JP2009082986A - Lead-free solder alloy for manual soldering - Google Patents

Lead-free solder alloy for manual soldering Download PDF

Info

Publication number
JP2009082986A
JP2009082986A JP2008223211A JP2008223211A JP2009082986A JP 2009082986 A JP2009082986 A JP 2009082986A JP 2008223211 A JP2008223211 A JP 2008223211A JP 2008223211 A JP2008223211 A JP 2008223211A JP 2009082986 A JP2009082986 A JP 2009082986A
Authority
JP
Japan
Prior art keywords
solder
weight
copper
iron
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008223211A
Other languages
Japanese (ja)
Inventor
Seiji Yamada
清二 山田
Kenichiro Sugimori
健一郎 杉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON FIRAA METALS KK
Topy Industries Ltd
Original Assignee
NIPPON FIRAA METALS KK
Topy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON FIRAA METALS KK, Topy Industries Ltd filed Critical NIPPON FIRAA METALS KK
Priority to JP2008223211A priority Critical patent/JP2009082986A/en
Publication of JP2009082986A publication Critical patent/JP2009082986A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an SnAgCu based lead-free solder alloy for manual soldering which has resistance to soldering iron tip thinning on a level same as that of Sn37Pb (eutectic alloy) and excellent copper thinning resistance, and having a stable componential composition, can be produced. <P>SOLUTION: The lead-free solder alloy for manual soldering comprises, by weight, 0.2 to 1.2% Cu, 1.0 to 5.0% Ag, 0.005 to 0.03% Co, 0.001 to 0.01% Ge and 0.01 to 0.05% Fe, and the balance Sn, and solder simultaneously having resistance to soldering iron tip thinning and excellent copper thinning resistance can be produced, and having a stable componential composition. Further, by incorporating a transition metal or a mischmetal as the mixture thereof therein by 0.001 to 0.05%, excellent resistance to soldering iron tip thinning and copper thinning resistance can be complemented. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、電気・電子機器の金属接合等に使用されるマニュアルソルダリング用無鉛はんだ合金に係り、詳記すれば、優れた耐こて先喰われ性と耐銅喰われ性を併有するマニュアルソルダリング用のSnAgCu系無鉛はんだ合金に関する。   The present invention relates to a lead-free solder alloy for manual soldering used for metal bonding of electric / electronic devices, and more specifically, a manual having both excellent tip resistance and copper resistance. The present invention relates to a SnAgCu-based lead-free solder alloy for soldering.

従来、電気・電子機器の金属接合に使用するはんだ合金としては、Snが63重量%、Pbが37重量%等の鉛を含有するはんだ合金が一般的に用いられてきた。   Conventionally, a solder alloy containing lead such as 63 wt% Sn and 37 wt% Pb has been generally used as a solder alloy used for metal bonding of electric / electronic devices.

しかしながら、鉛を含有するはんだは、人体に有害であることから鉛を含有しない多くの無鉛はんだ合金が検討されている。具体的には、SnCu系合金、SnAgCu系合金、SnZn系合金やこれらの合金にBi、In等を添加したものが検討されている。 However, since lead-containing solder is harmful to the human body, many lead-free solder alloys that do not contain lead have been studied. Specifically, SnCu-based alloys, SnAgCu-based alloys, SnZn-based alloys, and alloys obtained by adding Bi, In or the like to these alloys have been studied.

この中でSnAgCu系合金は、クリープ強度に代表される優れた機械特性値と濡れ性を有するところから、信頼性の高い無鉛はんだ合金として、最も実用化されている無鉛はんだ合金である。 Among these, SnAgCu-based alloys are lead-free solder alloys most practically used as lead-free solder alloys with high reliability because they have excellent mechanical property values typified by creep strength and wettability.

しかしながら、このSn3Ag0.5Cuに代表されるSnAgCu系の合金は、銅や鉄系の合金を溶食し易く、基板の銅回路の浸食、銅の細線を消失、はんだ槽の容器の浸食、はんだこて先の鉄メッキの侵食などの、いわゆる金属の溶損にかかわる問題があり、これらが実用上の障害となっている。 However, this SnAgCu-based alloy represented by Sn3Ag0.5Cu is easy to corrode copper and iron-based alloys, erosion of the copper circuit of the substrate, disappearance of the copper fine wire, erosion of the container of the solder bath, soldering iron There are problems associated with so-called metal erosion, such as the previous erosion of iron plating, which are practical obstacles.

一方、マニュアルソルダリングとは、固形フラックスをコアとした線状のはんだを、はんだこてを用いてはんだ付けする工法である。 On the other hand, manual soldering is a method of soldering linear solder with solid flux as a core using a soldering iron.

このマニュアルソルダリングで、SnAgCu系のはんだを使用する場合、SnCu系のはんだ合金(Sn0.7CuあるいはSn0.3Ag0.7Cuに代表される)よりは少ないが、鉄を溶解し易く、銅の表層を鉄メッキしたこて先の寿命が短くなるという、いわゆる鉄喰われあるいはこて先喰われが大きいという欠点と、径が0.2mm程度の銅の細線あるいは細線束をはんだ付けする場合に、銅の細線が消失するという欠点を持っている。この銅喰われに関しては、SnCu系はんだ合金よりもSnAgCu系はんだ合金の方が、銅線等の銅が喰われやすい。 When using SnAgCu solder in this manual soldering, it is less than SnCu solder alloy (typified by Sn0.7Cu or Sn0.3Ag0.7Cu), but it is easy to dissolve iron and the surface layer of copper When soldering a copper wire or a bundle of wires with a diameter of about 0.2 mm, the shortage of the iron-plated tip is short, that is, the so-called iron bite or the tip bite is large. Has the disadvantage that the fine lines disappear. Regarding this copper erosion, the SnAgCu solder alloy is more easily eroded by copper, such as a copper wire, than the SnCu solder alloy.

Snベースの鉛フリーはんだは、SnPb系はんだに比較して、融点が高いうえに、濡れ性が悪いことから、マニュアルソルダリングにおけるこて先の温度は、Sn37Pb(共晶合金)のはんだより高い300〜450℃程度に設定されるのが一般的である。そのため、こて先の鉄メッキの浸食により、こて先の寿命はさらに短くなり、また、径0.2mm程度の銅細線をはんだ付けする場合の銅細線の消失も起こり易くなり、これが現実的な大問題となっている。 Since Sn-based lead-free solder has a higher melting point and poor wettability compared to SnPb solder, the tip temperature in manual soldering is higher than that of Sn37Pb (eutectic alloy) solder. Generally, the temperature is set to about 300 to 450 ° C. Therefore, the life of the tip is further shortened due to the erosion of the iron plating of the tip, and the loss of the copper fine wire is likely to occur when soldering the copper fine wire having a diameter of about 0.2 mm, which is realistic. It has become a big problem.

鉄喰われの問題を解決するために、Co:0.001〜0.5重量%、Ni:0.01〜0.1重量%を添加するSnAgCu系合金が提案されている(特許文献1参照)。しかしながらこのものは、本発明者等の研究によれば、400℃近くの温度では、こて先の喰われを抑制する効果は少ないことが判明した。 In order to solve the problem of iron erosion, a SnAgCu-based alloy to which Co: 0.001 to 0.5 wt% and Ni: 0.01 to 0.1 wt% are added has been proposed (see Patent Document 1). ). However, according to the study by the present inventors, it has been found that the effect of suppressing the tip biting is small at a temperature close to 400 ° C.

特許公開2005−246480Patent Publication 2005-246480

更に、鉄喰われの問題を解決するために、Fe、NiとCoを添加するSnAgCu系の鉛フリーはんだ合金が特許されている(特許文献2参照)。このはんだは、Fe、NiとCoを添加することでSn37Pb(共晶合金)に近いこて先喰われ抑制効果を発揮する。しかしながら、本発明者等の研究によれば、このはんだは耐鉄喰われ性は優れるが、400℃程度の高温では銅喰われを抑制する効果が少なく、また、Fe、NiとCoの添加量が多すぎると、SnとFe、Co、Niの高融点の金属間化合物が溶解工程で生成し易くなり、金属間化合物が酸化物とともにドロスとして系外に排出され、安定した成分組成のはんだの製造が困難となることが判明した。 Furthermore, in order to solve the problem of iron erosion, a SnAgCu-based lead-free solder alloy to which Fe, Ni, and Co are added has been patented (see Patent Document 2). This solder exhibits the effect of suppressing the tip erosion close to Sn37Pb (eutectic alloy) by adding Fe, Ni and Co. However, according to the study by the present inventors, this solder is excellent in iron erosion resistance, but at a high temperature of about 400 ° C., there is little effect of suppressing copper erosion, and the addition amount of Fe, Ni and Co If there is too much, a high melting point intermetallic compound of Sn and Fe, Co, and Ni is likely to be generated in the melting process, and the intermetallic compound is discharged out of the system as dross together with the oxide, and the solder with a stable component composition Production has proved difficult.

日本特許第3602529号Japanese Patent No. 3602529

従って、従来のSnAgCu系のはんだ合金は、こて先に代表される鉄喰われの抑制、銅細線に代表される銅喰われの抑制と製造上の問題である成分組成の安定性という観点から、マニュアルソルダリング用としては未だ全く不満足であった。 Therefore, the conventional SnAgCu-based solder alloy has the viewpoint of the suppression of iron erosion represented by the tip, the suppression of copper erosion represented by the copper fine wire, and the stability of the component composition which is a problem in production. It was still unsatisfactory for manual soldering.

この発明は、このような点に鑑みなされたものであり、Sn37Pb(共晶合金)と同レベルの耐こて先喰われ性と実用上問題のない耐銅喰われ性を有し、また、安定した成分組成のはんだの製造が可能な、SnAgCu系のマニュアルソルダリング用無鉛はんだ合金を提供することを目的とする。 This invention has been made in view of such points, and has the same level of tip erosion resistance as Sn37Pb (eutectic alloy) and copper erosion resistance with no practical problems, An object of the present invention is to provide a SnAgCu-based lead-free solder alloy for manual soldering capable of producing a solder having a stable component composition.

上記目的を達成するために本発明者等は、鋭意研究の結果、Cuを0.2〜1.2重量%、Agを1.0〜5.0重量%含有するSnAgCu系無鉛はんだ合金に、微量のCo、GeとFeを添加し、残部がSnよりなるはんだ合金が、Sn37Pb(共晶合金)と同レベルの耐こて先喰われ性と実用レベルの耐銅喰われ性を有し、安定した成分組成のはんだが製造できることを見出し、本発明に到達した。 In order to achieve the above object, as a result of intensive studies, the present inventors have developed a SnAgCu-based lead-free solder alloy containing 0.2 to 1.2% by weight of Cu and 1.0 to 5.0% by weight of Ag. A solder alloy comprising a small amount of Co, Ge and Fe and the balance being Sn has the same level of tip erosion resistance and practical level of copper erosion resistance as Sn37Pb (eutectic alloy), The inventors have found that a solder having a stable component composition can be produced, and have reached the present invention.

即ち本発明のマニュアルソルダリング用はんだは、Cuを0.2〜1.2重量%、Agを1.0〜5.0重量%含有するSnAgCu系無鉛はんだ合金であって、Coを0.005〜0.03重量%、Geを0.001〜0.01重量%及びFeを0.01〜0.05重量%含有し、残部がSnよりなることを特徴とする。
さらに、La、Ce、Pr、Ndなどの遷移金属あるいはこれらの混合物であるミッシュメタル[Mischmetall:独語、mixed metals:英語(以下MMと略す場合がある)]を0.001〜0.05重量%添加することによって、耐こて先喰われ性と耐銅喰われ性を補完することができる。
That is, the solder for manual soldering of the present invention is a SnAgCu-based lead-free solder alloy containing 0.2 to 1.2% by weight of Cu and 1.0 to 5.0% by weight of Ag, and Co is 0.005. It is characterized by containing -0.03% by weight, Ge by 0.001-0.01% by weight and Fe by 0.01-0.05% by weight, with the balance being Sn.
Further, transition metal such as La, Ce, Pr, Nd or a mixture thereof, Misch metal [Mischmetall: German, mixed metals: English (hereinafter sometimes abbreviated as MM)] is 0.001 to 0.05% by weight. By adding, it is possible to complement the tip erosion resistance and copper erosion resistance.

本発明によれば、Cuが0.2〜1.2重量%、Agが1.0〜5.0重量%を含有するSnAgCu系の無鉛はんだ合金に、Coを0.005〜0.03重量%、Geを0.001〜0.01重量%、Feを0.01〜0.05重量%含有させることによって、Sn37Pb(共晶合金)と同レベルの耐こて先喰われ性を有し、耐銅喰われ性はSn37Pb(共晶合金)には及ばないが、実用上問題のないレベルであり、かつ安定した成分組成のはんだが製造できる。 According to the present invention, a SnAgCu-based lead-free solder alloy containing 0.2 to 1.2% by weight of Cu and 1.0 to 5.0% by weight of Ag is added 0.005 to 0.03% by weight of Co. %, Ge 0.001-0.01% by weight and Fe 0.01-0.05% by weight, the tip wear resistance of the same level as Sn37Pb (eutectic alloy) Although the copper erosion resistance does not reach that of Sn37Pb (eutectic alloy), a solder having a stable component composition can be produced at a level that is not problematic in practice.

1.0〜5.0重量%添加されているAgは、こて先の鉄メッキとはんだとの界面に濃縮する傾向があり、ある程度の鉄喰われの抑制効果を示すが充分ではない。
Coを0.005〜0.03重量%、Feを0.01〜0.05重量%添加することによって、こて先の鉄メッキとはんだとの界面にSn−Fe−Coの金属間化合物層が形成されることと、鉄がはんだ中にあらかじめ添加されることで界面の鉄の濃度勾配が小さくなることから、鉄のはんだ中への溶出が抑制される。
Ag added in an amount of 1.0 to 5.0% by weight tends to concentrate at the interface between the iron plating of the tip and the solder, and exhibits a certain degree of iron erosion suppression effect, but is not sufficient.
By adding Co in an amount of 0.005 to 0.03% by weight and Fe in an amount of 0.01 to 0.05% by weight, an Sn—Fe—Co intermetallic compound layer is formed on the iron plating / solder interface of the tip. And the concentration gradient of iron at the interface is reduced by adding iron in advance to the solder, so that elution of iron into the solder is suppressed.

また、Cuが0.2〜1.2重量%添加されているはんだ合金に、Coを0.005〜0.03重量%添加することで、銅とはんだの界面にはSn−Cu−Coの金属間化合物が形成されることと、銅がはんだ中にあらかじめ添加されることで界面の銅の濃度勾配が小さくなることから、銅のはんだ中への溶出が抑制される。 Further, by adding Co in an amount of 0.005 to 0.03% by weight to a solder alloy to which Cu is added in an amount of 0.2 to 1.2% by weight, Sn—Cu—Co of the interface between copper and solder is added. Since the intermetallic compound is formed and copper is added to the solder in advance, the concentration gradient of copper at the interface becomes small, so that elution of copper into the solder is suppressed.

CoとFeを含有するSnAgCu系はんだ合金にGeを添加すると、Sn−Co−Feの金属間化合物の生成を抑制するが、Co、Fe、Geの含有量が多い場合は、金属間化合物が塊状のドロスとなって析出して酸化物発生量が多くなると共に、耐銅喰われ性も低下する。しかし、Co、FeとGeの含有量の少ない本発明の範囲内の場合には、塊状のドロスの生成が無いため、酸化物の発生量も少なく、また、鉄喰われ抑制効果と銅喰われ抑制効果が増進する。
メカニズムは不明であるが、微量のGeはSn−Co−Feの金属間化合物が鉄あるいは銅などとの界面でなく、溶融したはんだ中で生成するのを抑制する作用があるものと考えられる。
When Ge is added to a SnAgCu-based solder alloy containing Co and Fe, the formation of Sn—Co—Fe intermetallic compounds is suppressed, but when the contents of Co, Fe and Ge are large, the intermetallic compounds are massive. As a result, the amount of oxide generated increases and the copper erosion resistance also decreases. However, in the case of the present invention with a low content of Co, Fe and Ge, since no dross is formed, the amount of oxide generated is small, and the iron erosion suppressing effect and copper erosion are reduced. The suppression effect is increased.
Although the mechanism is unknown, it is considered that a small amount of Ge has an action of suppressing the formation of Sn—Co—Fe intermetallic compounds in molten solder, not at the interface with iron or copper.

上記したように、Sn37Pb(共晶合金)と同レベルの耐こて先喰われ性と実用レベルの耐銅喰われ性を有し、また、安定した成分組成のはんだの製造が可能な、はんだ合金は、SnAgCu系のはんだ合金に微量のCo、Ge及びFeを添加することによって達成される。 As described above, a solder having the same level of tip erosion resistance and practical level of copper erosion resistance as Sn37Pb (eutectic alloy) and capable of producing a solder having a stable component composition The alloy is achieved by adding trace amounts of Co, Ge and Fe to a SnAgCu based solder alloy.

また、上記のはんだ合金に、La、Ce、Pr、Ndなどの遷移金属あるいはこれらの混合物であるミッシュメタルを添加すると、その量が多いと酸化物の発生量が増加するが、0.001〜0.05重量%の範囲で添加すると、鉄喰われ抑制と銅喰われ抑制が増進される。 Further, when a transition metal such as La, Ce, Pr, Nd or misch metal which is a mixture thereof is added to the above solder alloy, the amount of oxide generated increases when the amount is large. When added in the range of 0.05% by weight, iron erosion suppression and copper erosion suppression are enhanced.

特許文献1の段落[0007]には、鉛フリーはんだへの鉄の混入は、はんだの濡れ性を著しく阻害してはんだ付け時間を延ばし、結局鉄めっき層を浸食する旨記載されている。しかしながら、本発明の組成のSnAgCu系無鉛はんだに、上記少量のCoとFeを加えると、はんだの濡れ性は殆ど阻害されないことが実験により確認されている。その理由は、Coの添加ははんだの表面張力を下げることと、溶融したはんだ表面の酸化を抑制するゲルマニウム添加効果により、鉄による濡れ性の低下を補完しているものと考えている。また、特許文献2の段落[0038]には、NiにはFeやCoの添加によって低下しがちなハンダゴテのコテ先の濡れ性を高める効果がある旨記載されている。この記載から、Coの添加がFeによる濡れ性の低下を補完することは、予想外のことである。   In paragraph [0007] of Patent Document 1, it is described that the mixing of iron into lead-free solder significantly hinders the wettability of the solder, extends the soldering time, and eventually erodes the iron plating layer. However, it has been experimentally confirmed that when the small amount of Co and Fe is added to the SnAgCu-based lead-free solder having the composition of the present invention, the wettability of the solder is hardly inhibited. The reason is that the addition of Co complements the decrease in wettability due to iron by lowering the surface tension of the solder and the effect of adding germanium that suppresses the oxidation of the molten solder surface. Further, paragraph [0038] of Patent Document 2 describes that Ni has an effect of increasing the wettability of the soldering iron tip which tends to be lowered by the addition of Fe or Co. From this description, it is unexpected that the addition of Co complements the decrease in wettability due to Fe.

要するに本発明の効果が得られる理由は、次の理由によると考えられる。
即ち、少量のFeとCoとを添加することにより、Sn−Fe−Coの金属間化合物層が形成されることと、鉄がはんだ中にあらかじめ添加されることで界面の鉄の濃度勾配が小さくなることから、鉄のはんだ中への溶出が抑制される。また、銅が添加されているはんだにCoを添加することにより、銅とはんだの界面にはSn−Cu−Coの金属間化合物が形成されることと、銅がはんだ中にあらかじめ添加されることで界面の銅の濃度勾配が小さくなることから、銅のはんだ中への溶出が抑制される。更に、CoとGeの添加は、はんだの表面張力を下げ、はんだ表面の酸化物生成を抑制するので、濡れ性が向上する。
In short, the reason why the effect of the present invention can be obtained is considered to be as follows.
That is, by adding a small amount of Fe and Co, an Sn—Fe—Co intermetallic compound layer is formed, and by adding iron in advance to the solder, the concentration gradient of iron at the interface is small. Therefore, elution of iron into the solder is suppressed. Moreover, by adding Co to the solder to which copper is added, an intermetallic compound of Sn—Cu—Co is formed at the interface between the copper and the solder, and copper is added to the solder in advance. Thus, since the copper concentration gradient at the interface becomes small, elution of copper into the solder is suppressed. Furthermore, the addition of Co and Ge lowers the surface tension of the solder and suppresses the formation of oxide on the solder surface, thereby improving the wettability.

しかしながら、Co、GeとFeの添加量が多すぎると金属間化合物が過度に析出し、ドロスが形成する。そのため、安定的な組成のはんだを製造するためには、Coの添加量を0.03重量%以下とし、Geの添加量を0.01重量%以下、Feの添加量を0.05重量%以下に制限する必要がある。その際微量のGeは、溶融したはんだ中でのSn−Co−Feの金属間化合物の生成を抑制するものと考えられる。 However, if the added amount of Co, Ge, and Fe is too large, intermetallic compounds are excessively precipitated and dross is formed. Therefore, in order to manufacture a solder having a stable composition, the amount of Co added is 0.03% by weight or less, the amount of Ge added is 0.01% by weight or less, and the amount of Fe added is 0.05% by weight. It is necessary to restrict to the following. At that time, a small amount of Ge is considered to suppress the formation of Sn—Co—Fe intermetallic compounds in the molten solder.

遷移金属あるいはその混合物であるミッシュメタルは、鉄喰われと銅喰われの両方を抑制する効果があるが、その効果は0.001重量%より少ない添加では発現しないし、0.05重量%より多く添加すると、ドロスを発生し易くなる。 The transition metal or a mixture thereof, the misch metal, has the effect of suppressing both iron and copper erosion, but the effect does not appear with less than 0.001% by weight addition, and more than 0.05% by weight. If a large amount is added, dross is likely to be generated.

以上述べた如く、所定の組成のSnAgCu系合金に、Co、Ge、Feを所定の少量添加することによって、Sn37Pb(共晶合金)と同レベルの耐鉄喰われ性と、Sn37Pb(共晶合金)には及ばないが、実用上問題の無いレベルの優れた耐銅喰われ性を有し、かつ安定した成分組成のはんだの製造が可能となる。このようなSnAgCu系のはんだ合金は、従来強く求められていたにもかかわらず得られなかったものであるから、これは極めて画期的な効果である。 As described above, by adding a predetermined small amount of Co, Ge, and Fe to a SnAgCu alloy having a predetermined composition, the same level of iron erosion resistance as Sn37Pb (eutectic alloy) and Sn37Pb (eutectic alloy) are obtained. However, it is possible to produce a solder having a stable component composition having an excellent copper erosion resistance having a practically no problem level. Such a SnAgCu-based solder alloy has been strongly demanded in the past, but has not been obtained. This is a very innovative effect.

次に、本発明の実施の形態を説明する。 Next, an embodiment of the present invention will be described.

本発明で含有するCuの範囲は0.2〜1.2重量%の範囲であり、Cuは0.2重量%より少ないと濡れ性が劣り、1.2重量%より多いと融点が上昇し、はんだ付けの作業性が劣る。 The range of Cu contained in the present invention is in the range of 0.2 to 1.2% by weight. When Cu is less than 0.2% by weight, the wettability is inferior, and when it exceeds 1.2% by weight, the melting point increases. , Soldering workability is inferior.

本発明で使用するCuの範囲は0.2〜1.2重量%であり、Agの範囲は1.0〜5.0重量%である。これはこの範囲でSn−Ag−Cuの共晶温度及びその温度近くの組成となるからである。 The range of Cu used in the present invention is 0.2 to 1.2% by weight, and the range of Ag is 1.0 to 5.0% by weight. This is because within this range, the Sn—Ag—Cu eutectic temperature and a composition close to that temperature are obtained.

Coを0.005〜0.03重量%、Geを0.001〜0.01重量%、Feを0.01〜0.05重量%含有させることによって、従来のSn−Pb系はんだ並に鉄喰われを抑制でき、また、従来のSn−Pbには劣るが、実用上問題のないレベルに銅喰われも抑制できる。
CoとFeの含有量がそれぞれ0.005重量%、0.01重量%より少ないと、Feとの界面に形成される金属間化合物層の厚さが薄くなり、鉄の溶出を抑制する効果が少なくなり、また銅の溶出を抑制する効果も少なくなる。また、Coの添加量を0.03重量%より多く、Geの添加量を0.01重量%より多く、Feの添加量を0.05重量%より多くすると、溶融はんだ中に金属間化合物の析出によるドロスが形成され易くなり、安定した成分組成のはんだの製造が困難となる。特に、0.001〜0.01重量%のGeがドロスの形成を抑制している。
By containing Co 0.005-0.03% by weight, Ge 0.001-0.01% by weight, and Fe 0.01-0.05% by weight, it is possible to use conventional Sn-Pb solder as well as iron. The biting can be suppressed, and copper biting can also be suppressed to a level that is not problematic in practice, although inferior to conventional Sn-Pb.
When the contents of Co and Fe are less than 0.005% by weight and 0.01% by weight, respectively, the thickness of the intermetallic compound layer formed at the interface with Fe becomes thin, and the effect of suppressing elution of iron is achieved. The effect of suppressing copper elution is reduced. Further, when the addition amount of Co is more than 0.03% by weight, the addition amount of Ge is more than 0.01% by weight, and the addition amount of Fe is more than 0.05% by weight, Dross due to precipitation is likely to be formed, making it difficult to produce a solder having a stable component composition. In particular, 0.001 to 0.01% by weight of Ge suppresses the formation of dross.

次に実施例を挙げて本発明を更に説明する。 EXAMPLES Next, an Example is given and this invention is demonstrated further.

後記表1の組成となる実施例(No1〜No2)及び比較例(No1〜No5)のはんだを、それぞれ4kg作成した。尚、Sn3Ag0.5Cu0.02Co0.005Ge0.03Fe0.003MM(実施例2)は、Agが3重量%、Cuが0.5重量%、Coが0.02重量%、Geが0.005重量%、Feが0.03重量%、ミッシュメタルが0.003重量%、残部をSnとしたはんだ合金を意味する。 4 kg of each of the solders of Examples (No1 to No2) and Comparative Examples (No1 to No5) having the compositions shown in Table 1 below was prepared. In addition, Sn3Ag0.5Cu0.02Co0.005Ge0.03Fe0.003MM (Example 2), Ag is 3 wt%, Cu is 0.5 wt%, Co is 0.02 wt%, Ge is 0.005 wt%, This means a solder alloy in which Fe is 0.03% by weight, Misch metal is 0.003% by weight, and the balance is Sn.

得られたはんだについて、固相線温度/液相線温度(℃)、ゼロクロスタイム(秒)、鉄溶出量(450℃)、銅線残存量(%)、ドロス形成の有無を測定した。試験方法は以下のようにして行った。 The obtained solder was measured for solidus temperature / liquidus temperature (° C.), zero crossing time (seconds), iron elution amount (450 ° C.), copper wire remaining amount (%), and presence or absence of dross formation. The test method was performed as follows.

〔固相線温度/液相線温度(℃)〕
500gのはんだを使用し、冷却法で融点〔固相線温度/液相線温度(℃)〕を測定した。
[Solidus temperature / Liquidus temperature (℃)]
Using 500 g of solder, the melting point [solidus temperature / liquidus temperature (° C.)] was measured by a cooling method.

〔ゼロクロスタイム(秒)〕
7×50×0.2mmの銅板を用い、浸漬深さ2mm、浸漬速度2.5mm/秒、浸漬時間10秒の条件で濡れ性試験機を用いてゼロクロスタイム(秒)を測定した。なお、試験温度は255℃で行い、フラックスはハロゲン量0.12%のRMAタイプのものを使用した。
[Zero cross time (seconds)]
Using a 7 × 50 × 0.2 mm copper plate, the zero cross time (seconds) was measured using a wettability tester under conditions of an immersion depth of 2 mm, an immersion speed of 2.5 mm / second, and an immersion time of 10 seconds. The test temperature was 255 ° C., and the flux used was an RMA type with a halogen content of 0.12%.

〔鉄喰われ量(g/1時間)〕
2.5kgのはんだを磁性の皿に入れ、加熱溶解して450℃とした。このはんだ中に幅30mm、厚さ2mmのSPC鉄板を、φ60の攪拌羽根に取り付けてSPC鉄板の先端15mmをはんだ中に浸漬した。続いて、攪拌羽根を30rpmで1時間間攪拌した。この場合のはんだ中の鉄板の移動速度は約1m/分である。試験前後の鉄板の重量を測定し、鉄のはんだ中への溶出量を求めて、鉄喰われ量とした。
[Feeding amount (g / 1 hour)]
2.5 kg of solder was placed in a magnetic dish and heated to melt at 450 ° C. In this solder, an SPC iron plate having a width of 30 mm and a thickness of 2 mm was attached to a stirring blade having a diameter of 60 mm, and the tip of the SPC iron plate was immersed in the solder. Subsequently, the stirring blade was stirred at 30 rpm for 1 hour. In this case, the moving speed of the iron plate in the solder is about 1 m / min. The weight of the iron plate before and after the test was measured, and the amount of iron eluted into the solder was determined to be the amount of iron erosion.

〔銅線残存量(%)〕
銅喰われ性を測定するために、径0.2mmのウレタン被覆銅線を400℃のはんだに2秒間浸漬した後、樹脂に埋め込み研磨して銅線の断面積を測定し、銅線残存量を以下の式で算出した。
銅線残存量(%)=(A/B)×100
A :浸漬後の銅線の断面積
B :元の銅線の断面積
[Remaining copper wire (%)]
In order to measure the copper erosion property, a 0.2 mm diameter urethane-coated copper wire was immersed in a solder at 400 ° C. for 2 seconds, then embedded in a resin and polished to measure the cross-sectional area of the copper wire. Was calculated by the following formula.
Copper wire remaining amount (%) = (A / B) × 100
A: Cross-sectional area of copper wire after immersion B: Cross-sectional area of original copper wire

〔ドロス形成の有無〕
2.5kgのはんだを磁性の皿に入れ、加熱溶解して270℃とした。このはんだ中に、φ60の攪拌羽根(3枚羽根)を用いて、60rpmで30分間表面を攪拌し、回収した酸化物が通常の乾いた酸化物か湿ったドロスを含む酸化物かを肉眼観察した。

Figure 2009082986
[Presence or absence of dross formation]
2.5 kg of solder was placed in a magnetic dish and heated to melt at 270 ° C. In this solder, the surface is stirred for 30 minutes at 60 rpm using a φ60 stirring blade (three blades), and whether the recovered oxide is an ordinary dry oxide or an oxide containing wet dross is visually observed. did.
Figure 2009082986

上記結果から明らかなように、実施例1〜2の鉄喰われ量は、450℃においては0.01〜0.02g/1時間であり、比較例5のSn37Pb(共晶合金)よりも少ない。また、銅線の残存量は86%、87%であり、Sn37Pb(共晶合金)よりは少ないが、充分実用化できるレベルであり、ドロスの発生も無い。一方、比較例1〜3はドロスの生成は無いが、銅線の残存量は74〜78%と実施例1〜2より少なく、450℃の鉄喰われ量は、0.11〜0.23g/1時間と非常に多い。また、比較例4は450℃の鉄喰われ量は0.02g/1時間と少ないが、銅線の残存量は76%と少なく、ドロスも生成する。
実施例1及び2のはんだは、前記特許文献2の記載に反して、鉄を含有しない比較例3のはんだと比べても、若干濡れ性は低下するが、実用上問題の無いレベルである。しかも本発明のはんだは、450℃の鉄喰われ量は、比較例3のはんだと比べて遥かに優れている。
このことから、Cuが0.2〜1.2重量%、Agが1.0〜5.0重量%、残部をSnとするはんだに、微量のCo、GeとFeを添加したはんだ、及び、さらに微量の遷移金属を添加したはんだが、良好な耐鉄喰われ性と耐銅喰われ性、さらに成分組成の安定性を達成するはんだとなし得ることがわかる。
As is clear from the above results, the amount of iron biting in Examples 1 and 2 is 0.01 to 0.02 g / 1 hour at 450 ° C., which is smaller than Sn3 7 Pb (eutectic alloy) in Comparative Example 5. . Further, the remaining amount of copper wire is 86% and 87%, which is less than Sn37Pb (eutectic alloy), but is at a level that can be sufficiently put into practical use, and no dross is generated. On the other hand, in Comparative Examples 1 to 3, no dross was produced, but the remaining amount of copper wire was 74 to 78%, less than Examples 1 and 2, and the amount of iron erosion at 450 ° C was 0.11 to 0.23 g. / 1 hour and very much. Further, in Comparative Example 4, the amount of iron erosion at 450 ° C. is as small as 0.02 g / 1 hour, but the remaining amount of copper wire is as small as 76%, and dross is also generated.
Contrary to the description in Patent Document 2, the solders of Examples 1 and 2 are slightly less wettable than the solder of Comparative Example 3 that does not contain iron, but are at a level that does not cause any practical problems. Moreover, the amount of iron bite at 450 ° C. of the solder of the present invention is far superior to that of the solder of Comparative Example 3.
From this, the solder which added trace amount Co, Ge, and Fe to the solder which makes Cu 0.2-1.2 weight%, Ag 1.0-5.0 weight%, and the remainder is Sn, and, Furthermore, it turns out that the solder which added the trace amount transition metal can be made into the solder which achieves favorable iron erosion resistance and copper erosion resistance, and also the stability of a component composition.

Claims (2)

Cuを0.2〜1.2重量%、Agを1.0〜5.0重量%含有するSnAgCu系無鉛はんだ合金であって、Coを0.005〜0.03重量%、Geを0.001〜0.01重量%及びFe を0.01〜0.05重量%含有し、残部がSnよりなることを特徴とするマニュアルソルダリング用無鉛はんだ合金。 A SnAgCu-based lead-free solder alloy containing 0.2 to 1.2% by weight of Cu and 1.0 to 5.0% by weight of Ag, wherein Co is 0.005 to 0.03% by weight and Ge is 0.00. A lead-free solder alloy for manual soldering, comprising 001 to 0.01% by weight and 0.01 to 0.05% by weight of Fe 2, with the balance being Sn. さらにLa、Ce、Pr、Ndなどの遷移金属あるいはこれらの混合物であるミッシュメタルを、0.001〜0.05重量%含有する請求項1に記載の無鉛はんだ合金。
















The lead-free solder alloy according to claim 1, further comprising 0.001 to 0.05% by weight of a misch metal which is a transition metal such as La, Ce, Pr, Nd or a mixture thereof.
















JP2008223211A 2007-09-13 2008-09-01 Lead-free solder alloy for manual soldering Pending JP2009082986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008223211A JP2009082986A (en) 2007-09-13 2008-09-01 Lead-free solder alloy for manual soldering

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007237597 2007-09-13
JP2008223211A JP2009082986A (en) 2007-09-13 2008-09-01 Lead-free solder alloy for manual soldering

Publications (1)

Publication Number Publication Date
JP2009082986A true JP2009082986A (en) 2009-04-23

Family

ID=40657131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008223211A Pending JP2009082986A (en) 2007-09-13 2008-09-01 Lead-free solder alloy for manual soldering

Country Status (1)

Country Link
JP (1) JP2009082986A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105290641A (en) * 2015-11-30 2016-02-03 苏州龙腾万里化工科技有限公司 Cleaning-free soldering tin bar
US9337189B2 (en) 2012-11-06 2016-05-10 Kabushiki Kaisha Toshiba Semiconductor device
JP6082952B1 (en) * 2016-07-04 2017-02-22 株式会社弘輝 Solder alloy, solder containing solder
CN106514041A (en) * 2016-11-30 2017-03-22 安徽华众焊业有限公司 Low-Ag Cu-based medium-temperature solder
JP7376842B1 (en) * 2023-02-21 2023-11-09 千住金属工業株式会社 Solder alloys, solder balls, solder pastes and solder joints

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9337189B2 (en) 2012-11-06 2016-05-10 Kabushiki Kaisha Toshiba Semiconductor device
CN105290641A (en) * 2015-11-30 2016-02-03 苏州龙腾万里化工科技有限公司 Cleaning-free soldering tin bar
KR102602128B1 (en) 2016-07-04 2023-11-13 가부시키가이샤 코키 Soldering alloy, solder containing resin
JP6082952B1 (en) * 2016-07-04 2017-02-22 株式会社弘輝 Solder alloy, solder containing solder
WO2018008165A1 (en) * 2016-07-04 2018-01-11 株式会社弘輝 Solder alloy and resin flux cored solder
CN108472769A (en) * 2016-07-04 2018-08-31 株式会社弘辉 Solder alloy, cored soft solder
KR20190025809A (en) * 2016-07-04 2019-03-12 가부시키가이샤 코키 Solder alloy, solder containing resin
EP3479950A4 (en) * 2016-07-04 2020-01-08 Koki Company Limited Solder alloy and resin flux cored solder
US10888960B2 (en) 2016-07-04 2021-01-12 Koki Company Limited Solder alloy and resin flux cored solder
CN106514041A (en) * 2016-11-30 2017-03-22 安徽华众焊业有限公司 Low-Ag Cu-based medium-temperature solder
JP7376842B1 (en) * 2023-02-21 2023-11-09 千住金属工業株式会社 Solder alloys, solder balls, solder pastes and solder joints
WO2024177065A1 (en) * 2023-02-21 2024-08-29 千住金属工業株式会社 Solder alloy, solder ball, solder paste, and soldered joint
TWI866789B (en) * 2023-02-21 2024-12-11 日商千住金屬工業股份有限公司 Solder alloys, solder balls, solder pastes and solder joints

Similar Documents

Publication Publication Date Title
KR101285958B1 (en) Solder alloy and semiconductor device
JP5232157B2 (en) Lead-free solder with improved properties at high temperatures
JP4787384B1 (en) Low silver solder alloy and solder paste composition
KR101738841B1 (en) HIGH-TEMPERATURE SOLDER JOINT COMPRISING Bi-Sn-BASED HIGH-TEMPERATURE SOLDER ALLOY
JP2007203373A (en) Leadless solder alloy
KR19980068127A (en) Lead-Free Alloys for Soldering
JP4554713B2 (en) Lead-free solder alloy, fatigue-resistant solder joint material including the solder alloy, and joined body using the joint material
JP2012121053A (en) Lead free soldering alloy containing zinc as principal component
JP2009082986A (en) Lead-free solder alloy for manual soldering
JP5973992B2 (en) Solder alloy
JP2006255784A (en) Unleaded solder alloy
JP4076182B2 (en) Lead-free solder alloy
JPWO2005102594A1 (en) Solder and mounted products using it
JP5080946B2 (en) Lead-free solder alloy for manual soldering
JP3966554B2 (en) Solder alloy
JP3761182B2 (en) SnAgCu lead-free solder alloy
JPH10230384A (en) Solder material
JP5640915B2 (en) Lead-free solder alloy
JP2019136776A (en) Solder joint method
JP3758090B2 (en) SnCu-based lead-free solder alloy
KR100327768B1 (en) Lead-Free Alloys for Soldering
JP2004122227A (en) Leadless solder alloy
JP2007111715A (en) Solder alloy
KR100327767B1 (en) Lead-Free Alloys for Soldering
KR100443230B1 (en) Lead-free solder alloy