JP2007327115A - High-strength free-cutting aluminum alloy superior in toughness - Google Patents
High-strength free-cutting aluminum alloy superior in toughness Download PDFInfo
- Publication number
- JP2007327115A JP2007327115A JP2006160442A JP2006160442A JP2007327115A JP 2007327115 A JP2007327115 A JP 2007327115A JP 2006160442 A JP2006160442 A JP 2006160442A JP 2006160442 A JP2006160442 A JP 2006160442A JP 2007327115 A JP2007327115 A JP 2007327115A
- Authority
- JP
- Japan
- Prior art keywords
- toughness
- aluminum alloy
- strength
- cutting
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Conductive Materials (AREA)
Abstract
Description
本発明は、靭性に優れた高強度快削アルミニウム合金に関するものである。 The present invention relates to a high-strength free-cutting aluminum alloy having excellent toughness.
従来、切削性に優れたアルミニウム合金としては、Al−Cu系のA2011合金、Al−Mg−Si系のAA6262合金など、Pbを添加したアルミニウム合金が使用されてきた(例えば、特許文献1参照)が、これらの合金は、125℃を超える温度環境において急激に靭性が低下するという問題があるとともに、近年、環境問題に配慮する観点から、Pbを含まない快削アルミニウム合金が要求されるようになっており、A2011合金の代替として、Pbに代えてSn、Biを添加したAl−Cu合金(AA2111合金など)が提案され(例えば、特許文献2参照)、実用されるようになっている。 Conventionally, as an aluminum alloy excellent in machinability, an aluminum alloy to which Pb is added such as an Al-Cu-based A2011 alloy and an Al-Mg-Si-based AA6262 alloy has been used (for example, see Patent Document 1). However, these alloys have a problem that the toughness rapidly decreases in a temperature environment exceeding 125 ° C. In recent years, from the viewpoint of considering environmental problems, a free-cutting aluminum alloy containing no Pb is required. As an alternative to the A2011 alloy, an Al—Cu alloy (AA2111 alloy or the like) to which Sn and Bi are added instead of Pb has been proposed (see, for example, Patent Document 2) and is put into practical use.
上記AA2111合金など、Sn、Biを添加したAl−Cu合金は、切削時の切粉が微細に分断し良好な切り屑処理性が得られ、強度特性においてはA2011合金に相当する引張強さ、耐力が得られるが、靭性値が高温および室温ともに低いという問題点があり、改善が要求されている。
本発明は、上記のSn、Biを添加したAl−Cu合金における問題点を解消するためになされたものであり、その目的は、高靭性を有するAl−Cu系の高強度快削アルミニウム合金を提供することにある。 The present invention has been made to solve the problems in the Al—Cu alloys to which Sn and Bi are added, and an object of the present invention is to provide an Al—Cu-based high-strength free-cutting aluminum alloy having high toughness. It is to provide.
上記の目的を達成するための請求項1による靭性に優れた高強度快削アルミニウム合金は、Cu:4.0〜6.0%、Bi:0.10〜2.0%、Pb:10〜1900ppm、Fe:0.04〜0.7%、Si:0.04〜0.40%を含み、残部Alおよび不可避不純物からなることを特徴とする。 The high-strength free-cutting aluminum alloy excellent in toughness according to claim 1 for achieving the above object is Cu: 4.0-6.0%, Bi: 0.10-2.0%, Pb: 10 It contains 1900 ppm, Fe: 0.04 to 0.7%, Si: 0.04 to 0.40%, and consists of the balance Al and inevitable impurities.
請求項2による靭性に優れた高強度快削アルミニウム合金は、Cu:4.0〜6.0%、Bi:0.10〜2.0%、Sn:10〜1100ppm、Fe:0.04〜0.7%、Si:0.04〜0.40%を含み、残部Alおよび不可避不純物からなることを特徴とする。 The high-strength free-cutting aluminum alloy excellent in toughness according to claim 2 is Cu: 4.0-6.0%, Bi: 0.10-2.0%, Sn: 10-1100 ppm, Fe: 0.04- It is characterized by containing 0.7%, Si: 0.04 to 0.40%, and remaining Al and inevitable impurities.
請求項3による靭性に優れた高強度快削アルミニウム合金は、Cu:4.0〜6.0%、Bi:0.10〜2.0%、Pb:10〜1900ppm、Sn:10〜1100ppm、Fe:0.04〜0.7%、Si:0.04〜0.40%を含み、残部Alおよび不可避不純物からなることを特徴とする。 The high strength free-cutting aluminum alloy excellent in toughness according to claim 3 is Cu: 4.0-6.0%, Bi: 0.10-2.0%, Pb: 10-1900 ppm, Sn: 10-1100 ppm, Fe: 0.04 to 0.7%, Si: 0.04 to 0.40% are included, and the balance is Al and inevitable impurities.
請求項4による靭性に優れた高強度快削アルミニウム合金は、Cu:4.0〜6.0%、Bi:0.60〜2.0%、Fe:0.04〜0.7%、Si:0.04〜0.40%を含み、残部Alおよび不可避不純物からなることを特徴とする。 The high-strength free-cutting aluminum alloy excellent in toughness according to claim 4 is Cu: 4.0-6.0%, Bi: 0.60-2.0%, Fe: 0.04-0.7%, Si : 0.04 to 0.40%, the balance being Al and inevitable impurities.
請求項5による靭性に優れた高強度快削アルミニウム合金は、請求項1〜4のいずれかにおいて、Mg:0.03%以上0.20%未満、Mn:0.20%以下、Cr:0.20%以下、Ti:0.20%以下、Zr:0.20%以下のうちの1種以上を含有することを特徴とする。 The high-strength free-cutting aluminum alloy excellent in toughness according to claim 5 is any one of claims 1 to 4, wherein Mg: 0.03% or more and less than 0.20%, Mn: 0.20% or less, Cr: 0 20% or less, Ti: 0.20% or less, and Zr: 0.20% or less.
本発明によれば、引張強さ310MPa以上、室温でのシャルピー衝撃値30J/cm2以上、温度200℃でのシャルピー衝撃値25J/cm2以上の優れた強度、靭性をそなえたAl−Cu系快削アルミニウム合金が提供される。 According to the present invention, an Al-Cu system having excellent strength and toughness having a tensile strength of 310 MPa or more, a Charpy impact value of 30 J / cm 2 or more at room temperature, and a Charpy impact value of 25 J / cm 2 or more at a temperature of 200 ° C. A free-cutting aluminum alloy is provided.
本発明に係る快削アルミニウム合金における各合金成分の意義および限定理由について説明すると、Cuは、合金の強度を高めるよう機能する成分であり、熱処理により強度を向上させると共に、切り屑分断性を向上させる。Cuの好ましい含有量は4.0〜6.0%の範囲であり、4.0%未満では時効処理における強度上昇効果が小さく、そのため切り屑の分断性も十分でない。6.0%を超えて含有するとCuの過飽和量が多くなり、強度の変化はないが靭性が低下する。Cuのより好ましい含有範囲は4.5〜5.5%である。 Explaining the significance and reasons for limitation of each alloy component in the free-cutting aluminum alloy according to the present invention, Cu is a component that functions to increase the strength of the alloy, improves the strength by heat treatment, and improves the chip breaking property. Let The preferable content of Cu is in the range of 4.0 to 6.0%, and if it is less than 4.0%, the effect of increasing the strength in the aging treatment is small, so that the chip breaking property is not sufficient. If the content exceeds 6.0%, the amount of supersaturation of Cu increases, and there is no change in strength, but the toughness decreases. A more preferable content range of Cu is 4.5 to 5.5%.
Biは、アルミニウムへの固溶量が極めて少ないため、アルミニウムマトリックス中に分散して存在する。Biは低融点元素であるため、切削時の加工発熱により、アルミニウムマトリックス中に分散しているBiの強度が低下して切欠き効果が生じ、切り屑が分断する。PbあるいはSnをBiと共に複合添加する場合において、Biの好ましい含有量は0.10〜2.0%の範囲であり、0.10%未満では切り屑を分断する効果が少なく、2.0%を超えると合金の靭性が低下する。Biのより好ましい含有範囲は0.20〜1.5%である。また、PbあるいはSnを添加せずにBiを添加する場合のBiの好ましい範囲は0.60〜2.0%であり、0.60%未満ではその効果が少なく、2.0%を超えると靭性が低下する。この場合のBiのより好ましい含有範囲は0.70〜1.6%である。 Bi is present in a state of being dispersed in the aluminum matrix because the amount of solid solution in aluminum is extremely small. Since Bi is a low melting point element, due to processing heat generated during cutting, the strength of Bi dispersed in the aluminum matrix is reduced to produce a notch effect, and chips are divided. In the case where Pb or Sn is added together with Bi, the preferred Bi content is in the range of 0.10 to 2.0%. If it is less than 0.10%, the effect of dividing chips is small, and 2.0% Exceeding this will reduce the toughness of the alloy. A more preferable range of Bi is 0.20 to 1.5%. Further, when Bi is added without adding Pb or Sn, the preferable range of Bi is 0.60 to 2.0%, and if it is less than 0.60%, the effect is small, and if it exceeds 2.0% Toughness decreases. In this case, the more preferable range of Bi is 0.70 to 1.6%.
Pbは、Biと同様に低融点元素であり切り屑分断性を向上させるよう機能する。Pbの好ましい含有量は10〜1900ppmで、10ppm未満では切り屑を分断させる効果が少なく、1900ppmを超えると高温での靭性が低下する。Pbのより好ましい含有範囲は20〜1400ppmである。 Pb is a low-melting point element like Bi and functions to improve the chip breaking property. The preferable content of Pb is 10 to 1900 ppm, and if it is less than 10 ppm, there is little effect of cutting off chips, and if it exceeds 1900 ppm, the toughness at high temperatures decreases. A more preferable content range of Pb is 20 to 1400 ppm.
Snは、Biと同様に低融点元素であり切り屑分断性を向上させるよう機能する。Snの好ましい含有量は10〜1100ppmの範囲であり、10ppm未満では切り屑を分断させる効果が少なく、1100ppmを超えると靭性が低下する。Snのより好ましい含有範囲は20〜500ppmである。 Sn, like Bi, is a low melting point element and functions to improve chip separation. The preferable content of Sn is in the range of 10 to 1100 ppm. If it is less than 10 ppm, the effect of dividing the chips is small, and if it exceeds 1100 ppm, the toughness decreases. A more preferable content range of Sn is 20 to 500 ppm.
Siは、その一部がアルミニウム地金に不純物として含まれている元素であり、0.04〜0.4%の範囲で含有させるのが好ましい。Siの含有量が0.04%未満では、高純度のアルミニウム地金を使用する必要があるため地金コストの点で工業生産上問題である。0.4%を超えるとAl−Si−Fe系化合物が発生し易くなり靭性が低下する。 Si is an element part of which is contained as an impurity in the aluminum metal, and is preferably contained in the range of 0.04 to 0.4%. If the Si content is less than 0.04%, it is necessary to use high-purity aluminum ingots, which is a problem in industrial production in terms of ingot costs. If it exceeds 0.4%, an Al—Si—Fe-based compound is likely to be generated and the toughness is lowered.
Feは、その一部がアルミニウム地金に不純物として含まれている元素であり、0.04〜0.7%の範囲で含有させるのが好ましい。Feの含有量が0.04%未満では、高純度のアルミニウム地金を使用する必要があるため地金コストの点で工業生産上問題である。0.7%を超えると、Al−Si−Fe系化合物が発生し易くなり靭性が低下する。 Fe is an element part of which is contained as an impurity in the aluminum ingot, and is preferably contained in the range of 0.04 to 0.7%. If the Fe content is less than 0.04%, it is necessary to use a high-purity aluminum ingot, which is a problem in industrial production in terms of the ingot cost. When it exceeds 0.7%, an Al—Si—Fe-based compound is easily generated and toughness is lowered.
Mgは、アルミニウムマトリックス中に固溶あるいはAl、Cuと化合物を形成して析出し、合金の強度を高める。Mgの好ましい含有量は0.03%以上0.20%未満の範囲であり、0.20%以上含有するとMgとBiの化合物を形成し、低融点元素としてのアルミニウムマトリックス中の(単体)Bi量を減少させるため、切り屑分断性が低下する。Mgのより好ましい含有範囲は0.05〜0.15%である。 Mg is dissolved in the aluminum matrix or forms a compound with Al and Cu and precipitates to increase the strength of the alloy. The preferable content of Mg is in the range of 0.03% or more and less than 0.20%. When the content is 0.20% or more, a compound of Mg and Bi is formed, and (single) Bi in the aluminum matrix as a low melting point element is formed. Since the amount is reduced, chip breaking properties are reduced. A more preferable content range of Mg is 0.05 to 0.15%.
Mn、Cr、Ti、Zrは、合金の結晶粒を微細化し強度を向上するよう機能し、Mn、Cr、Ti、Zrは、それぞれ単体で0.20%以下添加することにより結晶粒の微細化が得られる。それぞれ単体で0.20%を超えると粗大な化合物が形成し靭性が低下する。Mn、Cr、Ti、Zrのより好ましい含有範囲は、Mn:0.05〜0.18%、Cr:0.05〜0.18%、Ti:0.002〜0.06%、Zr:0.02〜0.20%である。 Mn, Cr, Ti, and Zr function to refine the crystal grains of the alloy and improve the strength, and Mn, Cr, Ti, and Zr are each refined by adding 0.20% or less as a single substance. Is obtained. If each exceeds 0.20%, a coarse compound is formed and the toughness is lowered. More preferable content ranges of Mn, Cr, Ti, and Zr are: Mn: 0.05 to 0.18%, Cr: 0.05 to 0.18%, Ti: 0.002 to 0.06%, Zr: 0 0.02 to 0.20%.
本発明による快削性アルミニウム合金は、例えば、連続鋳造によりビレットに造塊し、得られたビレットを均質化処理した後、熱間押出加工を行い、溶体化処理した後、引抜き加工を施して棒状に加工し、時効処理を行うことにより製造される。 The free-cutting aluminum alloy according to the present invention is formed into a billet by continuous casting, for example, and after homogenizing the obtained billet, hot extrusion is performed, solution treatment is performed, and then drawing is performed. Manufactured by processing into a rod shape and aging treatment.
以下、本発明の実施例を比較例と対比して説明し、その効果を実証する。なお、これらの実施例は、本発明の好ましい一実施態様を説明するためのものであって、本発明はこれに限定されるものではない。 Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects. In addition, these Examples are for describing one preferable embodiment of the present invention, and the present invention is not limited thereto.
実施例1
連続鋳造により、表1に示す成分組成(No.0〜21に示す組成)を有するアルミニウム合金ビレット(直径90mm)を造塊し、得られたビレットを500℃で8h均質化処理を施した後、450℃の温度で熱間押出加工を行って直径20mmの押出棒を作製した。
Example 1
After agglomerating aluminum alloy billets (diameter 90 mm) having the component compositions shown in Table 1 (compositions shown in No. 0 to 21) by continuous casting and subjecting the obtained billets to a homogenization treatment at 500 ° C. for 8 hours Then, hot extrusion at a temperature of 450 ° C. was performed to produce an extruded rod having a diameter of 20 mm.
得られた押出棒について、520℃の温度で溶体化処理を行った後、直径17mmまで引抜き加工し、時効処理を施して試験材(No.0〜21)とし、以下に示す引張試験、シャルピー衝撃試験および切削試験を行った。試験結果を表2に示す。なお、試験材No.0は、引抜き加工後、室温で7日間自然時効を行ってT3材とし、試験材No.1〜21は、引抜き加工後、160℃で20hの時効処理を行ってT8材とした。 The obtained extruded rod was subjected to a solution treatment at a temperature of 520 ° C., then drawn to a diameter of 17 mm, and subjected to an aging treatment to obtain a test material (No. 0 to 21). An impact test and a cutting test were performed. The test results are shown in Table 2. The test material No. No. 0 is a T3 material that is naturally aged at room temperature for 7 days after drawing. Nos. 1 to 21 were subjected to aging treatment at 160 ° C. for 20 hours after drawing and were made into T8 materials.
引張試験:JIS Z 2201の金属材料引張試験片4号試験片の備考2による試験片を作製し、JIS Z 2241に準拠して引張試験を行った。 Tensile test: A test piece according to Remark 2 of a metal material tensile test piece No. 4 test piece of JIS Z 2201 was prepared, and a tensile test was performed in accordance with JIS Z 2241.
シャルピー衝撃試験:JIS Z 2202の金属材料衝撃試験片Uノッチ試験片を作製し、JIS Z 2242に準拠してシャルピー衝撃試験(試験温度:室温)を行った。また、高温の靭性を測定するために、JIS Z 2202の金属材料衝撃試験片Uノッチ試験片を加熱炉内で200℃の温度に30分間保持した後、加熱炉から取出し、室温での保持5秒以内に、上記と同じシャルピー衝撃試験を行った。 Charpy impact test: A metal material impact test piece U-notch test piece of JIS Z 2202 was produced, and a Charpy impact test (test temperature: room temperature) was performed in accordance with JIS Z 2242. Further, in order to measure high temperature toughness, a metal material impact test piece U-notch test piece of JIS Z 2202 was held in a heating furnace at a temperature of 200 ° C. for 30 minutes, and then taken out from the heating furnace and held at room temperature. Within seconds, the same Charpy impact test was performed as above.
切削試験:直径17mmの試験材を、直径15mmまで外削して、その際に排出される切り屑の長さを測定し、切り屑の排出され易さ(切り屑処理性)で切削性を評価した。具体的には、切削時の試験材の回転数1500rpm、送り0.10mm/rev.、切り込み深さ1mmとし、バイトはスローアウェイチップ(頂角60°正三角形チップ、逃げ角0°、一般切削用勝手付き型ブレーカ、PVDコーティング)を用い、切削油を使用しない条件で切削試験を行い、切粉の長さが全て100mm未満の場合は切削性良好(○)、長さ100mm以上の切粉が発生した場合は切削性不良(×)と評価した。 Cutting test: Test material with a diameter of 17 mm is cut to a diameter of 15 mm, the length of the chips discharged at that time is measured, and the machinability is determined by the ease of chip discharge (chip processing). evaluated. Specifically, the rotational speed of the test material during cutting is 1500 rpm, the feed is 0.10 mm / rev. The cutting depth is 1mm, and the cutting tool uses a throw-away tip (vertical angle 60 ° equilateral triangle tip, clearance angle 0 °, general-purpose cutting breaker, PVD coating) and does not use cutting oil. It was evaluated that when all the chips were less than 100 mm in length, good machinability (◯), and when chips with a length of 100 mm or more were generated, machinability was poor (x).
表2にみられるように、本発明に従う試験材No.0は、従来の鉛入り快削合金棒A2011−T3材のJISの規格である引張強さ310MPa以上を満足し、切り屑は微細に分断され良好な切削性が得られた。さらに、室温でのシャルピー衝撃値は30J/cm2以上、温度200℃でのシャルピー衝撃値は25J/cm2以上であり高い靭性が得られた。 As can be seen in Table 2, the test material No. 0 satisfied the tensile strength of 310 MPa or more, which is the JIS standard for the conventional lead-containing free-cutting alloy rod A2011-T3, and the chips were finely divided and good machinability was obtained. Furthermore, the Charpy impact value at room temperature was 30 J / cm 2 or more, and the Charpy impact value at a temperature of 200 ° C. was 25 J / cm 2 or more, and high toughness was obtained.
試験材No.1〜21は、従来の鉛入り快削合金棒A2011−T8材のJISの規格である引張強さ375MPa以上を満足し、また、切削性については、いずれも切り屑が微細に分断され良好な結果が得られた。さらに、室温でのシャルピー衝撃値は30J/cm2以上、温度200℃でのシャルピー衝撃値は25J/cm2以上であり高い靭性が得られた。 Test material No. 1 to 21 satisfy the tensile strength of 375 MPa or more, which is the JIS standard for the conventional lead-containing free-cutting alloy rod A2011-T8, and the machinability is good because all chips are finely divided. Results were obtained. Furthermore, the Charpy impact value at room temperature was 30 J / cm 2 or more, and the Charpy impact value at a temperature of 200 ° C. was 25 J / cm 2 or more, and high toughness was obtained.
比較例1
連続鋳造により、表3に示す成分組成(No.22〜34に示す組成)を有するアルミニウム合金ビレット(直径90mm)を造塊し、得られたビレットを500℃で8h均質化処理を施した後、450℃の温度で熱間押出加工を行って直径20mmの押出棒を作製した。得られた押出棒について、520℃の温度で溶体化処理を行った後、直径17mmまで引抜き加工し、160℃で20hの時効処理を行ってT8材とした。なお、表3において、本発明の条件を外れたものには下線を付した。
Comparative Example 1
After ingot casting an aluminum alloy billet (diameter 90 mm) having the component composition shown in Table 3 (composition shown in No. 22 to 34) by continuous casting, and subjecting the obtained billet to a homogenization treatment at 500 ° C. for 8 hours Then, hot extrusion at a temperature of 450 ° C. was performed to produce an extruded rod having a diameter of 20 mm. The obtained extruded bar was subjected to a solution treatment at a temperature of 520 ° C., then drawn to a diameter of 17 mm, and an aging treatment at 160 ° C. for 20 hours to obtain a T8 material. In Table 3, those outside the conditions of the present invention are underlined.
得られたT8材を試験材として、実施例1と同様の方法で引張試験、シャルピー衝撃試験および切削試験を行った。試験結果を表4に示す。 Using the obtained T8 material as a test material, a tensile test, a Charpy impact test, and a cutting test were performed in the same manner as in Example 1. The test results are shown in Table 4.
表4に示すように、試験材No.22はCu含有量が少ないため引張強さが低く、切り屑もつながり易かった。No.23、No.25、No.29、No.31、No.32は、それぞれCu、Bi、Sn、Fe、Siの含有量が多いため、No.30はPbとSnの含有量が多いため、また、No.34はCr、Mn、Ti、Zrの含有量が多いため、室温でのシャルピー衝撃値が30J/cm2未満、温度200℃でのシャルピー衝撃値が25J/cm2未満となり、靭性が劣っていた。 As shown in Table 4, the test material No. No. 22 had a low Cu content, so the tensile strength was low, and chips were easily connected. No. 23, no. 25, no. 29, no. 31, no. No. 32 has a large content of Cu, Bi, Sn, Fe, and Si, respectively. No. 30 has a high content of Pb and Sn. Since No. 34 has a large content of Cr, Mn, Ti, and Zr, the Charpy impact value at room temperature was less than 30 J / cm 2 and the Charpy impact value at a temperature of 200 ° C. was less than 25 J / cm 2 . .
試験材No.24、No.26、No.28は、それぞれBi、Pb、PbとSnの含有量が低いため切り屑分断性が劣っていた。No.27はPbの含有量が多いため、200℃でのシャルピー衝撃値が低かった。No.33はMg含有量が多いため切り屑分断性が劣っていた。 Test material No. 24, no. 26, no. No. 28 had inferior chip breaking properties due to low contents of Bi, Pb, Pb and Sn, respectively. No. Since No. 27 has a high Pb content, the Charpy impact value at 200 ° C. was low. No. Since No. 33 had much Mg content, the chip parting property was inferior.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006160442A JP2007327115A (en) | 2006-06-09 | 2006-06-09 | High-strength free-cutting aluminum alloy superior in toughness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006160442A JP2007327115A (en) | 2006-06-09 | 2006-06-09 | High-strength free-cutting aluminum alloy superior in toughness |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007327115A true JP2007327115A (en) | 2007-12-20 |
Family
ID=38927771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006160442A Pending JP2007327115A (en) | 2006-06-09 | 2006-06-09 | High-strength free-cutting aluminum alloy superior in toughness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007327115A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011080119A (en) * | 2009-10-07 | 2011-04-21 | Nippon Light Metal Co Ltd | Al-Cu-BASED ALUMINUM ALLOY MEMBER |
WO2011071024A1 (en) * | 2009-12-11 | 2011-06-16 | 住友電気工業株式会社 | Magnesium alloy material |
US9103010B2 (en) | 2009-12-11 | 2015-08-11 | Sumitomo Electric Industries, Ltd. | Magnesium alloy structural member |
US9181608B2 (en) | 2010-02-08 | 2015-11-10 | Sumitomo Electric Industries, Ltd. | Magnesium alloy sheet |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1986827A (en) * | 1933-09-18 | 1935-01-08 | Aluminum Co Of America | Free cutting alloy |
JPS62235436A (en) * | 1986-04-04 | 1987-10-15 | Showa Alum Corp | Production of aluminum alloy extrudate for bearing |
JPH0285331A (en) * | 1988-09-19 | 1990-03-26 | Furukawa Alum Co Ltd | Aluminum alloy having excellent cross feed machinability and its manufacture |
JPH02129348A (en) * | 1988-11-07 | 1990-05-17 | Sumitomo Light Metal Ind Ltd | Manufacture of free-cutting high-strength aluminum alloy stock |
JPH09279285A (en) * | 1996-04-15 | 1997-10-28 | Showa Alum Corp | Aluminum alloy for machining |
JPH09302435A (en) * | 1996-05-10 | 1997-11-25 | Showa Alum Corp | Aluminum alloy for machining and its production |
JP2000234135A (en) * | 1999-02-12 | 2000-08-29 | Sumitomo Light Metal Ind Ltd | High strength aluminum alloy excellent in machinability |
WO2001006027A1 (en) * | 1999-07-19 | 2001-01-25 | Reynolds Metals Company | A free machining aluminum alloy containing bismuth or bismuth-tin for free machining and a method of use |
JP2004002947A (en) * | 2002-04-15 | 2004-01-08 | Kobe Steel Ltd | Wrought aluminum alloy with excellent hot forgeability and machinability |
JP2004143476A (en) * | 2002-10-22 | 2004-05-20 | Sumitomo Light Metal Ind Ltd | Aluminum alloy cast rod having excellent machinability and hot-workability |
JP2006077298A (en) * | 2004-09-10 | 2006-03-23 | Sumitomo Light Metal Ind Ltd | Aluminum alloy material superior in machinability, and manufacturing method therefor |
JP2006341307A (en) * | 2005-05-10 | 2006-12-21 | Nippon Light Metal Co Ltd | Vertical type continuous casting device for aluminum, and vertical type continuous casting method using the casting device |
JP2007100137A (en) * | 2005-09-30 | 2007-04-19 | Furukawa Sky Kk | Free-cutting aluminum alloy superior in high-temperature embrittlement resistance |
-
2006
- 2006-06-09 JP JP2006160442A patent/JP2007327115A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1986827A (en) * | 1933-09-18 | 1935-01-08 | Aluminum Co Of America | Free cutting alloy |
JPS62235436A (en) * | 1986-04-04 | 1987-10-15 | Showa Alum Corp | Production of aluminum alloy extrudate for bearing |
JPH0285331A (en) * | 1988-09-19 | 1990-03-26 | Furukawa Alum Co Ltd | Aluminum alloy having excellent cross feed machinability and its manufacture |
JPH02129348A (en) * | 1988-11-07 | 1990-05-17 | Sumitomo Light Metal Ind Ltd | Manufacture of free-cutting high-strength aluminum alloy stock |
JPH09279285A (en) * | 1996-04-15 | 1997-10-28 | Showa Alum Corp | Aluminum alloy for machining |
JPH09302435A (en) * | 1996-05-10 | 1997-11-25 | Showa Alum Corp | Aluminum alloy for machining and its production |
JP2000234135A (en) * | 1999-02-12 | 2000-08-29 | Sumitomo Light Metal Ind Ltd | High strength aluminum alloy excellent in machinability |
WO2001006027A1 (en) * | 1999-07-19 | 2001-01-25 | Reynolds Metals Company | A free machining aluminum alloy containing bismuth or bismuth-tin for free machining and a method of use |
JP2004002947A (en) * | 2002-04-15 | 2004-01-08 | Kobe Steel Ltd | Wrought aluminum alloy with excellent hot forgeability and machinability |
JP2004143476A (en) * | 2002-10-22 | 2004-05-20 | Sumitomo Light Metal Ind Ltd | Aluminum alloy cast rod having excellent machinability and hot-workability |
JP2006077298A (en) * | 2004-09-10 | 2006-03-23 | Sumitomo Light Metal Ind Ltd | Aluminum alloy material superior in machinability, and manufacturing method therefor |
JP2006341307A (en) * | 2005-05-10 | 2006-12-21 | Nippon Light Metal Co Ltd | Vertical type continuous casting device for aluminum, and vertical type continuous casting method using the casting device |
JP2007100137A (en) * | 2005-09-30 | 2007-04-19 | Furukawa Sky Kk | Free-cutting aluminum alloy superior in high-temperature embrittlement resistance |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011080119A (en) * | 2009-10-07 | 2011-04-21 | Nippon Light Metal Co Ltd | Al-Cu-BASED ALUMINUM ALLOY MEMBER |
WO2011071024A1 (en) * | 2009-12-11 | 2011-06-16 | 住友電気工業株式会社 | Magnesium alloy material |
CN102652180A (en) * | 2009-12-11 | 2012-08-29 | 住友电气工业株式会社 | Magnesium alloy material |
US8906294B2 (en) | 2009-12-11 | 2014-12-09 | Sumitomo Electric Industries, Ltd. | Magnesium alloy material |
CN104250697A (en) * | 2009-12-11 | 2014-12-31 | 住友电气工业株式会社 | Magnesium alloy material |
US9103010B2 (en) | 2009-12-11 | 2015-08-11 | Sumitomo Electric Industries, Ltd. | Magnesium alloy structural member |
US9181608B2 (en) | 2010-02-08 | 2015-11-10 | Sumitomo Electric Industries, Ltd. | Magnesium alloy sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9017604B2 (en) | Magnesium alloys containing rare earths | |
EP2664687B1 (en) | Improved free-machining wrought aluminium alloy product and manufacturing process thereof | |
US8454766B2 (en) | Extruded material of a free-cutting aluminum alloy excellent in embrittlement resistance at a high temperature | |
JP2004244672A (en) | Copper-base alloy with excellent dezincification resistance | |
JP2015519475A5 (en) | Improved free-cutting wrought aluminum alloy product and manufacturing method thereof | |
JP5305323B2 (en) | Zinc alloy for die casting and method for producing die cast member using Zn alloy for die casting | |
EP1737994A2 (en) | Free-machining wrough aluminium ally product and process for producing such an alloy product | |
JP4620963B2 (en) | Brass, manufacturing method thereof, and parts using the same | |
JP2009114513A (en) | TiAl-BASED ALLOY | |
JP3107517B2 (en) | High corrosion resistant aluminum alloy extruded material with excellent machinability | |
JP2010150624A (en) | alpha+beta TYPE TITANIUM ALLOY FOR CASTING, AND GOLF CLUB HEAD USING THE SAME | |
JP2007327115A (en) | High-strength free-cutting aluminum alloy superior in toughness | |
EP3856944A2 (en) | Titanium alloy with moderate strength and high ductility | |
JP4693028B2 (en) | Manufacturing method of aluminum alloy material with excellent machinability | |
JP4956165B2 (en) | Free-cutting aluminum alloy extruded material with excellent corrosion resistance to alcohol liquids containing OH groups | |
JP2011038130A (en) | Aluminum alloy having excellent machinability and high temperature embrittlement resistance | |
JP2008266719A (en) | Extruded material of free-cutting aluminum alloy | |
JP2014196525A (en) | Heat-resistant magnesium alloy | |
JP4799877B2 (en) | Aluminum alloy excellent in strength and machinability and manufacturing method thereof | |
JP5007708B2 (en) | Free-cutting aluminum alloy | |
JP2003119537A (en) | Aluminum alloy superior in machinability | |
JP2004143476A (en) | Aluminum alloy cast rod having excellent machinability and hot-workability | |
JP2004003007A (en) | Aluminum alloy having excellent machinability, method for forging the same, and forging thereof | |
JP2006097074A (en) | Free-cutting brass | |
JPS6022055B2 (en) | Non-heat treated aluminum alloy for cutting and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090327 |
|
A711 | Notification of change in applicant |
Effective date: 20100617 Free format text: JAPANESE INTERMEDIATE CODE: A711 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20100908 |
|
A977 | Report on retrieval |
Effective date: 20110621 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20110713 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20110908 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Effective date: 20120627 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20121018 Free format text: JAPANESE INTERMEDIATE CODE: A02 |