JP2013228332A - Manufacturing method of particle beam transmission window, and particle beam transmission window - Google Patents

Manufacturing method of particle beam transmission window, and particle beam transmission window Download PDF

Info

Publication number
JP2013228332A
JP2013228332A JP2012101796A JP2012101796A JP2013228332A JP 2013228332 A JP2013228332 A JP 2013228332A JP 2012101796 A JP2012101796 A JP 2012101796A JP 2012101796 A JP2012101796 A JP 2012101796A JP 2013228332 A JP2013228332 A JP 2013228332A
Authority
JP
Japan
Prior art keywords
foil film
particle beam
transmission window
frame
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012101796A
Other languages
Japanese (ja)
Other versions
JP5910290B2 (en
Inventor
Makoto Doi
真 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2012101796A priority Critical patent/JP5910290B2/en
Publication of JP2013228332A publication Critical patent/JP2013228332A/en
Application granted granted Critical
Publication of JP5910290B2 publication Critical patent/JP5910290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To attain high transmittance by reducing loss due to a frame of a particle beam while avoiding the breaking of a foil film due to atmospheric pressure or pressure fluctuation, to thereby manufacture a transmission window excellent in airtightness and strength.SOLUTION: A particle beam transmission window 10 includes a foil film 12 transmitting a particle beam, and a frame 14 that is brought into close contact with the foil film 12 and in which a minute through-hole 14a is formed into a mesh shape. A manufacturing method of the particle beam transmission window 10 includes: a first step of coating a metal 14c at least on the surface of the foil film side of the frame 14; a second step of irradiating the coating surface and the joint surface of the foil film 12 with an inactive element, an ion beam 16 thereof, plasma or an electron beam for activation; and a third step of pressurizing the foil film 12 and the frame 14 at room temperature to join them.

Description

本発明は、粒子線透過窓の製造方法及び粒子線透過窓に係り、特に、大気圧や圧力変動による破損を回避しつつ電子線、イオンビームなどの荷電粒子線、X線やガンマ線などの電磁波などの粒子線の高い透過率が可能な粒子線透過窓の製造方法及び、該製造方法によって製造された粒子線透過窓に関する。   The present invention relates to a method of manufacturing a particle beam transmission window and a particle beam transmission window, and more particularly, charged particle beams such as electron beams and ion beams, electromagnetic waves such as X rays and gamma rays while avoiding damage due to atmospheric pressure and pressure fluctuations. The present invention relates to a method for manufacturing a particle beam transmission window capable of high particle beam transmittance, and the particle beam transmission window manufactured by the manufacturing method.

従来、X線などを真空チャンバから取り出す際に、特許文献1や2に示されるような透過窓が用いられている。図1にその概略を示す。透過窓2は、金属薄膜であるベリリウム箔とされており、真空容器1の開口部1aにろう材4、5で接合されたり、拡散接合され、大気側が保護リング3で止められている。このため、透過窓2は、真空容器1の真空状態を良好に保ちながら、高い透過率でX線を真空容器1の内側から外側に照射することができる。   Conventionally, a transmission window as shown in Patent Documents 1 and 2 is used when X-rays are taken out from a vacuum chamber. The outline is shown in FIG. The transmission window 2 is a beryllium foil that is a metal thin film. The transmission window 2 is joined to the opening 1 a of the vacuum vessel 1 with brazing materials 4 and 5, or diffusion-bonded, and the atmosphere side is stopped with a protective ring 3. For this reason, the transmission window 2 can irradiate X-rays from the inside to the outside of the vacuum container 1 with high transmittance while keeping the vacuum state of the vacuum container 1 good.

このような透過窓を補強するため、特許文献3には、粒子線透過窓の真空側面に、高融点材料の真直棒からそれぞれ形成され、被照射物の移動方向に対して傾斜して配置された複数の補強桟を設け、該補強桟の一端を水冷保持板にろう接固定すると共に、該補強桟の他端を水冷保持板に設けられた遊嵌孔に摺動自在に挿入することが記載されている。   In order to reinforce such a transmission window, Patent Document 3 discloses that a straight side bar made of a high melting point material is formed on the vacuum side surface of the particle beam transmission window and is inclined with respect to the moving direction of the irradiated object. A plurality of reinforcing bars, one end of the reinforcing bar is fixed to the water-cooled holding plate by brazing, and the other end of the reinforcing bar is slidably inserted into a loose-fitting hole provided in the water-cooled holding plate. Have been described.

特開平6−260121号公報(図1)JP-A-6-260121 (FIG. 1) 特開平6−251736号公報(図1)Japanese Patent Laid-Open No. 6-251736 (FIG. 1) 特開2002−14200号公報JP 2002-14200 A 特開平9−10963号公報JP-A-9-10963 特開2008−207221号公報JP 2008-207221 A

しかしながら、特許文献1や2に記載された真空ろう接や拡散接合では、接合時の加熱温度による熱変形や応力により、10〜100μm厚の箔膜でも亀裂や破損が発生する。従って、更に薄い数μm膜厚の箔での加熱接合は、熱負荷が高く、適用が不可能である。又、特許文献3に記載された補強桟では、窓にかかる大気圧による破裂を抑制するためには不十分であるという問題点を有していた。   However, in the vacuum brazing or diffusion bonding described in Patent Documents 1 and 2, cracks and breakage occur even in a foil film having a thickness of 10 to 100 μm due to thermal deformation and stress due to the heating temperature at the time of bonding. Therefore, heat bonding with a thin foil having a thickness of several μm has a high heat load and cannot be applied. Further, the reinforcing bar described in Patent Document 3 has a problem that it is insufficient for suppressing the burst due to the atmospheric pressure applied to the window.

一方、特許文献4や5には、加熱を行なうことなく常温で接合する常温接合方法が記載されているが、本発明が対象とする粒子線透過窓への適用は考えられていなかった。   On the other hand, Patent Documents 4 and 5 describe a room temperature bonding method in which bonding is performed at room temperature without heating, but application to a particle beam transmission window targeted by the present invention has not been considered.

本発明は、前記従来の問題点を解消するべくなされたもので、大気圧や圧力変動による箔膜の破壊を回避しつつ、粒子線のフレームによる損失を少なくして高透過率を実現し、気密性及び強度に優れた透過窓を製造することを課題とする。   The present invention has been made to solve the above-mentioned conventional problems, while avoiding the destruction of the foil film due to atmospheric pressure and pressure fluctuation, while reducing the loss due to the particle beam frame, to achieve a high transmittance, It is an object of the present invention to manufacture a transmission window excellent in airtightness and strength.

本発明は、粒子線を透過する箔膜と、該箔膜に密着される、微小透孔がメッシュ状に形成されたフレームとを備えた粒子線透過窓の製造に際して、少なくとも前記フレームの箔膜側の表面に金属をコーティングする第1の工程と、該コーティング面及び箔膜の接合面に不活性元素、そのイオンのビーム、プラズマ又は電子ビームを照射して活性化する第2の工程と、前記箔膜とフレームを常温で加圧して接合する第3の工程と、を有することを特徴とする粒子線透過窓の製造方法により、前記課題を解決したものである。   The present invention provides at least a foil film of the above-mentioned frame in the production of a particle beam transmission window comprising a foil film that transmits particle beams and a frame that is in close contact with the foil film and has fine mesh holes formed in a mesh shape. A first step of coating the surface of the metal with a metal, and a second step of irradiating the coating surface and the bonding surface of the foil film with an inert element, its ion beam, plasma or electron beam for activation. A third step of pressing and bonding the foil film and the frame at room temperature to solve the above problems by a method for manufacturing a particle beam transmission window.

ここで、前記第1の工程で、箔膜のフレーム側の表面にも金属をコーティングすることができる。   Here, in the first step, the surface of the foil film on the frame side can be coated with metal.

又、前記箔膜のフレーム側の表面にコーティングされた金属を、真空中で除去する第4の工程を有することができる。   Moreover, it can have the 4th process of removing the metal coated by the surface by the side of the said foil film in a vacuum.

又、前記第1の工程で、箔膜のフレーム側の表面に、透過箔膜部をマスキングして金属をコーティングすることができる。   In the first step, the metal foil can be coated on the surface of the foil film on the frame side by masking the permeable foil film portion.

又、前記第1の工程及び第2の工程を箔膜の両側面に対して行なうことができる。   Further, the first step and the second step can be performed on both side surfaces of the foil film.

本発明は、又、前記のいずれかの製造方法により製造されたことを特徴とする粒子線透過窓を提供するものである。   The present invention also provides a particle beam transmission window produced by any one of the production methods described above.

本発明によれば、微小透孔がメッシュ状に形成されたフレームで箔膜を挟むようにしたので、大気圧や圧力変動による箔膜の破壊を回避しつつ、粒子線のフレームによる損失を少なくし、高透過率を実現できる。又、接合面に金属をコーティングした後、不活性元素、そのイオンビーム、プラズマ又は電子ビームを照射して活性化し、箔膜とフレームを常温で加圧して全体を接合するようにしたので、数μmの膜厚の箔膜であっても、気密性及び強度に優れた透過窓を製造することが可能となる。   According to the present invention, since the foil film is sandwiched between the frames in which the fine through-holes are formed in a mesh shape, the loss of the particle beam due to the frame is reduced while avoiding the destruction of the foil film due to atmospheric pressure and pressure fluctuations. In addition, high transmittance can be realized. Also, after coating the metal on the bonding surface, it was activated by irradiation with an inert element, its ion beam, plasma or electron beam, and the foil film and the frame were pressed at room temperature to bond the whole. Even with a foil film having a thickness of μm, it is possible to manufacture a transmission window having excellent airtightness and strength.

特許文献1、2に記載された放射線透過窓の従来例の構成を示す要部断面図Cross-sectional view of the principal part showing the configuration of the conventional example of the radiation transmitting window described in Patent Documents 1 and 2 本発明に係る粒子線透過窓の実施形態の構成を示す(a)平面図及び(b)横断面図(A) top view and (b) cross-sectional view showing the configuration of an embodiment of a particle beam transmission window according to the present invention 本発明に係る粒子線透過窓の製造方法を示すフローチャートThe flowchart which shows the manufacturing method of the particle beam transmission window which concerns on this invention 同じく工程を示す断面図Sectional view showing the process 粒子線透過窓が配置された電子線照射装置の例を示す断面図Sectional drawing which shows the example of the electron beam irradiation apparatus by which the particle beam transmission window is arrange | positioned

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明を電子線透過窓10に適用した実施形態は、図2に示す如く、ハニカム状の単位窓11がハニカム状に37個配列されており、電子線を透過する箔膜12と、該箔膜12を図の上下両側から挟む、微小透孔14aがメッシュ状に多数形成されたフレーム14とを備えている。   In the embodiment in which the present invention is applied to the electron beam transmitting window 10, as shown in FIG. 2, 37 honeycomb-shaped unit windows 11 are arranged in a honeycomb shape, and a foil film 12 that transmits an electron beam, and the foil The frame 12 is provided with a plurality of minute through-holes 14a formed in a mesh shape to sandwich the membrane 12 from above and below in the figure.

前記箔膜12は、例えば厚さ2〜5μmのチタン製とされ、前記フレーム14は、例えば厚さ0.1〜0.5mmのステンレス製とされている。なお、フレーム14の材質は、チタン、ニッケル、アルミ若しくは銅又はその合金、ベリリウム、カーボン等でも構わない。   The foil film 12 is made of titanium having a thickness of 2 to 5 μm, for example, and the frame 14 is made of stainless steel having a thickness of 0.1 to 0.5 mm, for example. The material of the frame 14 may be titanium, nickel, aluminum, copper, an alloy thereof, beryllium, carbon, or the like.

以下、図3を参照して、製造手順を説明する。   Hereinafter, the manufacturing procedure will be described with reference to FIG.

まずステップ100で、図4(a)に示す如く、フレーム14の箔膜12側の表面に、表面状態に応じて厚さ0.1〜10μm程度の薄い金属、例えば金を、イオンプレーティングやめっき、蒸着等によりコーティングして金属コーティング14cを形成する。金の代わりに銀、銅、アルミニウム等を用いても良い。   First, in step 100, as shown in FIG. 4A, a thin metal, for example, gold having a thickness of about 0.1 to 10 μm is formed on the surface of the frame 14 on the side of the foil film 12 according to the surface state. A metal coating 14c is formed by coating by plating, vapor deposition, or the like. Silver, copper, aluminum or the like may be used instead of gold.

同様に、箔膜12のフレーム14側の表面にも、表面状態に応じて厚さ5〜50nm程度の金属膜をコーティングして金属コーティング12cを形成する。金属コーティング12cは、金属コーティング14cと同じ物を用いることができる。箔膜12に蒸着する金属コーティング12cは、電子線を止める作用があるので、厚みは薄い方が望ましく、材質や表面平坦性、加圧力などにより十分な接合強度が得られる場合には、省略することも可能である。   Similarly, a metal coating 12c is formed on the surface of the foil film 12 on the frame 14 side by coating a metal film having a thickness of about 5 to 50 nm according to the surface state. The metal coating 12c can be the same as the metal coating 14c. Since the metal coating 12c deposited on the foil film 12 has an action of stopping the electron beam, it is desirable that the thickness is thin, and it is omitted when sufficient bonding strength can be obtained due to the material, surface flatness, pressure, etc. It is also possible.

次いで、ステップ110で、図4(b)に示す如く、金属コーティング12c、14cに、アルゴン、キセノン、クリプトン等の不活性元素、そのイオンのビーム16、プラズマ又は電子ビームを、例えば10−6Paの真空にした後、数分間照射して活性化処理し、清浄化する。 Next, at step 110, as shown in FIG. 4B, an inert element such as argon, xenon, krypton, its ion beam 16, plasma or electron beam is applied to the metal coatings 12c, 14c, for example, 10 −6 Pa. After evacuation, it is activated by irradiation for several minutes and cleaned.

次いで、ステップ120で、図4(c)に示す如く、常温で、材質や表面平坦性により大きく異なるが、例えば80〜400〜3000kgf/cm2で加圧して接合する。なお、加圧に際しては周囲のみの加圧でも良いが、全面加圧の方が全体強度が向上し、安定であるとともに、片側フレームのみでの使用も可能である。 Next, in step 120, as shown in FIG. 4C, the bonding is performed by pressing at, for example, 80 to 400 to 3000 kgf / cm 2 at room temperature, depending on the material and surface flatness. The pressurization may be performed only on the periphery, but the entire pressurization improves the overall strength and is stable, and can be used only on one side frame.

最後に、ステップ130で、図4(d)に示す如く、透過窓を真空ビームあるいはプラズマ照射装置内に入れてビームあるいはプラズマを照射し、スパッタリングにより透過窓部の箔膜12表面の金属コーティング12cを蒸発させて除去し、非コーティング部分を形成して透過箔膜部12dとする。金属コーティング12cの厚さが5〜50nm程度であれば容易に除去可能であり、常温接合での不活性ガスビームやプラズマ照射や実際の電子線照射装置に装着して電子線照射することでも適用可能である。   Finally, in step 130, as shown in FIG. 4D, the transmission window is placed in a vacuum beam or plasma irradiation apparatus and irradiated with the beam or plasma, and the metal coating 12c on the surface of the foil film 12 in the transmission window is formed by sputtering. Is removed by evaporation, and an uncoated portion is formed to form a permeable foil film portion 12d. If the thickness of the metal coating 12c is about 5 to 50 nm, it can be easily removed, and it can also be applied by applying an inert gas beam or plasma irradiation at room temperature bonding or by irradiating an electron beam with an actual electron beam irradiation device. It is.

以上の手順により、透過窓性能として接合部の引張強度が推定10MPa以上、真空の気密性としてはHeリークレートにて1×10-6Pa・m3/secのものが得られる。 According to the above procedure, the tensile strength of the joint is estimated to be 10 MPa or more as the transmission window performance, and the vacuum tightness is 1 × 10 −6 Pa · m 3 / sec at the He leak rate.

前記電子線透過窓10は、図5に例示する如く、真空チャンバ22と大気の間に配設されて使用される。図において、24はカソード、26はアノード、28は電子線である。   The electron beam transmission window 10 is used by being disposed between the vacuum chamber 22 and the atmosphere as illustrated in FIG. In the figure, 24 is a cathode, 26 is an anode, and 28 is an electron beam.

前記実施形態では、箔膜12のフレーム14側の表面にも金属コーティング12cが施されていたが、コーティングされた金属膜は、箔膜12を透過する電子線を大きく損なうことになるため、金属コーティング12cの厚さを箔膜12よりも薄くするか、あるいはコーティングの際に透過箔膜部12dをマスキングして箔膜12をコーティングすることが望ましい。なお、透過箔膜部12dをマスキングする場合には、金属コーティング12cの厚さはフレーム14の箔膜12側の表面と同じ0.1〜10μm程度で良い。   In the above embodiment, the metal coating 12c is also applied to the surface of the foil film 12 on the frame 14 side. However, since the coated metal film greatly impairs the electron beam that passes through the foil film 12, the metal film 12c It is desirable to make the thickness of the coating 12c thinner than the foil film 12, or to coat the foil film 12 by masking the transmissive foil film part 12d during coating. When masking the permeable foil film portion 12d, the thickness of the metal coating 12c may be about 0.1 to 10 μm, which is the same as the surface of the frame 14 on the foil film 12 side.

前記実施形態においては、フレーム14が箔膜12の両側に設けられていたが、必要に応じて片側のみとすることも可能である。   In the above embodiment, the frame 14 is provided on both sides of the foil film 12, but it is also possible to have only one side if necessary.

又、前記実施形態においては、微小透孔14aがハニカム状に形成された単位窓11がハニカム状に37個並べられていたが、微小透孔14aの配列状態はハニカム状に限定されず、単位窓の数や配列状態も、これに限定されない。又、単位窓に分けず全体で一様に微小透孔を形成しても良い。   Further, in the above embodiment, 37 unit windows 11 each having the fine pores 14a formed in the honeycomb shape are arranged in the honeycomb shape, but the arrangement state of the fine pores 14a is not limited to the honeycomb shape, and unit The number of windows and the arrangement state are not limited to this. Further, the fine through holes may be uniformly formed as a whole without being divided into unit windows.

適用対象も電子線透過窓に限定されず、粒子線一般に適用可能である。   The application target is not limited to the electron beam transmission window, and can be generally applied to particle beams.

10…電子線透過窓
12…箔膜
12c、14c…金属コーティング
12d…透過箔膜部(非コーティング部分)
14…フレーム
14a…微小透孔
16…ビーム
28…電子線
DESCRIPTION OF SYMBOLS 10 ... Electron beam transmission window 12 ... Foil film 12c, 14c ... Metal coating 12d ... Transmission foil film part (non-coating part)
14 ... Frame 14a ... Micro through-hole 16 ... Beam 28 ... Electron beam

Claims (6)

粒子線を透過する箔膜と、該箔膜に密着される、微小透孔がメッシュ状に形成されたフレームとを備えた粒子線透過窓の製造に際して、
少なくとも前記フレームの箔膜側の表面に金属をコーティングする第1の工程と、
該コーティング面及び箔膜の接合面に不活性元素、そのイオンのビーム、プラズマ又は電子ビームを照射して活性化する第2の工程と、
前記箔膜とフレームを常温で加圧して接合する第3の工程と、
を有することを特徴とする粒子線透過窓の製造方法。
When manufacturing a particle beam transmission window comprising a foil film that transmits particle beams, and a frame that is in close contact with the foil film and has fine mesh holes formed in a mesh shape.
A first step of coating a metal on at least the surface of the frame on the foil film side;
A second step of irradiating the coating surface and the bonding surface of the foil film with an inert element, its ion beam, plasma or electron beam,
A third step of joining the foil film and the frame by pressurizing at normal temperature;
A method for producing a particle beam transmission window, comprising:
前記第1の工程で、箔膜のフレーム側の表面にも金属をコーティングすることを特徴とする請求項1に記載の粒子線透過窓の製造方法。   2. The method for producing a particle beam transmissive window according to claim 1, wherein in the first step, a metal is also coated on the surface of the foil film on the frame side. 3. 前記箔膜のフレーム側の表面にコーティングされた金属を、真空中で除去する第4の工程を有することを特徴とする請求項2に記載の粒子線透過窓の製造方法。   The method for producing a particle beam transmissive window according to claim 2, further comprising a fourth step of removing the metal coated on the surface of the foil film on the frame side in a vacuum. 前記第1の工程で、箔膜のフレーム側の表面に、透過箔膜部をマスキングして金属をコーティングすることを特徴とする請求項1に記載の粒子線透過窓の製造方法。   2. The method for producing a particle beam transmissive window according to claim 1, wherein in the first step, the surface of the foil film on the frame side is coated with a metal by masking the permeable foil film part. 3. 前記第1の工程及び第2の工程を箔膜の両側面に対して行なうことを特徴とする請求項1乃至4のいずれかに記載の粒子線透過窓の製造方法。   5. The method for producing a particle beam transmissive window according to claim 1, wherein the first step and the second step are performed on both side surfaces of the foil film. 請求項1乃至5のいずれかの製造方法により製造されたことを特徴とする粒子線透過窓。   A particle beam transmission window manufactured by the manufacturing method according to claim 1.
JP2012101796A 2012-04-26 2012-04-26 Method for manufacturing particle beam transmission window Active JP5910290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012101796A JP5910290B2 (en) 2012-04-26 2012-04-26 Method for manufacturing particle beam transmission window

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012101796A JP5910290B2 (en) 2012-04-26 2012-04-26 Method for manufacturing particle beam transmission window

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016066877A Division JP6119898B2 (en) 2016-03-29 2016-03-29 Particle beam transmission window

Publications (2)

Publication Number Publication Date
JP2013228332A true JP2013228332A (en) 2013-11-07
JP5910290B2 JP5910290B2 (en) 2016-04-27

Family

ID=49676091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012101796A Active JP5910290B2 (en) 2012-04-26 2012-04-26 Method for manufacturing particle beam transmission window

Country Status (1)

Country Link
JP (1) JP5910290B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3248206A4 (en) * 2015-01-22 2018-10-17 Luxel Corporation Improved materials and structures for large area x-ray dectector windows

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102400A (en) * 1992-09-22 1994-04-15 Toshiba Corp X-ray transmission membrane
JPH0910963A (en) * 1995-06-27 1997-01-14 Mitsubishi Heavy Ind Ltd Cold joining method
JP2003504605A (en) * 1999-07-09 2003-02-04 アドバンスト・エレクトロン・ビームズ・インコーポレーテッド Electron beam accelerator
JP2003272535A (en) * 2002-03-20 2003-09-26 Ushio Inc Electron beam tube
JP2006120585A (en) * 2004-10-20 2006-05-11 Yuichi Horikawa Electron emission tube and its manufacturing method
JP2012242381A (en) * 2011-05-16 2012-12-10 Brigham Young Univ Carbon composite material support structure
JP2013148478A (en) * 2012-01-19 2013-08-01 Jfe Engineering Corp Particle beam transmission window and particle beam irradiation device having the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102400A (en) * 1992-09-22 1994-04-15 Toshiba Corp X-ray transmission membrane
JPH0910963A (en) * 1995-06-27 1997-01-14 Mitsubishi Heavy Ind Ltd Cold joining method
JP2003504605A (en) * 1999-07-09 2003-02-04 アドバンスト・エレクトロン・ビームズ・インコーポレーテッド Electron beam accelerator
JP2003272535A (en) * 2002-03-20 2003-09-26 Ushio Inc Electron beam tube
JP2006120585A (en) * 2004-10-20 2006-05-11 Yuichi Horikawa Electron emission tube and its manufacturing method
JP2012242381A (en) * 2011-05-16 2012-12-10 Brigham Young Univ Carbon composite material support structure
JP2013148478A (en) * 2012-01-19 2013-08-01 Jfe Engineering Corp Particle beam transmission window and particle beam irradiation device having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3248206A4 (en) * 2015-01-22 2018-10-17 Luxel Corporation Improved materials and structures for large area x-ray dectector windows

Also Published As

Publication number Publication date
JP5910290B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
EP3127648B1 (en) Method for producing metal laminate material
JP2010523812A (en) Bonded sputtering target and manufacturing method
TWI680551B (en) Steam room
JPWO2005029531A1 (en) X-ray tube
US20180265990A1 (en) Metal laminate material and method for producing the same
KR100775301B1 (en) Method for making a plated product comprising a steel support component and an anti-corrosive metal coating
CN110167312B (en) Support structure of vapor chamber and method for fabricating the same
US20170084434A1 (en) Diffusion-bonded sputter target assembly and method of manufacturing
CN104607878B (en) The preparation method of W/Cu/CuCrZr composite components
JP5910290B2 (en) Method for manufacturing particle beam transmission window
JP2017535696A (en) Method for producing insulating window glass
JP6119898B2 (en) Particle beam transmission window
CN104409304A (en) Transmission target for X-ray tube of industrial CT (Computed Tomography) machine and preparation method thereof
JP2011076937A (en) Electrode for ion source
JP5974495B2 (en) Manufacturing method of particle beam transmission window
JP5717590B2 (en) Ion source electrode and manufacturing method thereof
JP5019200B2 (en) Ion source electrode
US11060342B2 (en) Vacuum insulated glazing unit
CN113510445A (en) Preparation method of niobium steel composite component
KR102208449B1 (en) Gas pressure casting method using porous tube for diffusion bonding copper to monoblock tungsten, and method for manufacturing laminated parts using nuclear fusion reactor
KR100664520B1 (en) Method of manufacturing metal foil/ceramics joining material and metal foil laminated ceramic substrate
JP6522952B2 (en) Bonding body and method for manufacturing the same
JP6142949B2 (en) Particle beam transmission window and particle beam irradiation apparatus provided with particle beam transmission window
KR101453305B1 (en) Method for manufacturing vacuum glass panel
JP2000296316A (en) Pressure-resistant hydrogen permeable membrane and its production

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5910290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350