JP2013213264A - Method for manufacturing carbon-containing nonfired agglomerated ore for blast furnace using coal-char - Google Patents

Method for manufacturing carbon-containing nonfired agglomerated ore for blast furnace using coal-char Download PDF

Info

Publication number
JP2013213264A
JP2013213264A JP2012084841A JP2012084841A JP2013213264A JP 2013213264 A JP2013213264 A JP 2013213264A JP 2012084841 A JP2012084841 A JP 2012084841A JP 2012084841 A JP2012084841 A JP 2012084841A JP 2013213264 A JP2013213264 A JP 2013213264A
Authority
JP
Japan
Prior art keywords
carbon
blast furnace
coal
char
pulverized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012084841A
Other languages
Japanese (ja)
Other versions
JP5825180B2 (en
Inventor
Satoshi Kogure
聡 小暮
Koichi Yokoyama
浩一 横山
Kenichi Higuchi
謙一 樋口
Koichi Ikeda
耕一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012084841A priority Critical patent/JP5825180B2/en
Publication of JP2013213264A publication Critical patent/JP2013213264A/en
Application granted granted Critical
Publication of JP5825180B2 publication Critical patent/JP5825180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a carbon-containing nonfired agglomerated ore for blast furnace in which the carbon-content is high and the hot-crushing strength after reducing operation in the blast furnace is high.SOLUTION: There is provided a method for manufacturing the carbon-containing nonfired agglomerated ore for blast furnace, by adding and mixing a binder and water into a raw material including fine powdery iron oxide and fine powdery carbonaceous material and granulating. In the method for manufacturing the carbon-containing nonfired agglomerated ore in which the coal-char is used, the fine powdery carbonaceous material includes the coal-char, which is possesed as 20-60 mass% to the total mass of the fine powdery carbonaceous material.

Description

本発明は、石炭チャーを使用した高炉用非焼成含炭塊成鉱の製造方法に関する。   The present invention relates to a method for producing an unfired carbon-containing agglomerated ore for blast furnace using coal char.

従来、製鉄所は、各種集塵装置等から回収される多種の含鉄、含炭ダストを配合し、セメント系の時効性バインダーを添加して混錬、成型して非焼成のペレット又はブリケットを製造し、高炉原料として使用してきた。   Conventionally, steel mills mix various iron-containing and carbon-containing dusts collected from various dust collectors, etc., add cement-based aging binders, knead and mold to produce unfired pellets or briquettes It has been used as a blast furnace raw material.

これらの高炉用非焼成含炭塊成鉱は、高炉内で、高炉シャフト部の熱保存帯と還元反応平衡帯におけるガス条件と温度条件下で反応を受け劣化する。そこで、高炉用非焼成含炭塊成鉱は、順調な高炉操業のために、一定の熱間圧潰強度が必要である。   These unfired carbon-containing agglomerated ore for blast furnace deteriorates due to the reaction in the blast furnace under the gas condition and temperature condition in the thermal preservation zone and reduction reaction equilibrium zone of the blast furnace shaft portion. Therefore, the unfired carbon-containing agglomerated ore for blast furnaces needs a certain hot crushing strength for smooth blast furnace operation.

また、これらの高炉用非焼成含炭塊成鉱は、内装するカーボンにより高炉内の還元反応を起こすことにより還元率が向上する。そのため、高炉用非焼成含炭塊成鉱は、高炉操業時の還元材比の低減を目標に、内装カーボンの増量が図られてきた。   Moreover, the reduction rate of these unfired carbon-containing agglomerated ores for blast furnaces is improved by causing a reduction reaction in the blast furnace with the carbon incorporated therein. For this reason, unburned carbon-containing agglomerated ores for blast furnaces have been designed to increase the amount of interior carbon with the goal of reducing the ratio of reducing materials during blast furnace operation.

以上のことにより、高炉用非焼成含炭塊成鉱は、内装カーボン量が多く、かつ、熱間圧潰強度が高いものが望まれる。   From the above, it is desired that the unfired carbon-containing agglomerated ore for blast furnace has a large amount of interior carbon and high hot crushing strength.

高炉用非焼成含炭ペレットの冷間圧潰強度をあげる方法として、「微粉状鉄含有原料と微粉状炭材に水硬性バインダーを添加し、かつ、全原料中の炭素含有割合(T.C)が15〜25質量%となるように前記微粉状炭材の配合割合を調整し、さらに、水分を調整しつつ混合、造粒した後、養生処理することにより、冷間圧潰強度85kg/cm2(8300kN/m2)以上の高炉用非焼成含炭ペレットを製造する方法であって、前記養生処理は、前記造粒後のペレットを一次養生用ヤードで12〜48時間大気中に放置した後、該ペレットを二次養生用シャフト炉に装入し、該シャフト炉内で、60〜90℃の温度と5時間以上の処理時間で蒸気吹込処理を行い、その後、引き続き連続して、乾燥処理を行い、かつ前記蒸気吹込処理と前記乾燥処理の総処理時間が8時間以内となるようにする」発明がある(特許文献1)。 As a method of increasing the cold crushing strength of unfired carbon-containing pellets for blast furnaces, “addition of a hydraulic binder to a finely divided iron-containing raw material and finely divided carbonaceous material, and a carbon content ratio in all raw materials (TC) Is adjusted to a blending ratio of the pulverized carbonaceous material so that it is 15 to 25% by mass, further mixed and granulated while adjusting the moisture, and then subjected to a curing treatment to obtain a cold crushing strength of 85 kg / cm 2. (8300 kN / m 2 ) A method for producing unfired carbon-containing pellets for blast furnaces, wherein the curing treatment is performed after the pellets after granulation are left in the atmosphere for 12 to 48 hours in a primary curing yard. The pellet is charged into a shaft furnace for secondary curing, and steam blowing treatment is performed in the shaft furnace at a temperature of 60 to 90 ° C. and a treatment time of 5 hours or more. And before the steam blowing process The total processing time of the drying process should be within 8 hours "is the invention (Patent document 1).

又、高炉操業における還元材比の低減を目的とし、「含酸化鉄原料とカーボン系炭材を配合しバインダーを加えて混錬、成型、養生してなるカーボン内装非焼成塊成鉱において、鉄鉱石類の被還元酸素を還元し金属鉄とするために必要な理論炭素量の80〜120%のカーボンを含有し、かつ常温での圧潰強度7850kN/m2 以上となるようにバインダーを選択して混錬、成型、養生してなることを特徴とする高炉用のカーボン内装非焼成塊成鉱。」の発明が提案されている(特許文献2)。 In addition, for the purpose of reducing the ratio of reducing material in blast furnace operation, “in-carbon non-fired agglomerated minerals that are kneaded, molded, and cured by blending iron-containing raw material and carbon-based carbonaceous material and adding a binder. The binder is selected so that it contains 80 to 120% of the theoretical carbon required to reduce the reducible oxygen of stones to metallic iron, and the crushing strength at room temperature is 7850 kN / m 2 or more. An invention of a carbon-incorporated non-fired agglomerated blast furnace for a blast furnace characterized by being kneaded, molded and cured is proposed (Patent Document 2).

又、高炉法やDR法(直接還元法)に使用される炭材内装非焼成ブリケットの還元後の強度の低下を目的に、「成型、乾燥後の空隙率を15〜25%であるとする炭材内装非焼成ブリケット」の提案がある(特許文献3)。   In addition, for the purpose of reducing the strength after reduction of the unfired briquette containing carbonaceous materials used in the blast furnace method and DR method (direct reduction method), “the porosity after molding and drying is 15 to 25%. There is a proposal of “carbonized material non-fired briquette” (Patent Document 3).

又、全鉄原料の粒度、微粉状炭材の配合割合を調整し、かつ、微粉状炭材のメジアン径を調整することにより、高炉用原料ペレットとして要求される50kg/cm2(4900kN/m2)以上の冷間強度を維持するとともに、高炉操業時の還元材比を大幅に低減できるだけの十分な炭素含有量を有し、還元後の圧潰強度7kg/cm2(690kN/m2)以上を有する、非焼成含炭ペレット製造方法が提案されている(特許文献4)。 In addition, by adjusting the particle size of all iron raw materials, the blending ratio of fine powdered carbon materials, and adjusting the median diameter of fine powdered carbon materials, 50 kg / cm 2 (4900 kN / m) required as raw material pellets for blast furnaces. 2 ) While maintaining the above cold strength, it has a sufficient carbon content to greatly reduce the ratio of reducing material during blast furnace operation, and the crushing strength after reduction is 7 kg / cm 2 (690 kN / m 2 ) or more A non-fired carbon-containing pellet manufacturing method has been proposed (Patent Document 4).

特開2009−161791号公報JP 2009-161791 A 特開2003−342646号公報JP 2003-342646 A 特開昭62−290833号公報JP 62-290833 A 特開2008−95177号公報JP 2008-95177 A

特許文献1に記載の発明によれば、高炉用非焼成含炭ペレットが内装するカーボン量が多く、冷間圧潰強度の高い非焼成含炭ペレットを得ることができるが、成型後の一次養生後に、更に二次養生用シャフト炉において、蒸気吹込養生とその後の乾燥処理が必要となり、設備費及び処理費が高くなるという問題がある。又、この文献では、高炉用非焼成含炭塊成鉱の熱間圧潰強度についての言及はない。   According to the invention described in Patent Document 1, the amount of carbon contained in the non-fired carbon-containing pellets for blast furnaces is large, and a non-fired carbon-containing pellet with high cold crushing strength can be obtained. Furthermore, in the secondary curing shaft furnace, there is a problem that steam blowing curing and subsequent drying treatment are required, resulting in high equipment costs and treatment costs. In this document, there is no mention of the hot crushing strength of the unfired carbon-containing agglomerated blast furnace.

特許文献2に記載の発明によれば、一般に還元ガスの温度とガス組成(ηCO=CO2/(CO+CO2))との関係から、酸化鉄の還元反応の進行が制約される高炉シャフト部の熱保存帯と還元反応平衡帯においても、900〜1100℃の温度領域で、非焼成塊成鉱中の酸化鉄は、内装するカーボンにより還元反応を起こす結果、還元率が向上するため、高炉操業時の還元材比の低減効果が期待できる。 According to the invention described in Patent Document 2, the blast furnace shaft portion in which the progress of the reduction reaction of iron oxide is generally restricted from the relationship between the temperature of the reducing gas and the gas composition (ηCO = CO 2 / (CO + CO 2 )). Even in the heat preservation zone and the reduction reaction equilibrium zone, the iron oxide in the unfired agglomerated ore in the temperature range of 900 to 1100 ° C. causes a reduction reaction by the carbon incorporated therein, and as a result, the reduction rate is improved. The reduction effect of the reducing material ratio at the time can be expected.

しかしながら、この方法では、非焼成塊成鉱に内装するC含有量は、酸化鉄を還元し金属鉄とするために必要な理論炭素量(以下、C当量ということもある)で120%以下(全カーボン含有量(T.C)は約15質量%以下に相当する)に制限され、これ以上C含有量を増加すると、非焼成塊成鉱の冷間圧潰強度および熱間圧潰強度が損なわれるという問題がある。   However, in this method, the C content contained in the non-fired agglomerated mineral is 120% or less in terms of the theoretical carbon amount (hereinafter sometimes referred to as C equivalent) necessary for reducing iron oxide to form metallic iron. The total carbon content (TC) is limited to about 15% by mass or less), and if the C content is further increased, the cold crushing strength and hot crushing strength of the unfired agglomerated minerals are impaired. There is a problem.

さらに、この方法では、炭材を内装した非焼成塊成鉱の冷間圧潰強度を維持するために、生石灰に代えて、早強ポルトランドセメントなどのセメント系のバインダーを使用するため、バインダーの添加量を増加させると吸熱反応であるセメントの脱水反応により高炉内のシャフト部での昇温速度が低下するだけでなく、低温での還元停滞域(低温熱保存帯)を発生させ、高炉用鉄原料として装入する焼結鉱の高炉内の還元粉化を助長させてしまう点が問題である。   Furthermore, in this method, in order to maintain the cold crushing strength of the unfired agglomerated minerals with the carbonaceous material, a cement-based binder such as early-strength Portland cement is used instead of quick lime. Increasing the amount not only reduces the rate of temperature rise at the shaft in the blast furnace due to the dehydration reaction of cement, which is an endothermic reaction, but also generates a reduction stagnation zone (low temperature thermal preservation zone) at low temperatures, which causes iron for blast furnaces. The problem is that the reduced ore in the blast furnace of the sintered ore charged as a raw material is promoted.

特許文献3に記載の発明によれば、炭材内装非焼成ブリケットの高炉における還元時の強度低下を抑制できる効果がある程度期待できる。   According to the invention described in Patent Document 3, it can be expected to some degree that the strength reduction during reduction in the blast furnace of the carbonaceous material-incorporated unfired briquette can be suppressed.

しかしながら、炭材内装非焼成ブリケットの成型、乾燥後の空隙率は、原料や炭材の性状、粒度により影響され、空隙率を15〜25%の範囲にコントロールするのは難しく、原料等の制約を受けるという問題がある。   However, the porosity after molding and drying of the carbonaceous material-incorporated non-fired briquette is affected by the properties and particle size of the raw material and the carbonaceous material, and it is difficult to control the porosity within the range of 15 to 25%. There is a problem of receiving.

特許文献4に記載の発明によれば、全原料中の粒度を2mm以下とし、全原料中炭素含有割合(T.C)が15〜25質量%となるように微粉状炭材の配合割合を調整し、炭材のメジアン径を100〜150μmとすることにより、冷間圧潰強度、還元後圧潰強度が良好であり、高い還元材比低減効果を有する非焼成含炭塊成鉱を製造することができる。   According to the invention described in Patent Document 4, the blending ratio of the finely powdered carbon material is set so that the particle size in all raw materials is 2 mm or less and the carbon content ratio (TC) in all raw materials is 15 to 25% by mass. By adjusting and setting the median diameter of the carbon material to 100 to 150 μm, producing a non-fired carbon-containing agglomerated mineral having good cold crushing strength and post-reduction crushing strength and having a high reducing material ratio reduction effect. Can do.

しかしながら、この方法では、全原料中の粒度を2mm以下とし、炭材のメジアン径を100〜150μmとしなければならず、原料と炭材の両面からの制約があり、又、早強セメントを10%以上添加することとなると、この非焼成含炭塊成鉱を高炉にて使用する量を増加させた場合、高炉に投入されるスラグ量も増加する問題がある。また、早強セメントは400〜500℃で脱水反応(吸熱反応)が進行するため、セメント10%を添加した含炭塊成鉱の過剰使用は高炉内の温度を低下させ、高炉内装入物の昇温遅れ、還元遅れが生じる問題がある。   However, in this method, the particle size in all the raw materials must be 2 mm or less, the median diameter of the carbonaceous material must be 100 to 150 μm, there are restrictions from both the raw material and the carbonaceous material, and 10 If the amount of non-fired carbon-containing agglomerated mineral used in the blast furnace is increased, the amount of slag charged into the blast furnace also increases. In addition, since the early strong cement undergoes a dehydration reaction (endothermic reaction) at 400 to 500 ° C., excessive use of the carbon-containing agglomerated mineral with 10% added cement lowers the temperature in the blast furnace, There is a problem that a temperature rise delay and a reduction delay occur.

高炉操業時の還元材比を低減できるだけの十分な炭素含有量を有し、かつ、高炉内での還元後の圧潰強度が高い非焼成含炭塊成鉱が望まれる。この場合、前記特許文献に開示された対応策があるが、前記のように、それぞれ問題がある。本発明の課題は、かかる問題を解決することである。   A non-fired carbon-containing agglomerated mineral having a sufficient carbon content that can reduce the ratio of reducing material during blast furnace operation and having high crushing strength after reduction in the blast furnace is desired. In this case, there are countermeasures disclosed in the patent document, but as described above, there are problems. The object of the present invention is to solve this problem.

本発明は、熱間圧潰強度が良好であり、還元効率を向上させる石炭チャーを使用した高炉用非焼成含炭塊成鉱の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the non-baking carbon-containing agglomerated mineral for blast furnaces which uses the coal char which is good in hot crushing strength, and improves reduction efficiency.

本発明者は、炭材として、非表面積が大きく、反応性が高い石炭チャーを用いることにより、内装する炭材量が多くても熱間圧潰強度が良好な非焼成含炭塊成鉱の製造が可能であるという知見を得た。
本発明は、かかる知見に基づいて上記の課題を解決するためになされたものであり、その要旨とするところは、以下のとおりである。
The present inventor has produced a non-fired carbon-containing agglomerated mineral having a good hot crushing strength even when the amount of the carbon material to be embedded is large by using a coal char having a large non-surface area and high reactivity as the carbon material. The knowledge that is possible.
The present invention has been made to solve the above problems based on such knowledge, and the gist thereof is as follows.

(1)微粉状酸化鉄と、微粉状炭材を有する原料に、バインダーと水分を添加して混合、造粒することにより、高炉用非焼成含炭塊成鉱を製造する方法であって、
前記微粉状炭材が、石炭チャーを有し、
前記石炭チャーが前記微粉状炭材の全質量に対して、20質量%以上、60質量%以下であることを特徴とする石炭チャーを使用した高炉用非焼成含塊炭成鉱の製造方法。
(2)前記微粉状炭材のうち、石炭チャー以外の微粉状炭材が、微粉状一般炭であることを特徴とする前記(1)に記載の石炭チャーを使用した高炉用非焼成含炭塊成鉱の製造方法。
(3)前記微粉状炭材が、前記微粉状酸化鉄と前記微粉状炭材を有する原料の全質量に対して、15質量%以上25質量%以下であることを特徴とする前記(1)又は(2)に記載の石炭チャーを使用した高炉用非焼成含炭塊成鉱の製造方法。
(4)前記石炭チャーは、BET比面積が5.0m/g以上であることを特徴とする(1)乃至(3)に記載の石炭チャーを使用した高炉用非焼成含炭塊成鉱の製造方法。
(1) A method of producing a non-fired carbon-containing agglomerated blast furnace for a blast furnace by adding a binder and moisture to a raw material having finely powdered iron oxide and finely powdered carbonaceous material, and mixing and granulating the mixture.
The pulverized carbon material has a coal char,
The said char char is 20 mass% or more and 60 mass% or less with respect to the total mass of the said pulverized carbonaceous material, The manufacturing method of the non-baking agglomerated coal ore for blast furnaces using the coal char characterized by the above-mentioned.
(2) Of the pulverized carbonaceous material, the pulverized carbonaceous material other than coal char is pulverized general coal. A method for producing agglomerates.
(3) The above (1), wherein the finely powdered carbon material is 15% by mass or more and 25% by mass or less with respect to the total mass of the raw material having the finely divided iron oxide and the finely powdered carbon material. Or the manufacturing method of the non-baking carbon-containing agglomerated mineral for blast furnaces using the coal char as described in (2).
(4) The coal char has a BET specific area of 5.0 m 2 / g or more, and is a non-fired coal-containing agglomerated blast furnace using the coal char according to any one of (1) to (3). Manufacturing method.

高炉用の非焼成含炭塊成鉱の熱間圧潰強度の測定装置を示す図。The figure which shows the measuring apparatus of the hot crushing strength of the non-baking carbon-containing agglomerated mineral for blast furnaces. 高炉用の非焼成含炭塊成鉱の熱間圧潰強度の測定条件を示す図。The figure which shows the measurement conditions of the hot crushing strength of the non-baking carbon-containing agglomerated mineral for blast furnaces. 石炭チャーと一般炭を使用した場合の熱間圧潰強度の関係を示す図。The figure which shows the relationship of the hot crushing strength at the time of using coal char and steam coal. 石炭チャーと粉コークスを使用した場合の熱間圧潰強度の関係を示す図。The figure which shows the relationship of the hot crushing strength at the time of using coal char and powdered coke. 高炉用の非焼成含炭塊成鉱の反応後の試料断面を示す図。(A)は比較例1における反応後の試料断面写真、(B)は実施例1における反応後の試料断面写真である。The figure which shows the sample cross section after reaction of the non-baking carbon-containing agglomerate for blast furnaces. (A) is a sample cross-sectional photograph after reaction in Comparative Example 1, and (B) is a sample cross-sectional photograph after reaction in Example 1.

本発明において、微粉状酸化鉄及び微粉状炭材の粒度を共に微粉状としているのは、ペレタイジングまたはブリケッティングにより成型が可能な粒度であって、例えば2mm以下、特に、−250μm程度であることが特に好ましい。ただし、微粉状酸化鉄の粒径は、粒径1mm以上の比率が5%未満であることが好ましい。炭材原料に比べてその配合比率が多いことから成型性に重要な影響を及ぼし、その比率が5%を超えると円滑に造粒を行えなくなることに由来する。 In the present invention, the pulverized iron oxide and the pulverized carbonaceous material are both finely pulverized so that they can be molded by pelletizing or briquetting, and are, for example, 2 mm or less, particularly about −250 μm. It is particularly preferred. However, as for the particle size of finely divided iron oxide, the ratio of the particle size of 1 mm or more is preferably less than 5%. Since the blending ratio is larger than that of the carbonaceous material, it has an important influence on the moldability. When the ratio exceeds 5%, the granulation cannot be performed smoothly.

かかる配合に調整した微粉状酸化鉄、微粉状炭材及びバインダーを配合して配合原料とし、かかる原料に水分を添加して混合、造粒、養生することにより、所期の目的を達成する高炉用非焼成含炭塊成鉱が製造できる。ここに、混合、造粒する造粒設備は、特に限定する必要はなく、配合原料の混錬、加水、造粒の機能を有するものであればよく、混錬機、造粒機などは、特に限定されるものではない。   A blast furnace that achieves the intended purpose by blending pulverized iron oxide, pulverized carbonaceous material and binder adjusted to such a blend into a blended raw material, adding water to such raw material, mixing, granulating, and curing Unfired carbon-containing agglomerated mineral can be produced. Here, the granulation equipment for mixing and granulating is not particularly limited as long as it has a function of kneading, adding water, and granulating the blended raw materials. It is not particularly limited.

本発明に掛る高炉用非焼成含炭塊成鉱には、例えば、非焼成含炭ペレット、非焼成含炭ブリケット等がある。ペレットとしては、例えば、ディスクペレタイザーにより球状に成型するものがあり、ブリケットとしては、くぼみの型を備え相対する一対の成型ロールで成型する左右対称のピロー型ブリケットやアーモンド形ブリケットがあるが、これらに限定されるものではない。   Examples of the non-fired carbon-containing agglomerated blast furnace according to the present invention include non-fired carbon-containing pellets and non-fired carbon-containing briquettes. Examples of pellets include those that are formed into a spherical shape by a disk pelletizer, and examples of briquettes include symmetric pillow-type briquettes and almond-type briquettes that are formed by a pair of opposed forming rolls with a hollow mold. It is not limited to.

非焼成含炭塊成鉱は、成型後、高炉までの輸送及び高炉装入時の粉化に耐えるための一定の強度が必要である。そのため、成型後の生の高炉用非焼成含炭塊成鉱は、セメント等の無機バインダーと水との水硬反応を進めるために養生する。養生後の冷間圧潰強度としては、非焼成含炭ペレット(直径約10〜15mm)では、5000kN/m2以上が好ましく、非焼成含炭ブリケット(約20〜25cc)では、1000N/サンプル以上が好ましい。 The unfired carbon-containing agglomerated mineral needs a certain strength to withstand the pulverization during the transportation to the blast furnace and the charging of the blast furnace after molding. Therefore, the raw unfired carbon-containing agglomerated mineral for blast furnace after curing is cured to promote a hydraulic reaction between an inorganic binder such as cement and water. The cold crushing strength after curing is preferably 5000 kN / m 2 or more for non-fired carbon-containing pellets (diameter of about 10 to 15 mm), and 1000 N / sample or more for non-fired carbon-containing briquettes (about 20 to 25 cc). preferable.

〔微粉状炭材について〕
本発明は、非焼成含炭塊成鉱の製造に使用する微粉状炭材の一部として、石炭チャーを用いることに特徴がある。すなわち、比表面積が大きく反応性が高い石炭チャーの特性を利用したものである。
微粉状炭材の反応性を高めるために、炭材の粒度を小さくすると、低温で酸化鉄のメタルへの還元による金属ネットワークを形成する前に、含有する炭材が多量にガス化してしまい、多量の空隙を生じ、還元後の十分な強度を維持できない。
、また石炭チャーの使用量が多すぎたとしても、低温で多量のガス化が発生し、微粉の石炭チャーにより金属ネットワークが形成されると同時に、多量の空隙も発生してしまい、熱間圧潰強度の維持ができなくなる。従って、石炭チャーとその他微粉状炭材の配合比の調和が大切である。
そこで、本発明者は、後述する実験により、石炭チャーの使用割合は、微粉状炭材の全質量に対して、20質量%以上、60質量%以下が適切であることを見出した。
[About pulverized carbonaceous materials]
The present invention is characterized in that a coal char is used as a part of a fine powdery carbon material used for production of a non-fired carbon-containing agglomerated mineral. That is, it utilizes the characteristics of coal char with a large specific surface area and high reactivity.
If the particle size of the carbonaceous material is reduced in order to increase the reactivity of the finely powdered carbonaceous material, the carbonaceous material contained therein is gasified in a large amount before forming a metal network by reduction of iron oxide to metal at a low temperature. A large amount of voids are produced, and sufficient strength after reduction cannot be maintained.
Even if too much coal char is used, a large amount of gasification occurs at a low temperature, a metal network is formed by fine coal char, and a large amount of voids are also generated, resulting in hot crushing. Strength cannot be maintained. Therefore, it is important to harmonize the mixing ratio of coal char and other finely divided carbonaceous materials.
Then, this inventor discovered that 20 mass% or more and 60 mass% or less were suitable with respect to the total mass of a fine powder carbon material by the experiment mentioned later.

石炭チャー以外のその他の微粉状炭材としては、所定粒度に粉砕した粉コークス、粉石灰、コークスダストを含有する高炉灰又は微粉状一般炭その他の粉状の固形炭材などがある。従来技術では、炭材粒度は、100〜150μmが必要であったが(段落「0017」「0018」)、本願発明では、その他の炭材の粒径は、−250μm程度でよい。
つまり石炭チャー及びその他の炭材の粒径が−250μm程度でも、熱間圧潰強度が良好で、還元効率が高い高炉用非焼成含炭塊成鉱を製造することができる。
Examples of other finely powdered carbon materials other than coal char include powdered coke pulverized to a predetermined particle size, powdered lime, blast furnace ash containing coke dust, finely powdered general coal, and other powdered solid carbon materials. In the prior art, the particle size of the carbonaceous material needs to be 100 to 150 μm (paragraphs “0017” and “0018”), but in the present invention, the particle size of the other carbonaceous materials may be about −250 μm.
That is, even if the particle size of coal char and other carbonaceous materials is about −250 μm, it is possible to produce a blast furnace non-calcined agglomerated ore for blast furnace with good hot crushing strength and high reduction efficiency.

微粉状炭材の配合量は、原料全質量に対し、10質量%以上が好ましい。これによって含炭塊成鉱中の酸化鉄を含炭塊成鉱中に内在する炭材のみで、含炭塊成鉱中の酸化鉄を概ね還元できる。
従来から、ペレット中の酸化鉄を還元するのに必要な理論上の炭素量に対する炭素含有量の比を、「炭素等量」と定義し、炭素による酸化鉄の還元度の目安としている。従来は、高炉用原料として要求される熱間圧潰強度を維持するためには、炭素含有量を15質量%(炭素等量1.2に相当)に制限せざるを得なかった(特許文献1参照)。しかし、本発明では、前記鉄含有原料に15質量%以上の微粉炭材を添加することができる。微粉状炭材の配合量は、原料全質量に対し、15質量%以上、25質量%以下であることがより好ましい。これは、含炭塊成鉱中の酸化鉄を還元してもなお余剰の炭素分がガス化することにより、高炉内にて、非焼成含炭塊成鉱以外の鉄原料(例えば焼結鉱)の還元を促進し、省エネルギー化・低CO化が期待できる。残留する炭素分がその近傍に存在する焼結鉱の還元を促進するためである。
As for the compounding quantity of a pulverized carbon material, 10 mass% or more is preferable with respect to the raw material total mass. As a result, the iron oxide in the carbon-containing agglomerated mineral can be substantially reduced only by the carbon material inherent in the carbon-containing agglomerated mineral.
Conventionally, the ratio of the carbon content to the theoretical carbon amount required to reduce iron oxide in the pellet is defined as “carbon equivalent”, which is used as a measure of the degree of reduction of iron oxide by carbon. Conventionally, in order to maintain the hot crushing strength required as a blast furnace raw material, the carbon content has to be limited to 15% by mass (corresponding to a carbon equivalent of 1.2) (Patent Document 1). reference). However, in this invention, 15 mass% or more fine carbonaceous materials can be added to the said iron containing raw material. The blending amount of the finely powdered carbon material is more preferably 15% by mass or more and 25% by mass or less with respect to the total mass of the raw material. This is because, even if iron oxide in the carbon-containing agglomerated ore is reduced, the surplus carbon content is still gasified, so that iron raw materials other than the unfired carbon-containing agglomerated ore in the blast furnace (for example, sintered ore) ) Can be promoted to save energy and reduce CO 2 . This is because the residual carbon content promotes the reduction of the sintered ore existing in the vicinity thereof.

〔微粉状酸化鉄について〕 [About finely divided iron oxide]

微粉状酸化鉄としては、鉄鉱石、スケールを所定の粒度に粉砕したもの、製鉄プロセスにおいて多量に発生するダストを集塵機などで回収した含鉄ダストやスラッジ等を使用することができる。鉄鉱石では、ペレットフィードを用いることがより好ましく、それによって、粉砕の手間を省くことができる。含鉄ダストやスラッジは1mm以上がほとんどなく、粒径250μm以下が全体の80%以上を占めるので、直接使用可能である。   As finely divided iron oxide, iron ore, pulverized scale to a predetermined particle size, iron-containing dust, sludge, etc., collected with a dust collector or the like can be used. For iron ore, it is more preferable to use a pellet feed, so that the labor of grinding can be saved. Since iron-containing dust and sludge hardly have a diameter of 1 mm or more and a particle diameter of 250 μm or less accounts for 80% or more of the whole, they can be used directly.

〔バインダーについて〕
バインダーとしては、原料中に含有する水分や添加水分との水和反応により硬化することにより、造粒物の冷間圧潰強度を高める機能を有する水硬性バインダーがある。水硬性バインダーとしては、高炉水砕スラグを主成分とする微粉末とアルカリ刺激剤からなる時効性バインダーや、ポルトランドセメント、アルミナセメント、高炉セメント等がある。また酸化鉄原料を分散させ密充填にすることで冷間強度を上げる有機分散剤(ポリアクリル酸ナトリウム)や水分と反応することでゲル化し原料間の空隙に入り込み、乾燥によって硬化することで冷間強度を上げるα化コーンスターチなどの有機バインダーもある。
[About the binder]
As the binder, there is a hydraulic binder having a function of increasing the cold crushing strength of the granulated product by being cured by a hydration reaction with moisture contained in the raw material or added moisture. Examples of the hydraulic binder include an aging binder composed of fine powder mainly composed of blast furnace granulated slag and an alkali stimulator, Portland cement, alumina cement, blast furnace cement, and the like. In addition, the iron oxide raw material is dispersed and densely packed to react with an organic dispersant (sodium polyacrylate) or moisture that increases cold strength, and then gels by entering into the voids between the raw materials and hardens by drying. There are also organic binders such as pregelatinized corn starch that increase the strength between the layers.

水硬性バインダーを添加することにより、高炉用非焼成含炭塊成鉱の必要な冷間圧潰強度は維持できる。しかし、水硬性バインダーの添加は、高炉のスラグ量を増加し、必要エネルギーの増加、発生CO2量の増加をもたらす。又、水硬性バインダーは高炉内の400〜500℃にて吸熱反応を伴って脱水反応が進行するため、バインダーの過度な添加は高炉内の低温化を招き、高炉の効率が低下する。
従って、高炉用非焼成含炭塊成鉱の場合、全原料質量に対し、5質量%から10質量%程度の水硬性バインダーが好ましい。
By adding the hydraulic binder, the necessary cold crushing strength of the unfired carbon-containing agglomerated ore for blast furnace can be maintained. However, the addition of a hydraulic binder increases the amount of slag in the blast furnace, leading to an increase in required energy and an increase in the amount of generated CO 2 . In addition, since the hydraulic binder undergoes a dehydration reaction with an endothermic reaction at 400 to 500 ° C. in the blast furnace, excessive addition of the binder causes a low temperature in the blast furnace, and the efficiency of the blast furnace decreases.
Therefore, in the case of a non-fired carbon-containing agglomerated blast furnace, a hydraulic binder of about 5% by mass to 10% by mass with respect to the total raw material mass is preferable.

次に、本発明の実施例について説明するが、本発明は、これに限られるものではない。
原料は、微粉状炭材として、比表面積の異なる石炭チャー3種類と微粉コークス及び一般炭を用いた。微粉状酸化鉄は、−0.25mmに破砕したローブリバーを用いた。微粉状酸化鉄と微粉状炭材にポルトランドセメントを添加し、混練後、ディスクペレタイザーにより、ペレット(平均粒径13mm)を造粒した。石炭チャーと一般炭及び粉コークスの組成と成分を表1に示す。石炭チャーは、粉コークスや一般炭に比べ比表面積が5.0m/g以上であり、粉コークスや一般炭よりも反応性が高いものである。
Next, examples of the present invention will be described, but the present invention is not limited thereto.
As the raw material, three kinds of coal chars having different specific surface areas, fine coke and general coal were used as fine powdery carbon materials. The pulverized iron oxide used was a lobe river crushed to -0.25 mm. Portland cement was added to finely divided iron oxide and finely divided carbonaceous material, and after kneading, pellets (average particle size 13 mm) were granulated with a disk pelletizer. Table 1 shows the composition and components of coal char, steam coal and coke breeze. Coal char has a specific surface area of 5.0 m 2 / g or more as compared with pulverized coke or steam coal, and is more reactive than pulverized coke or steam coal.

石炭チャーZと一般炭の割合を変更し、その他の原料条件を一定として試験した。原料配合と製造した非焼成含炭塊成鉱の特性を表2に示す。
表2で、実施例1〜実施例4は、微粉炭中の石炭チャーが20質量%〜60質量%の場合である。実施例1〜実施例4では、目標とする冷間圧潰強度10000kN/m以上、及び熱間圧潰強度700kN/m以上が確保された。RARは、高炉において非焼成含炭塊成鉱を10%使用した場合の燃料費(kg/tp)を示す。実施例1〜実施例4では、RARは、470kg/tp以下で良好であった。
The ratio of coal char Z and steam coal was changed, and other raw material conditions were tested constant. Table 2 shows the raw material composition and the characteristics of the unfired carbon-containing agglomerated mineral.
In Table 2, Examples 1 to 4 are cases where the coal char in the pulverized coal is 20% by mass to 60% by mass. In Examples 1 to 4, a target cold crushing strength of 10000 kN / m 2 or more and a hot crushing strength of 700 kN / m 2 or more were ensured. RAR indicates the fuel cost (kg / tp) when 10% of unfired carbon-containing agglomerated ore is used in a blast furnace. In Examples 1 to 4, the RAR was good at 470 kg / tp or less.

ここで、冷間圧潰強度の測定方法は、JISM8718「鉄鉱石ペレット圧潰強度試験方法」(2009)による。即ち、試料1個を10mm/minの速度で圧縮荷重をかけ、試料が最大圧縮荷重の50%になるまで荷重をかけ、圧縮荷重の最大値を圧潰強度とした。強度指数は、単位断面積当たりの荷重値(kN/m2)とした。 Here, the measuring method of cold crushing strength is based on JISM8718 "Iron ore pellet crushing strength test method" (2009). That is, a compressive load was applied to one sample at a speed of 10 mm / min, the load was applied until the sample reached 50% of the maximum compressive load, and the maximum value of the compressive load was defined as the crushing strength. The strength index was a load value per unit cross-sectional area (kN / m 2 ).

熱間圧潰強度は、高炉炉内の温度とガス条件を模擬した反応後圧潰強度を測定した。図1に高炉用非焼成含炭塊成鉱の反応後圧潰強度の測定装置を示す。反応内管1(Φ73mm)と反応外管2の間に所定の反応性ガスを入口3から流入し、反応内管1の底より、反応内管1に導入する。反応内管1の下部にアルミナボール5を敷き詰め、その上に、焼結鉱350gと非焼成含炭ペレット150gから成る試料6を充填する。試料は加熱装置7により加熱され、試料温度は、熱電対8により測定する。反応後のガスは反応後ガス出口4により反応内管1から外部に排出される。図2に高炉用非焼成含炭塊成鉱の反応後圧潰強度の測定条件を示す。ガス組成と温度は、高炉のシャフト部における条件を模したものである。反応終了後に窒素冷却してから試料を取り出して圧潰強度を測定した。反応後の圧潰強度は、JIS M8718「鉄鉱石ペレット圧潰強度試験方法」に準じて反応後の非焼成含炭ペレットの圧潰強度の測定行った。   As the hot crushing strength, the post-reaction crushing strength simulating the temperature and gas conditions in the blast furnace was measured. FIG. 1 shows an apparatus for measuring the post-reaction crush strength of a non-fired carbon-containing agglomerated blast furnace. A predetermined reactive gas flows from the inlet 3 between the inner reaction tube 1 (Φ73 mm) and the outer reaction tube 2 and is introduced into the inner reaction tube 1 from the bottom of the inner reaction tube 1. Alumina balls 5 are spread on the lower part of the reaction inner tube 1, and a sample 6 consisting of 350 g of sintered ore and 150 g of unfired carbon-containing pellets is filled thereon. The sample is heated by the heating device 7, and the sample temperature is measured by the thermocouple 8. The gas after the reaction is discharged from the reaction inner pipe 1 to the outside through the gas outlet 4 after the reaction. FIG. 2 shows the measurement conditions for the post-reaction crush strength of the unfired carbon-containing agglomerated blast furnace. The gas composition and temperature simulate the conditions in the shaft portion of the blast furnace. After completion of the reaction, the sample was taken out after cooling with nitrogen, and the crushing strength was measured. The crushing strength after the reaction was measured according to JIS M8718 “Iron ore pellet crushing strength test method”.

図3に一般炭と石炭チャーを用いた場合の、石炭チャー使用量と熱間圧潰強度の関係を示す。表2の石炭チャーX,Y,Zの使用割合と熱間圧潰強度の関係をプロットしたものである。
図4に粉コークスと石炭チャーを用いた場合の、石炭チャー使用量と熱間圧潰強度の関係を示す。全ての配合種類において石炭チャーの使用量が20質量%〜60質量%で、目標とする熱間圧潰強度700kN/m以上が確保された。
FIG. 3 shows the relationship between the amount of coal char used and the hot crushing strength when steam coal and coal char are used. The relationship between the use ratio of coal char X, Y, Z of Table 2 and hot crushing strength is plotted.
FIG. 4 shows the relationship between the amount of coal char used and the hot crushing strength when using powdered coke and coal char. In all blending types, the amount of coal char used was 20% by mass to 60% by mass, and a target hot crush strength of 700 kN / m 2 or more was ensured.

図5(A)に比較例1における反応後の試料断面写真を示す。試料断面写真中の白色部分が、還元反応により生成された金属鉄である。ウスタイト、金属鉄への還元は均一に進行しているが、反応後の金属鉄が強固に結合したメタルネットワークは見られない。図5(B)に実施例1における反応後の試料断面写真を示す。還元後の金属鉄同士が強固なメタルネットワークを形成しており、非焼成含炭ペレットの反応後強度の飛躍的向上を裏付けている。   FIG. 5A shows a cross-sectional photograph of the sample after the reaction in Comparative Example 1. The white part in the sample cross-sectional photograph is metallic iron produced by the reduction reaction. Although the reduction to wustite and metallic iron is proceeding uniformly, a metal network in which the metallic iron after the reaction is firmly bonded is not seen. FIG. 5B shows a sample cross-sectional photograph after the reaction in Example 1. Metallic iron after reduction forms a strong metal network, confirming a dramatic improvement in post-reaction strength of unfired carbon-containing pellets.

炭素含有量が多く、かつ、高炉内での還元後の熱間圧潰強度が高い高炉用非焼成含炭塊成鉱の製造方法の提供することができる。 It is possible to provide a method for producing an unfired carbon-containing agglomerated blast furnace ore for blast furnaces having a high carbon content and high hot crushing strength after reduction in the blast furnace.

1…反応内管、2…反応外管、3…反応性ガス入口、4…反応後ガス出口、5…アルミナボール、6…試料、7…加熱装置、8…熱電対。 DESCRIPTION OF SYMBOLS 1 ... Inner tube, 2 ... Outer tube, 3 ... Reactive gas inlet, 4 ... Post-reaction gas outlet, 5 ... Alumina ball, 6 ... Sample, 7 ... Heating device, 8 ... Thermocouple.

Claims (4)

微粉状酸化鉄と、微粉状炭材を有する原料に、バインダーと水分を添加して混合、造粒することにより、高炉用非焼成含炭塊成鉱を製造する方法であって、
前記微粉状炭材が、石炭チャーを有し、
前記石炭チャーが前記微粉状炭材の全質量に対して、20質量%以上、60質量%以下であることを特徴とする石炭チャーを使用した高炉用非焼成含炭塊成鉱の製造方法。
It is a method for producing a non-fired carbon-containing agglomerated blast furnace for a blast furnace by adding a binder and moisture to a raw material having finely powdered iron oxide and a finely powdered carbon material, and mixing and granulating,
The pulverized carbon material has a coal char,
The said char char is 20 mass% or more and 60 mass% or less with respect to the total mass of the said pulverized carbon material, The manufacturing method of the non-baking carbon-containing agglomerated mineral for blast furnaces using the coal char characterized by the above-mentioned.
前記微粉状炭材のうち、石炭チャー以外の微粉状炭材が、微粉状一般炭であることを特徴とする請求項1に記載の石炭チャーを使用した高炉用非焼成含炭塊成鉱の製造方法。   2. Of the pulverized carbonaceous material, the pulverized carbonaceous material other than the coal char is pulverized steam coal. Production method. 前記微粉状炭材が、前記微粉状酸化鉄と前記微粉状炭材を有する原料の全質量に対して、15質量%以上25質量%以下であることを特徴とする請求項1又は請求項2に記載の石炭チャーを使用した高炉用非焼成含炭塊成鉱の製造方法。   The said pulverized carbon material is 15 mass% or more and 25 mass% or less with respect to the total mass of the raw material which has the said pulverized iron oxide and the said pulverized carbon material. The manufacturing method of the non-baking carbon-containing agglomerated mineral for blast furnaces using the coal char of description. 前記石炭チャーは、BET比面積が5.0m/g以上であることを特徴とする請求項1乃至請求項3に記載の石炭チャーを使用した高炉用非焼成含炭塊成鉱の製造方法。 The method for producing an unfired carbon-containing agglomerated mineral for a blast furnace using the coal char according to claim 1, wherein the coal char has a BET specific area of 5.0 m 2 / g or more. .
JP2012084841A 2012-04-03 2012-04-03 Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char Active JP5825180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012084841A JP5825180B2 (en) 2012-04-03 2012-04-03 Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012084841A JP5825180B2 (en) 2012-04-03 2012-04-03 Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char

Publications (2)

Publication Number Publication Date
JP2013213264A true JP2013213264A (en) 2013-10-17
JP5825180B2 JP5825180B2 (en) 2015-12-02

Family

ID=49586803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012084841A Active JP5825180B2 (en) 2012-04-03 2012-04-03 Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char

Country Status (1)

Country Link
JP (1) JP5825180B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128786A (en) * 2016-01-22 2017-07-27 日新製鋼株式会社 Carbon material interior ore and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852615A (en) * 1971-11-01 1973-07-24 Fmc Corp
JPS5773136A (en) * 1980-07-21 1982-05-07 Univ Michigan Tech Manufacture of self-reductive iron oxide block
JPS62278234A (en) * 1986-05-26 1987-12-03 Kobe Steel Ltd Carbon material-containing unburnt briquette
WO1997016573A1 (en) * 1995-11-01 1997-05-09 Westralian Sands Limited Agglomeration of iron oxide waste materials
JP2011162866A (en) * 2010-02-15 2011-08-25 Tohoku Univ Method for producing highly reactive carbonaceous material, highly reactive carbonaceous material, and method for using carbon-containing agglomerated ore

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852615A (en) * 1971-11-01 1973-07-24 Fmc Corp
JPS5773136A (en) * 1980-07-21 1982-05-07 Univ Michigan Tech Manufacture of self-reductive iron oxide block
JPS62278234A (en) * 1986-05-26 1987-12-03 Kobe Steel Ltd Carbon material-containing unburnt briquette
WO1997016573A1 (en) * 1995-11-01 1997-05-09 Westralian Sands Limited Agglomeration of iron oxide waste materials
JP2011162866A (en) * 2010-02-15 2011-08-25 Tohoku Univ Method for producing highly reactive carbonaceous material, highly reactive carbonaceous material, and method for using carbon-containing agglomerated ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128786A (en) * 2016-01-22 2017-07-27 日新製鋼株式会社 Carbon material interior ore and manufacturing method therefor

Also Published As

Publication number Publication date
JP5825180B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5000402B2 (en) Method for producing carbon-containing unfired pellets for blast furnace
KR101054136B1 (en) Hot Briquette Iron and How to Make It
JP2008214715A (en) Method for manufacturing nonfired agglomerated ore for iron manufacture
JP6056492B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP4603628B2 (en) Blast furnace operation method using carbon-containing unfired pellets
JP5803540B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP2003342646A (en) Carbon-containing, non-calcined pellet for blast furnace and its manufacturing process
JP6228101B2 (en) Manufacturing method of carbon material interior ore
JP5512205B2 (en) Strength improvement method of raw material for agglomerated blast furnace
JP4842403B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP5786668B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP2015137379A (en) Non-burning carbonaceous material interior ore for blast furnace and manufacturing method therefor
JP5454505B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP2009161791A5 (en)
JP5825180B2 (en) Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char
JP6326074B2 (en) Carbon material interior ore and method for producing the same
JP5835144B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP5447410B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP5517501B2 (en) Method for producing sintered ore
JP4867394B2 (en) Non-calcined agglomerate for iron making
JP6939667B2 (en) Charcoal lumber interior ore and its manufacturing method
WO2021029008A1 (en) Carbon composite ore and method for manufacturing same
JP2005290525A (en) Method for producing cold-agglomerated ore for blast furnace
WO2019008675A1 (en) Carbon material interior ore and production method therefor
JP2019104947A (en) Ore containing carbon and production method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R151 Written notification of patent or utility model registration

Ref document number: 5825180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350