JP2013221169A - Thermal sprayed member and method for manufacturing the same - Google Patents

Thermal sprayed member and method for manufacturing the same Download PDF

Info

Publication number
JP2013221169A
JP2013221169A JP2012092457A JP2012092457A JP2013221169A JP 2013221169 A JP2013221169 A JP 2013221169A JP 2012092457 A JP2012092457 A JP 2012092457A JP 2012092457 A JP2012092457 A JP 2012092457A JP 2013221169 A JP2013221169 A JP 2013221169A
Authority
JP
Japan
Prior art keywords
powder
film
thermal spray
metal
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012092457A
Other languages
Japanese (ja)
Other versions
JP6027712B2 (en
Inventor
Makoto Sakamaki
誠 酒巻
Hiroki Kameyama
大樹 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd filed Critical Nihon Ceratec Co Ltd
Priority to JP2012092457A priority Critical patent/JP6027712B2/en
Publication of JP2013221169A publication Critical patent/JP2013221169A/en
Application granted granted Critical
Publication of JP6027712B2 publication Critical patent/JP6027712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a thermal sprayed member in which a film made of an Si substrate material can be provided on a surface of the substrate with a complex geometry, and a method for manufacturing the same.SOLUTION: A thermal sprayed member includes a substrate and a sprayed film coating a surface of the substrate and containing metallic Si or a mixture of metallic Si and any of SiC, SiN, or SiOas a principal component, wherein the relative density of the sprayed film is 90-97 [%]. When raw material powder is thermal sprayed onto the substrate, a combination of an acceleration energy x [g/min/mm] and a thermal energy y [kJ/kg] is adjusted to be within a predetermined range in an x-y plane.

Description

本発明は、基材と、当該基材の表面を被覆する溶射膜とを備えた溶射部材およびその製造方法、ならびに溶射部材を備えた製造装置部材に関する。   The present invention relates to a thermal spray member including a base material, a thermal spray film covering the surface of the base material, a manufacturing method thereof, and a manufacturing apparatus member including the thermal spray member.

半導体デバイス、液晶デバイスなどを製造する場合、Siウエハやガラス基板に形成された所定の膜をFなどのハロゲン系の腐食性ガスを用いプラズマ環境下で処理するドライエッチングなどの工程が存在する。そこで、近年、半導体デバイス、液晶デバイスなどの製造装置において、プラズマ環境下で腐食ガスに曝されるチャンバーや各種部材に、Alなどの金属材料からなる基材の耐食を防止するために、基材表面に耐食性のあるセラミックス膜を設けることがある。たとえば、特許文献1には、Yからなるセラミックス膜を溶射で基材表面に設けることが記載されている。 When manufacturing semiconductor devices, liquid crystal devices, etc., there are processes such as dry etching in which a predetermined film formed on a Si wafer or a glass substrate is processed in a plasma environment using a halogen-based corrosive gas such as F 2. . Therefore, in recent years, in manufacturing apparatuses such as semiconductor devices and liquid crystal devices, in order to prevent the corrosion resistance of a base material made of a metal material such as Al on a chamber or various members exposed to a corrosive gas in a plasma environment, A corrosion-resistant ceramic film may be provided on the surface. For example, Patent Document 1 describes that a ceramic film made of Y 2 O 3 is provided on the substrate surface by thermal spraying.

特許第3649210号公報Japanese Patent No. 3649210

しかし、ドライエッチング工程におけるプラズマ環境下でハロゲン系の腐食性ガスとセラミックス膜とが反応すると、YFなどのパーティクル固形物が生じ、これらが付着して、半導体デバイス、液晶デバイスなどの品質が低下するという問題があった。 However, when a halogen-based corrosive gas and a ceramic film react in a plasma environment in a dry etching process, solid particles such as YF 3 are generated and adhered to them, and the quality of semiconductor devices, liquid crystal devices, and the like deteriorates. There was a problem to do.

そこで、腐食ガスが曝されるチャンバーや各種部材に石英ガラスを用いる場合がある。この場合、Fなどのハロゲン系の腐食性ガスで処理が行われても、石英ガラスと反応して生じるSiFなどは気体となるため、パーティクルの発生を防止することができる。しかしながら、半導体デバイス、液晶デバイスの大型化に伴い、耐食性部材を石英ガラスで製造することは、製造コスト面で非常に不利であった。 Thus, quartz glass may be used for chambers and various members exposed to corrosive gases. In this case, even if the treatment is performed with a halogen-based corrosive gas such as F 2 , the generation of particles can be prevented because SiF 4 and the like generated by reaction with quartz glass become a gas. However, with the increase in size of semiconductor devices and liquid crystal devices, it has been extremely disadvantageous in terms of manufacturing cost to manufacture the corrosion-resistant member with quartz glass.

そこで、金属材料からなる基材表面にSi基材料からなる膜を設けることが考えられる。そして、このために、Si基材料からなる焼結体またはSi基金属セラミック複合材料を基材の表面に形成することが考えられる。しかし、この方法では、複雑な形状の基材表面にSi基材料からなる膜を設けることができない。   Therefore, it is conceivable to provide a film made of a Si-based material on the surface of a base material made of a metal material. For this purpose, it is conceivable to form a sintered body made of a Si-based material or a Si-based metal ceramic composite material on the surface of the substrate. However, with this method, a film made of a Si-based material cannot be provided on the surface of a substrate having a complicated shape.

そこで、本発明は、複雑な形状の基材の表面にもSi基材料からなる膜が設けられうる溶射部材、およびこれを製造する方法、ならびに溶射部材を備えた製造装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a thermal spray member that can be provided with a film made of an Si-based material on the surface of a substrate having a complicated shape, a method for manufacturing the thermal spray member, and a manufacturing apparatus including the thermal spray member. And

前記課題を解決するための本発明の溶射部材は、基材と、前記基材の表面を被覆する、金属Si、または、金属SiとSiC、Si34もしくはSiO2のうちいずれかとの混合物を主成分とする溶射膜とを有する溶射部材であって、前記溶射膜の相対密度が90〜97[%]であることを特徴とする。 The thermal spray member of the present invention for solving the above problems is a base material and a mixture of metal Si or any one of metal Si and SiC, Si 3 N 4 or SiO 2 covering the surface of the base material. The thermal spraying member which has a thermal spraying film which has as a main component, Comprising: The relative density of the said thermal spraying film is 90-97 [%], It is characterized by the above-mentioned.

本発明の溶射部材は、Si基材料からなる膜が溶射膜であるので、複雑な形状の基材の表面にもSi基材料からなる膜が設けられうる。そして、この膜は空隙が少なく緻密である。   In the thermal spray member of the present invention, since the film made of the Si-based material is the sprayed film, the film made of the Si-based material can also be provided on the surface of the base material having a complicated shape. This film is dense with few voids.

前記課題を解決するための本発明の製造装置は、半導体デバイスまたは液晶デバイスの製造装置であり、前記溶射部材をプラズマ環境下で腐食ガスに曝される部材としたことを特徴とする。   The manufacturing apparatus of the present invention for solving the above problems is a manufacturing apparatus of a semiconductor device or a liquid crystal device, wherein the thermal spray member is a member exposed to a corrosive gas in a plasma environment.

本発明の製造装置は、空隙が少なく緻密な溶射膜を有する溶射部材を備えるので、真空雰囲気で用いられたとき、真空度を上げることが容易になる。また、プラズマ環境下で溶射膜が腐食ガスと反応してもパーティクル固形物が発生するおそれがない。   Since the manufacturing apparatus of the present invention includes a thermal spray member having a dense thermal spray film with few voids, it is easy to increase the degree of vacuum when used in a vacuum atmosphere. Moreover, there is no possibility of generating solid particles even if the sprayed film reacts with the corrosive gas in a plasma environment.

前記課題を解決するための本発明の溶射部材の製造方法は、基材と、前記基材の表面を被覆する金属Siを含有する溶射膜とを有する溶射部材の製造方法であって、金属Si粉末、または、金属Si粉末と、SiC粉末、Si34粉末もしくはSiO2粉末のうちいずれかとの混合粉末を主成分とする原料粉末の加速エネルギーx[g/min/mm]および熱エネルギーy[kJ/kg]の組み合わせを、x−y平面において(1)x=3.0(20.0≦y≦75.0)、(2)y=−4.17x+87.5(3.0≦x≦15.0)、(3)x=15.0(10.0≦y≦25.0)および(4)y=−0.83x+22.5(3.0≦x≦15.0)により近似される線分によって囲まれた第1領域に収まるように調節しながら、前記基材に対して前記原料粉末を溶射することにより、前記溶射膜を形成することを特徴とする。 The manufacturing method of the thermal spray member of the present invention for solving the above-mentioned problem is a manufacturing method of a thermal spray member having a base material and a thermal spray film containing metal Si covering the surface of the base material, Acceleration energy x [g / min / mm 2 ] and thermal energy of powder, or raw material powder mainly composed of mixed powder of SiC powder, Si 3 N 4 powder or SiO 2 powder The combination of y [kJ / kg] is expressed as (1) x = 3.0 (20.0 ≦ y ≦ 75.0), (2) y = −4.17x + 87.5 (3.0 ≦ x ≦ 15.0), (3) x = 15.0 (10.0 ≦ y ≦ 25.0) and (4) y = −0.83x + 22.5 (3.0 ≦ x ≦ 15.0) While adjusting to fit within the first region surrounded by the line segment approximated by By spraying the raw material powder to the base material, and forming the sprayed film.

前記原料粉末の加速エネルギーxおよび熱エネルギーyの組み合わせを、x−y平面において(1’)x=3.0(20.0≦y≦60.0)、(2’)y=−2.92x+68.8(3.0≦x≦15.0)、(3’)x=15.0(15.0≦y≦25.0)、(4’)y=−0.83x+22.5(3.0≦x≦9.0)および(5’)y=15.0(9.0≦x≦15.0)により近似される線分によって囲まれた第2領域に収まるように調節することが好ましい。   The combination of the acceleration energy x and the thermal energy y of the raw material powder is expressed as (1 ′) x = 3.0 (20.0 ≦ y ≦ 60.0), (2 ′) y = −2. 92x + 68.8 (3.0 ≦ x ≦ 15.0), (3 ′) x = 15.0 (15.0 ≦ y ≦ 25.0), (4 ′) y = −0.83x + 22.5 (3 0.0 ≦ x ≦ 9.0) and (5 ′) y = 15.0 (9.0 ≦ x ≦ 15.0) to adjust to fit in the second region surrounded by the line segment Is preferred.

本発明の方法によれば、Si基材料からなる膜を溶射膜として形成するので、複雑な形状の基材の表面にもSi基材料からなる膜が設けることが可能となる。そして、この膜は空隙が少なく緻密である。   According to the method of the present invention, since a film made of a Si-based material is formed as a sprayed film, a film made of a Si-based material can be provided on the surface of a substrate having a complicated shape. This film is dense with few voids.

複雑な形状の基材の表面にもSi基材料からなる溶射膜を設けることができる。そして、この膜は空隙が少なく緻密である。   A sprayed film made of a Si-based material can also be provided on the surface of a substrate having a complicated shape. This film is dense with few voids.

本発明の溶射部材の製造条件に関する説明図Explanatory drawing about the manufacturing conditions of the thermal spray member of this invention

発明者は、溶射によってSi基材料からなる膜を設けることを考えた。しかし、液滴化された溶射材が高速ガス流などによって処理対象である基材表面に吹き付けられるので、基材表面で凝固した溶射材間に空隙が生じる場合があることがわかった。半導体デバイス、液晶デバイスなどの製造装置は真空雰囲気で用いられ、空隙が多いと真空度を上げることが困難になる。   The inventor considered providing a film made of a Si-based material by thermal spraying. However, since the sprayed spray material is sprayed onto the surface of the substrate to be processed by a high-speed gas flow or the like, it has been found that voids may be generated between the sprayed materials solidified on the surface of the substrate. Manufacturing apparatuses such as semiconductor devices and liquid crystal devices are used in a vacuum atmosphere. If there are many voids, it is difficult to increase the degree of vacuum.

そこで、空隙が少ない緻密な溶射膜を備えた溶射部材、およびこれを製造する方法を鋭意研究した。以下、これらについて説明する。   In view of this, the inventors have intensively studied a thermal spray member having a dense thermal spray film with few voids and a method for manufacturing the thermal spray member. Hereinafter, these will be described.

(製造方法)
ステンレス、アルミニウム合金、アルミニウムまたは銅などの金属製基材の表面が砥粒を用いたサンドブラストにより表面粗さRaが2.0[μm]以上になるような粗面状態に加工される。基材の表面は、各種溶射膜の熱膨張差の緩衝層となるアンダーコート(Ni−Cr−Alなど)は被覆されていても、被覆されていなくても構わない。基材は平板状のものであっても複雑形状であっても構わない。
(Production method)
The surface of a metal base material such as stainless steel, aluminum alloy, aluminum or copper is processed into a rough surface state such that the surface roughness Ra becomes 2.0 [μm] or more by sandblasting using abrasive grains. The surface of the base material may or may not be coated with an undercoat (Ni-Cr-Al or the like) serving as a buffer layer for the difference in thermal expansion of various sprayed films. The substrate may be a flat plate or a complicated shape.

溶射原料粉末としては、金属Si粉末、または、金属Si粉末とSiC粉末、Si34粉末もしくはSiO2粉末のうちいずれかとの混合粉末を主成分とする粉末が用いることができる。溶射原料粉末として、アルコールなどで湿式混合したものにポリビニルアルコールなどの結合材を混合したものをスプレードライヤーにより造粒したもの、こうした造粒粉末をさらに焼結したもの、混合物を溶融粉砕したものなどを用いることができる。 As the thermal spray raw material powder, metal Si powder, or powder mainly composed of mixed powder of metal Si powder and SiC powder, Si 3 N 4 powder or SiO 2 powder can be used. Thermal spraying raw material powder that is wet-mixed with alcohol etc. mixed with a binder such as polyvinyl alcohol, granulated with a spray dryer, further sintered with such granulated powder, melt-pulverized mixture, etc. Can be used.

なお、SiC粉末、Si34もしくはSiO2粉末は、それぞれ単独では溶射原料粉末にすることはできない。たとえば、SiC粉末及びSi34粉末は加熱されると溶融せずに分解される。しかし、SiC粉末、Si34粉末もしくはSiO2粉末を金属Si粉末と混合すると、SiC、Si34もしくはSiO2を元の粒子形状を保ったまま溶射することが可能となる。 Note that the SiC powder, Si 3 N 4 or SiO 2 powder cannot be used alone as a thermal spray raw material powder. For example, SiC powder and Si 3 N 4 powder are decomposed without melting when heated. However, when SiC powder, Si 3 N 4 powder or SiO 2 powder is mixed with metal Si powder, it is possible to spray SiC, Si 3 N 4 or SiO 2 while maintaining the original particle shape.

溶射原料粉末を、プラズマ溶射することにより、溶射膜が形成される。プラズマ溶射装置は、一般の大気プラズマ溶射装置、減圧プラズマ溶射装置が使用でき、プラズマガスとして、Ar,Ar+N,Ar+H、Ar+COまたはAr+Oなどが用いられる。 A thermal spray film is formed by plasma spraying the thermal spray raw material powder. As the plasma spraying apparatus, a general atmospheric plasma spraying apparatus or a low pressure plasma spraying apparatus can be used, and Ar, Ar + N 2 , Ar + H 2 , Ar + CO 2, Ar + O 2 or the like is used as a plasma gas.

溶射ガンと基材との距離はたとえば150[mm]以下、好ましくは100[mm]以下に設定される。溶射距離が150[mm]を超えると、溶射膜の密度が低下したり表面粗さが大きくなるため、パーティクルの発生原因になり好ましくない。   The distance between the spray gun and the substrate is set to, for example, 150 [mm] or less, preferably 100 [mm] or less. When the spraying distance exceeds 150 [mm], the density of the sprayed film decreases or the surface roughness increases, which is not preferable because it causes generation of particles.

また、溶射施工時には溶射膜が基材から剥離することを防止するため、基材はコンプレッサーエアなどの空冷方式により冷却される。なお、基材は水冷によって冷却されても構わない。水冷の場合、基材の中に水を流し、流出側の水温が100[℃]以下となるように水量および水温が調節される。   Moreover, in order to prevent the sprayed film from being peeled off from the base material at the time of thermal spraying, the base material is cooled by an air cooling method such as compressor air. The substrate may be cooled by water cooling. In the case of water cooling, the amount of water and the water temperature are adjusted so that water flows through the substrate and the water temperature on the outflow side is 100 [° C.] or less.

プラズマ溶射に際して、使用するプラズマガスの流量、印加する電力を変更し、原料粉末の加速エネルギーx[g/min/mm]および熱エネルギーy[kJ/kg]の組み合わせがx−y平面における「第1領域」に収まるように調節された。 At the time of plasma spraying, the flow rate of plasma gas to be used and the power to be applied are changed, and the combination of the acceleration energy x [g / min / mm 2 ] and the thermal energy y [kJ / kg] of the raw material powder is “ It was adjusted to fit in the “first region”.

加速エネルギーxは、単位時間に投入したプラズマガス量(質量)を溶射ガン先端のプラズマガスを放出するノズルの穴の面積で除した値により表わされ、プラズマガスの流量の多少、プラズマガスの種類およびプラズマガスノズルの穴面積に応じて増減する。   The acceleration energy x is expressed by a value obtained by dividing the amount (mass) of plasma gas input per unit time by the area of the nozzle hole that discharges the plasma gas at the tip of the spray gun. Increase or decrease depending on the type and hole area of the plasma gas nozzle.

また、熱エネルギーyはプラズマを発生させている電力を単位時間に投入したプラズマガス量(質量)で除した数値により表わされ、プラズマガスの種類、プラズマ出力に応じても増減する。   The thermal energy y is represented by a numerical value obtained by dividing the power generating plasma by the amount (mass) of plasma gas input per unit time, and increases or decreases depending on the type of plasma gas and the plasma output.

第1領域は、図1に実線で示され、式(1)〜(4)のそれぞれにより近似される4本の線分L1〜L4によって囲まれている。   The first region is indicated by a solid line in FIG. 1 and is surrounded by four line segments L1 to L4 that are approximated by equations (1) to (4), respectively.

x=3.0(20.0≦y≦75.0)‥(1)
y=−4.17x+87.5(3.0≦x≦15.0) ‥(2)
x=15.0(10.0≦y≦25.0) ‥(3)
y=−0.83x+22.5(3.0≦x≦15.0) ‥(4)。
x = 3.0 (20.0 ≦ y ≦ 75.0) (1)
y = -4.17x + 87.5 (3.0 ≦ x ≦ 15.0) (2)
x = 15.0 (10.0 ≦ y ≦ 25.0) (3)
y = −0.83x + 22.5 (3.0 ≦ x ≦ 15.0) (4).

第1領域に代えて、第1領域の一部である「第2領域」に収まるように、原料粉末の加速エネルギーxおよび熱エネルギーyの組み合わせが採用されてもよい。第2領域は、図1に破線で示され、式(1’)〜(5’)によって近似される5本の線分L1’〜L5’により囲まれている。   Instead of the first region, a combination of the acceleration energy x and the thermal energy y of the raw material powder may be employed so as to fit in the “second region” which is a part of the first region. The second region is surrounded by five line segments L1 'to L5' approximated by the equations (1 ') to (5') shown by broken lines in FIG.

x=3.0(20.0≦y≦60.0) ‥(1’)
y=−2.92x+68.8(3.0≦x≦15.0) ‥(2’)
x=15.0(15.0≦y≦25.0) ‥(3’)
y=−0.83x+22.5(3.0≦x≦9.0) ‥(4’)
y=−15.0(9.0≦x≦15.0) ‥(5’)。
x = 3.0 (20.0 ≦ y ≦ 60.0) (1 ′)
y = -2.92x + 68.8 (3.0 ≦ x ≦ 15.0) (2 ′)
x = 15.0 (15.0 ≦ y ≦ 25.0) (3 ′)
y = −0.83x + 22.5 (3.0 ≦ x ≦ 9.0) (4 ′)
y = -15.0 (9.0 ≦ x ≦ 15.0) (5 ′).

線分L1〜L4または線分L1’〜L5’は、第1領域または第2領域を次のような領域S1〜S4から区分するために定義される。   The line segments L1 to L4 or the line segments L1 'to L5' are defined to divide the first region or the second region from the following regions S1 to S4.

熱エネルギーyが高い一方、加速エネルギーxが低い領域S1では、原料粉末が揮発または昇華しやすくなり、塗着率の低下を招くことがある。また、加速エネルギーが低いため、基材に衝突する溶射粒子または液滴が溶射膜表面に形成されている細かい凹部に入り込むことができず、気孔が多い低密度の溶射膜が形成されてしまう。また、この領域S1では、熱エネルギーyに比較してプラズマガス流量が少ないため、プラズマが発生しても失火しやすく、安定な成膜が困難である。   In the region S1 where the thermal energy y is high but the acceleration energy x is low, the raw material powder is likely to volatilize or sublimate, and the coating rate may be reduced. Further, since the acceleration energy is low, the sprayed particles or droplets that collide with the base material cannot enter the fine recesses formed on the surface of the sprayed film, and a low-density sprayed film with many pores is formed. Further, in this region S1, since the plasma gas flow rate is small as compared with the thermal energy y, it is easy to misfire even if plasma is generated, and stable film formation is difficult.

加速エネルギーxおよび熱エネルギーyがともに高い領域S2では、きわめて短時間であれば緻密な膜(溶射膜)が成形されうるものの、溶射ノズルの先端の損傷等、プラズマ溶射装置の損傷が発生する可能性が高く、実製品を安定した膜質で製造することが困難である。溶射ノズルの先端の損傷等が生じずに、所望の厚さ(たとえば0.1[mm]以上)の溶射膜が得られるという観点から、領域S2から第1領域および第2領域を区分するための、式(2)(2’)により表わされる境界線分が適宜変更されてもよい。   In the region S2 where the acceleration energy x and the thermal energy y are both high, a dense film (sprayed film) can be formed for a very short time, but damage to the plasma spraying device such as damage to the tip of the spray nozzle can occur. It is difficult to manufacture an actual product with a stable film quality. In order to distinguish the first region and the second region from the region S2 from the viewpoint that a sprayed film having a desired thickness (for example, 0.1 [mm] or more) can be obtained without causing damage to the tip of the spray nozzle. The boundary line segments represented by the equations (2) and (2 ′) may be changed as appropriate.

加速エネルギーxが高い一方で熱エネルギーyが低い領域S3では、原料粉末の溶融が不十分である。このため、基材に対する原料の付着率が著しく低く、付着したとしても著しく多孔質な溶射膜しか形成されえない。また、この領域S3では、プラズマが発生しにくく、S1と同様プラズマが発生しても失火しやすく、安定な成膜が困難である。   In the region S3 where the acceleration energy x is high but the thermal energy y is low, the raw material powder is not sufficiently melted. For this reason, the adhesion rate of the raw material with respect to a base material is remarkably low, and even if it adheres, only a remarkably porous sprayed film can be formed. Further, in this region S3, it is difficult for plasma to be generated, and even if plasma is generated as in S1, misfire is likely to occur, and stable film formation is difficult.

加速エネルギーxおよび熱エネルギーyがともに低い領域S4では、原料粉末の溶融がより不十分である。このため、基材に対する原料の付着率が著しく低く、付着したとしても著しく多孔質な溶射膜しか形成されえない。また、この領域では、プラズマが不安定になりやすく、長時間にわたるプラズマ溶射の継続は困難である。   In the region S4 where both the acceleration energy x and the thermal energy y are low, the raw material powder is more insufficiently melted. For this reason, the adhesion rate of the raw material with respect to a base material is remarkably low, and even if it adheres, only a remarkably porous sprayed film can be formed. In this region, the plasma tends to become unstable, and it is difficult to continue plasma spraying for a long time.

溶射膜のSiC、SiまたはSiOの平均粒径は0.1〜10μmであり、SiC、SiまたはSiOの焼結体にSiを含浸させて作製したSiC/Si複合材料体、Si/Si複合材料体、またはSiO/Si複合材料体中のSiC、SiまたはSiOの平均粒径10〜100μmに比較して小さくなっている。SiC、SiまたはSiOの粒径が細かいと、溶射膜の相対密度が高くなるため、好ましい。一方、粒径が粗くなり過ぎると、溶射膜の密度低下や粒子の脱落が生じやすくなるため、好ましくない。 The average particle diameter of SiC, Si 3 N 4 or SiO 2 in the sprayed film is 0.1 to 10 μm, and the SiC / Si composite produced by impregnating Si into a sintered body of SiC, Si 3 N 4 or SiO 2 The average particle size of SiC, Si 3 N 4 or SiO 2 in the material body, Si 3 N 4 / Si composite body, or SiO 2 / Si composite body is smaller than that of 10 to 100 μm. It is preferable that the particle size of SiC, Si 3 N 4 or SiO 2 is small because the relative density of the sprayed film is increased. On the other hand, if the particle size becomes too coarse, it is not preferable because the density of the sprayed film is reduced and the particles are likely to fall off.

溶射膜の相対密度は90%以上であることが好ましい。相対密度が90%に満たないと、溶射膜の粒子の結合が弱くパーティクルが発生するおそれが大きくなり、また製造装置の真空度を保持することが困難になるため、好ましくない。   The relative density of the sprayed film is preferably 90% or more. If the relative density is less than 90%, bonding of particles in the sprayed film is weak and the possibility of generating particles increases, and it is difficult to maintain the degree of vacuum in the manufacturing apparatus, which is not preferable.

溶射膜の同素材の焼結体に対するビッカース硬度の比は0.5以上であることが好ましい。この比が0.5に満たないと、溶射膜を形成する粒子の結合が弱く、パーティクルが発生するおそれが大きくなるため、好ましくない。   The ratio of the Vickers hardness to the sintered body of the same material of the sprayed film is preferably 0.5 or more. If this ratio is less than 0.5, the bonding of the particles forming the sprayed film is weak and the possibility of generating particles is increased, which is not preferable.

溶射膜の表面粗さRaは7μm以下であることが好ましい。表面粗さRaが7μmより大きくなると、溶射膜表面を構成する粒子の結合が弱く、パーティクルの発生を招くため、好ましくない。   The surface roughness Ra of the sprayed film is preferably 7 μm or less. When the surface roughness Ra is larger than 7 μm, the bonding of the particles constituting the sprayed film surface is weak and causes the generation of particles, which is not preferable.

なお、溶射材の組成を変更することによって、溶射膜の性能を傾斜的に変化させることが可能となる。たとえば、溶射膜の基材表面に近い部分の硬度を低くして基材と溶射膜との密着性を図るとともに、溶射膜の表面部分の硬度を高くして傷付防止を図ることができる。また、溶射膜の基材表面に近い部分の熱膨張率を基材と近いものとして、基材と溶射膜との剥離防止を図ることもできる。   In addition, it becomes possible to change the performance of the sprayed coating in an inclined manner by changing the composition of the sprayed material. For example, the hardness of the portion near the substrate surface of the sprayed film can be lowered to improve the adhesion between the substrate and the sprayed film, and the hardness of the surface portion of the sprayed film can be increased to prevent damage. Moreover, the thermal expansion coefficient of the part near the base material surface of the sprayed film can be made close to the base material to prevent the base material and the sprayed film from peeling off.

(製造装置)
本発明の溶射部材は、半導体デバイスまたは液晶デバイスの製造装置において、プラズマ環境下で腐食ガスに曝されるチャンバーなどの各種部材として使用されることに適している。これは、空隙が少なく緻密な溶射膜を溶射部材が備えるため、真空雰囲気で使用したときに、真空度を上げることが容易になるからである。また、プラズマ環境下で溶射膜が腐食ガスと反応してもパーティクル固形物が発生するおそれがないからである。
(manufacturing device)
The thermal spray member of the present invention is suitable for use as various members such as a chamber exposed to a corrosive gas in a plasma environment in a semiconductor device or liquid crystal device manufacturing apparatus. This is because the thermal spray member has a dense thermal spray film with few voids, so that it is easy to increase the degree of vacuum when used in a vacuum atmosphere. Moreover, even if the sprayed film reacts with the corrosive gas in the plasma environment, there is no possibility that particle solids are generated.

(実施例)
前記方法により、溶射膜を有する溶射部材が製造された。原料粉末として(1)SiC粉末(75体積%)と金属Si粉末(25体積%)、(2)金属Si粉末(100体積%)、(3)SiC粉末(50体積%)と金属Si粉末(50体積%)、(4)SiO2粉末(50体積%)と金属Si粉末(50体積%)、(5)SiC粉末(90体積%)と金属Si粉末(10体積%)、(6)金属Si粉末(100体積%)、(7)Si34粉末(50体積%)と金属Si粉末(50体積%)、(8)SiC粉末(50体積%)と金属Si粉末(50体積%)、(9)SiC粉末(10体積%)と金属Si粉末(90体積%)、(10)金属Si粉末(100体積%)、(11)金属Si粉末(100体積%)、(12)SiC粉末(50体積%)と金属Si粉末(50体積%)、(13)金属Si粉末(100体積%)、(14)SiC粉末(50体積%)と金属Si粉末(50体積%)、(15)Si34粉末(50体積%)と金属Si粉末(50体積%)、(16)SiC粉末(25体積%)と金属Si粉末(75体積%)、(17)SiC粉末(50体積%)と金属Si粉末(50体積%)のそれぞれが用いられ、実施例1〜17の溶射部材が製造された。
(Example)
By the above method, a thermal spray member having a thermal spray film was manufactured. (1) SiC powder (75% by volume) and metal Si powder (25% by volume), (2) Metal Si powder (100% by volume), (3) SiC powder (50% by volume) and metal Si powder ( 50 volume%), (4) SiO 2 powder (50 volume%) and metal Si powder (50 volume%), (5) SiC powder (90 volume%) and metal Si powder (10 volume%), (6) metal Si powder (100% by volume), (7) Si 3 N 4 powder (50% by volume) and metal Si powder (50% by volume), (8) SiC powder (50% by volume) and metal Si powder (50% by volume) (9) SiC powder (10% by volume) and metal Si powder (90% by volume), (10) Metal Si powder (100% by volume), (11) Metal Si powder (100% by volume), (12) SiC powder (50% by volume) and metal Si powder (50% by volume), (13) metal Si powder Powder (100% by volume), (14) SiC powder (50% by volume) and metal Si powder (50% by volume), (15) Si 3 N 4 powder (50% by volume) and metal Si powder (50% by volume), (16) SiC powder (25% by volume) and metallic Si powder (75% by volume), (17) SiC powder (50% by volume) and metallic Si powder (50% by volume), respectively, Examples 1 to 17 The thermal spraying member was manufactured.

実施例1〜17のそれぞれの溶射部材の製造条件としての溶射の加速エネルギーxおよび熱エネルギーyの組み合わせが、第1領域または第2領域に収まるように調節された。加速エネルギーxおよび熱エネルギーyの組み合わせを示すプロットが、図1において丸付き数字により示されている。丸の中の数字は実施例の番数を表わしている。図1から実施例1〜17のうち、実施例1〜5、8〜17が第2領域に含まれていることがわかる。   The combination of thermal acceleration energy x and thermal energy y as production conditions for each of the thermal spray members of Examples 1 to 17 was adjusted to be in the first region or the second region. A plot showing the combination of acceleration energy x and thermal energy y is indicated by the circled numbers in FIG. The number in the circle represents the number of the example. It can be seen from FIG. 1 that Examples 1 to 5 and Examples 8 to 17 of Examples 1 to 17 are included in the second region.

各実施例において、溶射膜の相対密度、原料粉末の基材に対する塗着率、溶射膜の同素材の焼結体に対するビッカース硬度の比、溶射膜の表面粗さRa、およびテープ試験での脱粒数のそれぞれが測定された。また、溶射膜がSiC、SiまたはSiOを含む場合、これらの平均粒径が測定された。表1には測定結果がまとめて示されている。なお、実施例2、6、10、11、13では、溶射膜中に、マイクロクラックやポアが存在してSi粒子の形状が不明瞭であるので、Si粒子の粒径を測定することはできなかった。 In each example, the relative density of the sprayed film, the coating ratio of the raw material powder to the base material, the ratio of the Vickers hardness to the sintered body of the same material of the sprayed film, the surface roughness Ra of the sprayed film, and the degranulation in the tape test Each of the numbers was measured. Further, when the sprayed film contains SiC, Si 3 N 4 or SiO 2 , the average particle diameter of these was measured. Table 1 summarizes the measurement results. In Examples 2, 6, 10, 11, and 13, since the shape of the Si particles is unclear due to the presence of microcracks and pores in the sprayed film, the particle size of the Si particles cannot be measured. There wasn't.

テープ試験は、カーボンテープ(SHINTOPAINT製、Shintrontape)を用い、射放し面の溶射膜の表面にカーボンテープを貼った後、再びカーボンテープを剥し、溶射膜と接触したカーボンテープ表面をSEMで観察して、溶射膜から脱落してカーボンテープ表面に接着した粒子の1mm当りの個数を調べた。 In the tape test, a carbon tape (manufactured by SHINTTOPAINT, Shintrontape) was used. After the carbon tape was applied to the surface of the sprayed film, the carbon tape was peeled off again and the carbon tape surface in contact with the sprayed film was observed with an SEM Then, the number per 1 mm 2 of the particles dropped from the sprayed film and adhered to the carbon tape surface was examined.

Al6061製の基材(25×7×2.5[mm]、表面積5.1[cm])の全面に各溶射膜が形成される。 Each sprayed film is formed on the entire surface of a substrate made of Al6061 (25 × 7 × 2.5 [mm], surface area 5.1 [cm 2 ]).

Figure 2013221169
Figure 2013221169

表1から、エネルギー組み合わせが第1領域に含まれるように溶射環境が調節されることにより、相対密度が90〜97[%]の範囲にある緻密な溶射膜を備えた溶射部材が製造されることがわかる。また、原料粉末の基材または溶射膜に対する塗着率が45[%]以上であり、同素材の焼結体に対する溶射膜のビッカース硬度の比が0.5以上であり、溶射膜の表面粗さRaが7.0[μm]以下であり、テープ試験による溶射膜の射放し面の脱粒が1mm2当り50個以下であることがわかる(実施例1〜17参照)。また、溶射膜がSiC、SiまたはSiOを含む場合、これらの平均粒径が0.1〜10μmであることがわかる(実施例1、3〜5、7〜9、12、14〜17参照)。 From Table 1, the thermal spraying environment is adjusted so that the energy combination is included in the first region, whereby a thermal spraying member including a dense thermal spraying film having a relative density in the range of 90 to 97 [%] is manufactured. I understand that. Further, the coating ratio of the raw material powder to the base material or the sprayed film is 45% or more, the ratio of the Vickers hardness of the sprayed film to the sintered body of the same material is 0.5 or more, and the surface roughness of the sprayed film The thickness Ra is 7.0 [μm] or less, and it can be seen that the sprayed surface of the sprayed film by the tape test has 50 grains or less per 1 mm 2 (see Examples 1 to 17). Further, if the sprayed coating comprises SiC, the Si 3 N 4 or SiO 2, it is understood that these average particle diameter of 0.1 to 10 [mu] m (Example 1,3~5,7~9,12,14 To 17).

さらに、エネルギー組み合わせが第2領域に含まれるように溶射環境が調節されることにより、溶射膜の表面粗さRaが6.1[μm]以下に低減されることがわかる(実施例1〜5、8〜17参照)。   Further, it is understood that the surface roughness Ra of the sprayed film is reduced to 6.1 [μm] or less by adjusting the spraying environment so that the energy combination is included in the second region (Examples 1 to 5). 8-17).

第1領域の境界線の近似式(1)〜(4)は、溶射ガンの損傷を生じずに溶射膜が十分な厚さ(たとえば0.1[mm]以上)を有し、溶射膜の相対密度が90〜97[%]の範囲にあり、原料粉末の基材または溶射膜に対する塗着率が45[%]以上であり、溶射膜の同素材の焼結体に対するビッカース硬度の比が0.5以上であり、溶射膜の表面粗さRaが7.0[μm]以下であり、テープ試験による溶射膜の射放し面の脱粒が50[個/mm2]以下であり、溶射膜がSiC、SiまたはSiOを含む場合にはこれらの平均粒径が0.1〜10μmである第1の実施例群のうち、最も外側に位置する測定データに基づいて求められる。 The approximate expressions (1) to (4) of the boundary line of the first region have a sufficient thickness (for example, 0.1 [mm] or more) without causing damage to the spray gun. The relative density is in the range of 90 to 97 [%], the coating ratio of the raw material powder to the base material or the sprayed film is 45 [%] or more, and the ratio of the Vickers hardness to the sintered body of the same material of the sprayed film is It is 0.5 or more, the surface roughness Ra of the sprayed film is 7.0 [μm] or less, the degranulation of the sprayed surface of the sprayed film by the tape test is 50 [pieces / mm 2 ] or less, and the sprayed film When SiC contains SiC, Si 3 N 4 or SiO 2 , it is obtained based on measurement data located on the outermost side in the first example group in which the average particle diameter is 0.1 to 10 μm.

近似式(1)は、実施例10を基準とする1次式により表現されている。近似式(2)は、実施例6および実施例9のそれぞれを基準として定められ、当該実施例に相当する2点を結ぶ1次式により表現されてもよい。近似式(3)は、実施例17を基準とする1次式により表現されている。近似式(4)は、実施例1および実施例7を基準として定められ、当該実施例のそれぞれに相当する2点を結ぶ1次式により表現されていてもよい。   The approximate expression (1) is expressed by a linear expression based on the tenth embodiment. The approximate expression (2) is determined based on each of the sixth embodiment and the ninth embodiment, and may be expressed by a linear expression connecting two points corresponding to the embodiment. The approximate expression (3) is expressed by a linear expression based on the seventeenth embodiment. The approximate expression (4) is determined with reference to the first embodiment and the seventh embodiment, and may be expressed by a linear expression connecting two points corresponding to the respective embodiments.

第2領域の境界線の近似式(1’)〜(5’)は、溶射ガンの損傷を生じずに溶射膜が十分な厚さ(たとえば0.1[mm]以上)を有し、溶射膜の相対密度が90〜97[%]の範囲にあり、原料粉末の基材または溶射膜に対する塗着率が45[%]以上であり、溶射膜の同素材の焼結体に対するビッカース硬度の比が0.5以上であり、溶射膜の表面粗さRaが6.1[μm]以下であり、テープ試験による溶射膜の射放し面の脱粒が50[個/mm2]以下であり、溶射膜がSiC、SiまたはSiOを含む場合にはこれらの平均粒径が0.1〜10μmである第2の実施例群のうち、最も外側に位置する測定データに基づいて求められる。 The approximation formulas (1 ′) to (5 ′) of the boundary line of the second region are such that the sprayed film has a sufficient thickness (for example, 0.1 [mm] or more) without causing damage to the spray gun. The relative density of the film is in the range of 90 to 97 [%], the coating ratio of the raw material powder to the substrate or the sprayed film is 45 [%] or more, and the Vickers hardness of the sintered material of the same material of the sprayed film is The ratio is 0.5 or more, the surface roughness Ra of the sprayed film is 6.1 [μm] or less, and the degranulation of the sprayed surface of the sprayed film by the tape test is 50 [pieces / mm 2 ] or less, When the sprayed film contains SiC, Si 3 N 4 or SiO 2 , it is obtained based on measurement data located on the outermost side in the second embodiment group in which the average particle diameter is 0.1 to 10 μm. It is done.

たとえば、近似式(2’)は、実施例9および実施例10を基準とする1次式により表現されている。近似式(5’)は、実施例17を基準とする1次式により表現されている。   For example, the approximate expression (2 ′) is expressed by a linear expression based on the ninth and tenth embodiments. The approximate expression (5 ′) is expressed by a linear expression based on the seventeenth embodiment.

近似式は、複数の実施例のそれぞれに相当する複数の点に基づき、最小二乗法等にしたがって求められる2次以上の高次式により表わされてもよい。たとえば、近似式(2’)が実施例5、9、10および15のそれぞれに相当する4点に基づき、最小二乗法等にしたがって求められる2次以上の高次式により表わされてもよい。測定結果が良好であったプロットがすべて第1領域または第2領域に含まれるように、最小二乗法等により求められた境界線分がy方向およびx方向のうち少なくとも一方にずらされてもよい。   The approximate expression may be expressed by a higher-order expression of the second or higher order obtained according to the least square method or the like based on a plurality of points corresponding to each of the plurality of embodiments. For example, the approximate expression (2 ′) may be expressed by a higher-order expression of the second or higher order obtained according to the least square method or the like based on the four points corresponding to the fifth, ninth, tenth and fifteenth embodiments. . The boundary line segment obtained by the least square method or the like may be shifted to at least one of the y direction and the x direction so that all plots with good measurement results are included in the first region or the second region. .

(比較例)
原料粉末として(1)金属Si粉末(100体積%)、(2)SiC粉末(50体積%)と金属Si粉末(50体積%)、(3)金属Si粉末(100体積%)、(4)SiC粉末(50体積%)と金属Si粉末(50体積%)、(5)SiC粉末(50体積%)と金属Si粉末(50体積%)、(6)SiC粉末(25体積%)と金属Si粉末(75体積%)、(7)金属Si粉末(100体積%)のそれぞれが用いられ、比較例1〜7の溶射部材が製造された。
(Comparative example)
(1) Metal Si powder (100% by volume), (2) SiC powder (50% by volume) and metal Si powder (50% by volume), (3) Metal Si powder (100% by volume), (4) SiC powder (50% by volume) and metal Si powder (50% by volume), (5) SiC powder (50% by volume) and metal Si powder (50% by volume), (6) SiC powder (25% by volume) and metal Si Each of powder (75 volume%) and (7) metal Si powder (100 volume%) was used, and the thermal spray member of Comparative Examples 1-7 was manufactured.

比較例1〜10のそれぞれの溶射部材の製造条件としての溶射の加速エネルギーxおよび熱エネルギーyの組み合わせが、第1範囲から外れるように調節された。加速エネルギーxおよび熱エネルギーyの組み合わせを示すプロットが、図1において三角付き数字により示されている。三角の中の数字は実施例の番数を表わしている。   The combination of thermal spray acceleration energy x and thermal energy y as the production conditions of each thermal spray member of Comparative Examples 1 to 10 was adjusted to be out of the first range. A plot showing the combination of acceleration energy x and thermal energy y is shown in FIG. The number in the triangle represents the number of the embodiment.

各比較例において、溶射膜の相対密度、原料粉末の基材に対する塗着率、溶射膜の同素材の焼結体に対するビッカース硬度の比、および溶射膜の表面粗さRaのそれぞれが測定された。また、溶射膜がSiC、SiまたはSiOを含む場合、これらの平均粒径が測定された。表2には測定結果がまとめて示されている。 In each comparative example, the relative density of the sprayed film, the coating ratio of the raw material powder to the base material, the ratio of the Vickers hardness to the sintered body of the same material of the sprayed film, and the surface roughness Ra of the sprayed film were measured. . Further, when the sprayed film contains SiC, Si 3 N 4 or SiO 2 , the average particle diameter of these was measured. Table 2 summarizes the measurement results.

ただし、比較例8によれば、プラズマは点火させることはできたが、出力が安定しないために溶射を行うことができなった。比較例9によれば、プラズマを点火させることができなかった。比較例10はプラズマを発生させることはできたが、出力が高すぎたため1min弱でプラズマトーチが焼損し、製膜はできなかった。   However, according to Comparative Example 8, the plasma could be ignited, but the thermal spraying could not be performed because the output was not stable. According to Comparative Example 9, the plasma could not be ignited. In Comparative Example 10, plasma could be generated, but since the output was too high, the plasma torch was burned out in less than 1 min and film formation was not possible.

Figure 2013221169
Figure 2013221169

表2から、エネルギー組み合わせが第1領域から外れるように溶射環境が調節されることにより、実施例と比較して、相対密度が84〜89[%]という低い範囲になることがわかる。また、実施例と比較した場合に、原料粉末の基材または溶射膜に対する塗着率が13〜30[%]に低下し、溶射膜の同素材の焼結体に対するビッカース硬度の比が0.35〜0.47という低い範囲にあり、溶射膜の表面粗さRaが7.1〜8.6[μm]という高い範囲にあり、テープ試験による溶射膜の射放し面の脱粒が57〜150[個/mm2]という高い範囲にあり、溶射膜中のSiCの平均粒径が11.9と大きな溶射膜を備えた溶射部材が製造される場合があることがわかる(比較例1〜7参照)。 From Table 2, it can be seen that the relative density is in the low range of 84 to 89 [%] as compared with the example by adjusting the thermal spraying environment so that the energy combination deviates from the first region. Further, when compared with the examples, the coating ratio of the raw material powder to the base material or the sprayed film is reduced to 13 to 30 [%], and the ratio of the Vickers hardness to the sintered body of the same material of the sprayed film is 0. It is in the low range of 35 to 0.47, the surface roughness Ra of the sprayed film is in the high range of 7.1 to 8.6 [μm], and the degranulation of the sprayed surface of the sprayed film by the tape test is 57 to 150. It can be seen that there is a case where a sprayed member having a large sprayed film with a mean SiC particle size of 11.9 in the sprayed film is produced in a high range of [pieces / mm 2 ] (Comparative Examples 1 to 7). reference).

なお、SiCの焼結体にSiを含浸させて作製した、SiCが50体積%、Siが50体積%のSiC/Si複合材料体中におけるSiCの平均粒径は35μmであった。   In addition, the average particle diameter of SiC in a SiC / Si composite material produced by impregnating Si into a SiC sintered body and containing 50% by volume of SiC and 50% by volume of Si was 35 μm.

Claims (4)

基材と、前記基材の表面を被覆する、金属Si、または、金属SiとSiC、Si34もしくはSiO2のうちいずれかとの混合物を主成分とする溶射膜とを有する溶射部材であって、
前記溶射膜の相対密度が90〜97[%]であることを特徴とする溶射部材。
A thermal spray member having a base material and a thermal spray film mainly comprising a metal Si or a mixture of metal Si and SiC, Si 3 N 4, or SiO 2 covering the surface of the base material. And
A thermal spray member having a relative density of 90 to 97 [%] of the thermal spray film.
請求項1に記載の溶射部材をプラズマ環境下で腐食ガスに曝される部材としたことを特徴とする半導体デバイスまたは液晶デバイスの製造装置。   An apparatus for manufacturing a semiconductor device or a liquid crystal device, wherein the thermal spray member according to claim 1 is a member exposed to a corrosive gas in a plasma environment. 基材と、前記基材の表面を被覆する金属Siを含有する溶射膜とを有する溶射部材の製造方法であって、
金属Si粉末、または、金属Si粉末とSiC粉末、Si34粉末もしくはSiO2粉末のうちいずれかとの混合粉末を主成分とする原料粉末の加速エネルギーx[g/min/mm]および熱エネルギーy[kJ/kg]の組み合わせを、x−y平面において(1)x=3.0(20.0≦y≦75.0)、(2)y=−4.17x+87.5(3.0≦x≦15.0)、(3)x=15.0(10.0≦y≦25.0)および(4)y=−0.83x+22.5(3.0≦x≦15.0)により近似される線分によって囲まれた第1領域に収まるように調節しながら、前記基材に対して前記原料粉末を溶射することにより、前記溶射膜を形成することを特徴とする方法。
A method for producing a thermal spray member having a base material and a thermal spray film containing metal Si covering the surface of the base material,
Acceleration energy x [g / min / mm 2 ] and heat of raw material powder mainly composed of metal Si powder or mixed powder of metal Si powder and SiC powder, Si 3 N 4 powder or SiO 2 powder The combination of energy y [kJ / kg] is expressed by (1) x = 3.0 (20.0 ≦ y ≦ 75.0), (2) y = −4.17x + 87.5 (3. 0 ≦ x ≦ 15.0), (3) x = 15.0 (10.0 ≦ y ≦ 25.0) and (4) y = −0.83x + 22.5 (3.0 ≦ x ≦ 15.0) The sprayed film is formed by spraying the raw material powder on the base material while adjusting so that the first region surrounded by the line segment approximated by
請求項3記載の方法において、
前記原料粉末の加速エネルギーxおよび熱エネルギーyの組み合わせを、x−y平面において(1’)x=3.0(20.0≦y≦60.0)、(2’)y=−2.92x+68.8(3.0≦x≦15.0)、(3’)x=15.0(15.0≦y≦25.0)、(4’)y=−0.83x+22.5(3.0≦x≦9.0)および(5’)y=15.0(9.0≦x≦15.0)により近似される線分によって囲まれた第2領域に収まるように調節することを特徴とする方法。
The method of claim 3, wherein
The combination of the acceleration energy x and the thermal energy y of the raw material powder is expressed as (1 ′) x = 3.0 (20.0 ≦ y ≦ 60.0), (2 ′) y = −2. 92x + 68.8 (3.0 ≦ x ≦ 15.0), (3 ′) x = 15.0 (15.0 ≦ y ≦ 25.0), (4 ′) y = −0.83x + 22.5 (3 0.0 ≦ x ≦ 9.0) and (5 ′) y = 15.0 (9.0 ≦ x ≦ 15.0) to adjust to fit in the second region surrounded by the line segment A method characterized by.
JP2012092457A 2012-04-13 2012-04-13 Thermal spray member and manufacturing method thereof Active JP6027712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012092457A JP6027712B2 (en) 2012-04-13 2012-04-13 Thermal spray member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012092457A JP6027712B2 (en) 2012-04-13 2012-04-13 Thermal spray member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013221169A true JP2013221169A (en) 2013-10-28
JP6027712B2 JP6027712B2 (en) 2016-11-16

Family

ID=49592374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012092457A Active JP6027712B2 (en) 2012-04-13 2012-04-13 Thermal spray member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6027712B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726373A (en) * 1993-07-09 1995-01-27 Asahi Glass Co Ltd Rotating cathode target, its production and film formed by using this target
JPH0726370A (en) * 1993-07-09 1995-01-27 Asahi Glass Co Ltd Target, its production and film formed by using the target
JPH10226869A (en) * 1997-02-17 1998-08-25 Mitsui Eng & Shipbuild Co Ltd Plasma thermal spraying method
JP2002249864A (en) * 2000-04-18 2002-09-06 Ngk Insulators Ltd Halogen gas plasma resistant member and production method therefor
JP2005350685A (en) * 2004-06-08 2005-12-22 Tosoh Corp Parts of substrate treatment apparatus, and manufacturing method therefor
JP2006104496A (en) * 2004-09-30 2006-04-20 Toshiba Corp Part for vacuum film-forming apparatus, and vacuum film-forming apparatus
JP2007250569A (en) * 2006-03-13 2007-09-27 Tokyo Electron Ltd Plasma treatment apparatus and member to be exposed in plasma
JP2009267070A (en) * 2008-04-25 2009-11-12 Mitsubishi Materials Corp Plasma etching apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726373A (en) * 1993-07-09 1995-01-27 Asahi Glass Co Ltd Rotating cathode target, its production and film formed by using this target
JPH0726370A (en) * 1993-07-09 1995-01-27 Asahi Glass Co Ltd Target, its production and film formed by using the target
JPH10226869A (en) * 1997-02-17 1998-08-25 Mitsui Eng & Shipbuild Co Ltd Plasma thermal spraying method
JP2002249864A (en) * 2000-04-18 2002-09-06 Ngk Insulators Ltd Halogen gas plasma resistant member and production method therefor
JP2005350685A (en) * 2004-06-08 2005-12-22 Tosoh Corp Parts of substrate treatment apparatus, and manufacturing method therefor
JP2006104496A (en) * 2004-09-30 2006-04-20 Toshiba Corp Part for vacuum film-forming apparatus, and vacuum film-forming apparatus
JP2007250569A (en) * 2006-03-13 2007-09-27 Tokyo Electron Ltd Plasma treatment apparatus and member to be exposed in plasma
JP2009267070A (en) * 2008-04-25 2009-11-12 Mitsubishi Materials Corp Plasma etching apparatus

Also Published As

Publication number Publication date
JP6027712B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP4571561B2 (en) Thermal spray coating coated member having excellent plasma erosion resistance and method for producing the same
JP4546447B2 (en) Thermal spray coating coated member having excellent plasma erosion resistance and method for producing the same
KR100966132B1 (en) Plasma-Resistant Ceramic Coated Substrate
WO2013176168A1 (en) Component for plasma processing apparatus, and method for manufacturing component for plasma processing apparatus
US11473181B2 (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
KR102266655B1 (en) The method of producing thermal spray coating using the yittrium powder and the yittrium coating produced by the mothod
JP4546448B2 (en) Thermal spray coating coated member having excellent plasma erosion resistance and method for producing the same
JP2005158933A (en) Member of manufacturing apparatus of semiconductor or liquid crystal, and manufacturing method thereof
WO2018052129A1 (en) Material for thermal spraying
JP2006303158A (en) Component for vacuum apparatus
CN115261762B (en) Material for thermal spraying
CN114044674A (en) Yttrium-based particle powder for thermal spraying, method for producing same, and thermal spraying film
JP6027712B2 (en) Thermal spray member and manufacturing method thereof
JP6722073B2 (en) Silicon sprayed film and manufacturing method thereof
JP2022171973A (en) Method for manufacturing thermal spray member
JP2017014569A (en) Ceramic coating film and method for manufacturing the same
JP2008111154A (en) Method for forming coating film
JP5739173B2 (en) Manufacturing method of ceramic sprayed member
JP2007081218A (en) Member for vacuum device
TWI779071B (en) Material for thermal spray, thermal spray coating using the same and manufacture methods thereof
JP7122206B2 (en) thermal spray film
JP5206199B2 (en) Vacuum device parts and manufacturing method thereof
JP2008248345A (en) Member for plasma treatment apparatus, and method for producing the same
JP2006097114A (en) Corrosion-resistant spray deposit member
JP2012149321A (en) Sputtering target and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161015

R150 Certificate of patent or registration of utility model

Ref document number: 6027712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250