JP2013234362A - Brass alloy excellent in high temperature brittleness resistance - Google Patents
Brass alloy excellent in high temperature brittleness resistance Download PDFInfo
- Publication number
- JP2013234362A JP2013234362A JP2012107910A JP2012107910A JP2013234362A JP 2013234362 A JP2013234362 A JP 2013234362A JP 2012107910 A JP2012107910 A JP 2012107910A JP 2012107910 A JP2012107910 A JP 2012107910A JP 2013234362 A JP2013234362 A JP 2013234362A
- Authority
- JP
- Japan
- Prior art keywords
- component
- less
- brass alloy
- high temperature
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Domestic Plumbing Installations (AREA)
Abstract
Description
本発明は、高温域における脆性を改善した黄銅合金に関する。 The present invention relates to a brass alloy with improved brittleness in a high temperature range.
切削性に優れた黄銅合金としては、これまでPb成分を添加した快削合金が一般的に使用されていた。
しかし、近年環境への影響を考慮したPbレスの黄銅合金が検討され、従来の黄銅合金に要求される強度,摺動性等の材料特性を維持しつつ、快削性がPb系黄銅合金並みのものとしてBi系黄銅合金が開発されている(特許文献1,2)。
しかし、従来のBi系黄銅合金は常温付近での脆性はPb系黄銅合金と殆ど差がないのに、約150℃付近の高温域で急に脆性が低下する場合があることが明らかになった。
本願発明者は、従来の鉛入り黄銅合金が約250〜300℃位までは大きく脆性が低下しないのにPbの代わりにビスマスを添加すると、何故約150℃付近まで脆性域が下がるのかを詳細に実験調査をした。
その結果、黄銅合金の鋳造に用いる銅材及び亜鉛材にはPbが少量含有し、溶解炉を用いて鋳造する際にも僅かながらPbが混入し、その成分量はPb:0.05〜0.1質量%であった。
Biそのものの融点は271℃であるが、Bi100に対してPbが5の割合で混入しても、融点が125℃付近まで低下することが明らかになった。
従って、ごく少量含まれているPbとBiが合金化し、結晶粒界に偏析するために150℃以上の高温にすると、この偏析粒子を起点にして破断するために高温脆性が生じるものと推定される。
このため、成分比Pb/Biの値が0.005以下になるようにPb成分を抑えた耐高温脆性良好なBi系の黄銅合金を提案している(特許文献3)。
また、特許文献4はPbの量を抑えてBi−Pb共晶相の生成を抑制して、高温下における機械的性質の低下を改善した銅基合金を開示する。
しかるに、Pb量を0.01%以下という極限まで下げるには、電気銅や電気亜鉛,金属ビスマス等の純度の高い金属から製作するためコストが高いという問題がある。
欧州連合によるRoHS規制やELV規制では、Pb量は0.1%以下としているので、この規制をクリアできる範囲でPbの混入が許容されるものが好ましい。
As a brass alloy excellent in machinability, a free-cutting alloy to which a Pb component is added has been generally used so far.
However, in recent years, Pb-less brass alloys have been studied in consideration of environmental impact, and while maintaining the material properties required for conventional brass alloys such as strength and slidability, free-cutting properties are comparable to Pb-based brass alloys. Bi-based brass alloys have been developed (Patent Documents 1 and 2).
However, it has been clarified that the conventional Bi-based brass alloy has a brittleness near room temperature that is almost the same as that of the Pb-based brass alloy, but the brittleness may suddenly decrease in a high temperature range of about 150 ° C. .
The inventor of the present application explains in detail why the brittle region decreases to about 150 ° C. when bismuth is added instead of Pb even though the conventional lead-containing brass alloy does not significantly decrease brittleness to about 250-300 ° C. An experimental investigation was conducted.
As a result, the copper material and the zinc material used for the casting of the brass alloy contain a small amount of Pb, and a slight amount of Pb is mixed even when casting using the melting furnace. The amount of the component is Pb: 0.05 to 0 It was 1 mass%.
Although the melting point of Bi itself is 271 ° C., it has been clarified that the melting point decreases to around 125 ° C. even if Pb is mixed at a ratio of 5 to Bi100.
Therefore, when Pb and Bi contained in a very small amount are alloyed and segregated at the grain boundaries, if the temperature is higher than 150 ° C., it is presumed that high temperature brittleness occurs due to the fracture starting from the segregated particles. The
For this reason, a Bi-based brass alloy with good high-temperature brittleness resistance in which the Pb component is suppressed so that the component ratio Pb / Bi is 0.005 or less has been proposed (Patent Document 3).
Patent Document 4 discloses a copper-based alloy in which the amount of Pb is suppressed to suppress the formation of a Bi—Pb eutectic phase and the deterioration of mechanical properties at high temperatures is improved.
However, in order to reduce the amount of Pb to the limit of 0.01% or less, there is a problem that the cost is high because it is manufactured from a high purity metal such as electrolytic copper, electrolytic zinc, or metallic bismuth.
In the RoHS regulation and ELV regulation by the European Union, the amount of Pb is set to 0.1% or less. Therefore, it is preferable that Pb is allowed to be mixed within a range that can satisfy this regulation.
本発明は、Pbが0.1%程度の範囲にて混入しても高温域における脆性低下を抑えたBi系黄銅合金の提供を目的とする。 An object of the present invention is to provide a Bi-based brass alloy that suppresses a decrease in brittleness in a high temperature range even when Pb is mixed in a range of about 0.1%.
本発明に係る耐高温脆性に優れた黄銅合金は、質量%で、Cu:58.0〜64.0%,Bi:0.9〜2.0%,Mg:0.4〜0.8%,Al:0.2〜0.7%,Pb:0.15%以下,Fe:0.5%以下,Sn:0.5%以下であって、残部がZn及び不可避的不純物からなることを特徴とする。
本発明は、Pbが混入した場合にBiとPbとの共晶が生じるのを防ぐ手段として、Mgを添加し、BiとMgとの金属間化合物を優先的に形成させた点に特徴がある。
RoHS規制やELV規制ではPbが0.1%以下となっているので、本発明者はPbの混入量が0.1%を少し超えて混入した場合でもPbの影響を抑えることを検討した結果、Mgの添加量はBiの添加量に応じて多くする必要があり、添加量は質量%で[Bi]×0.4の値以上が好ましいことが明らかになった。
なお、Pb成分の混入量を0.1%以下に抑えるのが好ましい。
The brass alloy excellent in high temperature brittleness resistance according to the present invention is, by mass, Cu: 58.0 to 64.0%, Bi: 0.9 to 2.0%, Mg: 0.4 to 0.8%. , Al: 0.2 to 0.7%, Pb: 0.15% or less, Fe: 0.5% or less, Sn: 0.5% or less, with the balance being Zn and inevitable impurities Features.
The present invention is characterized in that Mg is added to preferentially form an intermetallic compound of Bi and Mg as a means for preventing the eutectic of Bi and Pb when Pb is mixed. .
Since Pb is 0.1% or less in the RoHS regulation and the ELV regulation, the present inventor has studied to suppress the influence of Pb even when the amount of Pb mixed slightly exceeds 0.1%. It has been clarified that the addition amount of Mg needs to be increased in accordance with the addition amount of Bi, and the addition amount is preferably not less than [Bi] × 0.4 in mass%.
In addition, it is preferable to suppress the mixing amount of the Pb component to 0.1% or less.
本発明は、Bi系黄銅合金にPb成分が約0.1%程度まで混入するのを許容することができるようにMgを添加した点に特徴があり、黄銅合金の用途に応じて他の成分を添加してもよい。
例えば、質量%で、Cu:58.0〜64.0%,Bi:0.9〜2.0%,Mg:0.4〜0.8%,Al:0.2〜0.7%,Pb:0.15%以下,Fe:0.5%以下,Sn:0.5%であって、P:0.03〜0.1%,Se:0.01〜0.5%,Sb:0.01〜0.5%,Te:0.01〜0.5%のうち、いずれか一種以上含有し、残部がZn及び不可避的不純物からなる黄銅合金としてもよい。
この場合もPbの混入量は0.1%以下にするのが好ましい。
The present invention is characterized in that Mg is added so as to allow the Pb component to be mixed up to about 0.1% in the Bi-based brass alloy, and other components depending on the use of the brass alloy. May be added.
For example, in mass%, Cu: 58.0-64.0%, Bi: 0.9-2.0%, Mg: 0.4-0.8%, Al: 0.2-0.7%, Pb: 0.15% or less, Fe: 0.5% or less, Sn: 0.5%, P: 0.03-0.1%, Se: 0.01-0.5%, Sb: It is good also as a brass alloy which contains any one or more among 0.01-0.5%, Te: 0.01-0.5%, and remainder consists of Zn and an unavoidable impurity.
Also in this case, the amount of Pb mixed is preferably 0.1% or less.
次に各成分範囲を設定した理由を説明する。
<Cu>
Cu成分は黄銅材のベースとなる成分であり、Cu:58.0〜64.0%,好ましくは60.0〜62.0%の範囲である。
<Bi>
黄銅材組織中のBiを起点にした快削性を向上させるのが目的であり、従来のPbの代替としての役割を有する。
このような効果を発現するのにBiは0.9%以上必要であり、2.0%を超えると、その効果が飽和する。
よって、Biは0.9〜2.0%の範囲がよく、好ましくはBi:1.0〜1.8%の範囲である。
<Mg>
Mgは黄銅材中にBi−Pbの共晶相が生成するのを抑制する作用が認められ、Mgは上記のBiの成分範囲にあっては、Mg:0.4〜0.8%でMgの添加量が質量%で[Bi]×0.4の値以上が好ましい。
MgはBi−Mgの金属間化合物を生成する。
Mgの添加量が多くなると、鋳造時に酸化マグネシウムの生成による表面欠陥が発生しやすくなるので上限を0.8%とした。
また、本発明者らはPb成分の混入が一般的な規制上限である0.1%まで混入しても問題ないことを確認するために、Pb成分が0.15%まで混入してもよいことを目的に実験検討し、本発明に至った。
従って、Pb成分が0.1%以下であれば、Mgの添加量は0.4〜0.65%の範囲でもよい。
<Al>
Al成分は鋳造時の流動性を確保するのが目的であり、0.2〜0.7%の範囲がよい。
好ましくは、0.2〜0.5%の範囲である。
<Zn>
Zn成分はCu成分とともに黄銅材のベースとなる成分であり、Cu:Znの比が約6:4となることを基本に、本明細書ではCuと他の添加成分の合計に対する残部と表現した。
<Sn>
Sn成分は引張り強度等の機械的特性の向上に有効であるが、Sn成分の添加量が多くなると硬いMgリッチ相が生成しやすくなるため、0.5%以下が好ましい。
<他の成分>
本発明においてFe成分は不純成分として0.5%以下、好ましくは0.2%以下がよく、P及びSbは耐脱亜鉛腐食の向上に寄与し、Se,Teは快削性の向上に寄与する。
添加する場合はP:0.03〜0.15%,Sb:0.01〜0.5%,Se:0.01〜0.5%,Te:0.01〜0.5%の範囲がよい。
Next, the reason for setting each component range will be described.
<Cu>
The Cu component is a component that serves as a base of the brass material, and Cu: 58.0 to 64.0%, preferably 60.0 to 62.0%.
<Bi>
The purpose is to improve the free-cutting property starting from Bi in the brass material structure, and it serves as an alternative to conventional Pb.
In order to exhibit such an effect, Bi needs to be 0.9% or more, and when it exceeds 2.0%, the effect is saturated.
Therefore, Bi is preferably in the range of 0.9 to 2.0%, and preferably Bi: 1.0 to 1.8%.
<Mg>
Mg has an action to suppress the formation of a Bi—Pb eutectic phase in the brass material, and Mg is Mg: 0.4 to 0.8% within the above Bi component range. Is preferably not less than the value of [Bi] × 0.4 by mass%.
Mg forms Bi-Mg intermetallic compounds.
When the amount of added Mg increases, surface defects due to the formation of magnesium oxide tend to occur during casting, so the upper limit was made 0.8%.
In order to confirm that the Pb component may be mixed up to 0.1%, which is a general upper limit, the Pb component may be mixed up to 0.15%. For this purpose, an experiment was conducted to arrive at the present invention.
Therefore, if the Pb component is 0.1% or less, the amount of Mg added may be in the range of 0.4 to 0.65%.
<Al>
The purpose of the Al component is to ensure fluidity during casting, and the range of 0.2 to 0.7% is preferable.
Preferably, it is 0.2 to 0.5% of range.
<Zn>
The Zn component is a component serving as a base of the brass material together with the Cu component, and based on the fact that the ratio of Cu: Zn is about 6: 4, in this specification, it is expressed as the balance with respect to the sum of Cu and other additive components. .
<Sn>
The Sn component is effective in improving mechanical properties such as tensile strength. However, since the hard Mg-rich phase is easily generated when the amount of the Sn component is increased, 0.5% or less is preferable.
<Other ingredients>
In the present invention, the Fe component should be 0.5% or less, preferably 0.2% or less as an impure component, P and Sb contribute to the improvement of dezincification corrosion resistance, and Se and Te contribute to the improvement of free-cutting properties. To do.
When adding, the range of P: 0.03-0.15%, Sb: 0.01-0.5%, Se: 0.01-0.5%, Te: 0.01-0.5% Good.
本発明はBi系黄銅合金において、所定量のMgを添加したのでBi−Pbの共晶相の出現を抑制でき、Pbの混入による高温域の脆性以下を防止できる。 According to the present invention, since a predetermined amount of Mg is added to the Bi-based brass alloy, the appearance of a Bi—Pb eutectic phase can be suppressed, and the brittleness in the high temperature region due to the mixing of Pb can be prevented.
図1の表に示す各化学組成の黄銅合金を試作し評価したので、以下説明する。 A brass alloy having each chemical composition shown in the table of FIG.
評価方法は以下の評価基準をクリアーするものを合格「○」と判断した。 As the evaluation method, those that passed the following evaluation criteria were judged to be acceptable.
衝撃試験片は、JIS Z 2202 Vノッチ試験片とした。
常温衝撃値は23℃で試験を行い、衝撃吸収エネルギー15J以上を○(合格),15J未満を×(不合格)とした。
高温衝撃値は200℃で試験を行い、衝撃吸収エネルギー10J以上を○(合格),10J未満を×(不合格)とした。
シャルピー試験方法はJIS Z 2242に準拠した。
切粉形状については、図3のように切り込み0.5mm(切削速度:99m/分)及び切り込み1.0mm(切削速度94.2m/分)において、送量(mm/rev)をそれぞれ0.064,0.128,0.192,0.256,0.320として切粉を採取した。
計10水準で切粉形状を観察した。
10水準の内、1個でもA切粉が存在した場合×(不合格)とし、それ以外の形状の切粉のみである場合○(合格)とした。
湯流れ性は図4に示すような鋳型を用い、1000℃で鋳込んだ湯流れ試験において、全長が150mm以上のものを○(合格),150mm以下のものを×(不合格)とした。
The impact test piece was a JIS Z 2202 V notch test piece.
The normal temperature impact value was tested at 23 ° C., and impact absorption energy of 15 J or more was evaluated as “◯” (passed), and less than 15 J was evaluated as “x” (failed).
The high temperature impact value was tested at 200 ° C., and impact absorption energy of 10 J or more was evaluated as “◯” (passed), and less than 10 J was evaluated as “x” (failed).
The Charpy test method conformed to JIS Z 2242.
As for the chip shape, the feed rate (mm / rev) was set to 0. 5 mm at a cutting depth of 0.5 mm (cutting speed: 99 m / min) and a cutting depth of 1.0 mm (cutting speed 94.2 m / min) as shown in FIG. Chips were collected as 064, 0.128, 0.192, 0.256, 0.320.
The shape of chips was observed at a total of 10 levels.
Among the 10 levels, even when one piece of A chips was present, it was set as x (failed), and when it was only chips of other shapes, it was marked as ◯ (passed).
In the hot water flow test using a mold as shown in FIG. 4 and cast at 1000 ° C., the hot water flowability was evaluated as ○ (passed) when the total length was 150 mm or more, and X (failed) when the total length was 150 mm or less.
各試作合金の評価結果を図1の表に示す。
合金No.1〜10は、本発明の実施例に相当し、Cu成分が58.0〜64.0%,Bi成分が0.9〜2.0%,Al成分が0.2〜0.7%の範囲にあり、Fe成分が0.5%以下,Sn成分が0.5%以下なので、Pb成分を故意に0.09〜0.15%程度混入させてもMg成分を0.4〜0.8%添加したことにより、200℃の高温における衝撃値も目標をクリアーすることができ、切削性(切粉形状)及び鋳造性(湯流れ)も目標値をクリアーすることができた。
参考として図2に鋳造材の組織のSEM像を示す。
面分析によるMgとBiとの位置が重なっているのが分かる。
これに対して比較例は、Pb成分を故意に上記と同程度混入させた結果、比較例合金No.21はMg成分が0.4%よりも少ないため、比較例合金No.30,31はMg成分を添加しなかったために高温衝撃値が目標をクリアーしなかった。
また、比較例合金No.23は、Mg成分を0.68%添加したが、Bi成分量が2.0%を超えていたので、高温衝撃値をクリアーすることができなかった。
比較例合金No.21〜24,26〜29は、Al成分の添加量が目標より少なかったので、湯流れ性が目標をクリアーしなかった。
The evaluation results of each prototype alloy are shown in the table of FIG.
Alloy No. 1 to 10 correspond to examples of the present invention, in which the Cu component is 58.0 to 64.0%, the Bi component is 0.9 to 2.0%, and the Al component is 0.2 to 0.7%. Since the Fe component is 0.5% or less and the Sn component is 0.5% or less, even if the Pb component is intentionally mixed in an amount of 0.09 to 0.15%, the Mg component is 0.4 to 0.00. By adding 8%, the impact value at a high temperature of 200 ° C. was able to clear the target, and the machinability (chip shape) and castability (hot water flow) could also be cleared.
For reference, FIG. 2 shows an SEM image of the structure of the cast material.
From the surface analysis, it can be seen that the positions of Mg and Bi overlap.
On the other hand, in the comparative example, as a result of intentionally mixing the Pb component to the same extent as described above, the comparative example alloy No. No. 21 has a Mg component less than 0.4%. Since 30 and 31 did not add the Mg component, the high temperature impact value did not clear the target.
Comparative Example Alloy No. In No. 23, 0.68% of the Mg component was added, but since the Bi component amount exceeded 2.0%, the high temperature impact value could not be cleared.
Comparative Example Alloy No. In Nos. 21-24 and 26-29, the addition amount of the Al component was less than the target, so the hot water flowability did not clear the target.
Claims (2)
P:0.03〜0.1%,Se:0.01〜0.5%,Sb:0.01〜0.5%,Te:0.01〜0.5%のうち、いずれか一種以上含有し、残部がZn及び不可避的不純物からなることを特徴とする耐高温脆性に優れた黄銅合金。 In mass%, Cu: 58.0 to 64.0%, Bi: 0.9 to 2.0%, Mg: 0.4 to 0.8%, Al: 0.2 to 0.7%, Pb: 0.15% or less, Fe: 0.5% or less, Sn: 0.5% or less,
Any one or more of P: 0.03-0.1%, Se: 0.01-0.5%, Sb: 0.01-0.5%, Te: 0.01-0.5% A brass alloy having excellent high-temperature brittleness resistance, which contains Zn and inevitable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012107910A JP5869422B2 (en) | 2012-05-09 | 2012-05-09 | Brass alloy with excellent high temperature brittleness resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012107910A JP5869422B2 (en) | 2012-05-09 | 2012-05-09 | Brass alloy with excellent high temperature brittleness resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013234362A true JP2013234362A (en) | 2013-11-21 |
JP5869422B2 JP5869422B2 (en) | 2016-02-24 |
Family
ID=49760703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012107910A Active JP5869422B2 (en) | 2012-05-09 | 2012-05-09 | Brass alloy with excellent high temperature brittleness resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5869422B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230035864A1 (en) * | 2021-07-27 | 2023-02-02 | Diehl Brass Solutions Stiftung & Co. Kg | Lead-free and antimony-free brass alloy |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06505309A (en) * | 1991-03-01 | 1994-06-16 | オリン コーポレイション | Machinable copper alloy with reduced lead content |
JPH1081926A (en) * | 1996-09-05 | 1998-03-31 | Furukawa Electric Co Ltd:The | Copper alloy for electronic device |
JPH11293305A (en) * | 1998-04-07 | 1999-10-26 | Komatsu Ltd | Slide material and double layered sintered slide member |
JP2004359968A (en) * | 2003-05-30 | 2004-12-24 | San-Etsu Metals Co Ltd | Brass alloy with excellent resistance to high temperature brittleness |
-
2012
- 2012-05-09 JP JP2012107910A patent/JP5869422B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06505309A (en) * | 1991-03-01 | 1994-06-16 | オリン コーポレイション | Machinable copper alloy with reduced lead content |
JPH1081926A (en) * | 1996-09-05 | 1998-03-31 | Furukawa Electric Co Ltd:The | Copper alloy for electronic device |
JPH11293305A (en) * | 1998-04-07 | 1999-10-26 | Komatsu Ltd | Slide material and double layered sintered slide member |
JP2004359968A (en) * | 2003-05-30 | 2004-12-24 | San-Etsu Metals Co Ltd | Brass alloy with excellent resistance to high temperature brittleness |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230035864A1 (en) * | 2021-07-27 | 2023-02-02 | Diehl Brass Solutions Stiftung & Co. Kg | Lead-free and antimony-free brass alloy |
Also Published As
Publication number | Publication date |
---|---|
JP5869422B2 (en) | 2016-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7985374B2 (en) | Cadmium-free silver brazing filler metal | |
JP2018048398A (en) | Brass excellent in corrosion resistance | |
JP5674136B2 (en) | High thermal conductivity magnesium alloy for die casting | |
JP5591661B2 (en) | Copper-based alloy for die casting with excellent dezincification corrosion resistance | |
JPWO2009048008A1 (en) | Lead-free free-cutting brass with excellent castability | |
CN101278065B (en) | Free-cutting aluminum alloy extrudate with excellent brittle resistance at high temperature | |
JP5522582B2 (en) | Brass alloy for water supply components | |
JP2011144396A5 (en) | ||
JP2010242184A (en) | Lead-free, free-machining brass excellent in castability and corrosion resistance | |
JP5642603B2 (en) | Lead-free free-cutting brass alloy for casting | |
WO2011121799A1 (en) | Lead-free free-machining bronze casting alloy | |
JP5869422B2 (en) | Brass alloy with excellent high temperature brittleness resistance | |
JP2009082986A (en) | Lead-free solder alloy for manual soldering | |
JP5562749B2 (en) | Cu-Mn brazing wire fine wire and method for producing the same | |
JP2004358539A (en) | High-temperature brazing filler metal | |
JP5513230B2 (en) | Copper-base alloy for casting | |
JP2007327115A (en) | High-strength free-cutting aluminum alloy superior in toughness | |
JP2009041088A (en) | Lead-free free-cutting brass with excellent castability | |
JP2011038130A (en) | Aluminum alloy having excellent machinability and high temperature embrittlement resistance | |
JP2014196525A (en) | Heat-resistant magnesium alloy | |
US9829122B2 (en) | Leach-resistant leaded copper alloys | |
JP7126198B2 (en) | Lead-free free-cutting phosphor bronze rod wire | |
JP2006320912A (en) | High temperature solder alloy | |
JP2007209989A (en) | High-temperature brazing filler metal | |
KR20120104963A (en) | Leadless free-cutting copper alloy without containing bi |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160107 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5869422 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |