JP2013221719A - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
JP2013221719A
JP2013221719A JP2012095322A JP2012095322A JP2013221719A JP 2013221719 A JP2013221719 A JP 2013221719A JP 2012095322 A JP2012095322 A JP 2012095322A JP 2012095322 A JP2012095322 A JP 2012095322A JP 2013221719 A JP2013221719 A JP 2013221719A
Authority
JP
Japan
Prior art keywords
evaporator
cooling
cycle
refrigerator
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012095322A
Other languages
English (en)
Other versions
JP6019386B2 (ja
Inventor
Toshikazu Sakai
寿和 境
Katsunori Horii
克則 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012095322A priority Critical patent/JP6019386B2/ja
Publication of JP2013221719A publication Critical patent/JP2013221719A/ja
Application granted granted Critical
Publication of JP6019386B2 publication Critical patent/JP6019386B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)

Abstract

【課題】FC冷却モード(b)およびPC冷却モード(a)に加えて、冷凍サイクル停止中に冷蔵室を冷却するオフサイクル冷却モード(c)及びオフサイクルデフモード(q)を有する冷蔵庫において、冷蔵室や送風経路内の結露発生を抑制することを目的とする。
【解決手段】オフサイクルデフモード(q)に引き続いて水切り期間を設けるとともに、撥水処理された蒸発器を用いることで、蒸発器周辺の高湿空気の発生を抑制することができ、冷蔵室や送風経路内の結露発生を抑制することができる。
【選択図】図1

Description

本発明は、冷凍室と冷蔵室にそれぞれ冷気を遮断するダンパーを有し、1個の蒸発器を用いて冷凍室と冷蔵室それぞれを単独で冷却することにより、冷凍サイクルの効率を高めた冷蔵庫に関するものである。
省エネルギーの観点から、家庭用冷蔵庫においては、冷凍室と冷蔵室それぞれに設けられた冷気を遮断するダンパーと1個の蒸発器を用いて、冷凍室と冷蔵室それぞれを単独で冷却することにより冷凍サイクルの効率を高めた冷蔵庫がある(例えば、特許文献1参照)。これは、比較的空気温度の高い冷蔵室を冷却する際に冷凍室よりも高い蒸発温度で冷却することで、冷凍サイクルの効率を高めるものである。
さらに、蒸発器の除霜を行う際に、ヒータで加温すると同時に冷蔵室の冷気を循環させて蒸発器を加温して、除霜にかかる電力を削減することが提案されている(例えば、特許文献2参照)。これは、蒸発器の霜よりも温度の高い冷蔵室の空気を蒸発器に循環させることで、除霜時のヒータ電力を削減しながら冷蔵室の冷却に必要な冷凍サイクルの能力を削減することにより省エネルギー化を図るものである。また、通常、前記除霜期間終了後に、ヒータと冷凍サイクルの圧縮機の両方を停止して、融解した除霜水が自重により蒸発器から流下するのを待つ水切り期間を5分程度設けている。
以下、図面を参照しながら従来の冷蔵庫を説明する。
図5は従来の冷蔵庫の縦断面図、図6は従来の冷蔵庫の冷凍サイクル構成図、図8は従来の冷蔵庫の除霜及び水切り期間の制御フローを示す図である。
図5および図6において、冷蔵庫11は、筐体12、扉13、筐体12を支える脚14、筐体12の下部に設けられた下部機械室15、筐体12の上部に配置された冷蔵室17、筐体12の下部に配置された冷凍室18を有している。また、冷凍サイクルを構成する部品として、下部機械室15に納められた圧縮機56、冷凍室18の背面側に収められた蒸発器58、下部機械室15内に納められた主凝縮器21を有している。また、下部機械室15を仕切る隔壁22、隔壁22に取り付けられ主凝縮器21を空冷するファン23、圧縮機56の上部に設置された蒸発皿57、下部機械室15の底板25を有している。
ここで、蒸発器58は、アルミニウム製冷媒配管(図示せず)とアルミニウム製フィン(図示せず)からなるフィンチューブ型熱交換器で構成される。蒸発器58の表面は無処理であり、一般的なアルミニウムの表面に形成される酸化皮膜と同等の特性(接触角105°、転落角なし)を有する。
また、蒸発器58のアルミニウム製フィン(図示せず)は垂直に配置され、蒸発器ファン50が駆動すると、蒸発器58下部から吸入された空気と熱交換して、蒸発器58の上部から冷気を供給する。また、蒸発器58を加温して除霜する際には、蒸発器58の下部に設置された蒸発皿(図示せず)に流下することで除霜水が排出される。
また、底板25に設けられた複数の吸気口26、下部機械室15の背面側に設けられた排出口27、下部機械室15の排出口27と筐体11の上部を繋ぐ連通風路28を有している。ここで、下部機械室15は隔壁22によって2室に分けられ、ファン23の風上側に主凝縮器21、風下側に圧縮機56と蒸発皿57を収めている。
また、冷凍サイクルを構成する部品として、主凝縮器21の下流側に位置し、冷凍室18の開口部周辺の筐体12の外表面と熱結合された防露パイプ37、防露パイプ37の下流側に位置し、循環する冷媒を乾燥するドライヤ38、ドライヤ38と蒸発器58を結合し、循環する冷媒を減圧する絞り39を有している。
また、蒸発器58で発生する冷気を冷蔵室17と冷凍室18に供給する蒸発器ファン50、冷凍室18に供給される冷気を遮断する冷凍室ダンパー51、冷蔵室17に供給される冷気を遮断する冷蔵室ダンパー52、冷蔵室17に冷気を供給するダクト53、冷凍室18の温度を検知するFCC温度センサ54、冷蔵室17の温度を検知するPCC温度センサ55を有している。
以上のように構成された従来の冷蔵庫について以下にその動作を説明する。
PCC温度センサ55の検知する温度が所定値のON温度まで上昇すると、圧縮機56を停止した状態で冷凍室ダンパー51を閉とし、冷蔵室ダンパー52を開として蒸発器ファン50を駆動する。これによって、蒸発器58とこれに付着している霜の低温の顕熱と霜の融解潜熱を利用して冷蔵室17を冷却する(以下、この動作を「オフサイクル冷却」という)。
オフサイクル冷却の開始から所定時間後に、冷凍室ダンパー51を閉とし、冷蔵室ダンパー52を開として、圧縮機56とファン23、蒸発器ファン50を駆動する。ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり複数の吸気口26から外部の空気を吸引し、圧縮機56と蒸発皿57側が正圧となり下部機械室15内の空気を複数の排出口27から外部へ排出する。
一方、圧縮機56から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、防露パイプ37へ供給される。防露パイプ37を通過した冷媒は冷凍室18の開口部を暖めながら、筐体12を介して外部に放熱して凝縮する。防露パイプ37を通過した液冷媒は、ドライヤ38で水分除去され、絞り39で減圧されて蒸発器58で蒸発しながら冷蔵室17の庫内空気と熱交換して冷蔵室17を冷却しながら、気体冷媒として圧縮機56に還流する(以下、この動作を「PC冷却」という)。このとき、冷蔵室17の庫内空気が冷凍室18よりも温度が高く、かつ、オフサイクル冷却によって蒸発器58の温度が上昇しているため、PC冷却時は高い蒸発温度に速やかに到達することができる。
次に、PCC温度センサ55の検知する温度が所定値のOFF温度まで下降するか、あるいはFCC温度センサ54の検知する温度が所定値のON温度まで上昇すると、冷凍室ダンパー51を開とし、冷蔵室ダンパー52を閉として、圧縮機56とファン23、蒸発器ファン50を駆動する。以下、PC冷却と同様に冷凍サイクルを稼動させることにより、冷凍室18の庫内空気と蒸発器58を熱交換して冷凍室18を冷却する(以下、この動作を「FC冷却」という)。
次に、FCC温度センサ54の検知する温度が所定値のOFF温度まで下降すると、冷凍室ダンパー51と冷蔵室ダンパー52を閉として、圧縮機56とファン23、蒸発器ファン50を停止する(以下、この動作を「冷却停止」という)。そして、通常運転中は、オフサイクル冷却、PC冷却、FC冷却、冷却停止の一連の動作を順に繰り返す。
図7において、区間eはオフサイクル冷却、区間fはPC冷却、区間gはFC冷却、区間hは冷却停止の動作に対応する。圧縮機56は区間fと区間gの間に駆動し、区間hと
区間eの間に停止する。また、冷凍室18は区間gの間に冷却され、冷蔵室17は区間eと区間fの間に冷却される。ここで、冷蔵室17上部の温度変化が大きい理由は、その上部が温度の高い外気に隣接している一方、その下部が温度の低い冷凍室18に隣接しているため、非冷却期間中に上下の温度差が大きくなるとともに、冷却時に上部の風量を大きくして高温の上部を速やかに冷却するためである。
次に、図8を用いて蒸発器58の除霜について説明する。
通常運転を所定時間継続した後、蒸発器58に付着した霜を除去するため、除霜ヒータ(図示せず)を用いて蒸発器58を加温しながら比較的長時間のオフサイクル冷却を実施する(以下、この動作を「オフサイクルデフ」という)。
図8において、区間eはオフサイクル冷却、区間fはPC冷却、区間gはFC冷却、区間mはオフサイクルデフ、区間nは水切り期間の動作に対応する。FC冷却(区間g)を所定時間経過した時に通常運転の積算時間が所定時間を越えた場合に、オフサイクルデフ(区間m)の開始と判定される。これは、オフサイクルデフの期間中に冷凍室18の温度上昇を抑えるとともに、冷蔵室17内の熱量を用いて蒸発器58に付着した霜を融解除去するため、冷蔵室17内の温度が比較的高く、熱量が大きいタイミングを狙ったものである。そして、区間mで示したオフサイクルデフ中は、除霜ヒータ(図示せず)を通電するとともに、圧縮機56を停止した状態で冷凍室ダンパー51を閉とし、冷蔵室ダンパー52を開として蒸発器ファン50を駆動する、オフサイクル冷却(区間e)と同じ一連の動作を行って、蒸発器58の除霜を実施する。
そして、蒸発器58の温度を検知するDEF温度センサ(図示せず)が所定値(通常2〜15℃)を検知した際に、「除霜の終了判定」すなわち、蒸発器58に付着した霜が完全に除去できたと判定して、オフサイクルデフ(区間m)の動作を終了して、区間nで示した水切り期間に移行する。水切り期間(区間n)においては、除霜ヒータ(図示せず)と圧縮機56、蒸発器ファン50を停止し、蒸発器58に付着した除霜水が蒸発皿(図示せず)に流出するまで数分(通常5分程度)待つ。その後、通常運転に復帰する。
この一連の動作によって、PC冷却時の蒸発器58の温度をFC冷却時よりも高く保つことで、冷凍サイクルの効率を高めることができるとともに、オフサイクル冷却及びオフサイクルデフによって蒸発器58に付着した霜の融解潜熱を再利用することで、除霜時のヒータ電力(図示せず)を削減しながら冷蔵室17の冷却に必要な冷凍サイクルの能力を削減することにより省エネルギー化を図ることができる。
特開平9−236369号公報 特開平5−99555号公報
しかしながら、従来の冷蔵庫の構成では、除霜期間中に蒸発器ファン50を駆動してオフサイクルデフを実行すると、蒸発器58周辺の高湿空気が冷蔵室17や送風経路内に侵入して結露が発生する懸念があった。これは、蒸発器58に付着した霜が完全に融解するまでは蒸発器58とその周辺空気が0℃近傍に保たれるが、除霜期間の終了に近づくと霜が完全に融解して水滴となり蒸発器58とその周辺空気が温度上昇することで周辺空気の絶対湿度が急激に上昇するためである。また、蒸発器58の温度が0℃から上昇し始めた時に蒸発器ファン50を停止すればこの問題は緩和されるが、着霜状態が均一ではない蒸
発器58の温度変化を正確に見極めることは難しい。
本発明は、従来の課題を解決するもので、蒸発器58周辺の高湿空気の冷蔵室17や送風経路内への侵入を抑制することを目的とする。
従来の課題を解決するために、本発明の冷蔵庫は、撥水処理された蒸発器を用いて、オフサイクルデフを実行するものである。これによって蒸発器の水切り性を改善して、蒸発器とその周辺空気が温度上昇した際に周辺空気の絶対湿度が上昇することを抑制することができる。
本発明の冷蔵庫は、撥水処理された蒸発器を用いて、オフサイクルデフを実行することにより、蒸発器の水切り性を改善して、蒸発器とその周辺空気が温度上昇した際に周辺空気の絶対湿度が上昇することを抑制することができ、蒸発器周辺の高湿空気が冷蔵室や送風経路内に侵入して結露が発生することを抑制することができる。
本発明の実施の形態1における冷蔵庫の縦断面図 本発明の実施の形態1における冷蔵庫のサイクル構成図 本発明の実施の形態1における冷蔵庫の温度センサ挙動の模式図 本発明の実施の形態1における冷蔵庫の除霜及び水切り期間の制御フローを示す図 従来の冷蔵庫の縦断面図 従来の冷蔵庫のサイクル構成図 従来の冷蔵庫の温度センサ挙動の模式図 従来の冷蔵庫の除霜及び水切り期間の制御フローを示す図
第1の発明は、冷蔵室と、冷凍室と、冷凍サイクルと、前記冷凍サイクルの構成要素である蒸発器と、前記蒸発器で発生した冷気を前記冷蔵室および前記冷凍室へ供給する蒸発器ファンと、前記蒸発器から前記冷蔵室へ供給される冷気を遮断する冷蔵室ダンパーと、前記蒸発器から前記冷凍室へ供給される冷気を遮断する冷凍室ダンパーと、前記蒸発器を加温する除霜ヒータとを有する冷蔵庫において、前記冷凍室ダンパーを開放し、前記冷蔵室ダンパーを閉塞して、前記冷凍サイクルを稼動しながら前記蒸発器で発生した冷気を供給して前記冷凍室を冷却するFC冷却モードと、前記冷凍室ダンパーを閉塞し、前記冷蔵室ダンパーを開放して、前記冷凍サイクルを稼動しながら前記蒸発器で発生した冷気を供給して前記冷蔵室を冷却するPC冷却モードと、前記冷凍室ダンパーを閉塞し、前記冷蔵室ダンパーを開放して、前記冷凍サイクルを停止しながら前記蒸発器ファンを運転することで、前記蒸発器と前記冷蔵室内の空気を熱交換するオフサイクル冷却モードと、前記冷凍サイクルを停止しながら前記除霜ヒータに通電しながら前記蒸発器ファンを運転することで前記蒸発器と前記冷蔵室内の空気を熱交換するオフサイクルデフモードと、前記オフサイクルデフモードに引き続き実行する、前記冷凍サイクルと前記除霜ヒータを停止する水切り期間とを有し、前記蒸発器の温度が0℃超、望ましくは2〜15℃に達した時点で前記オフサイクルデフモードから水切り期間に移行するとともに、前記蒸発器の表面に撥水性被膜を形成したことを特徴とする冷蔵庫であるので、蒸発器の温度が除霜水の融点である0℃を越えて上昇する際に速やかに排水することで蒸発器周辺の絶対湿度の上昇を抑制することができ、蒸発器周辺の高湿空気が冷蔵室や送風経路内に侵入して結露が発生することを抑制することができるものである。
第2の発明は、第1の発明において、蒸発器の表面に形成した微細な凹凸上にシラン化合物を塗布してなり、転落角20°以下の特性を有する撥水性被膜を設けたことを特徴とする冷蔵庫であるので、蒸発器の温度が除霜水の融点である0℃を越えて上昇する際に速やかに排水するとともに、蒸発器の表面に除霜水がほとんど残存せず、蒸発器周辺の絶対湿度の上昇をさらに抑制することができる。
第3の発明は、第1または第2の発明において、水切り期間の前期に蒸発器ファンを駆動することを特徴とする冷蔵庫であるので、冷蔵室や送風経路内に侵入した高湿空気を置換して乾燥することで、さらに結露の発生を抑制することができるものである。
第4の発明は、第1から第3のいずれかの発明において、水切り期間の終了後にPC冷却モードを優先して実行することを特徴とする冷蔵庫であるので、PC冷却モードにより蒸発器の温度を下げてからFC冷却モードに移行することで冷凍室の温度上昇を抑制することができるものである。
以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。
(実施の形態1)
図1は本発明の実施の形態1における冷蔵庫の縦断面図、図2は本発明の実施の形態1における冷蔵庫のサイクル構成図、図3は本発明の実施の形態1における冷蔵庫の温度センサ挙動の模式図、図4は本発明の実施の形態1における冷蔵庫の除霜及び水切り期間の制御フローを示す図である。
図1および図2において、冷蔵庫11は、筐体12、扉13、筐体12を支える脚14、筐体12の下部に設けられた下部機械室15、筐体12の上部に設けられた上部機械室16、筐体12の上部に配置された冷蔵室17、筐体12の下部に配置された冷凍室18を有する。また、冷凍サイクルを構成する部品として、上部機械室16に納められた圧縮機19、冷凍室18の背面側に収められた蒸発器20、下部機械室15内に納められた主凝縮器21を有している。また、下部機械室15を仕切る隔壁22、隔壁22に取り付けられ主凝縮器21を空冷するファン23、隔壁22の風下側に設置された蒸発皿24、下部機械室15の底板25を有している。
ここで、蒸発器20は、アルミニウム製冷媒配管(図示せず)とアルミニウム製フィン(図示せず)からなるフィンチューブ型熱交換器で構成されるとともに、その表面が撥水性被膜を形成している。撥水性被膜はアルミニウムの表面に形成した微細な凹凸上にシラン化合物を塗布してなり、接触角150°、転落角5°の特性を有する。ここで、除霜水の水切り性を向上するには、接触角によらず転落角20°以下が望ましく、転落角20°超ではフィン表面に水滴が残存して周辺空気の湿度上昇が十分抑制できない。
また、蒸発器20のアルミニウム製フィン(図示せず)は垂直に配置され、蒸発器ファン30が駆動すると、蒸発器20下部から吸入された空気と熱交換して、蒸発器20の上部から冷気を供給する。また、蒸発器20を加温して除霜する際には、蒸発器20の下部に設置された蒸発皿(図示せず)に流下することで除霜水が排出される。
また、底板25に設けられた複数の吸気口26、下部機械室15の背面側に設けられた排出口27、下部機械室15の排出口27と上部機械室16を繋ぐ連通風路28を有している。ここで、下部機械室15は隔壁22によって2室に分けられ、ファン23の風上側に主凝縮器21、風下側に蒸発皿24を収めている。
また、冷凍サイクルを構成する部品として、主凝縮器21の下流側に位置し、冷凍室18の開口部周辺の筐体12の外表面と熱結合された防露パイプ37、防露パイプ37の下流側に位置し、循環する冷媒を乾燥するドライヤ38、ドライヤ38と蒸発器20を結合し、循環する冷媒を減圧する絞り39を有している。
また、蒸発器20で発生する冷気を冷蔵室17と冷凍室18に供給する蒸発器ファン30、冷凍室18に供給される冷気を遮断する冷凍室ダンパー31、冷蔵室17に供給される冷気を遮断する冷蔵室ダンパー32、冷蔵室17に冷気を供給する冷蔵室ダクト33、冷凍室18の温度を検知するFCC温度センサ34、冷蔵室17の温度を検知するPCC温度センサ35、冷蔵室17の上部、特にPCC温度センサ35よりも上部の冷蔵室17の温度を検知するDFP温度センサ36を有している。ここで、冷蔵室ダクト33は冷蔵室17と上部機械室16が隣接する壁面に沿って形成され、冷蔵室ダクト33を通過する冷気の一部を冷蔵室の中央付近から排出するとともに、冷気の多くは上部機械室16が隣接する壁面を冷却しながら通過した後に冷蔵室17の上部から排出する。
特に、冷凍室18の背面側に蒸発器20を配置し冷凍室18の上部に冷蔵室17を配置した構成の冷蔵庫11では、冷蔵室17を冷却するために蒸発器20から上方に冷蔵室ダクト33のような長尺な送風経路を形成する必要があり、蒸発器20を除霜する際に蒸発器20周辺の高湿空気が送風経路内に侵入すると多量の結露が発生する懸念がある。
以上のように構成された本発明の実施の形態1における冷蔵庫について、以下その動作を説明する。
DFP温度センサ36の検知する温度が所定値のON温度まで上昇すると、圧縮機19を停止した状態で冷凍室ダンパー31を閉とし、冷蔵室ダンパー32を開として蒸発器ファン30を駆動する。これによって、蒸発器20とこれに付着している霜の低温の顕熱と霜の融解潜熱を利用して冷蔵室17を冷却する(以下、この動作を「オフサイクル冷却」という)。そして、DFP温度センサ36の検知する温度が所定値のOFF温度まで下降すると、冷凍室ダンパー31を閉とし、冷蔵室ダンパー32を閉として蒸発器ファン30を停止する(以下、この動作を「冷却停止」という)。
オフサイクル冷却あるいは冷却停止中にPCC温度センサ35の検知する温度が所定値のON温度まで上昇すると、冷凍室ダンパー31を閉とし、冷蔵室ダンパー32を開として、圧縮機19とファン23、蒸発器ファン30を駆動する。ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり複数の吸気口26から外部の空気を吸引し、蒸発皿24側が正圧となり下部機械室15内の空気を複数の排出口27から外部へ排出する。そして、下部機械室15から排出された空気は連通風路28を介して、上部機械室16へ送られて圧縮機19を冷却する。
一方、圧縮機19から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、防露パイプ37へ供給される。防露パイプ37を通過した冷媒は冷凍室18の開口部を暖めながら、筐体12を介して外部に放熱して凝縮する。防露パイプ37を通過した液冷媒は、ドライヤ38で水分除去され、絞り39で減圧されて蒸発器20で蒸発しながら冷蔵室17の庫内空気と熱交換して冷蔵室17を冷却しながら、気体冷媒として圧縮機19に還流する(以下、この動作を「PC冷却」という)。
次に、PCC温度センサ35の検知する温度が所定値のOFF温度まで下降するか、あるいはFCC温度センサ34の検知する温度が所定値のON温度まで上昇すると、冷凍室ダンパー31を開とし、冷蔵室ダンパー32を閉として、圧縮機19とファン23、蒸発
器ファン30を駆動する。以下、PC冷却と同様に冷凍サイクルを稼動させることにより、冷凍室18の庫内空気と蒸発器20を熱交換して冷凍室18を冷却する(以下、この動作を「FC冷却」という)。次に、FCC温度センサ34の検知する温度が所定値のOFF温度まで下降すると、冷却停止の動作を行う。
なお、オフサイクル冷却は冷却停止中に冷却停止に対して優先して動作し、PC冷却中およびFC冷却中は動作しない。また、オフサイクル冷却に対してPC冷却およびFC冷却を優先して動作させる。また、オフサイクル冷却を停止するOFF温度を、PC冷却を開始するON温度よりも高く設定している。この結果、通常運転中は、PC冷却、FC冷却、冷却停止の一連の動作を順に繰り返すことを基本動作とし、PC冷却およびFC冷却の動作を行わない間に、冷却停止とオフサイクル冷却を数回繰り返して行う。
図3において、区間aはPC冷却、区間bはFC冷却、区間cはオフサイクル冷却、区間dは冷却停止の動作に対応する。この一連の動作によって、PC冷却時の蒸発器20の温度をFC冷却時よりも高く保つことで、冷凍サイクルの効率を高めることができるとともに、オフサイクル冷却によって蒸発器20に付着した霜の融解潜熱を再利用することで、除霜時のヒータ電力(図示せず)を削減しながら冷蔵室17の冷却に必要な冷凍サイクルの能力を削減することにより省エネルギー化を図ることができる。
また、比較的温度変化の大きい冷蔵室17の上部に設けたDFP温度センサ36に基づいて、PC冷却およびFC冷却の動作を行わない間に、数回のオフサイクル冷却を行うことにより、冷蔵室17を冷却するオフサイクル冷却とPC冷却の割合を精度よく調整することができるので、PC冷却の運転時間を適正に確保することができる。
また、PCC温度センサ35あるいはFCC温度センサ34の検知温度の上昇に伴い、オフサイクル冷却であってもこれを中止して、優先してPC冷却あるいはFC冷却に切り換えることでPC冷却およびFC冷却の運転時間を適正に確保することができ、冷蔵室17および冷凍室18の温度変化を抑制することができる。
また、オフサイクル冷却を停止するOFF温度を、PC冷却を開始するON温度よりも高く設定することにより、比較的温度の高い冷蔵室17の上部に設けたDFP温度センサ36の温度をPCC温度センサより比較的高く保ちながらオフサイクル冷却の制御を行うことにより、冷蔵室17の上部の温度変化を抑制することができる。なお、本実施の形態1においては、オフサイクル冷却を停止するOFF温度を、PC冷却を開始するON温度よりも高く設定したが、オフサイクル冷却を停止するOFF温度を、PC冷却を停止するOFF温度よりも高く設定しても同様の効果を得ることができる。
また、外気よりも高温となる上部機械室16に隣接する冷蔵室17の壁面に冷蔵室ダクト33を形成することにより、オフサイクル冷却およびPC冷却の際に冷蔵室17を冷却する冷気、特に冷蔵室17の上部を冷却する冷気の温度を上昇させることで、冷蔵室17の上部の過冷を回避して冷蔵室17の上部の温度変動をさらに抑制することができるとともに、冷蔵室17の上部の過冷が回避できるので、PC冷却の際に冷蔵室17を冷却する冷気の風量を増やすことができ、蒸発器20の熱交換効率を向上してPC冷却時にさらに高い冷凍サイクルの効率を得ることができる。
次に、図4を用いて蒸発器20の除霜について説明する。
通常運転を所定時間継続した後、蒸発器20に付着した霜を除去するため、オフサイクルデフを実施する。
図4において、区間cはオフサイクル冷却、区間aはPC冷却、区間bはFC冷却、区間pはオフサイクルデフ、区間qと区間rは水切り期間の動作に対応する。FC冷却(区間b)を所定時間経過した時に通常運転の積算時間が所定時間を越えた場合に、オフサイクルデフ(区間p)の開始と判定される。これは、オフサイクルデフの期間中に冷凍室18の温度上昇を抑えるとともに、冷蔵室17内の熱量を用いて蒸発器20に付着した霜を融解除去するため、冷蔵室17内の温度が比較的高く、熱量が大きいタイミングを狙ったものである。そして、区間pで示したオフサイクルデフ中は、除霜ヒータ(図示せず)を通電するとともに、圧縮機19を停止した状態で冷凍室ダンパー31を閉とし、冷蔵室ダンパー32を開として蒸発器ファン30を駆動する、オフサイクル冷却(区間c)と同じ一連の動作を行って、蒸発器20の除霜を実施する。この時、蒸発器20に付着した霜はその付着面が融解すると、蒸発器20の表面に形成された撥水性被膜により除霜水とともに下方に設置された蒸発皿(図示せず)に流下し、蒸発器20の表面には除霜水や霜がほとんど残存しない状態になる。この結果、蒸発器20に付着した霜が流下して蒸発器20の温度が0℃から上昇し始める時点では、蒸発器20の周囲空気は乾燥した状態となり冷蔵室17及び冷蔵室ダンパー32、冷蔵室ダクト33などの送風経路内への水蒸気の供給を抑制することで結露の発生を抑制することができる。
そして、蒸発器20の温度を検知するDEF温度センサ(図示せず)が所定値(通常2〜15℃)を検知した際に、「除霜の終了判定」すなわち、蒸発器20に付着した霜が完全に除去できたと判定して、オフサイクルデフ(区間p)の動作を終了して、区間qと区間rで示した水切り期間に移行する。水切り期間の前期(区間q)においては、除霜ヒータ(図示せず)と圧縮機19を停止するとともに、蒸発器ファン30を運転する。この時、蒸発器20で加温されて乾燥した空気を冷蔵室17及び冷蔵室ダンパー32、冷蔵室ダクト33などの送風経路内へ供給することで除湿することができ、さらに結露の発生を抑制することができる。
水切り期間の後期(区間r)においては、除霜ヒータ(図示せず)と圧縮機19、蒸発器ファン30を停止し、除霜水とともに蒸発皿(図示せず)に転落した霜が融解して排出されるまで数分(通常1〜5分)待つ。その後、通常運転に復帰する。
この時、PC冷却(区間a)を優先して実施する。これは、除霜直後の蒸発器20の温度が通常運転時よりも著しく高く、冷凍サイクル起動後に蒸発器20及び吹き出し空気の温度が低下するまでに時間がかかり、FC冷却(区間b)を優先すると冷凍室18の温度上昇を招く恐れがあるためである。また、PC冷却(区間a)を優先して実施することにより比較的高い温度の吹き出し空気を冷蔵室17及び冷蔵室ダンパー32、冷蔵室ダクト33などの送風経路内へ供給することで除湿することができ、さらに結露の発生を抑制することができる。
なお、本発明の実施の形態1における冷蔵庫では、オフサイクルデフモード(p)及び水切り期間中の初期(q)に蒸発器ファン30を通常運転時と略同等な回転数で駆動したが、蒸発器20に付着した結露水の転落を促進するために蒸発器ファン30を通常運転時よりも高速回転してもよい。
また、本発明の実施の形態1における冷蔵庫では、その表面に接触角150°、転落角5°の特性を有するシラン化合物からなる撥水性被膜を形成したフィンチューブ型熱交換器である蒸発器20を用いたが、除霜水の滴下が妨げられない配置であればコルゲート型熱交換器などをフィンが略垂直になるように配置して、転落角20°以下の同等な特性を有する撥水性被膜を形成した蒸発器であれば同様の結果が期待できる。
また、本発明の実施の形態1における冷蔵庫は、冷凍室18の背面側に蒸発器20を配
置し冷凍室18の上部に冷蔵室17を配置した構成であり、冷蔵室17を冷却するために蒸発器20から上方に冷蔵室ダクト33のような長尺な送風経路を有していたが、冷凍室18の下部に冷蔵室17を配置し蒸発器20から冷蔵室17への送風経路を短縮しても同様の効果が期待できる。
以上のように、本発明の冷蔵庫は、FC冷却モード(b)およびPC冷却モード(a)に加えて、冷凍サイクル停止中に蒸発器ファン30を駆動するオフサイクル冷却モード(c)及び蒸発器20の除霜中に蒸発器ファン30を駆動するオフサイクルデフモード(q)を有する冷蔵庫において、オフサイクルデフモード(q)に引き続いて水切り期間を設けるとともに、撥水処理された蒸発器を用いることで、蒸発器周辺の高湿空気の発生を抑制することができ、冷蔵室や送風経路内の結露発生を抑制することができる。
以上のように、本発明にかかる冷蔵庫は、FC冷却モードおよびPC冷却モードに加えて、冷凍サイクル停止中に蒸発器ファンを駆動するオフサイクル冷却モード及び蒸発器の除霜中に蒸発器ファンを駆動するオフサイクルデフモードを有する冷蔵庫において、撥水処理された蒸発器を用いることで、蒸発器周辺の高湿空気の発生を抑制することができ、冷蔵室や送風経路内の結露発生を抑制することができるので、業務用冷蔵庫など他の冷凍冷蔵応用商品にも適用できる。
11 冷蔵庫
12 筐体
15 下部機械室
16 上部機械室
19 圧縮機
20 蒸発器
30 蒸発器ファン
31 冷凍室ダンパー
32 冷蔵室ダンパー
33 冷蔵室ダクト
34 FCC温度センサ
35 PCC温度センサ
36 DFP温度センサ

Claims (4)

  1. 冷蔵室と、冷凍室と、冷凍サイクルと、前記冷凍サイクルの構成要素である蒸発器と、前記蒸発器で発生した冷気を前記冷蔵室および前記冷凍室へ供給する蒸発器ファンと、前記蒸発器から前記冷蔵室へ供給される冷気を遮断する冷蔵室ダンパーと、前記蒸発器から前記冷凍室へ供給される冷気を遮断する冷凍室ダンパーと、前記蒸発器を加温する除霜ヒータとを有する冷蔵庫において、前記冷凍室ダンパーを開放し、前記冷蔵室ダンパーを閉塞して、前記冷凍サイクルを稼動しながら前記蒸発器で発生した冷気を供給して前記冷凍室を冷却するFC冷却モードと、前記冷凍室ダンパーを閉塞し、前記冷蔵室ダンパーを開放して、前記冷凍サイクルを稼動しながら前記蒸発器で発生した冷気を供給して前記冷蔵室を冷却するPC冷却モードと、前記冷凍室ダンパーを閉塞し、前記冷蔵室ダンパーを開放して、前記冷凍サイクルを停止しながら前記蒸発器ファンを運転することで、前記蒸発器と前記冷蔵室内の空気を熱交換するオフサイクル冷却モードと、前記冷凍サイクルを停止しながら前記除霜ヒータに通電しながら前記蒸発器ファンを運転することで前記蒸発器と前記冷蔵室内の空気を熱交換するオフサイクルデフモードと、前記オフサイクルデフモードに引き続き実行する、前記冷凍サイクルと前記除霜ヒータを停止する水切り期間とを有し、前記蒸発器の温度が0℃超、望ましくは2〜15℃に達した時点で前記オフサイクルデフモードから水切り期間に移行するとともに、前記蒸発器の表面に撥水性被膜を形成したことを特徴とする冷蔵庫。
  2. 蒸発器の表面に形成した微細な凹凸上にシラン化合物を塗布してなり、転落角20°以下の特性を有する撥水性被膜を設けたことを特徴とする請求項1記載の冷蔵庫。
  3. 水切り期間の前期に蒸発器ファンを駆動することを特徴とする請求項1または2記載の冷蔵庫。
  4. 水切り期間の終了後にPC冷却モードを優先して実行することを特徴とする請求項1〜3のいずれか一項記載の冷蔵庫。
JP2012095322A 2012-04-19 2012-04-19 冷蔵庫 Expired - Fee Related JP6019386B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012095322A JP6019386B2 (ja) 2012-04-19 2012-04-19 冷蔵庫

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012095322A JP6019386B2 (ja) 2012-04-19 2012-04-19 冷蔵庫

Publications (2)

Publication Number Publication Date
JP2013221719A true JP2013221719A (ja) 2013-10-28
JP6019386B2 JP6019386B2 (ja) 2016-11-02

Family

ID=49592810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012095322A Expired - Fee Related JP6019386B2 (ja) 2012-04-19 2012-04-19 冷蔵庫

Country Status (1)

Country Link
JP (1) JP6019386B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104329872A (zh) * 2014-10-24 2015-02-04 海信容声(广东)冰箱有限公司 一种冰箱蒸发器化霜方法
CN104534774A (zh) * 2015-01-16 2015-04-22 上海科凌能源科技有限公司 直冷式冷冻柜阻汽聚霜装置
CN105135792A (zh) * 2015-09-29 2015-12-09 天津市傲绿农副产品集团股份有限公司 一种内融霜冷风机
WO2016088153A1 (ja) * 2014-12-04 2016-06-09 三菱電機株式会社 冷凍装置
CN106482435A (zh) * 2016-12-05 2017-03-08 天津商业大学 一种冷库制冷系统的自然除霜方法
JP2019078495A (ja) * 2017-10-26 2019-05-23 日立アプライアンス株式会社 冷蔵庫
JPWO2020110301A1 (ja) * 2018-11-30 2021-05-20 三菱電機株式会社 冷凍サイクル装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599555A (ja) * 1991-10-08 1993-04-20 Sanyo Electric Co Ltd 除霜装置
JP2001248951A (ja) * 2000-03-03 2001-09-14 Hitachi Ltd 冷蔵庫及びこれに用いる冷蔵室用蒸発器の製造方法
JP2008039247A (ja) * 2006-08-03 2008-02-21 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2008256314A (ja) * 2007-04-06 2008-10-23 Daikin Ind Ltd 冷凍装置
JP2011038715A (ja) * 2009-08-12 2011-02-24 Hitachi Appliances Inc 冷蔵庫

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599555A (ja) * 1991-10-08 1993-04-20 Sanyo Electric Co Ltd 除霜装置
JP2001248951A (ja) * 2000-03-03 2001-09-14 Hitachi Ltd 冷蔵庫及びこれに用いる冷蔵室用蒸発器の製造方法
JP2008039247A (ja) * 2006-08-03 2008-02-21 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2008256314A (ja) * 2007-04-06 2008-10-23 Daikin Ind Ltd 冷凍装置
JP2011038715A (ja) * 2009-08-12 2011-02-24 Hitachi Appliances Inc 冷蔵庫

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104329872A (zh) * 2014-10-24 2015-02-04 海信容声(广东)冰箱有限公司 一种冰箱蒸发器化霜方法
WO2016088153A1 (ja) * 2014-12-04 2016-06-09 三菱電機株式会社 冷凍装置
CN104534774A (zh) * 2015-01-16 2015-04-22 上海科凌能源科技有限公司 直冷式冷冻柜阻汽聚霜装置
CN105135792A (zh) * 2015-09-29 2015-12-09 天津市傲绿农副产品集团股份有限公司 一种内融霜冷风机
CN106482435A (zh) * 2016-12-05 2017-03-08 天津商业大学 一种冷库制冷系统的自然除霜方法
JP2019078495A (ja) * 2017-10-26 2019-05-23 日立アプライアンス株式会社 冷蔵庫
JPWO2020110301A1 (ja) * 2018-11-30 2021-05-20 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
JP6019386B2 (ja) 2016-11-02

Similar Documents

Publication Publication Date Title
JP6019386B2 (ja) 冷蔵庫
JP4954484B2 (ja) 冷却貯蔵庫
JP6074596B2 (ja) 冷蔵庫
JP6687384B2 (ja) 冷蔵庫
JP5178771B2 (ja) 冷凍冷蔵庫
JP2017190936A (ja) 冷蔵庫
JP5110192B1 (ja) 冷凍装置
JP2013140000A (ja) コンテナ用冷凍装置
JP5854937B2 (ja) 冷蔵庫
WO2018076583A1 (zh) 冰箱
JP6872689B2 (ja) 冷蔵庫
JP6448991B2 (ja) 冷蔵庫
JPH11173729A (ja) 冷蔵庫
JP5363247B2 (ja) 冷蔵庫
JP2014044025A (ja) 冷蔵庫
JP6149921B2 (ja) 冷凍装置
JP2020133933A (ja) 除霜装置およびこれを備えた冷蔵庫
JP5879501B2 (ja) 冷蔵庫
JP5877301B2 (ja) 冷蔵庫
JP5870237B2 (ja) 冷蔵庫
KR100844598B1 (ko) 냉장고
JP6846599B2 (ja) 冷蔵庫
JP6895919B2 (ja) 環境形成装置及び環境形成方法
JP6555710B2 (ja) 冷凍・冷蔵システム
WO2018147113A1 (ja) 冷蔵庫

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150409

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160303

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160905

R151 Written notification of patent or utility model registration

Ref document number: 6019386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees