JP2013219089A - 光学系、露光装置、およびデバイス製造方法 - Google Patents

光学系、露光装置、およびデバイス製造方法 Download PDF

Info

Publication number
JP2013219089A
JP2013219089A JP2012085893A JP2012085893A JP2013219089A JP 2013219089 A JP2013219089 A JP 2013219089A JP 2012085893 A JP2012085893 A JP 2012085893A JP 2012085893 A JP2012085893 A JP 2012085893A JP 2013219089 A JP2013219089 A JP 2013219089A
Authority
JP
Japan
Prior art keywords
optical element
optical system
lens
optical
magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012085893A
Other languages
English (en)
Other versions
JP2013219089A5 (ja
Inventor
Nobuhiko Yabu
伸彦 籔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012085893A priority Critical patent/JP2013219089A/ja
Priority to KR1020130032659A priority patent/KR20130112753A/ko
Priority to CN201310105985XA priority patent/CN103364963A/zh
Priority to TW102112172A priority patent/TW201344378A/zh
Publication of JP2013219089A publication Critical patent/JP2013219089A/ja
Publication of JP2013219089A5 publication Critical patent/JP2013219089A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/22Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with movable lens means specially adapted for focusing at close distances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】レンズ枚数の少ない構成により、フォーカスおよび倍率を独立に調整することのできる光学系を提供すること。
【解決手段】光学系は、投影光学系の光軸に直交する平面とこの平面の反対面に曲面とを有する第1光学素子と、第1光学素子の曲面の外周に沿って面が対向する曲面を有する第2光学素子と、投影光学系の光軸に直交する第1の方向に母線を持つシリンドリカル面を有する第3光学素子と、第1の方向に母線を持ち第3光学素子のシリンドリカル面の外周に沿って面が対向するシリンドリカル面と、このシリンドリカル面の反対面に投影光学系の光軸に直交する平面と、を有する第4光学素子とを備える。第2光学素子は、曲面の反対面に第1の方向に対して勾配を持った傾斜平面を有する。第3光学素子は、シリンドリカル面の反対面に、第2光学素子の傾斜平面と対向し、第2光学素子の傾斜平面に対して平行な傾斜平面を有する。
【選択図】図3

Description

本発明は、光学系、光学系を備える露光装置、および露光装置を用いてデバイスを製造するデバイス製造方法に関する。
図9は従来の露光装置の投影光学系を構成する投影光学ユニットの構成を示す図である。この露光装置は、いわゆるマルチ走査型投影露光装置と呼ばれるものであり、複数の投影光学ユニット間で、フォーカス位置、および倍率を調整する機構を搭載している(特許文献1)。露光装置は投影光学系の物体面OPに配置されたマスクMを走査するマスクステージMSと、投影光学系の結像面IPに配置されたガラス基板Pを走査する基板ステージPSとを備える。第1結像光学系K1はマスクMからの光に基づいて、中間結像面MP上にマスクパターンの中間像を形成する。第2結像光学系K2は、この中間像からの光に基づいてマスクパターンの像をガラス基板P上に形成する。フォーカス位置を調整する機構として、2枚のくさび型レンズにより構成されるフォーカス補正光学系70は一方のくさび型レンズを光軸と直交方向(Y方向)に移動させることでフォーカスを補正する。倍率を調整する機構として、倍率補正光学系80は、3枚のレンズから構成され、対向配置された凹型および凸型Xシリンドリカル面と、同じく対向配置された凹型および凸型Yシリンドリカル面を持つ。対向配置された凹型および凸型シリンドリカル面の間隔を変更することで、縦横倍率を独立に補正する(特許文献2)。
特開2004-145269号公報 特開2010-39347号公報
しかし、補正光学系が多くなると、ガラス材料費、および加工費の増加により、露光装置のコストを増大させる要因になる。また、高NA(例えばNA0.12以上)の投影光学系では、光束の広がりが大きくなるために、投影光学ユニット内のスペースが減少する。そのため、高NAの投影光学系には、補正機構が配置できない、もしくは配置できる場所に制約が生じる、という課題があった。
本発明は、上記の課題に鑑みて、レンズ枚数の少ない構成により、フォーカスおよび倍率を独立に調整できる光学系を提供することを目的とする。
上記の目的を達成する本発明の一つの側面に係る光学系は、物体面から像面に至る光路に配置され、前記物体面に配置された物体の像を前記像面に投影する投影光学系の倍率およびフォーカスを調整する光学系であって、
前記投影光学系の光軸に直交する平面と前記平面の反対面に曲面とを有する第1光学素子と、
前記第1光学素子の前記曲面の外周に沿って面が対向する曲面を有する第2光学素子と、
前記投影光学系の光軸に直交する第1の方向に母線を持つシリンドリカル面を有する第3光学素子と、
前記第1の方向に母線を持ち前記第3光学素子の前記シリンドリカル面の外周に沿って面が対向するシリンドリカル面と、当該シリンドリカル面の反対面に前記投影光学系の光軸に直交する平面と、を有する第4光学素子と、を備え、
前記第2光学素子は、前記曲面の反対面に前記第1の方向に対して勾配を持った傾斜平面を有し、
前記第3光学素子は、前記シリンドリカル面の反対面に、前記第2光学素子の傾斜平面と対向し、前記第2光学素子の前記傾斜平面に対して平行な傾斜平面を有することを特徴とする。
また、本発明の他の側面に係る露光装置は、上記の光学系を備えていることを特徴とする。
また、本発明の他の側面に係るデバイス製造方法は、
上記の露光装置を用いて基板上のレジストを露光する工程と、
前記露光されたレジストを現像する工程と、を有することを特徴とする。
本発明によれば、レンズ枚数の少ない構成により、フォーカスおよび倍率を独立に調整することのできる光学系を提供することができる。
第1実施形態の補正光学系を有する露光装置の構成を示す図。 第1実施形態の補正光学系を有する投影光学ユニットを示す図。 第1実施形態の補正光学系を示す図。 第1実施形態の補正光学系による倍率補正方法を示す図。 第1実施形態の補正光学系によるフォーカス補正方法を示す図。 第2実施形態の補正光学系を示した図。 第2実施形態の補正光学系による倍率補正方法を示す図。 第1実施形態の補正光学系を有する露光装置を用いた露光方法のフローチャート。 従来の露光装置の投影光学系を構成する投影光学ユニットの構成を示す図。
以下、図面を参照して、本発明の実施形態を例示的に詳しく説明する。ただし、この実施形態に記載されている構成要素はあくまで例示であり、本発明の技術的範囲は、特許請求の範囲によって確定されるのであって、以下の個別の実施形態によって限定されるわけではない。
以下に説明する本発明の実施形態に係る光学系(以下、「補正光学系」という)は、物体面から像面に至る光路に配置され、物体面に配置された物体の像を像面に投影する投影光学系の倍率およびフォーカスを補正(調整)する。補正光学系は、例えば、同一の材料(硝材)により形成されている4つの光学素子(レンズ)を有する。第1光学素子は、投影光学系の光軸に直交する平面と、この平面の反対面に曲面を有する。第2光学素子は、第1光学素子の曲面の外周に沿って面が対向する曲面を有する。第3光学素子は、投影光学系の光軸方向に直交する第1の方向に母線を持つシリンドリカル面を有する。第4光学素子は、第1の方向に母線を持ち第3光学素子のシリンドリカル面の外周に沿って面が対向するシリンドリカル面と、このシリンドリカル面の反対面に投影光学系の光軸に直交する平面とを有する。ここで、第2光学素子は、曲面の反対面に第1の方向に対して勾配を持った傾斜平面を有し、第3光学素子は、第2光学素子に対向するシリンドリカル面の反対面に、第2光学素子の傾斜平面に対して平行な傾斜平面を有する。
以下の第1実施形態では、第1光学素子の曲面が、投影光学系の光軸方向(Z軸方向)および第1の方向(Y軸方向)に直交する第2の方向(X軸方向)に母線を持つ凹型シリンドリカル面として構成される場合を説明する。また、第2光学素子の曲面が、第2の方向(X方向)に母線を持つ凸型シリンドリカル面として構成される場合を例示的に説明する。尚、シリンドリカル面の構成は、第1光学素子の曲面に凸型シリンドリカル面を構成し、第2光学素子の曲面に凹型シリンドリカル面を構成してもよい。
また、第2実施形態では、第1光学素子の曲面が、凹型の球面として構成され、第2光学素子の曲面が、凸型の球面として構成される場合を例示的に説明する。尚、球面の構成は、第1光学素子の曲面に凸型の球面を構成し、第2光学素子の曲面に凹型の球面を構成してもよい。
(第1実施形態)
図1は、本発明の第1実施形態の補正光学系を有する露光装置EEの全体構成を概略的に示す斜視図である。また、図2は、露光装置EEの投影光学系POを構成する複数の投影光学ユニットPL1〜5(PL4は不図示)のうちの1つの典型的な投影光学ユニットに着目して、投影光学ユニットの構成を示す図である。
図1および図2では、所定の回路パターンが形成されたマスク(原板)M、およびレジストが塗布されたガラス基板Pを移動させる方向、すなわち走査方向(図1に白抜き矢印で示す)に沿ってY軸を設定している。また、マスクMの平面内でY軸と直交する方向に沿ってX軸を設定している。マスク(原板)M、およびガラス基板Pの法線方向(投影光学系POの光軸方向)に沿ってZ軸を設定している。X軸はY軸およびZ軸に直交し、Y軸はX軸およびZ軸に直交する。X軸およびY軸により構成されるXY平面は、Z軸に対して直交する。
露光装置は照明系ILと、投影光学系POと、投影光学系POの物体面OPに配置されたマスクMを走査するマスクステージMSと、投影光学系POの結像面IPに配置されたガラス基板Pを走査する基板ステージPSとを備える。マスクステージMSはマスク駆動機構により移動可能であり、基板ステージPSは基板駆動機構により移動可能である。マスクステージMS上に保持されているマスクMと基板ステージPSに保持されているガラス基板Pとを一体的に同一方向(例えば、Y方向)に移動させることにより、ガラス基板Pに対してマスクMのマスクパターンの走査露光を行うことができる。
照明系ILは、マスクM上においてX方向に並んだ複数(図1では合計で5つ)の円弧状の領域11をほぼ均一な照度で照明する。照明系ILは、光源1、光ファイバ2、照明光学系3を備える。光源1としては、例えば、水銀ランプが構成され、露光光としてi、h、g線など、水銀ランプの出力波長の一部を用いる。光ファイバ2は、光源1から出射される光を複数(図1では合計5つ)に分岐し、所定の位置に導く。照明光学系3は、光ファイバ2より出射される光を集光するなどして、マスクM上で所望の照度分布が得られるようにする役割を持つ。
マスクM上の各照明領域からの光は、各照明領域に対応するようにX方向に沿って配列された複数の投影光学ユニットPLからなる投影光学系POに入射する。投影光学系POを介した光は、基板ステージPS上においてXY平面に平行に支持されたガラス基板P上に導かれ、マスクパターン像を形成する。投影光学系POを構成する投影光学ユニットPLは、第1結像光学系K1と、第2結像光学系K2とを有する。第1結像光学系K1はマスクMからの光に基づいて、中間結像面MP上にマスクパターンの中間像を形成する。第2結像光学系K2は、この中間像からの光に基づいてマスクパターンの正立正像(二次像)をガラス基板P上に形成する。マスクパターンの中間像の形成位置の近傍にはマスクM上における投影光学ユニットPLの視野領域(照明領域)及びガラス基板P上における投影光学ユニットPLの投影領域(露光領域)を規定する視野絞りFSが設けられている。なお、照明系ILが視野絞りを備えており、この視野絞りによってマスクM上の照明領域が規定される場合には、視野絞りFSを省くこともできる。
第1結像光学系K1は、物体面OPから中間結像面MPに至る光路に、物体面側から順に配置された第1平面鏡13、第1凹面鏡14、第1凸面鏡15、第2凹面鏡16、第2平面鏡17を有する。物体面OPと第1平面鏡13との間の光路と第2平面鏡17と中間結像面MPとの間の光路とは平行である。第1平面鏡13の鏡面を含む平面と第2平面鏡17の鏡面を含む平面とは、互いに90度の角度をなす。図2では、第1平面鏡13と第2平面鏡17とは別個に構成されているが、第1平面鏡13と第2平面鏡17とは一体的に形成されていてもよい。また、図2では、第1凹面鏡14と第2凹面鏡16とは別個に構成されているが、第1凹面鏡14と第2凹面鏡16とは一体的に構成されてもよい。
一方、第2結像光学系K2は、中間結像面MPから結像面IPに至る光路に、物体面側から順に配置された第3平面鏡18、第3凹面鏡19、第2凸面鏡20、第4凹面鏡21、第4平面鏡22を有する。中間結像面MPと第3平面鏡18との間の光路と第4平面鏡22と第2結像面IPとの間の光路とは平行である。第3平面鏡18の鏡面を含む平面と第4平面鏡22の鏡面を含む平面とは、互いに90度の角度をなす。図2では、第3平面鏡18と第4平面鏡22とは別個に構成されているが、第3平面鏡18と第4平面鏡22とは一体的に形成されていてもよい。また、図2では、第3凹面鏡19と第4凹面鏡21とは別個に構成されているが、第3凹面鏡19と第4凹面鏡21とは一体的に構成されてもよい。
(補正光学系)
第2平面鏡17と中間結像面MPとの間の光路には、フォーカスおよび倍率をそれぞれ独立に補正するための光学系としてフォーカス・倍率補正光学系40(補正光学系)が設けられている。図3はフォーカス・倍率補正光学系40(補正光学系)の構成を示す図である。フォーカス・倍率補正光学系40(補正光学系)は、光学素子として、例えば、第1レンズ41、第2レンズ42、第3レンズ43および第4レンズ44の4枚のレンズを有する。
第1レンズ41の上面41aはXY平面に平行な平面である。ここで、Y方向はマスクMの走査方向に平行な方向であり、X方向はマスクMの法線方向(投影光学系POの光軸:Z軸方向)およびマスクMの走査方向(Y方向)に対して直交する方向である。マスクMの法線方向(投影光学系POの光軸:Z軸方向)はXY平面に対して垂直である。第1レンズ41の下面41bは、マスクMの法線方向(投影光学系POの光軸:Z軸方向)およびマスクMの走査方向(Y方向)に対して直交するX方向に母線を持つ凹型シリンドリカル面である。
第2レンズ42の上面42aは、X方向に母線を持つ凸型シリンドリカル面であり、下面42bは、XY平面に対してY方向に勾配を持った傾斜平面である。
第3レンズ43の上面43aは、XY平面に対してY方向に勾配を持った傾斜平面であり、下面43bは、Y方向に母線を持つ凹型シリンドリカル面である。
第4レンズ44の上面44aは、Y方向に母線を持つ凸型シリンドリカル面であり、下面44bは、XY平面に平行な平面である。
第1レンズ下面41bの凹型シリンドリカル面の曲率と、第2レンズ上面42aの凸型シリンドリカル面の曲率は実質的に等しい(第1の曲率)。第1レンズ下面41bと第2レンズ上面42aは、例えば、5〜20mmの空気間隔を隔てて対向している。また、第3レンズ下面43bの凹型シリンドリカル面の曲率と、第4レンズ上面44aの凸型シリンドリカル面の曲率は実質的に等しい(第2の曲率)。第3レンズ下面43bと第4レンズ上面44aとは、例えば、5〜20mmの空気間隔を隔てて対向している。また、第2レンズ下面42bの傾斜平面と、第3レンズ上面43aの傾斜平面とは互いに平行であり、例えば、1mm〜10mmの空気間隔を隔てて対向している。
第1レンズ41は、Z軸方向に位置を変化させられる機構(不図示)を備え、投影光学ユニットPLのY倍率補正を可能ならしめている。また、第4レンズ44は、Z軸方向に位置を変化させられる機構(不図示)を備え、投影光学ユニットPLのX倍率補正を可能ならしめている。また、第3レンズ43はY軸方向(第1の方向)に位置を変化させられる機構(不図示)を備え、投影光学ユニットPLのフォーカス補正を可能ならしめている。第1レンズ41と第2レンズ42との間隔は、投影光学系の光軸方向における第1レンズ41の移動により調整可能である。また、第3レンズ43と第4レンズ44との間隔は、投影光学系の光軸方向における第4レンズ44の移動により調整可能である。
(像シフト補正光学系)
図2の中間結像面MPと第2平面鏡18の間の光路に、像シフト補正光学系60が設けられている。像シフト補正光学系60は、2枚の平行平板ガラスから構成されている。2枚の平行平板ガラスのうち一方は、X軸周りに回転させられる機構を備え、Y軸方向(第1の方向)の像シフトを補正できるよう構成されている。また、他方は、Y軸周りに回転させられる機構を備え、X軸方向(第2の方向)の像シフトを補正できるよう構成されている。
前述したように、マスクM上に形成されたマスクパターンは、照明系ILからの照明光(露光光)により、ほぼ均一の照度で照明される。マスクM上の各照明領域に形成されたマスクパターンから、−Z方向に沿って進行した光は、第1平面鏡13、第1凹面鏡14、第1凸面鏡15、第2凹面鏡16、第2平面鏡17の順に反射される。その後、フォーカス・倍率補正光学系40を構成する第1レンズ41、第2レンズ42、第3レンズ43、第4レンズ44の順に通過し、中間結像面MP(1次結像面)でマスクパターンの中間像を形成する。中間結像面MP(1次結像面)上には視野絞りFSが設置されており、視野外の光線は遮断される。なお、中間像のX方向における横倍率は+1倍であり、Y方向における横倍率は−1倍である。
中間結像面MP(1次結像面)に形成されたマスクパターンの中間像から−Z方向に沿って進行した光は、像シフト補正光学系60を通過したのち、第3平面鏡18、第3凹面鏡19、第2凸面鏡20、第4凹面鏡21、第4平面鏡22の順に反射される。光はその後−Z方向に沿って進行し、結像面IP(2次結像面)でマスクパターンの像(二次像)を形成する。ここで、二次像のX方向における横倍率およびY方向における横倍率はともに+1倍である。すなわち、投影光学ユニットPLを介してガラス基板P上に形成されるマスクパターン像は等倍の正立正像であり、投影光学ユニットPLは等倍正立系を構成している。
本実施形態における投影光学ユニットPLは等倍正立系を構成しているが、投影光学ユニットPLは、等倍結像光学系、拡大結像光学系および縮小結像光学系のいずれとしても構成されうる。しかし、投影光学ユニットPLは、等倍結像光学系として構成されることが好ましく、さらに物体面側及び像面側で主光線が平行、即ち物体面及び像面の双方において両テレセントリック性を有していることが好ましい。
前述したように、投影光学ユニットPLを介してガラス基板P上に形成されるマスクパターン像は等倍の正立正像である。したがって、複数の投影光学ユニットPLから構成される投影光学系POは、全体として等倍の正立正像のマスクパターン像をガラス基板P上に形成する。マスクステージMS上に保持されているマスクMと基板ステージPSに保持されているガラス基板Pとを一体的に同一方向(Y方向)に沿って移動させることにより、所望の走査露光を行うことができる。
(投影光学ユニットPLの倍率調整)
次に、投影光学ユニットPLの倍率調整、すなわちマスクMからガラス基板Pへの投影倍率の調整について説明する。前述したとおり、投影光学系POを構成する投影光学ユニットPLは、等倍の投影像を形成するよう製造されるが、投影光学系POを組み立てた場合には、製造誤差等により各投影光学ユニットPLにおいて倍率に誤差が生じる場合がある。また、基板に多層を焼き付けることによって、あるいはマスク(原板)が多数回使用されて伸縮を生じることによって、X方向とY方向で異なる倍率誤差が発生することがある。このような場合に、各投影光学ユニットPLの倍率を等倍にするために、各投影光学ユニットPLにおいて倍率調整が行われる。
図4(a)および図4(b)は、ノミナル状態におけるフォーカス・倍率補正光学系40を示した図である。図4(a)はフォーカス・倍率補正光学系40のYZ断面を示す図であり、図4(b)はフォーカス・倍率補正光学系40のXZ断面を示す図である。
投影光学ユニットPLのY倍率調整は、フォーカス・倍率補正光学系40を構成する第1レンズ41のZ方向位置を変更することにより行われる。図4(c)および図4(d)は、第1レンズ41の位置を+Z方向に変更して、Y倍率を正に変化させた状態におけるフォーカス・倍率補正光学系40を示した図である。図4(c)はフォーカス・倍率補正光学系40のYZ断面を示す図であり、図4(d)はフォーカス・倍率補正光学系40のXZ断面を示す図である。図4(c)および図4(d)に示すように、第1レンズ41の位置が+Z方向に変更された場合、第1レンズ41と第2レンズ42の間隔が拡大し、各投影光学ユニットPLのY倍率は正に変化する(図4(c)。各投影光学ユニットPLのX倍率は変化しない(図4(d))。逆に第1レンズ41の位置が−Z方向に変更された場合、第1レンズ41と第2レンズ42の間隔が縮小し、各投影光学ユニットPLのY倍率は負に変化する。第1レンズ41の位置が−Z方向に変更された場合でも各投影光学ユニットPLのX倍率は変化しない。
投影光学ユニットPLのX倍率調整は、フォーカス・倍率補正光学系を構成する第4レンズ44のZ方向位置を変更することにより行われる。図4(e)および図4(f)は、第4レンズ44の位置を−Z方向に変更して、X倍率を正に変化させた状態におけるフォーカス・倍率補正光学系40を示した図である。図4(e)はフォーカス・倍率補正光学系40のYZ断面を示す図であり、図4(f)はフォーカス・倍率補正光学系40のXZ断面を示す図である。図4(e)および図4(f)に示すように、第4レンズ44の位置が−Z方向に変更された場合、第4レンズ44と第3レンズ43の間隔が拡大し、各投影光学ユニットPLのX倍率は正に変化する(図4(f))。各投影光学ユニットPLのY倍率は変化しない(図4(e))。逆に第4レンズ44の位置が+Z方向に変更された場合、第4レンズ44と第3レンズ43の間隔が縮小し、各投影光学ユニットPLのX倍率は負に変化する。第4レンズ44の位置が+Z方向に変更された場合でも各投影光学ユニットPLのX倍率は変化しない。
投影光学ユニットPL1〜5のそれぞれにおいて上述のようなX倍率調整を行った場合、投影光学ユニットPL1〜5それぞれの結像面IPにおける結像位置のX方向の相対位置にずれが生じる。この相対位置のずれを補正するために、像シフト補正光学系60によって投影光学ユニットPLの結像位置のX方向位置を調整する必要がある。具体的には、像シフト補正光学系60を構成する2枚の平行平板ガラスのうち一方をY軸周りに回転させ、X方向の像シフトを発生させることで、各投影光学ユニットPLの結像位置のX方向位置を調整する。
(投影光学ユニットPLのフォーカス調整)
次に、投影光学ユニットPLのフォーカス調整について説明する。図5(a)および図5(b)は、ノミナル状態におけるフォーカス・倍率補正光学系40を示した図である。図5(a)はフォーカス・倍率補正光学系40のYZ断面を示す図であり、図5(b)はフォーカス・倍率補正光学系40のXZ断面を示す図である。また、フォーカス面23は、ノミナル状態における投影光学ユニットPLのフォーカス位置を示している。
投影光学ユニットPLのフォーカス調整は、フォーカス・倍率補正光学系40を構成する第3レンズ43のY方向位置を変更することにより行われる。つまり、第3レンズ上面43aの傾斜平面が第2レンズ42(第2レンズ下面42bの傾斜平面)に対して平行な状態で第3レンズ43を移動させる。図5(c)および図5(d)は、第3レンズ43の位置を−Y方向に変更して、フォーカス位置を+Z方向に変化させた状態におけるフォーカス・倍率補正光学系40を示した図である。図5(c)はフォーカス・倍率補正光学系40のYZ断面を示す図であり、図5(d)はフォーカス・倍率補正光学系40のXZ断面を示す図である。図5(c)および図5(d)に示すように、第3レンズ43の位置が−Y方向に変更された場合、光が通過するガラスの厚さが減少するため、フォーカスは+Z方向に変化する。フォーカス面24は、フォーカス面23上のフォーカス位置を+Z方向に変化させたときのフォーカス位置を示している。逆に第3レンズ43の位置が+Y方向に変更された場合、光が通過するガラスの厚さが増大するため、フォーカスは−Z方向に変化する。
第3レンズ43のY方向位置を変更するとき、第3レンズ下面43bはY方向に母線を持つシリンドリカル面であるために、第4レンズ上面44aに対する第3レンズ下面43bの位置関係は光学的には変化しない。第3レンズ下面43bと第4レンズ上面44aの光学的な位置関係が変化しないため、Y倍率に影響を与えることなく、フォーカスのみを独立に補正することができる。
また、このようなフォーカス補正を行うと、第2レンズ下面42bと第3レンズ上面43aとの間の距離が変化する。これにより、Y方向の像シフトが発生する。図5(c)の場合、結像位置が+Z方向(+ΔZ)に変化すると同時に、−Y方向(−ΔY)にも変化(像シフト)している。
このY方向の像シフトを補正するために、フォーカス補正実行時には、像シフト補正光学系60による像シフト補正を合わせて行う必要がある。具体的には、像シフト補正光学系60を構成する2枚の平行平板ガラスのうち一方をX軸周りに回転させ、Y方向の像シフトを発生させることで、結像位置のY方向位置を調整する。
また、フォーカス調整は、上記の方法に限定されず、例えば、第3レンズ上面43aの傾斜平面が第2レンズ42(第2レンズ下面42bの傾斜平面)に対して平行な状態で、第3レンズ上面43aの傾斜平面に対して平行な方向に第3レンズ43を移動させる。この移動と同時に、第4レンズ44と第3レンズ43との間隔が維持されるよう第4レンズ44をZ方向に移動することによってフォーカス調整を行ってもよい。図5(e)および図5(f)は、第3レンズ43と第4レンズ44を同時に移動させ、フォーカス位置を+Z方向に変化させた状態におけるフォーカス・倍率補正光学系40を示した図である。図5(e)および図5(f)では、第3レンズ上面43aの傾斜平面が第2レンズ42(第2レンズ下面42bの傾斜平面)に対して平行な状態で第3レンズ43を移動させる。この移動と同時に、第4レンズ44と第3レンズ43との間隔が維持されるように第4レンズ44をZ方向に移動させている。
図5(e)はフォーカス・倍率補正光学系40のYZ断面を示す図であり、図5(f)はフォーカス・倍率補正光学系40のXZ断面を示す図である。図5(e)および図5(f)に示すように、第3レンズ43を斜め上方に移動させた場合、光が通過するガラスの厚さが減少するため、フォーカスは+Z方向に変化する。フォーカス面24は、フォーカスを+Z方向に変化させたときのフォーカス位置を示している。逆に第3レンズ43を斜め下方に移動させた場合、光が通過するガラスの厚さが増大するため、フォーカスは−Z方向に変化する。このとき、第3レンズ43の移動方向を、第3レンズ43上面の斜面(第2レンズ42下面の斜面)と平行方向とすることで、第2レンズ42と第3レンズ43との間隔は維持される。したがって、図5(c)のようなY方向の像シフト(−ΔY)は発生しない。また、第4レンズ44を+Z方向に移動させることで、また、第3レンズ下面43bと第4レンズ上面44aの間隔も維持される。したがって、図4(f)のようなX倍率も発生しない。
以上、本実施形態における補正光学系の構成について説明したが、上記の構成に限定されず、種々の構成が可能である。例えば、フォーカス・倍率補正光学系40は、対向するシリンドリカル面の凹凸が入れ換わってもよい。具体的には、第1レンズ下面41bが凸型シリンドリカル面、第2レンズ上面42aが凹型シリンドリカル面になっていてもよい。また、第3レンズ下面43bが凸型シリンドリカル面、第4レンズ上面44aが凹型シリンドリカル面になっていてもよい。
また、フォーカス・倍率補正光学系40は、第2平面鏡17と中間結像面MPの間に限定せず、他の位置に配置することも可能である。例えば、中間結像面MPと第3平面鏡18との間、または第4平面鏡22とガラス基板Pとの間に配置してもよい。また、本実施形態は露光装置の投影光学ユニットを例にしたが、フォーカス・倍率補正光学系40は、他の用途の光学系においても使用することが可能である。
(補正光学系を有する露光装置を用いた露光方法)
次に、図8に基づいて本実施形態の補正光学系を有する露光装置を用いた露光方法について説明する。図8は本発明の第1実施形態の補正光学系を有する露光装置を用いた露光方法のフローチャートである。
図8に示すように、まず、ステップS1で基板ステージ上に未露光のガラス基板を搬入する(基板搬入)。次に、ステップS2で、所定の判断基準に基づき、フォーカス補正の実施可否の判断が行われる。判断基準は、例えば、前回のフォーカス補正実施から所定時間が経過したか否か、マスクMの交換、ガラス基板Pの処理枚数、ガラス基板Pのロットの切り替え等である。フォーカス補正を実施する場合(ステップS2−Yes)、各投影光学ユニットに搭載のフォーカス測定機構により、各投影光学ユニットのフォーカス位置のずれを測定する(ステップS3)。次に、測定したフォーカス位置のずれを補正するようにフォーカス・倍率補正光学系40の第3レンズ43をY方向に移動させる(ステップS4)。
つづいて、所定の判断基準に基づき、倍率補正の実施可否の判断が行われる(ステップS5)。判断基準は、フォーカス補正実施の判断基準と同様に、例えば、前回のフォーカス補正実施から所定時間が経過したか否か、マスクMの交換、ガラス基板Pの処理枚数、ガラス基板Pのロットの切り替え等である。倍率補正を実施する場合(S5−Yes)、各投影光学ユニットに搭載の倍率測定機構により、ガラス基板のX方向およびY方向の倍率を測定する(ステップS6)。次に、測定したX方向の倍率を補正するように、フォーカス・倍率補正光学系40の第4レンズ44をZ方向に移動させる(ステップS7)。次に、測定したY方向の倍率を補正するように、フォーカス・倍率補正光学系40の第1レンズ41をZ方向に移動させる(ステップS8)。
次に、フォーカス・倍率補正光学系40の各レンズの位置を変更したことによって必要となる像シフト補正を、像シフト補正光学系60により行う(ステップS9)。
以上の手順により、測定されたフォーカス位置のずれ、X倍率およびY倍率のずれは、他に収差を発生させることなく補正することが可能になる。次の工程では、露光により、ガラス基板PにマスクMのパターンを焼き付ける(ステップS10)。
露光終了後、基板ステージPS上の露光済みガラス基板Pを搬出し(ステップS11)、処理すべきすべてのガラス基板Pが露光されたか判定する(ステップS12)。未露光の基板が残っていれば、ステップS1に戻り、新たな未露光のガラス基板Pを搬入して、上記の工程が繰り返される。すべてのガラス基板が露光されれば終了である。
以上、本実施形態における露光方法について説明したが、上記の構成に限定されず、種々の構成が可能である。例えば、ステップS3でフォーカス測定を行う代わりに、予測計算によってフォーカス補正目標値を算出し、その補正目標値によってステップS4のフォーカス補正を行ってもよい。
また、ステップS6で倍率測定を行う代わりに、予測計算によって倍率補正目標値を算出し、その倍率補正目標値によってステップS7、S8の倍率補正を行ってもよい。また、基板温度を測定し、その測定結果をもとに基板の伸び量を計算して倍率補正を行ってもよい。更に、X倍率補正(S7)、Y倍率補正(S8)の補正順を入れ替えて、Y倍率補正(S7)、X倍率補正(S8)とすることも可能である。
また、フォーカス・倍率補正光学系40を構成する補正のためのレンズの移動を行った後で、フォーカス補正、倍率補正の結果の確認測定を行うようにしてもよい。例えば、ステップS4で第3レンズ43を移動させた直後にフォーカス測定を実施し、フォーカスが所望のとおりに変化しているか確認するようにしてもよい。また、ステップS7およびステップS8で第4レンズ44および第1レンズ41を移動させた直後に倍率測定を実施し、X倍率およびY倍率が所望のとおりに変化しているか確認するようにしてもよい。
[第2実施形態]
つぎに、本発明の第2実施形態の露光装置について説明する。第2実施形態の露光装置は、図2のフォーカス・倍率補正光学系40を、図6に示したフォーカス・倍率補正光学系50に置き換えたものである。図6はフォーカス・倍率補正光学系50(補正光学系)の構成を示す図である。
フォーカス・倍率補正光学系50は、例えば、第2平面鏡17と中間結像面MPとの間の光路に設けられている。
フォーカス・倍率補正光学系50は、光学素子として、例えば、第1レンズ51、第2レンズ52、第3レンズ53および第4レンズ54の4枚のレンズを有する。
第1レンズの上面51aはXY平面に平行な平面であり、下面51bは凹型球面である。第2レンズの上面52aは凸型球面であり、下面52bはXY平面に対してY方向に勾配(第3傾斜角の勾配)を持った傾斜平面である。
第3レンズの上面53aは、XY平面に対してY方向に勾配(第4傾斜角の勾配)を持った傾斜平面である。下面53bは、Y方向に母線を持つ凹型シリンドリカル面である。第4レンズの上面54aは、Y方向に母線を持つ凸型シリンドリカル面であり、下面54bはXY平面に平行な平面である。
第1レンズ下面51bの球面の曲率と、第2レンズ上面52aの球面の曲率は実質的に等しく(第1の曲率)、第1レンズ下面51bと第2レンズ上面52aは、例えば、5〜20mmの空気間隔を隔てて対向している。
また、第3レンズ下面53bのシリンドリカル面の曲率と、第4レンズ上面54aのシリンドリカル面の曲率は実質的に等しい(第2の曲率)。第3レンズ下面53bと第4レンズ上面54aとは、例えば、5〜20mmの空気間隔を隔てて対向している。また、第2レンズ下面52bの傾斜平面と、第3レンズ上面53aの傾斜平面とは互いに平行であり、例えば、1mm〜10mmの空気間隔を隔てて対向している。
第1レンズ51および第4レンズ54は、Z軸方向に位置を変化させられる機構(不図示)を備え、投影光学ユニットPLのX倍率補正、およびY倍率補正を可能ならしめている。また、第3レンズ53は、Y軸方向に位置を変化させられる機構(不図示)を備え、投影光学ユニットPLのフォーカス補正を可能ならしめている。
(投影光学ユニットPLの倍率調整)
次に、投影光学ユニットPLの倍率調整について説明する。図7(a)および図7(b)は、ノミナル状態におけるフォーカス・倍率補正光学系50を示した図である。図7(a)はフォーカス・倍率補正光学系50のYZ断面を示す図であり、図7(b)はフォーカス・倍率補正光学系50のXZ断面を示す図である。
投影光学ユニットPLのX倍率調整およびY倍率調整は、フォーカス・倍率補正光学系50を構成する第1レンズ51および第4レンズ54のZ方向位置を変更することにより行われる。図7(c)および図7(d)は、第1レンズ51および第4レンズ54の位置を+Z方向に変更して、X倍率、Y倍率を正に変化させた状態におけるフォーカス・倍率補正光学系50を示した図である。図7(c)はフォーカス・倍率補正光学系50のYZ断面を示す図であり、図7(d)はフォーカス・倍率補正光学系50のXZ断面を示す図である。図7(c)および図7(d)に示すように、第1レンズ51の位置が+Z方向に変更された場合、第1レンズ下面51bと第2レンズ上面52aの間隔が拡大し、各投影光学ユニットPLのX倍率、Y倍率はともに正に変化する。ただし同時に第4レンズ54の位置が+Z方向に変更されるため、第3レンズ下面53bと第4レンズ上面54aの間隔が縮小され、X倍率は負に変化する(図7(d))。第1レンズ51の移動による正のX倍率が、第4レンズ54の移動による負のX倍率により打ち消されるように第4レンズ54を移動させれば、Y倍率のみを正に変化させることができる(図7(c))。
この逆の動きによって、第1レンズ51および第4レンズ54の位置が−Z方向に変更された場合、投影光学ユニットPLのY倍率は負に変化する。
投影光学ユニットPLのX倍率調整は、フォーカス・倍率補正光学系50を構成する第4レンズ54のZ方向位置を変更することにより行われる。図7(e)および図7(f)は、第4レンズ54の位置を−Z方向に変更して、X倍率を正に変化させた状態におけるフォーカス・倍率補正光学系50を示した図である。図7(e)はフォーカス・倍率補正光学系50のYZ断面を示す図であり、図7(f)はフォーカス・倍率補正光学系50のXZ断面を示す図である。図7(e)および図7(f)に示すように、第4レンズ54の位置が−Z方向に変更された場合、第3レンズ下面53bと第4レンズ上面54aの間隔が拡大し、各投影光学ユニットPLのX倍率は正に変化する(図5(f))。各投影光学ユニットPLのY倍率は変化しない(図5(e))。逆に、第4レンズ54の位置が+Z方向に変更された場合、投影光学ユニットPLのX倍率は負に変化する。第4レンズ54の位置が+Z方向に変更された場合でも、各投影光学ユニットPLのY倍率は変化しない。
(投影光学ユニットPLのフォーカス調整)
次に、投影光学ユニットPLのフォーカス調整について説明する。投影光学ユニットPLのフォーカス調整は、フォーカス・倍率補正光学系50を構成する第3レンズ53のY方向位置を変更することにより行われる。
第3レンズ53の位置が−Y方向に変更された場合、光が通過するガラスの厚さが減少するため、フォーカスは、例えば、図5(c)に示すように+Z方向に変化する。逆に第3レンズ53の位置が+Y方向に変更された場合、光が通過するガラスの厚さが増大するため、フォーカスは−Z方向に変化する。
また、フォーカス調整は、第3レンズ53を、第3レンズ上面53aの傾斜平面に対して平行方向に移動させると同時に、第4レンズ54を第3レンズ53との間隔が維持されるようZ方向に移動することによって行ってもよい。第3レンズ53の移動方向を、第3レンズ53上面の斜面(第2レンズ52下面の斜面)と平行方向とすることで、第2レンズ52と第3レンズ53との間隔は維持される。したがって、図5(c)のようなY方向の像シフト(−ΔY)は発生しない。また、第4レンズ54を+Z方向に移動させることで、第3レンズ下面53bと第4レンズ上面54aの間隔も維持される。したがって、図4(f)のようなX倍率も発生しない。
以上、本実施形態における補正光学系の構成について説明したが、上記の構成に限定されず、種々の構成が可能である。例えば、フォーカス・倍率補正光学系50は、対向する球面およびシリンドリカル面の凹凸が入れ換わってもよい。具体的には、第1レンズ下面51bが凸型球面、第2レンズ上面52aが凹型球面になっていてもよいし、第3レンズ下面53bが凸型シリンドリカル面、第4レンズ上面54aが凹型シリンドリカル面になっていてもよい。
また、フォーカス・倍率補正光学系50は、第2平面鏡17と中間結像面MPの間に限定せず、他の位置に配置することも可能である。具体的には、中間結像面MPと第3平面鏡18の間、または第4平面鏡22とガラス基板Pの間に配置してもよい。
また、本実施形態は露光装置の投影光学ユニットを例に説明したが、フォーカス・倍率補正光学系50は、他の目的で使用される光学系においても使用することが可能である。
(補正光学系を有する露光装置を用いた露光方法)
次に、第2実施形態のフォーカス・倍率補正光学系50(補正光学系)を有する露光装置を用いた露光方法について説明する。第2実施形態の露光装置を用いた露光方法は、第1実施形態で説明した露光方法と基本的に同一の処理の流れとなる。ただし、ステップS4のフォーカス補正、ステップS7のX倍率補正、ステップS8のY倍率補正の各ステップでは、本実施形態で説明したフォーカス・倍率補正光学系50を構成するレンズを移動させて、フォーカス補正、X倍率補正、Y倍率補正を行う。かかる補正によって、測定されたフォーカス位置のずれ、X倍率およびY倍率のずれは、他に収差を発生させることなく独立に補正することが可能になる。本実施形態に係る露光方法においても、第1実施形態で説明した露光方法の変形のバリエーションを適用することは可能である。
上述の第1、第2実施形態によれば、フォーカスおよび縦横倍率を独立に補正することのできる補正光学系を提供することができる。
[第3実施形態]
次に、本発明の第3実施形態としてデバイス(液晶表示デバイス等)の製造方法について説明する。液晶表示デバイスは、透明電極を形成する工程を経ることにより製造される。透明電極を形成する工程は、透明導電膜が蒸着されたガラス基板に感光剤を塗布する工程と、前述の露光装置を使用して感光剤が塗布されたガラス基板を露光する工程と、ガラス基板を現像する工程を含む。
上述の露光装置を利用したデバイス製造方法は、液晶表示デバイスの他に、例えば、半導体デバイス等のデバイスの製造にも好適である。前記方法は、感光剤が塗布された基板を、上記の露光装置を用いて露光する工程と、前記露光された基板を現像する工程とを含みうる。さらに、前記デバイス製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含みうる。

Claims (13)

  1. 物体面から像面に至る光路に配置され、前記物体面に配置された物体の像を前記像面に投影する投影光学系の倍率およびフォーカスを調整する光学系であって、
    前記投影光学系の光軸に直交する平面と前記平面の反対面に曲面とを有する第1光学素子と、
    前記第1光学素子の前記曲面の外周に沿って面が対向する曲面を有する第2光学素子と、
    前記投影光学系の光軸に直交する第1の方向に母線を持つシリンドリカル面を有する第3光学素子と、
    前記第1の方向に母線を持ち前記第3光学素子の前記シリンドリカル面の外周に沿って面が対向するシリンドリカル面と、当該シリンドリカル面の反対面に前記投影光学系の光軸に直交する平面と、を有する第4光学素子と、
    を備え、
    前記第2光学素子は、前記曲面の反対面に前記第1の方向に対して勾配を持った傾斜平面を有し、
    前記第3光学素子は、前記シリンドリカル面の反対面に、前記第2光学素子の傾斜平面と対向し、前記第2光学素子の前記傾斜平面に対して平行な傾斜平面を有することを特徴とする光学系。
  2. 前記第1光学素子と前記第2光学素子との間隔および前記第3光学素子と前記第4光学素子との間隔のうち少なくとも一方を調整することにより、前記投影光学系の倍率を調整することを特徴とする請求項1に記載の光学系。
  3. 前記第3光学素子の傾斜平面が前記第2光学素子の傾斜平面に対して平行な状態で前記第3光学素子を移動することにより、前記投影光学系のフォーカスを調整することを特徴とする請求項1または2に記載の光学系。
  4. 前記第1光学素子と前記第2光学素子との間隔は、前記投影光学系の光軸方向における前記第1光学素子の移動により調整可能であり、
    前記第3光学素子と前記第4光学素子との間隔は、前記投影光学系の光軸方向における前記第4光学素子の移動により調整可能であり、
    前記投影光学系の倍率は、前記第1光学素子の移動および前記第4光学素子の移動により調整されることを特徴とする請求項1乃至3の何れか1項に記載の光学系。
  5. 前記第3光学素子は、当該第3光学素子の傾斜平面が前記第2光学素子の傾斜平面に対して平行な方向に移動可能であり、
    前記第3光学素子が移動する際に、前記第4光学素子は、前記第3光学素子と前記第4光学素子との間隔を維持するように前記投影光学系の光軸方向に移動可能であり、
    前記投影光学系のフォーカスは、前記第3光学素子の移動および前記第4光学素子の移動により調整されることを特徴とする請求項1乃至4の何れか1項に記載の補正光学系。
  6. 前記第1光学素子の前記曲面は、第1の曲率を有し、前記投影光学系の光軸方向および前記第1の方向に直交する第2の方向に母線を持つ凹型シリンドリカル面であり、
    前記第2光学素子の前記曲面は、前記第1の曲率を有し、前記第2の方向に母線を持つ凸型シリンドリカル面であることを特徴とする請求項1乃至5の何れか1項に記載の光学系。
  7. 前記第1光学素子の前記曲面は、第1の曲率を有する凹型の球面であり、
    前記第2光学素子の前記曲面は、前記第1の曲率を有する凸型の球面であることを特徴とする請求項1乃至5の何れか1項に記載の光学系。
  8. 前記第1光学素子の前記曲面は、第1の曲率を有し、前記投影光学系の光軸方向および前記第1の方向に直交する第2の方向に母線を持つ凸型シリンドリカル面であり、
    前記第2光学素子の前記曲面は、前記第1の曲率を有し、前記第2の方向に母線を持つ凹型シリンドリカル面であることを特徴とする請求項1乃至5の何れか1項に記載の光学系。
  9. 前記第1光学素子の前記曲面は、第1の曲率を有する凸型の球面であり、
    前記第2光学素子の前記曲面は、前記第1の曲率を有する凹型の球面であることを特徴とする請求項1乃至5の何れか1項に記載の光学系。
  10. 前記第3光学素子の前記シリンドリカル面は、第2の曲率を有する凹型シリンドリカル面であり、
    前記第4光学素子の前記シリンドリカル面は、前記第2の曲率を有する凸型シリンドリカル面であることを特徴とする請求項1乃至9の何れか1項に記載の光学系。
  11. 前記第3光学素子の前記シリンドリカル面は、第2の曲率を有する凸型シリンドリカル面であり、
    前記第4光学素子の前記シリンドリカル面は、前記第2の曲率を有する凹型シリンドリカル面であることを特徴とする請求項1乃至9の何れか1項に記載の光学系。
  12. 請求項1乃至11の何れか1項に記載の光学系を備えていることを特徴とする露光装置。
  13. デバイス製造方法であって、
    感光剤が塗布された基板を請求項12に記載の露光装置によって露光する工程と、
    前記感光剤を現像する工程と、
    を有することを特徴とするデバイス製造方法。
JP2012085893A 2012-04-04 2012-04-04 光学系、露光装置、およびデバイス製造方法 Pending JP2013219089A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012085893A JP2013219089A (ja) 2012-04-04 2012-04-04 光学系、露光装置、およびデバイス製造方法
KR1020130032659A KR20130112753A (ko) 2012-04-04 2013-03-27 광학계, 노광 장치 및 디바이스 제조 방법
CN201310105985XA CN103364963A (zh) 2012-04-04 2013-03-29 光学系统、曝光装置以及设备制造方法
TW102112172A TW201344378A (zh) 2012-04-04 2013-04-03 光學系統、曝光裝置、及元件製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012085893A JP2013219089A (ja) 2012-04-04 2012-04-04 光学系、露光装置、およびデバイス製造方法

Publications (2)

Publication Number Publication Date
JP2013219089A true JP2013219089A (ja) 2013-10-24
JP2013219089A5 JP2013219089A5 (ja) 2015-05-28

Family

ID=49366682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012085893A Pending JP2013219089A (ja) 2012-04-04 2012-04-04 光学系、露光装置、およびデバイス製造方法

Country Status (4)

Country Link
JP (1) JP2013219089A (ja)
KR (1) KR20130112753A (ja)
CN (1) CN103364963A (ja)
TW (1) TW201344378A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017534918A (ja) * 2014-10-29 2017-11-24 シャンハイ マイクロ エレクトロニクス イクイプメント(グループ)カンパニー リミティド 露光装置の調整装置及び調整方法
JP2018522287A (ja) * 2015-05-24 2018-08-09 シャンハイ マイクロ エレクトロニクス イクイプメント(グループ)カンパニー リミティド 露光装置
KR20230000964A (ko) 2021-06-25 2023-01-03 캐논 가부시끼가이샤 투영 광학계, 노광 장치, 및 물품 제조 방법
WO2023081041A1 (en) * 2021-11-02 2023-05-11 Corning Incorporated Magnification adjustable projection system using movable lens plates

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7075302B2 (ja) * 2018-07-23 2022-05-25 キヤノン株式会社 光学装置、投影光学系、露光装置、および物品の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166650A (ja) * 2007-01-05 2008-07-17 Nikon Corp 走査型露光装置、デバイスの製造方法及びマスク
WO2008108123A1 (ja) * 2007-03-05 2008-09-12 Nikon Corporation 反射屈折投影光学系、投影光学装置、及び走査型露光装置
JP2010039347A (ja) * 2008-08-07 2010-02-18 Mejiro Precision:Kk 投影露光装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1184287A (ja) * 1997-09-08 1999-03-26 Ricoh Co Ltd 光走査装置
EP1231513A1 (en) * 2001-02-08 2002-08-14 Asm Lithography B.V. Lithographic projection apparatus with adjustable focal surface
JP4211272B2 (ja) * 2002-04-12 2009-01-21 株式会社ニコン 露光装置及び露光方法
US8531648B2 (en) * 2008-09-22 2013-09-10 Asml Netherlands B.V. Lithographic apparatus, programmable patterning device and lithographic method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166650A (ja) * 2007-01-05 2008-07-17 Nikon Corp 走査型露光装置、デバイスの製造方法及びマスク
WO2008108123A1 (ja) * 2007-03-05 2008-09-12 Nikon Corporation 反射屈折投影光学系、投影光学装置、及び走査型露光装置
JP2010039347A (ja) * 2008-08-07 2010-02-18 Mejiro Precision:Kk 投影露光装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017534918A (ja) * 2014-10-29 2017-11-24 シャンハイ マイクロ エレクトロニクス イクイプメント(グループ)カンパニー リミティド 露光装置の調整装置及び調整方法
US10197919B2 (en) 2014-10-29 2019-02-05 Shanghai Micro Electronics Equipment (Group) Co., Ltd. Adjusting device and adjusting method for exposure device
JP2018522287A (ja) * 2015-05-24 2018-08-09 シャンハイ マイクロ エレクトロニクス イクイプメント(グループ)カンパニー リミティド 露光装置
KR20230000964A (ko) 2021-06-25 2023-01-03 캐논 가부시끼가이샤 투영 광학계, 노광 장치, 및 물품 제조 방법
WO2023081041A1 (en) * 2021-11-02 2023-05-11 Corning Incorporated Magnification adjustable projection system using movable lens plates

Also Published As

Publication number Publication date
TW201344378A (zh) 2013-11-01
CN103364963A (zh) 2013-10-23
KR20130112753A (ko) 2013-10-14

Similar Documents

Publication Publication Date Title
JP5071385B2 (ja) 可変スリット装置、照明装置、露光装置、露光方法及びデバイス製造方法
US7126757B2 (en) Illumination apparatus, exposure apparatus using the same, and device fabricating method
WO1999066370A1 (fr) Procede relatif a l'elaboration d'un masque
TWI579657B (zh) 光學積分器、照明光學系統、曝光裝置以及元件製造方法
JP2011039172A (ja) 露光装置およびデバイス製造方法
JP2013219089A (ja) 光学系、露光装置、およびデバイス製造方法
TW200844672A (en) Exposure apparatus and device fabrication method
KR20110037857A (ko) 투영 광학계, 노광 장치 및 디바이스 제조 방법
KR20100006533A (ko) 투영 광학계, 노광 장치 및 디바이스 제조 방법
JP2007101592A (ja) 走査型露光装置及びマイクロデバイスの製造方法
KR102372650B1 (ko) 투영 광학계, 노광 장치, 물품의 제조 방법, 및 조정 방법
JP2002229215A (ja) 露光方法及び露光装置
TWI825339B (zh) 曝光裝置,及物品的製造方法
US10459343B2 (en) Illumination device
KR101783076B1 (ko) 노광 방법, 노광 장치 및 물품의 제조 방법
JP6039292B2 (ja) 露光装置及び物品の製造方法
JP7427461B2 (ja) 露光装置、及び物品の製造方法
JP5391641B2 (ja) フィルタ装置、照明装置、露光装置、及びデバイス製造方法
KR20000057078A (ko) 주사형 투영노광장치 및 노광방법
TW202305433A (zh) 投影曝光裝置以及用於設計投影曝光裝置之組件的方法
JP2002270491A (ja) 露光装置、露光装置の製造方法、波面収差計測装置及びマイクロデバイスの製造方法
TW202328830A (zh) 曝光裝置及物品的製造方法
JP2012119535A (ja) 投影光学系、露光装置及びデバイス製造方法
JP2004029234A (ja) 投影露光光学系および投影露光装置
JP2017198759A (ja) 照明装置、照明方法、露光装置、およびデバイス製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160912