JP5910290B2 - Method for manufacturing particle beam transmission window - Google Patents

Method for manufacturing particle beam transmission window Download PDF

Info

Publication number
JP5910290B2
JP5910290B2 JP2012101796A JP2012101796A JP5910290B2 JP 5910290 B2 JP5910290 B2 JP 5910290B2 JP 2012101796 A JP2012101796 A JP 2012101796A JP 2012101796 A JP2012101796 A JP 2012101796A JP 5910290 B2 JP5910290 B2 JP 5910290B2
Authority
JP
Japan
Prior art keywords
foil film
foil
metal
coating
transmission window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012101796A
Other languages
Japanese (ja)
Other versions
JP2013228332A (en
Inventor
土居 真
真 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2012101796A priority Critical patent/JP5910290B2/en
Publication of JP2013228332A publication Critical patent/JP2013228332A/en
Application granted granted Critical
Publication of JP5910290B2 publication Critical patent/JP5910290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、粒子線透過窓の製造方法に係り、特に、大気圧や圧力変動による破損を回避しつつ電子線、イオンビームなどの荷電粒子線、X線やガンマ線などの電磁波などの粒子線の高い透過率が可能な粒子線透過窓の製造方法に関する。 The present invention relates to the production how the particle beam transmitting window, in particular, electron beam while avoiding damage due to atmospheric pressure and pressure fluctuations, particle beams such as electromagnetic waves, such as charged particle beams, X-rays and gamma rays, such as ion beams high transmittance can relate to production how the particle beam transmitting window capable of.

従来、X線などを真空チャンバから取り出す際に、特許文献1や2に示されるような透過窓が用いられている。図1にその概略を示す。透過窓2は、金属薄膜であるベリリウム箔とされており、真空容器1の開口部1aにろう材4、5で接合されたり、拡散接合され、大気側が保護リング3で止められている。このため、透過窓2は、真空容器1の真空状態を良好に保ちながら、高い透過率でX線を真空容器1の内側から外側に照射することができる。   Conventionally, a transmission window as shown in Patent Documents 1 and 2 is used when X-rays are taken out from a vacuum chamber. The outline is shown in FIG. The transmission window 2 is a beryllium foil that is a metal thin film. The transmission window 2 is joined to the opening 1 a of the vacuum vessel 1 with brazing materials 4 and 5, or diffusion-bonded, and the atmosphere side is stopped with a protective ring 3. For this reason, the transmission window 2 can irradiate X-rays from the inside to the outside of the vacuum container 1 with high transmittance while keeping the vacuum state of the vacuum container 1 good.

このような透過窓を補強するため、特許文献3には、粒子線透過窓の真空側面に、高融点材料の真直棒からそれぞれ形成され、被照射物の移動方向に対して傾斜して配置された複数の補強桟を設け、該補強桟の一端を水冷保持板にろう接固定すると共に、該補強桟の他端を水冷保持板に設けられた遊嵌孔に摺動自在に挿入することが記載されている。   In order to reinforce such a transmission window, Patent Document 3 discloses that a straight side bar made of a high melting point material is formed on the vacuum side surface of the particle beam transmission window and is inclined with respect to the moving direction of the irradiated object. A plurality of reinforcing bars, one end of the reinforcing bar is fixed to the water-cooled holding plate by brazing, and the other end of the reinforcing bar is slidably inserted into a loose-fitting hole provided in the water-cooled holding plate. Have been described.

特開平6−260121号公報(図1)JP-A-6-260121 (FIG. 1) 特開平6−251736号公報(図1)Japanese Patent Laid-Open No. 6-251736 (FIG. 1) 特開2002−14200号公報JP 2002-14200 A 特開平9−10963号公報JP-A-9-10963 特開2008−207221号公報JP 2008-207221 A

しかしながら、特許文献1や2に記載された真空ろう接や拡散接合では、接合時の加熱温度による熱変形や応力により、10〜100μm厚の箔膜でも亀裂や破損が発生する。従って、更に薄い数μm膜厚の箔での加熱接合は、熱負荷が高く、適用が不可能である。又、特許文献3に記載された補強桟では、窓にかかる大気圧による破裂を抑制するためには不十分であるという問題点を有していた。   However, in the vacuum brazing or diffusion bonding described in Patent Documents 1 and 2, cracks and breakage occur even in a foil film having a thickness of 10 to 100 μm due to thermal deformation and stress due to the heating temperature at the time of bonding. Therefore, heat bonding with a thin foil having a thickness of several μm has a high heat load and cannot be applied. Further, the reinforcing bar described in Patent Document 3 has a problem that it is insufficient for suppressing the burst due to the atmospheric pressure applied to the window.

一方、特許文献4や5には、加熱を行なうことなく常温で接合する常温接合方法が記載されているが、本発明が対象とする粒子線透過窓への適用は考えられていなかった。   On the other hand, Patent Documents 4 and 5 describe a room temperature bonding method in which bonding is performed at room temperature without heating, but application to a particle beam transmission window targeted by the present invention has not been considered.

本発明は、前記従来の問題点を解消するべくなされたもので、大気圧や圧力変動による箔膜の破壊を回避しつつ、粒子線のフレームによる損失を少なくして高透過率を実現し、気密性及び強度に優れた透過窓を製造することを課題とする。   The present invention has been made to solve the above-mentioned conventional problems, while avoiding the destruction of the foil film due to atmospheric pressure and pressure fluctuation, while reducing the loss due to the particle beam frame, to achieve a high transmittance, It is an object of the present invention to manufacture a transmission window excellent in airtightness and strength.

本発明は、粒子線を透過する箔膜と、該箔膜の両面に密着接合される、微小透孔がメッシュ状に形成された2枚のフレームとを備えた粒子線透過窓の製造に際して、少なくとも前記2枚のフレームの箔膜側の表面に金属をコーティングする第1の工程と、該コーティング面及び箔膜の接合面に不活性元素、そのイオンのビーム、プラズマ又は電子ビームを照射して活性化する第2の工程と、前記箔膜と該箔膜を挟んだ2枚のフレームを常温で加圧して接合する第3の工程と、を有し、前記第1の工程で、箔膜のフレーム側の表面にも金属をコーティングし、該金属コーティングの厚さを前記箔膜よりも薄くすることを特徴とする粒子線透過窓の製造方法により、前記課題を解決したものである。 The present invention, in the production of a particle beam transmission window comprising a foil film that transmits particle beams, and two frames that are tightly bonded to both surfaces of the foil film and in which fine through holes are formed in a mesh shape, A first step of coating a metal on the surface of the foil film side of at least the two frames, and irradiating the coating surface and the bonding surface of the foil film with an inert element, its ion beam, plasma or electron beam. a second step of activating, in the foil layer and the two frames across the said foil layer possess a third step of pressurizing the bonding at normal temperature, and the first step, foil membrane The above-mentioned problem is solved by a method for manufacturing a particle beam transmission window, characterized in that the surface of the frame side is coated with a metal and the thickness of the metal coating is made thinner than that of the foil film .

又、前記箔膜のフレーム側の表面にコーティングされた金属を、真空中で除去する第4の工程を有することができる。   Moreover, it can have the 4th process of removing the metal coated by the surface by the side of the said foil film in a vacuum.

本発明は、又、粒子線を透過する箔膜と、該箔膜の両面に密着接合される、微小透孔がメッシュ状に形成された2枚のフレームとを備えた粒子線透過窓の製造に際して、少なくとも前記2枚のフレームの箔膜側の表面に金属をコーティングする第1の工程と、該コーティング面及び箔膜の接合面に不活性元素、そのイオンのビーム、プラズマ又は電子ビームを照射して活性化する第2の工程と、前記箔膜と該箔膜を挟んだ2枚のフレームを常温で加圧して接合する第3の工程と、を有し、前記第1の工程で、箔膜のフレーム側の表面に、透過箔膜部をマスキングして金属をコーティングすることを特徴とする粒子線透過窓の製造方法により、同様に前記課題を解決したものである The present invention also provides a manufacturing method of a particle beam transmission window including a foil film that transmits particle beams, and two frames that are tightly bonded to both surfaces of the foil film and in which fine through holes are formed in a mesh shape. At this time, the first step of coating the metal on the surface of the foil film side of at least the two frames, and the coating surface and the bonding surface of the foil film are irradiated with an inert element, its ion beam, plasma or electron beam. And a second step of activating, and a third step of pressing and joining the foil film and two frames sandwiching the foil film at room temperature, and in the first step, The above problem is similarly solved by a method for manufacturing a particle beam transmission window, wherein the surface of the foil film on the frame side is coated with metal by masking the transmission foil film portion.

本発明によれば、微小透孔がメッシュ状に形成されたフレームで箔膜を挟むようにしたので、大気圧や圧力変動による箔膜の破壊を回避しつつ、粒子線のフレームによる損失を少なくし、高透過率を実現できる。又、接合面に金属をコーティングした後、不活性元素、そのイオンビーム、プラズマ又は電子ビームを照射して活性化し、箔膜とフレームを常温で加圧して全体を接合するようにしたので、数μmの膜厚の箔膜であっても、気密性及び強度に優れた透過窓を製造することが可能となる。   According to the present invention, since the foil film is sandwiched between the frames in which the fine through-holes are formed in a mesh shape, the loss of the particle beam due to the frame is reduced while avoiding the destruction of the foil film due to atmospheric pressure and pressure fluctuations. In addition, high transmittance can be realized. Also, after coating the metal on the bonding surface, it was activated by irradiation with an inert element, its ion beam, plasma or electron beam, and the foil film and the frame were pressed at room temperature to bond the whole. Even with a foil film having a thickness of μm, it is possible to manufacture a transmission window having excellent airtightness and strength.

特許文献1、2に記載された放射線透過窓の従来例の構成を示す要部断面図Cross-sectional view of the principal part showing the configuration of the conventional example of the radiation transmitting window described in Patent Documents 1 and 2 本発明により製造された粒子線透過窓の実施形態の構成を示す(a)平面図及び(b)横断面図It shows the configuration of an embodiment of a more particles produced ray transmissive window to the present invention (a) plan view and (b) cross-sectional view 本発明に係る粒子線透過窓の製造方法を示すフローチャートThe flowchart which shows the manufacturing method of the particle beam transmission window which concerns on this invention 同じく工程を示す断面図Sectional view showing the process 粒子線透過窓が配置された電子線照射装置の例を示す断面図Sectional drawing which shows the example of the electron beam irradiation apparatus by which the particle beam transmission window is arrange | positioned

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明を電子線透過窓10に適用した実施形態は、図2に示す如く、ハニカム状の単位窓11がハニカム状に37個配列されており、電子線を透過する箔膜12と、該箔膜12を図の上下両側から挟む、微小透孔14aがメッシュ状に多数形成されたフレーム14とを備えている。   In the embodiment in which the present invention is applied to the electron beam transmitting window 10, as shown in FIG. 2, 37 honeycomb-shaped unit windows 11 are arranged in a honeycomb shape, and a foil film 12 that transmits an electron beam, and the foil The frame 12 is provided with a plurality of minute through-holes 14a formed in a mesh shape to sandwich the membrane 12 from above and below in the figure.

前記箔膜12は、例えば厚さ2〜5μmのチタン製とされ、前記フレーム14は、例えば厚さ0.1〜0.5mmのステンレス製とされている。なお、フレーム14の材質は、チタン、ニッケル、アルミ若しくは銅又はその合金、ベリリウム、カーボン等でも構わない。   The foil film 12 is made of titanium having a thickness of 2 to 5 μm, for example, and the frame 14 is made of stainless steel having a thickness of 0.1 to 0.5 mm, for example. The material of the frame 14 may be titanium, nickel, aluminum, copper, an alloy thereof, beryllium, carbon, or the like.

以下、図3を参照して、製造手順を説明する。   Hereinafter, the manufacturing procedure will be described with reference to FIG.

まずステップ100で、図4(a)に示す如く、フレーム14の箔膜12側の表面に、表面状態に応じて厚さ0.1〜10μm程度の薄い金属、例えば金を、イオンプレーティングやめっき、蒸着等によりコーティングして金属コーティング14cを形成する。金の代わりに銀、銅、アルミニウム等を用いても良い。   First, in step 100, as shown in FIG. 4A, a thin metal, for example, gold having a thickness of about 0.1 to 10 μm is formed on the surface of the frame 14 on the side of the foil film 12 according to the surface state. A metal coating 14c is formed by coating by plating, vapor deposition, or the like. Silver, copper, aluminum or the like may be used instead of gold.

同様に、箔膜12のフレーム14側の表面にも、表面状態に応じて厚さ5〜50nm程度の金属膜をコーティングして金属コーティング12cを形成する。金属コーティング12cは、金属コーティング14cと同じ物を用いることができる。箔膜12に蒸着する金属コーティング12cは、電子線を止める作用があるので、厚みは薄い方が望ましく、材質や表面平坦性、加圧力などにより十分な接合強度が得られる場合には、省略することも可能である。   Similarly, a metal coating 12c is formed on the surface of the foil film 12 on the frame 14 side by coating a metal film having a thickness of about 5 to 50 nm according to the surface state. The metal coating 12c can be the same as the metal coating 14c. Since the metal coating 12c deposited on the foil film 12 has an action of stopping the electron beam, it is desirable that the thickness is thin, and it is omitted when sufficient bonding strength can be obtained due to the material, surface flatness, pressure, etc. It is also possible.

次いで、ステップ110で、図4(b)に示す如く、金属コーティング12c、14cに、アルゴン、キセノン、クリプトン等の不活性元素、そのイオンのビーム16、プラズマ又は電子ビームを、例えば10−6Paの真空にした後、数分間照射して活性化処理し、清浄化する。 Next, at step 110, as shown in FIG. 4B, an inert element such as argon, xenon, krypton, its ion beam 16, plasma or electron beam is applied to the metal coatings 12c, 14c, for example, 10 −6 Pa. After evacuation, it is activated by irradiation for several minutes and cleaned.

次いで、ステップ120で、図4(c)に示す如く、常温で、材質や表面平坦性により大きく異なるが、例えば80〜400〜3000kgf/cm2で加圧して接合する。なお、加圧に際しては周囲のみの加圧でも良いが、全面加圧の方が全体強度が向上し、安定であるとともに、片側フレームのみでの使用も可能である。 Next, in step 120, as shown in FIG. 4C, the bonding is performed by pressing at, for example, 80 to 400 to 3000 kgf / cm 2 at room temperature, depending on the material and surface flatness. The pressurization may be performed only on the periphery, but the entire pressurization improves the overall strength and is stable, and can be used only on one side frame.

最後に、ステップ130で、図4(d)に示す如く、透過窓を真空ビームあるいはプラズマ照射装置内に入れてビームあるいはプラズマを照射し、スパッタリングにより透過窓部の箔膜12表面の金属コーティング12cを蒸発させて除去し、非コーティング部分を形成して透過箔膜部12dとする。金属コーティング12cの厚さが5〜50nm程度であれば容易に除去可能であり、常温接合での不活性ガスビームやプラズマ照射や実際の電子線照射装置に装着して電子線照射することでも適用可能である。   Finally, in step 130, as shown in FIG. 4D, the transmission window is placed in a vacuum beam or plasma irradiation apparatus and irradiated with the beam or plasma, and the metal coating 12c on the surface of the foil film 12 in the transmission window is formed by sputtering. Is removed by evaporation, and an uncoated portion is formed to form a permeable foil film portion 12d. If the thickness of the metal coating 12c is about 5 to 50 nm, it can be easily removed, and it can also be applied by applying an inert gas beam or plasma irradiation at room temperature bonding or by irradiating an electron beam with an actual electron beam irradiation device. It is.

以上の手順により、透過窓性能として接合部の引張強度が推定10MPa以上、真空の気密性としてはHeリークレートにて1×10-6Pa・m3/secのものが得られる。 According to the above procedure, the tensile strength of the joint is estimated to be 10 MPa or more as the transmission window performance, and the vacuum tightness is 1 × 10 −6 Pa · m 3 / sec at the He leak rate.

前記電子線透過窓10は、図5に例示する如く、真空チャンバ22と大気の間に配設されて使用される。図において、24はカソード、26はアノード、28は電子線である。   The electron beam transmission window 10 is used by being disposed between the vacuum chamber 22 and the atmosphere as illustrated in FIG. In the figure, 24 is a cathode, 26 is an anode, and 28 is an electron beam.

前記実施形態では、箔膜12のフレーム14側の表面にも金属コーティング12cが施されていたが、コーティングされた金属膜は、箔膜12を透過する電子線を大きく損なうことになるため、金属コーティング12cの厚さを箔膜12よりも薄くするか、あるいはコーティングの際に透過箔膜部12dをマスキングして箔膜12をコーティングすることが望ましい。なお、透過箔膜部12dをマスキングする場合には、金属コーティング12cの厚さはフレーム14の箔膜12側の表面と同じ0.1〜10μm程度で良い。   In the above embodiment, the metal coating 12c is also applied to the surface of the foil film 12 on the frame 14 side. However, since the coated metal film greatly impairs the electron beam that passes through the foil film 12, the metal film 12c It is desirable to make the thickness of the coating 12c thinner than the foil film 12, or to coat the foil film 12 by masking the transmissive foil film part 12d during coating. When masking the permeable foil film portion 12d, the thickness of the metal coating 12c may be about 0.1 to 10 μm, which is the same as the surface of the frame 14 on the foil film 12 side.

記実施形態においては、微小透孔14aがハニカム状に形成された単位窓11がハニカム状に37個並べられていたが、微小透孔14aの配列状態はハニカム状に限定されず、単位窓の数や配列状態も、これに限定されない。又、単位窓に分けず全体で一様に微小透孔を形成しても良い。 In the previous SL embodiment, although the unit window 11 a minute hole 14a is formed in a honeycomb shape were arranged 37 in a honeycomb shape, arrangement of micro-hole 14a is not limited to the honeycomb shape, a unit window The number and the arrangement state are not limited to this. Further, the fine through holes may be uniformly formed as a whole without being divided into unit windows.

適用対象も電子線透過窓に限定されず、粒子線一般に適用可能である。   The application target is not limited to the electron beam transmission window, and can be generally applied to particle beams.

10…電子線透過窓
12…箔膜
12c、14c…金属コーティング
12d…透過箔膜部(非コーティング部分)
14…フレーム
14a…微小透孔
16…ビーム
28…電子線
DESCRIPTION OF SYMBOLS 10 ... Electron beam transmission window 12 ... Foil film 12c, 14c ... Metal coating 12d ... Transmission foil film part (uncoating part)
14 ... Frame 14a ... Micro through-hole 16 ... Beam 28 ... Electron beam

Claims (3)

粒子線を透過する箔膜と、該箔膜の両面に密着接合される、微小透孔がメッシュ状に形成された2枚のフレームとを備えた粒子線透過窓の製造に際して、
少なくとも前記2枚のフレームの箔膜側の表面に金属をコーティングする第1の工程と、
該コーティング面及び箔膜の接合面に不活性元素、そのイオンのビーム、プラズマ又は電子ビームを照射して活性化する第2の工程と、
前記箔膜と該箔膜を挟んだ2枚のフレームを常温で加圧して接合する第3の工程と、
を有し、
前記第1の工程で、箔膜のフレーム側の表面にも金属をコーティングし、該金属コーティングの厚さを前記箔膜よりも薄くすることを特徴とする粒子線透過窓の製造方法。
When manufacturing a particle beam transmission window comprising a foil film that transmits particle beams, and two frames that are tightly bonded to both surfaces of the foil film and in which fine through holes are formed in a mesh shape,
A first step of coating a metal on at least the surface of the two frames on the foil film side;
A second step of irradiating the coating surface and the bonding surface of the foil film with an inert element, its ion beam, plasma or electron beam,
A third step of joining the foil film and two frames sandwiching the foil film by pressurizing at normal temperature;
I have a,
In the first step, the surface of the foil film on the frame side is coated with metal, and the thickness of the metal coating is made thinner than that of the foil film .
前記箔膜のフレーム側の表面にコーティングされた金属を、真空中で除去する第4の工程を有することを特徴とする請求項に記載の粒子線透過窓の製造方法。 The method for producing a particle beam transmissive window according to claim 1 , further comprising a fourth step of removing the metal coated on the frame side surface of the foil film in a vacuum. 粒子線を透過する箔膜と、該箔膜の両面に密着接合される、微小透孔がメッシュ状に形成された2枚のフレームとを備えた粒子線透過窓の製造に際して、
少なくとも前記2枚のフレームの箔膜側の表面に金属をコーティングする第1の工程と、
該コーティング面及び箔膜の接合面に不活性元素、そのイオンのビーム、プラズマ又は電子ビームを照射して活性化する第2の工程と、
前記箔膜と該箔膜を挟んだ2枚のフレームを常温で加圧して接合する第3の工程と、
を有し、
前記第1の工程で、箔膜のフレーム側の表面に、透過箔膜部をマスキングして金属をコーティングすることを特徴とする粒子線透過窓の製造方法。
When manufacturing a particle beam transmission window comprising a foil film that transmits particle beams, and two frames that are tightly bonded to both surfaces of the foil film and in which fine through holes are formed in a mesh shape,
A first step of coating a metal on at least the surface of the two frames on the foil film side;
A second step of irradiating the coating surface and the bonding surface of the foil film with an inert element, its ion beam, plasma or electron beam,
A third step of joining the foil film and two frames sandwiching the foil film by pressurizing at normal temperature;
Have
Wherein in a first step, the surface of the frame side of the foil membrane, method for producing a grain sagittal transmission window you transparent foil membrane portion masked by said coating a metal.
JP2012101796A 2012-04-26 2012-04-26 Method for manufacturing particle beam transmission window Active JP5910290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012101796A JP5910290B2 (en) 2012-04-26 2012-04-26 Method for manufacturing particle beam transmission window

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012101796A JP5910290B2 (en) 2012-04-26 2012-04-26 Method for manufacturing particle beam transmission window

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016066877A Division JP6119898B2 (en) 2016-03-29 2016-03-29 Particle beam transmission window

Publications (2)

Publication Number Publication Date
JP2013228332A JP2013228332A (en) 2013-11-07
JP5910290B2 true JP5910290B2 (en) 2016-04-27

Family

ID=49676091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012101796A Active JP5910290B2 (en) 2012-04-26 2012-04-26 Method for manufacturing particle beam transmission window

Country Status (1)

Country Link
JP (1) JP5910290B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107430967A (en) * 2015-01-22 2017-12-01 卢克赛尔公司 Improved material and structure for large area x-ray detector window

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102400A (en) * 1992-09-22 1994-04-15 Toshiba Corp X-ray transmission membrane
JPH0910963A (en) * 1995-06-27 1997-01-14 Mitsubishi Heavy Ind Ltd Cold joining method
DE60045551D1 (en) * 1999-07-09 2011-03-03 Advanced Electron Beams Inc A Delaware Corp ELECTRON ACCELERATOR
JP2003272535A (en) * 2002-03-20 2003-09-26 Ushio Inc Electron beam tube
JP2006120585A (en) * 2004-10-20 2006-05-11 Yuichi Horikawa Electron emission tube and its manufacturing method
US8989354B2 (en) * 2011-05-16 2015-03-24 Brigham Young University Carbon composite support structure
JP5974495B2 (en) * 2012-01-19 2016-08-23 Jfeエンジニアリング株式会社 Manufacturing method of particle beam transmission window

Also Published As

Publication number Publication date
JP2013228332A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
JP4969851B2 (en) X-ray tube
US6487272B1 (en) Penetrating type X-ray tube and manufacturing method thereof
TWI680551B (en) Steam room
JP2010523812A (en) Bonded sputtering target and manufacturing method
US20180265990A1 (en) Metal laminate material and method for producing the same
KR100775301B1 (en) Method for making a plated product comprising a steel support component and an anti-corrosive metal coating
US20170084434A1 (en) Diffusion-bonded sputter target assembly and method of manufacturing
JP4234546B2 (en) Vacuum sealed container and manufacturing method thereof
US9159522B2 (en) Method for assembling an electron exit window and an electron exit window assembly
JP5910290B2 (en) Method for manufacturing particle beam transmission window
JP6119898B2 (en) Particle beam transmission window
JP5974495B2 (en) Manufacturing method of particle beam transmission window
JP2011076937A (en) Electrode for ion source
JP2013045747A (en) Electrode for ion source, and method of manufacturing the same
JP5019200B2 (en) Ion source electrode
JP6142949B2 (en) Particle beam transmission window and particle beam irradiation apparatus provided with particle beam transmission window
US20200040645A1 (en) Vacuum Insulated Glazing Unit
KR102208449B1 (en) Gas pressure casting method using porous tube for diffusion bonding copper to monoblock tungsten, and method for manufacturing laminated parts using nuclear fusion reactor
JP2854358B2 (en) Method for manufacturing first wall of fusion reactor
JPH08197171A (en) Production of metallic honeycomb sandwich plate
JP2000296316A (en) Pressure-resistant hydrogen permeable membrane and its production
JP6836779B2 (en) Device manufacturing method and device using room temperature bonding method
Truhan et al. Fabricating thin beryllium windows for x-ray applications
JP3339632B2 (en) Manufacturing method of laminated metal strip and laminated metal strip
JP2005050600A (en) Electrode plate for ion source and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5910290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350