、前記回転翼を、該回転翼の軸心回りに回転可能な状態で支持するための部位である支持部と、前記支持部において支持される前記回転翼に向けて、該回転翼の接線に略平行な第一の方向から、前記反射防止材を噴霧して、前記回転翼を、該回転翼の軸心回りに回転させるための部位である第一のエアブラシと、前記支持部において支持される前記回転翼に向けて、該回転翼の軸心に略平行な第二の方向から、前記反射防止材を噴霧するための部位である第二のエアブラシと、を備えるものである。
請求項3においては、回転翼に、該回転翼の表面における光の反射を抑制するための液材である反射防止材を塗布するための装置であって、前記回転翼を、該回転翼の軸心回りに回転可能な状態で支持するための部位である支持部と、前記支持部において支持される前記回転翼に向けて、該回転翼の接線に略平行な第一の方向から、前記反射防止材を噴霧して、前記回転翼を、該回転翼の軸心回りに回転させるための部位である第一のエアブラシと、前記支持部において支持される前記回転翼に向けて、該回転翼の軸心に略平行な第二の方向から、前記反射防止材を噴霧するための部位である第二のエアブラシと、を備えるものである。
本発明の効果として、以下に示すような効果を奏する。
請求項1においては、回転翼の表面における測定補助光の反射を抑制しつつ、回転翼の形状を測定することにより、精度よく回転翼の形状を測定することができる。
請求項2においては、回転翼に対して、該回転翼に対する要求精度に比して十分に小さい膜厚で、均等に反射防止材を塗布することができ、回転翼の表面における測定補助光の反射を抑制しつつ、精度よく回転翼の形状を測定することができる。
請求項3においては、回転翼に対して、該回転翼に対する要求精度に比して十分に小さい膜厚で、均等に反射防止材を塗布することができる。
本発明の一実施形態に係る形状測定システムの全体構成を示す模式図。 本発明の一実施形態に係る形状測定システムにおける塗布装置の支持部を示す模式図、(a)支持部の構成を示す側面断面模式図、(b)支持部における基部およびベアリングを示す平面模式図。 本発明の適用対象たる回転翼の一例であるインペラを示す斜視模式図。 本発明の一実施形態に係る塗布装置によるインペラに対する反射防止材の塗布状況を示す斜視模式図。 本発明の一実施形態に係る回転翼の形状測定方法の流れを示すフロー図。
次に、発明の実施の形態を説明する。
まず始めに、本発明の一実施形態に係る回転翼の形状測定システムの全体構成について、図1〜図4を用いて説明をする。
図1に示す如く、本発明の一実施形態に係る形状測定システム1は、形状検査の対象物たる回転翼であるインペラ10の形状を測定するためのシステムであり、非接触で対象物の3次元形状を測定することができる装置である形状測定装置2と、インペラ10に反射防止材4を塗布するための装置である塗布装置3を備える構成としている。
尚、本実施形態では、形状検査の対象物がインペラである場合を例示しているが、本発明の一実施形態に係る形状測定システム1により形状を測定できる対象物はこれに限らず、プロペラ等のその他の回転翼の形状検査を行うことも可能である。
形状測定装置2は、所謂、非接触3次元光学式デジタイザと呼ばれる装置であり、形状測定の対象物(ここでは、インペラ10)に対して干渉縞を投影するための光(以下、測定補助光と呼ぶ)を照射するとともに、対象物で反射した測定補助光を2箇所のカメラで撮影して、当該対象物の3次元形状を測定することができる汎用的な装置である。
形状測定装置2は、インペラ10に測定補助光を照射するための部位である照射部2aや、インペラ10で反射した測定補助光(より詳しくは、干渉縞)を受光(撮影)するための部位である一対のカメラ2b・2b等を備えている。
また、形状測定装置2は、一対のカメラ2b・2bにより異なった角度から撮影した2種類の干渉縞の撮影データに基づいて、インペラ10の3次元形状を演算するための部位である演算部2cを備えている。
さらに、形状測定装置2は、撮影時においてインペラ10の姿勢を変更するための機構である支持機構2dを備えている。
このように形状測定装置2は、照射部2aから照射した測定補助光の情報と、カメラ2b・2bで撮影した測定補助光(干渉縞)の情報から、インペラ10の3次元形状を測定する装置であるため、インペラ10の表面における測定補助光の反射が強すぎると、フレアが生じてインペラ10の輪郭がぼやけてしまうため、測定精度を確保することが難しくなる。
そこで、本発明の一実施形態に係る形状測定システム1では、形状測定を行う対象物(本実施形態では、インペラ10)の表面における測定補助光の反射を抑制するために、該対象物に対して反射防止材4を塗布するための装置である塗布装置3を備える構成としている。
そして、本発明の一実施形態に係る形状測定システム1を用いたインペラ10の形状検査においては、該塗布装置3でインペラ10の表面に反射防止材4を塗布した後に、形状測定装置2で、インペラ10の形状測定を行う構成としている。
塗布装置3は、形状測定システム1により形状検査を行う対象物に対して、反射防止材4を塗布するための装置であり、基台部6、支持部7、第一エアブラシ8、第二エアブラシ9等を備える構成としている。
ここで、支持部7の構成について、説明をする。
支持部7は、塗布装置3において、所定の姿勢でインペラ10を回転可能な状態で支持するための部位であり、基部7a、回転部7b、軸受け7c等を備える構成としている。
本実施形態におけるインペラ10の「所定の姿勢」は、インペラ10の軸心Xを鉛直方向に向けた姿勢としている。
基部7aは、基台部6に対して、鉛直方向に立設する態様で固定されており、図2(a)(b)に示すように、該基部7aの上面部には、略円柱状の凹状部たる凹部7dが形成されている。
また、図2(a)に示すように、回転部7bの下面部には、基部7aに形成された凹部7dの形状(直径)に略一致する(但し、若干小さい)形状(直径)を有する略円柱状の凸状部である凸部7eが形成されており、凸部7eを凹部7dに嵌めこむことにより、凸部7eを凹部7dで軸支して、一体的な支持部7を形成する構成している。
そして、回転部7bは、基部7aと軸心を同一としつつ、略鉛直方向の軸心Z回りに回転することができる構成としている。
さらに、図2(a)(b)に示すように、凹部7dの底部には、軸受け7cを配設しており、回転部7bは、凸部7eの下面部を軸受け7cによって支持される構成としている。
本実施形態で示す支持部7では、軸受け7cとしてスラスト円筒ころ軸受けを採用しており、回転部7bの回転負荷を低減する構成としている。
また、支持部7では、回転部7b(即ち、凸部7e)を、基部7a(即ち、凹部7d)で位置決めすることによって、回転部7bの回転時における軸心Zのブレを抑制する構成としており、回転部7bの軸心位置を高精度に一定に保持しつつ、該回転部7bを回転させることができる。
そして、図3に示す如く、形状測定システム1による形状検査の対象物たるインペラ10は、複雑に入り組んだ3次元曲面を有する回転翼であり、主翼10a・10a・・・、副翼10b・10b・・・を備えており、軸心Xを中心に回転させて使用する。
そして、図4に示すように、回転部7b上に、該回転部7bの軸心Zとインペラ10の軸心Xを一致させつつ、インペラ10を固定した状態で、インペラ10に対して反射防止材4を塗布する構成としている。
このように、塗布装置3では、回転部7bの軸ブレを抑制する構成とした支持部7上でインペラ10に反射防止材4を塗布することで、より均等な膜厚で反射防止材4の層を形成することができる構成としている。
ここで、反射防止材4について、説明をする。
反射防止材4は、液体状の溶剤成分に粉体を混合して生成する部材であり、噴射前の状態においてはスラリー状の液材であって、塗布後(噴射後)の状態においては、噴射面において塗膜を形成するのと略同時に溶剤成分が揮発し、該対象面に粉体のみが残存する層を形成することができる材料である。
本実施形態において使用する反射防止材4は、溶剤成分たるエタノールと、粉体たる酸化チタンの混合物として構成する液材であり、また、使用する酸化チタンは、粒径が0.5μm程度の微細な粉体としている。
尚、本実施形態では、エタノールと酸化チタンの混合物たる反射防止材4を使用する場合を例示しているが、本発明の係る形状測定方法および形状測定システムならびに塗布装置において使用する反射防止材の仕様をこれに限定するものではない。
即ち、反射防止材4は、塗布後における乾燥速度を速くして(即ち、溶剤成分として揮発性の高い成分を選択して)、対象面において液ダレが生じないようにするとともに、粒径が微細な粉体を選択することによって、粉体のみの層における膜厚の均一性を確保して、薄く、かつ、ムラなく、反射防止材4の層を形成することができるようにしている。
そして、対象面の表面において、酸化チタンの粒子による微小な凹凸を形成し、つや消し状にすることによって、対象面の表面で測定補助光を乱反射させて、対象面の表面における測定補助光の反射を抑制し、フレアが生じないようにする構成としている。
ここで、第一エアブラシ8および第二エアブラシ9の構成について、説明をする。
図1および図4に示す如く、第一エアブラシ8および第二エアブラシ9は、回転部7b上に回転可能な状態で支持された状態のインペラ10に対して、反射防止材4を噴霧するための部位である。
第一エアブラシ8は、反射防止材4を噴霧するための部位であり、反射防止材4を貯溜しておくための部位であるカップ8aと、該カップ8aに貯溜された反射防止材4をエアとともに噴出させて微粒化させるための部位であるノズル8b等を備えている。
また同様に、第二エアブラシ9は、反射防止材4を噴霧するための部位であり、反射防止材4を貯溜しておくための部位であるカップ9aと、該カップ9aに貯溜された反射防止材4をエアとともに噴出させて微粒化させるための部位であるノズル9b等を備えている。
そして、各ノズル8b・9bには、エア配管が接続されており、レギュレータ等で所定の圧力に設定して、各ノズル8b・9bにエアを供給する構成としている。
また、各ノズル8b・9bに対するエアの供給をON−OFFすることで、各ノズル8b・9bによる反射防止材4の噴霧状態をON−OFFする構成としている。
図4に示す如く、第一エアブラシ8は、インペラ10の外接円に対する接線Yに対して略平行となる姿勢で、かつ、インペラ10との距離を所定の距離に保持して、第一スタンド11によって支持されており、第一エアブラシ8による反射防止材4の噴出方向α(以下、単に向きαと呼ぶ)が、主翼10aの外周縁端部に向けられている。
このため、第一エアブラシ8から反射防止材4を噴出させることによって、反射防止材4および該反射防止材4と共に噴出するエアは、主にインペラ10における主翼10aに衝突し、その後、主翼10aの表面に沿って流れる。
尚、塗布装置3では、第一エアブラシ8の向きαやインペラ10との距離は、インペラ10の形状に応じて、第一スタンド11における各腕部の長さや、各関節部の角度を変更することによって、適宜調整する。
このとき、支持部7によって回転可能な状態で支持されているインペラ10には、反射防止材4および該反射防止材4と共に噴出するエアによって回転力が付与されるため、インペラ10(および回転部7b)は、軸心X(および軸心Z)を中心に回転する。
第二エアブラシ9は、インペラ10の軸心Xに対して略平行となる姿勢で、かつ、インペラ10との距離を所定の距離に保持して、第二スタンド12によって支持されており、第二エアブラシ9による反射防止材4の噴出方向β(以下、単に向きβと呼ぶ)が、インペラ10における副翼10bの前端部付近に向けられている。
このため、第二エアブラシ9から反射防止材4を噴出させることによって、反射防止材4および該反射防止材4と共に噴出するエアは、主にインペラ10における副翼10bに沿って流れ、副翼10bの表裏面や、主翼10aの裏面等に衝突しながら流れる。
尚、塗布装置3では、第二エアブラシ9の向きβやインペラ10との距離は、インペラ10の形状に応じて、第二スタンド12における各腕部の長さや、各関節部の角度を変更することによって、適宜調整する。
このように、第一および第二の各エアブラシ8・9を用いて、インペラ10に対して反射防止材4を噴霧することにより、インペラ10を軸心X回りに回転させることができるため、反射防止材4がインペラ10における特定の箇所に集中して塗布されることが防止できる。
また、第一および第二の各エアブラシ8・9を用いて、インペラ10に対して反射防止材4を噴霧することにより、主翼10aの表裏面や副翼10bの表裏面の隅々にまで反射防止材4を行き渡らせることができる。
このため、インペラ10に対して、均等な膜厚で、反射防止材4を塗布することができる。
尚、塗布装置3によりインペラ10に反射防止材4を塗布するときには、各エアブラシ8・9の仕様(微粒化性能の差異やエアの供給圧力)や各エアブラシ8・9とインペラ10との距離および角度、あるいは、各エアブラシ8・9による塗布時間等を総合的に調整して、インペラ10に形成する粉体のみの層の膜厚がより均等になるように調整することができる。
尚、本実施形態では、第一エアブラシ8の向きαが水平であり、インペラ10の接線Yと向きαが平行になっている場合を例示しているが、本発明に係る形状測定方法、形状測定システムおよび塗布装置におけるインペラ10の接線Yと第一エアブラシ8の向きαの関係は、略平行であればよい。
ここで言う「略平行」とは、第一エアブラシ8の向きαは、インペラ10に対して回転力を付勢でき、かつ、反射防止材4を主翼10aに沿って流すことができればよく、インペラ10における主翼10aの態様に応じて適宜変更できることを意味している。
即ち、本発明の一実施形態に係る塗布装置3において、第一エアブラシ8の向きαは、水平方向および接線Yに対して若干角度を有していてもよい。
また、本実施形態では、第二エアブラシ9の向きβがインペラ10の軸心Xに対して略平行である場合を例示している。
ここでいう「略平行」とは、第二エアブラシ9の向きβが軸心Xに対して厳密に平行であることを要求するものではないことを意味している。
そして、第二エアブラシ9の向きβは、インペラ10における主翼10aや副翼10bの態様に応じて適宜変更することができ、反射防止材4を主翼10aや副翼10bに沿って隈なく流すことができる向きであればよい。
即ち、本発明の一実施形態に係る塗布装置3においては、第二エアブラシ9の向きβが、インペラ10の軸心X(即ち、鉛直方向)に対して若干角度を有していてもよい。
ここで、本実施形態に示す塗布装置3を用いて、インペラ10に対して反射防止材4を塗布した場合の結果を示す。
本実施形態における塗布条件は、各エアブラシ8・9に対するエアの供給圧力を0.25MPaとした。
また、第一エアブラシ8の角度を0度(水平)とし、インペラ10との距離を15mmに設定した。さらに、第二エアブラシ9の角度を80度(軸心Xとの角度を10度)とし、インペラ10との距離を60mmに設定した。
このような塗布条件の下、塗布装置3を用いてインペラ10に対して反射防止材4を塗布した結果、0.005〜0.007mmの均等な膜厚で、インペラ10の表面に反射防止材4の層を形成することができた。
即ち、塗布装置3を用いることにより、インペラ10に対して、輪郭度0.05mmの要求精度に見合う精度で、均等に反射防止材4を塗布することができた。
そしてこれにより、形状測定器2によって、インペラ10等の光沢のある対象物を測定する場合であっても、測定精度を確保することができ、インペラ10の3次元形状を高精度に測定をすることが可能になった。
またさらに、塗布装置3では、第一および第二の各エアブラシ8・9から噴出される反射防止材4やエア等の噴出力を活用して、インペラ10を回転させることができるため、インペラ10を回転させるための駆動源を別途用意する必要がなく、より簡易に塗布装置3を構成することができる。
また、塗布装置3を用いれば、塗布作業を行う者の差異(個人差、技量差、くせ等)に関わらず、誰が塗布作業を行っても、インペラ10に対して、容易に均等な膜厚で反射防止材4を塗布することが可能になる。
即ち、本発明の一実施形態に係る塗布装置3は、回転翼たるインペラ10に、該インペラ10の表面における光の反射を抑制するための液材である反射防止材4を塗布するための装置であって、インペラ10を、該インペラ10の軸心X回りに回転可能な状態で支持するための部位である支持部7と、支持部7において支持されるインペラ10に向けて、該インペラ10の接線Yに略平行な第一の方向である向きαから、反射防止材4を噴霧して、インペラ10を、該インペラ10の軸心X回りに回転させるための部位である第一のエアブラシたる第一エアブラシ8と、支持部7において支持されるインペラ10に向けて、該インペラ10の軸心Xに略平行な第二の方向であり向きβから、反射防止材4を噴霧するための部位である第二のエアブラシたる第二エアブラシ9と、を備えるものである。
このような構成により、回転翼(本実施形態では、インペラ10)に対して、該回転翼に対する要求精度に比して十分に小さい膜厚で、均等に反射防止材4を塗布することができる。
また、本発明の一実施形態に係る形状測定システム1は、回転翼たるインペラ10に対して干渉縞を投影するための光である測定補助光を照射するための部位である照射部2aと、インペラ10に投影された干渉縞を異なる2方向から撮影するための部位である一対のカメラ2b・2bと、一対のカメラ2b・2bで撮影した2種類の干渉縞に基づきインペラ10の3次元形状を算出する演算部2cと、を有する形状測定装置2、を備える、インペラ10の形状を測定するためのシステムであって、インペラ10に、該インペラ10の表面における光の反射を抑制するための液材である反射防止材4を塗布するための装置である塗布装置3を備え、塗布装置3は、インペラ10を、該インペラ10の軸心X回りに回転可能な状態で支持するための部位である支持部7と、支持部7において支持されるインペラ10に向けて、該インペラ10の接線Yに略平行な第一の方向である向きαから、反射防止材4を噴霧して、インペラ10を、該インペラ10の軸心X回りに回転させるための部位である第一のエアブラシたる第一エアブラシ8と、支持部7において支持されるインペラ10に向けて、該インペラ10の軸心Xに略平行な第二の方向である向きβから、反射防止材4を噴霧するための部位である第二のエアブラシたる第二エアブラシ9と、を備えるものである。
このような構成により、回転翼(本実施形態では、インペラ10)に対して、該回転翼に対する要求精度に比して十分に小さい膜厚で、均等に反射防止材4を塗布することができ、回転翼の表面における測定補助光の反射を抑制しつつ、精度よく回転翼の形状を測定することができる。
次に、形状測定システム1を用いた場合における、本発明の一実施形態に係る形状測定方法について、図5を用いて説明をする。
図5に示す如く、形状測定システム1(図1参照)を用いた場合における、本発明の一実施形態に係る形状測定方法では、まず始めに、反射防止材塗布工程(STEP−001)を実行する。
具体的には、形状測定システム1を構成する塗布装置3を用いて、インペラ10に対して、反射防止材4を塗布する(図4参照)。
ここでは、インペラ10に対して、精度よく均等な膜厚で、反射防止材4を塗布することができる。
本発明の一実施形態に係る形状測定方法では、次に、撮影工程(STEP−002)を実行する。
具体的には、形状測定装置2に備えられる一対のカメラ2b・2bによって、異なる2方向からインペラ10の表面に投影された干渉縞を撮影する(図1参照)。
本発明の一実施形態に係る形状測定方法においては、インペラ10の表面に均等な膜厚で反射防止材4を塗布しているため、インペラ10の撮影時におけるフレアの発生を抑制することができる。
このため、一対のカメラ2b・2bによる撮影データにおいて、インペラ10の輪郭を精度よく検出することができる。
そして次に、本発明の一実施形態に係る形状測定方法では、画像処理工程(STEP−003)を実行する。
具体的には、一対のカメラ2b・2bによって異なる2方向からインペラ10を撮影した2種類の撮影データに基づいて、演算部2cによって、インペラ10の形状を算出する。
斯かる画像処理工程(STEP−003)では、算出したインペラ10の3次元形状から、反射防止材4の膜厚に相当する厚みを差し引いて、真の形状により近いインペラ10の形状を算出する構成としている。
そして次に、測定対象たるインペラ10の良否を判定する工程(良否判定工程)を実行する(STEP−004)。
良否判定工程(STEP−004)では、算出したインペラ10の3次元形状データに基づいて、例えば、主翼10aの翼厚や、インペラ10の輪郭度等を算出し、算出した各値(翼厚や輪郭度等)が所定の閾値内に収まっているか否かを確認して、当該インペラ10の製品としての良否を判定する構成としている。
このように、形状測定システム1を用いた場合における、本発明の一実施形態に係る形状測定方法によれば、インペラ10の3次元形状を精度よく測定することができるため、従来よりも輪郭度の要求精度が高い場合であっても、輪郭度等が所定の閾値内に収まっていることを確実に保証することができる。
即ち、本発明の一実施形態に係る回転翼の形状測定方法は、回転翼たるインペラ10に、該インペラ10の表面における光の反射を抑制するための液材である反射防止材4を塗布する工程(即ち、反射防止材塗布工程(STEP−001))と、反射防止材4を塗布したインペラ10に対して干渉縞を投影するための光である測定補助光を照射するとともに、インペラ10に投影された干渉縞を異なる2方向から撮影して、異なる2方向から撮影した2種類の干渉縞に基づきインペラ10の3次元形状を算出する工程(即ち、撮影工程(STEP−002)および画像処理工程(STEP−003))と、を備える形状測定方法であって、反射防止材塗布工程(STEP−001)では、インペラ10を、該インペラ10の軸心X回りに回転可能に支持して、インペラ10に向けて、該インペラ10の接線Yに略平行な第一の方向である向きαから、反射防止材4を噴霧して、インペラ10を、該インペラ10の軸心X回りに回転させるとともに、インペラ10に向けて、該インペラ10の軸心Xに略平行な第二の方向である向きβから、反射防止材4を噴霧するものである。
このような構成により、回転翼(本実施形態では、インペラ10)の表面における測定補助光の反射を抑制しつつ、回転翼の形状を測定することにより、精度よく回転翼の形状を測定することができる。
1 形状測定システム
2 形状測定装置
2a 照射部
2b カメラ
2c 演算部
3 塗布装置
7 支持部
8 第一エアブラシ
9 第二エアブラシ
10 インペラ(回転翼)

Claims (3)

  1. 回転翼に、該回転翼の表面における光の反射を抑制するための液材である反射防止材を塗布する工程と、
    前記反射防止材を塗布した前記回転翼に対して干渉縞を投影するための光である測定補助光を照射するとともに、
    前記回転翼に投影された干渉縞を異なる2方向から撮影して、
    異なる2方向から撮影した2種類の干渉縞の撮影データに基づき前記回転翼の3次元形状を算出する工程と、
    を備える回転翼の形状測定方法であって、
    前記回転翼に対して前記反射防止材を塗布する工程では、
    前記回転翼を、該回転翼の軸心回りに回転可能に支持して、
    前記回転翼に向けて、該回転翼の接線に略平行な第一の方向から、前記反射防止材を噴霧して、前記回転翼を、該回転翼の軸心回りに回転させるとともに、
    前記回転翼に向けて、該回転翼の軸心に略平行な第二の方向から、前記反射防止材を噴霧する、
    ことを特徴とする回転翼の形状測定方法。
  2. 回転翼に対して干渉縞を投影するための光である測定補助光を照射するための部位である照射部と、
    前記回転翼に投影された干渉縞を異なる2方向から撮影するための部位である一対のカメラと、
    前記一対のカメラで撮影した2種類の干渉縞に基づき前記回転翼の3次元形状を算出する演算部と、
    を有する形状測定装置、
    を備える、前記回転翼の形状を測定するためのシステムである形状測定システムであって、
    前記回転翼に、該回転翼の表面における光の反射を抑制するための液材である反射防止材を塗布するための装置である塗布装置を備え、
    前記塗布装置は、
    前記回転翼を、該回転翼の軸心回りに回転可能な状態で支持するための部位である支持部と、
    前記支持部において支持される前記回転翼に向けて、該回転翼の接線に略平行な第一の方向から、前記反射防止材を噴霧して、前記回転翼を、該回転翼の軸心回りに回転させるための部位である第一のエアブラシと、
    前記支持部において支持される前記回転翼に向けて、該回転翼の軸心に略平行な第二の方向から、前記反射防止材を噴霧するための部位である第二のエアブラシと、
    を備える、
    ことを特徴とする形状測定システム。
  3. 回転翼に、該回転翼の表面における光の反射を抑制するための液材である反射防止材を塗布するための装置であって、
    前記回転翼を、該回転翼の軸心回りに回転可能な状態で支持するための部位である支持部と、
    前記支持部において支持される前記回転翼に向けて、該回転翼の接線に略平行な第一の方向から、前記反射防止材を噴霧して、前記回転翼を、該回転翼の軸心回りに回転させるための部位である第一のエアブラシと、
    前記支持部において支持される前記回転翼に向けて、該回転翼の軸心に略平行な第二の方向から、前記反射防止材を噴霧するための部位である第二のエアブラシと、
    を備える、
    ことを特徴とする塗布装置。
JP2012118060A 2012-05-23 2012-05-23 回転翼の形状測定方法および形状測定システムならびに塗布装置 Pending JP2013245963A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012118060A JP2013245963A (ja) 2012-05-23 2012-05-23 回転翼の形状測定方法および形状測定システムならびに塗布装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012118060A JP2013245963A (ja) 2012-05-23 2012-05-23 回転翼の形状測定方法および形状測定システムならびに塗布装置

Publications (1)

Publication Number Publication Date
JP2013245963A true JP2013245963A (ja) 2013-12-09

Family

ID=49845872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012118060A Pending JP2013245963A (ja) 2012-05-23 2012-05-23 回転翼の形状測定方法および形状測定システムならびに塗布装置

Country Status (1)

Country Link
JP (1) JP2013245963A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104236879A (zh) * 2014-08-25 2014-12-24 合肥工业大学 基于机器视觉的发动机叶片动静态检测方法
JP2016070938A (ja) * 2014-09-30 2016-05-09 敏治 吉川 非接触式3dスキャナー用の表面反射材
CN110763115A (zh) * 2019-09-26 2020-02-07 宁波奥克斯电气股份有限公司 一种风叶测绘装置和测绘方法
CN112013787A (zh) * 2020-10-21 2020-12-01 四川大学 基于叶片自特征的叶片三维轮廓重建方法
CN113465911A (zh) * 2021-09-03 2021-10-01 南通南洋风机制造有限公司 一种风机风叶检测装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104236879A (zh) * 2014-08-25 2014-12-24 合肥工业大学 基于机器视觉的发动机叶片动静态检测方法
JP2016070938A (ja) * 2014-09-30 2016-05-09 敏治 吉川 非接触式3dスキャナー用の表面反射材
CN110763115A (zh) * 2019-09-26 2020-02-07 宁波奥克斯电气股份有限公司 一种风叶测绘装置和测绘方法
CN110763115B (zh) * 2019-09-26 2022-02-01 宁波奥克斯电气股份有限公司 一种风叶测绘装置和测绘方法
CN112013787A (zh) * 2020-10-21 2020-12-01 四川大学 基于叶片自特征的叶片三维轮廓重建方法
CN113465911A (zh) * 2021-09-03 2021-10-01 南通南洋风机制造有限公司 一种风机风叶检测装置
CN113465911B (zh) * 2021-09-03 2021-11-12 南通南洋风机制造有限公司 一种风机风叶检测装置

Similar Documents

Publication Publication Date Title
JP2013245963A (ja) 回転翼の形状測定方法および形状測定システムならびに塗布装置
Palousek et al. Effect of matte coating on 3D optical measurement accuracy
US10035223B2 (en) Repair method for the additive repair of a component
US8691322B2 (en) Measurement method and device for measuring layer thicknesses as well as production method and coating system
JP5692758B2 (ja) 特に大規模構造物の部品の表面を円滑化する方法及び装置
US9613415B2 (en) Protective film detecting apparatus and protective film detecting method
CN103143484B (zh) 一种荧光粉涂覆厚度的控制方法
US20170052022A1 (en) Highly reflective surface profile measurement system with liquid atomization and the method thereof
JP2010112811A (ja) 原木の3次元形状測定装置および方法
CN108356712B (zh) 一种形成高斯型去除函数的射流抛光加工方法
CN111307073B (zh) 一种测量旋变定子与转子同轴度偏差的装置
EP2641055A1 (en) Surface coating for inspection
JP2023539728A (ja) ロボット補修制御システム及び方法
JPWO2016117455A1 (ja) 塗布装置と塗布方法、塗布ユニット
JP2008302428A (ja) アーク溶接品質検査方法
CN107636189A (zh) 热喷涂方法
Ross et al. Challenges faced in applying 3D noncontact metrology to turbine engine blade inspection
TWM345227U (en) An optical fringe projection measuring system that can measure the surface roughness and the profile of sheet materials at the same time
EP3390961B1 (fr) Dispositif de contrôle tridimensionnel sans contact de pale pour turbomachine, en particulier pour réacteur ou turbine d'aéronef
JP2015110839A (ja) 遮熱コーティングの部分補修方法
JPH06160300A (ja) ウェット鮮映性測定装置
EP4045241A1 (fr) Robot pour la rénovation par décapage et/ou revêtement de peinture, et/ou l'inspection d'une paroi de grande surface et/ou de hauteur élevée, procédé de fonctionnement associé et application au décapage et à la peinture de coques de navire
JP3322034B2 (ja) 塗装品質解析装置
WO2018185890A1 (ja) 塗装補助装置、塗装装置、塗装作業補助方法、塗装物の製造方法、および塗装補助プログラム
CN220603332U (zh) 漆面缺陷检测装置