JP2013212837A - 操舵制御装置 - Google Patents

操舵制御装置 Download PDF

Info

Publication number
JP2013212837A
JP2013212837A JP2013122993A JP2013122993A JP2013212837A JP 2013212837 A JP2013212837 A JP 2013212837A JP 2013122993 A JP2013122993 A JP 2013122993A JP 2013122993 A JP2013122993 A JP 2013122993A JP 2013212837 A JP2013212837 A JP 2013212837A
Authority
JP
Japan
Prior art keywords
steering
reaction force
motor
input shaft
steering control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013122993A
Other languages
English (en)
Inventor
Masafumi Hori
政史 堀
Yasuhiko Mukai
靖彦 向井
Koichi Nakamura
功一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2013122993A priority Critical patent/JP2013212837A/ja
Publication of JP2013212837A publication Critical patent/JP2013212837A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】簡素なシステムで操舵部材へ付与される操舵反力を適切に制御可能な操舵制御装置を提供する。
【解決手段】操舵制御装置1の操向制御部5は、操向制御モータ55を有し、ステアリングホイール角θhに基づいて操向制御モータ55を制御し操舵輪7の操舵角θtを制御する。操舵反力付与部3は、操向制御部5よりもステアリングホイール8側に設けられ、入力軸11の回転を出力軸21へ伝達する差動減速機構30および差動減速機構30を駆動する反力付与モータ45を有し、反力付与モータ45の駆動により、ステアリングホイール8に操舵反力を付与する。これにより、通常時においてもステアリングホイール8と操舵輪7とが機械的に連結されているので、フェイルセーフ手段を別途設ける必要がなく、システムを簡素化することができる。また、ステアリングホイール8へ付与される操舵反力を適切に制御することができる。
【選択図】 図1

Description

本発明は、操舵輪の操舵角を制御する操舵制御装置に関する。
従来、車両のステアリングシステムとして、ステアリングホイールに加えられたトルクによらず、電気的に操舵輪を駆動する所謂ステアバイワイヤ型のステアリングシステムが公知である。特許文献1〜3では、いずれも通常時において、ステアリングホイールと操舵輪との間は、機械的に連結されていない。
特許第4248390号公報 特開2007−1564号公報 特開2010−69895号公報
特許文献1〜3のように、通常時においてステアリングホイールと操舵輪との間が機械的に連結されていないステアリングシステム(以下、「完全バイワイヤ型のシステム」という。)では、システムに何らかの失陥が生じた場合のために、完全バイワイヤ型のシステムとは別途にフェイルセーフ手段を設ける必要がある。そのため、通常時には必要のないフェイルセーフ手段を設けることにより、システム全体が複雑になるという問題点があった。
また、従来の電動パワーステアリング装置(以下、「EPS装置」という。)では、ステアリングホイールと操舵輪とが機械的に連結されている。従来のEPS装置にてステアリングホイールに付与される操舵反力を制御する場合、操舵輪の転舵力に基づいて操舵反力を制御することはできるが、操舵輪への転舵力の方向とステアリングホイールへの操舵反力の方向とが一致しない場合があり、操舵反力を適切に制御することが困難であった。
本発明は、上述の課題に鑑みてなされたものであり、その目的は、簡素なシステムで操舵部材へ付与される操舵反力を適切に制御可能な操舵制御装置を提供することにある。
請求項1に記載の操舵制御装置は、入力軸と、出力軸と、ステアリングギアボックス部と、操作量検出手段と、操向制御部と、操舵反力付与部と、を備える。入力軸は、乗員により操舵される操舵部材に連結可能である。出力軸は、入力軸と相対回転可能に設けられる。ステアリングギアボックス部は、出力軸の回転運動を直線運動に変換し、操舵輪を揺動させて操舵角を変化させる。操作量検出手段は、操舵部材の操舵により変化する入力軸の操作量を検出する。操向制御部は、第1のモータを有し、操作量検出手段により検出された入力軸の操作量に基づいて第1のモータを駆動することにより操舵輪の操舵角を制御する。操舵反力付与部は、操向制御部よりも操舵部材側に設けられる。また、操舵反力付与部は、入力軸の回転を出力軸へ伝達する差動減速機構、および、差動減速機構を駆動する第2のモータを有し、第2のモータを駆動することにより操舵部材に操舵反力を付与する。差動減速機構は、ディファレンシャルギア機構であって、第2のモータにより回転駆動される第1の歯車、および、第1の歯車と噛み合う第2の歯車を有する。ディファレンシャルギア機構は、第1の歯車の回転駆動により回転駆動される第2の歯車、入力軸と接続される入力ギア、出力軸と接続される出力ギア、および、入力軸と出力軸とに噛み合うピニオンギアから構成される。
本発明では、操舵部材と操舵輪とは、通常時においても、入力軸、差動減速機構、出力軸、およびステアリングギアボックス部等により機械的に連結されている。また、操舵輪の操舵角は、操向制御部の第1のモータの駆動を制御することにより電気的に制御されており、ステアバイワイヤの機能を備えている。すなわち、特許文献1〜3のような完全バイワイヤ型のステアリングシステムとは異なり、本発明は、ステアバイワイヤの機能を備えつつ、操舵部材と操舵輪とが機械的に連結されているセミバイワイヤ型のステアリングシステムである、といえる。本発明では、通常時においても操舵部材と操舵輪とが機械的に連結されているので、フェイルセーフ手段を別途設ける必要がなく、完全バイワイヤシステムよりもシステムを簡素化することができる。また、操向制御部よりも操舵部材側に差動減速機構を有する操舵反力付与部が設けられ、第2のモータにより操舵部材へ付与される操舵反力を制御しているので、従来のEPS装置と比較し、操舵部材へ付与される操舵反力を適切に制御することができる。
バイワイヤシステムの電気系統等に異常が生じた場合のフェイルセーフ手段は、以下の構成により実現することができる。
請求項2に記載の発明では、操舵反力付与部は、入力軸と出力軸との回転数の比を固定する固定手段を有する。上述の通り、本発明では、通常時においても操舵部材と操舵輪とが機械的に連結されているので、固定手段により入力軸と出力軸との回転数の比を固定することにより、機械的連結機構を別途加えることなく容易にフェイルセーフを実現することができる。
固定手段は、第1の歯車の回転により第2の歯車は回転するが第2の歯車の回転により第1の歯車は回転しないようにセルフロック可能なリード角を設定することにより入力軸と出力軸との回転数の比を固定するセルフロック機構である。これにより、入力軸と出力軸との回転数の比を固定するための部材を別途設ける必要がないので、部品点数を低減することができる。
請求項3に記載の発明では、第2のモータは、入力軸に生じる入力軸トルクに基づいて制御される。これにより、入力軸トルクに基づき、操舵反力を適切に制御することができる。
請求項4に記載の発明では、入力軸トルクを検出するトルクセンサを備える。トルクセンサにより入力軸トルクが直接的に検出されるので、精度よく操舵反力を制御することができる。
請求項5に記載の発明では、入力軸トルクは、第2のモータに通電される通電量に基づいて推定される。これにより、例えば請求項5に記載のトルクセンサ等を省略することができるので、部品点数を低減することができる。
請求項6に記載の発明では、第2のモータは、入力軸の操作量に基づいて制御される。入力軸の操作量と駆動輪の転舵力との間には相関関係があるため、入力軸の操作量に基づいて第2のモータを駆動して操舵反力を制御することにより、車両の操作性を向上することができる。
請求項7に記載の発明では、車両の状態に関する状態情報を取得する状態情報取得手段をさらに備える。
請求項8に記載の発明では、第2のモータは、状態情報取得手段により取得される状態情報に基づいて制御される。これにより、車両の状態に応じて、操舵部材側へ付与される操舵反力を適切に制御することができる。
請求項9に記載の発明では、第1のモータは、状態情報取得手段により取得される状態情報に基づいて制御される。これにより、車両の状態に応じて、操舵輪の操舵角を適切に制御することができる。
車両の状態情報とは、例えば以下の構成を採用することができる。
請求項10に記載の発明では、状態情報は、車両の走行速度に関する走行速度情報を含む。これにより、車両の走行速度に応じて、第1のモータまたは第2のモータを適切に制御することができる。
請求項11に記載の発明では、状態情報は、操舵輪と路面との間に生じる回転力に関する操舵輪回転力情報を含む。これにより、例えば路面の状態に応じて、第1のモータまたは第2のモータを適切に制御することができる。
請求項12に記載の発明では、状態情報は、車両のモーメントに関する車両モーメント情報を含む。これにより、車両のモーメント応じて、第1のモータまたは第2のモータを適切に制御することができる。
また、請求項13に記載の発明では、操舵反力付与部と操向制御部とは、出力軸を挟んで反対側に設けられる。
さらにまた、請求項14に記載の発明では、操舵反力付与部と操向制御部とは、一体に形成される。
本発明の第1実施形態による操舵制御システムの全体構成を示すブロック図である。 本発明の第1実施形態による操舵制御システムの全体構成を示す概略構成図である。 本発明の第1実施形態による操舵制御モジュールの断面図である。 図3のIV−IV線断面図である。 本発明の第1実施形態による操舵角制御処理を説明するフローチャートである。 本発明の第1実施形態による操舵角目標値演算処理を説明するフローチャートである。 本発明の第1実施形態による操舵角フィードバック演算処理を説明するフローチャートである。 本発明の第1実施形態によるPWM指令値演算処理を説明するフローチャートである。 本発明の第1実施形態による車速と増速比とが対応づけられたマップを説明する説明図である。 本発明の第1実施形態による反力付与制御処理を説明するフローチャートである。 本発明の第1実施形態による反力目標値演算処理を説明するフローチャートである。 本発明の第1実施形態による反力フィードバック制御演算処理を説明するフローチャートである。 本発明の第1実施形態によるPWM指令値演算処理を説明するフローチャートである。 本発明の第1実施形態によるステアリングホイール角と負荷反力目標値とが対応づけられたマップを説明する説明図である。 本発明の第1実施形態によるステアリングホイール角速度と摩擦反力目標値とが対応づけられたマップを説明する説明図である。 本発明の第2実施形態による反力付与制御処理を説明するフローチャートである。 本発明の第2実施形態による反力フィードバック制御演算処理を説明するフローチャートである。 本発明の他の実施形態による操舵制御システムの全体構成を説明する概略構成図である。
以下、本発明による操舵制御装置を図面に基づいて説明する。
なお、以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。
(第1実施形態)
本発明の第1実施形態による操舵制御装置を図1〜図15に基づいて説明する。
まず、操舵制御システムの全体構成を図1および図2に基づいて説明する。操舵制御装置1は、コラム軸2、操舵反力付与部3、操向制御部5、ステアリングギアボックス部6、操舵輪7、操舵部材としてのステアリングホイール8、および制御ECU70等を備えている。
操舵反力付与部3は、差動減速機構30および第2のモータとしての反力付与モータ45等を有する。操向制御部5は、歯車部50および第1のモータとしての操向制御モータ55等を有する。反力付与モータ45および操向制御モータ55は、制御ECU70により駆動が制御される。本実施形態では、操舵反力付与部3および操向制御部5は、図2等に示すように、コラム軸2周りに配置されており、操舵反力付与部3は操向制御部5よりもステアリングホイール8側に設けられる。また、図2に示すように、操舵反力付与部3および操向制御部5は、ハウジング12に収容されている。すなわち、操舵反力付与部3および操向制御部5は、一体にモジュール化され、操舵制御モジュール10を構成している。これにより、装置全体の小型化に寄与する。なお、操舵制御モジュール10の詳細は、図3等に基づいて後述する。
コラム軸2は、入力軸11、出力軸21で構成され、出力軸21はユニバーサルジョイント23を介してインターミディエイトシャフト24に連結されている。入力軸11は、乗員により操舵されるステアリングホイール8と連結されている。入力軸11には、入力軸11の回転角度であるステアリングホイール角θhを検出するステアリングホイール角センサ81、および、入力軸11に生じる入力軸トルクTsnを検出するトルクセンサ82が設けられる。なお、本実施形態では、ステアリングホイール8と入力軸11とが連結されており、ステアリングホイール角センサ81が「操作量検出手段」に対応し、ステアリングホイール角θhが、「操舵部材の操舵により変化する入力軸の操作量」に対応している。また、本実施形態では、ステアリングホイール8が右方向に操舵された場合のステアリングホイール角θhを正とし、ステアリングホイール8が左方向に操舵された場合を負とする。
前述のように出力軸21は、入力軸11と同軸にコラム軸2上に設けられ、入力軸11と相対回転可能に設けられており、出力軸21の回転方向は、入力軸11と出力軸21との間に設けられる差動減速機構30の作用により、入力軸11の回転方向とは逆方向になる。
ステアリングギアボックス部6は、ステアリングピニオン61およびステアリングラックバー63等を備え、左右の操舵輪7の回転中心を結ぶ直線(図2中において記号Lで示す。)よりも車両後方に設けられる。ステアリングピニオン61およびステアリングラックバー63は、ステアリングギアボックス64に収容される。
円形歯車であるステアリングピニオン61は、コラム軸2のステアリングホイール8と反対側の端部に設けられ、出力軸21およびピニオン軸62等と共に正逆回転する。ピニオン軸62には、ピニオン軸62の回転角度であるピニオン角θpを検出するピニオン角センサ83が設けられている。ステアリングラックバー63は、車両の左右方向に移動可能に設けられる。ステアリングラックバー63に設けられるラック歯がステアリングピニオン61と噛み合うことにより、ステアリングピニオン61の回転運動がステアリングラックバー63の車両左右方向の直線運動に変換される。すなわち、ステアリングギアボックス部6は、出力軸21の回転運動を直線運動に変換している。
なお、本実施形態では、左右の操舵輪7の回転中心を結ぶ直線Lとステアリングピニオン61との間の距離Aは、左右の操舵輪7の回転中心を結ぶ直線Lとステアリングラックバー63との距離Bよりも長くなっている。
本実施形態では、前述したように入力軸11と出力軸21との間に設けられる差動減速機構30の作用により出力軸21は入力軸11の回転方向と反対方向に回転するので、ステアリングホイール8が左方向に操舵されると、ピニオン軸62側から見てステアリングピニオン61が右回りに回転し、ステアリングラックバー63が右方向に移動し、車両が左方向へ進行するように操舵輪7の操舵角が変更される。また、ステアリングホイール8が右方向に操舵されると、ピニオン軸62側から見てステアリングピニオン61が左回りに回転し、ステアリングラックバー63が左方向に移動し、車両が右方向へ進行するように操舵輪7の操舵角が変更される。
このように、左右の操舵輪7の回転中心を結ぶ直線Lとステアリングピニオン61との間の距離Aを左右の操舵輪7の回転中心を結ぶ直線Lとステアリングラックバー63との距離Bより長くする、すなわちA>Bとする、ことにより、出力軸21およびステアリングピニオン61の回転方向とは反対方向に操舵輪7が操舵され、ステアリングホイール8の回転方向と操舵輪7の操舵角の向きを整合させている。これにより、出力軸21の回転方向を再度逆転するための歯車装置等が不要になる。
図1に示すように、ステアリングラックバー63の両端には、タイロッド66および図示しないナックルアームが設けられ、このタイロッド66およびナックルアームを介してステアリングラックバー63と左右の操舵輪7とが接続される。これにより、左右の操舵輪7は、ステアリングラックバー63の移動量に応じて操舵される。タイロッド66には、操舵輪7と路面との間に生じる回転力を検出するためのタイロッド軸力センサ85が設けられる。また、操舵輪7には、操舵輪7の回転速度を検出する車輪速センサ86が設けられる。
制御ECU70は、反力付与モータ制御部71、反力付与インバータ72、操向制御モータ制御部75、および操向制御インバータ76を有している。反力付与モータ制御部71は、CPU、ROM、RAM、I/O、およびこれらを接続するバスライン等を備えた通常のコンピュータとして構成されている。反力付与モータ制御部71は、反力付与インバータ72を制御することにより反力付与モータ45への通電状態を切り替えることで反力付与モータ45の駆動状態を制御している。
反力付与インバータ72は、複数のスイッチング素子がブリッジ接続されており、スイッチング素子のオン/オフを切り替えることにより、反力付与モータ45の通電を切り替える。
操向制御モータ制御部75は、反力付与モータ制御部71と同様、CPU、ROM、RAM、I/O、およびこれらを接続するバスライン等を備えた通常のコンピュータとして構成されている。操向制御モータ制御部75は、操向制御インバータ76を制御することにより、操向制御モータ55への通電状態を切り替えることで操向制御モータ55の駆動状態を制御している。
制御ECU70は、ステアリングホイール角センサ81、トルクセンサ82、ピニオン角センサ83、タイロッド軸力センサ85、および、車輪速センサ86と接続し、ステアリングホイール角θh、入力軸トルクTsn、ピニオン角θp、操舵輪7と路面との間に生じる回転力、および車輪速を取得する。また、制御ECU70は、反力付与モータ45の回転角を検出する回転角センサ46、および、操向制御モータ55の回転角を検出する回転角センサ56と接続し、反力付与モータ45の回転角、および、操向制御モータ55の回転角を取得する。また、制御ECU70は、車両のヨーレートを検出するヨーレートセンサ88、および、車両前後Gセンサ89等と接続し、ヨーレートおよび車両の前後方向の加速度等を取得する。さらに、制御ECU70は、車両CAN(Controller Area Network)79と接続され、車両の走行速度等の種々の情報を取得可能に構成されている。
なお、本実施形態では、タイロッド軸力センサ85により取得される情報が「操舵輪と路面との間に生じる回転力に関する操舵輪回転力情報」に対応し、ヨーレートセンサ88または車両前後Gセンサ89により取得される情報が「車両のモーメントに関する車両モーメント情報」に対応する。また、操舵輪回転力情報、車両モーメント情報、車両CAN79から取得される車両の走行速度に関する走行速度情報、および車輪速センサ86から取得される車輪速に関する情報が、「車両の状態情報」に対応している。
次に、図3および図4に基づき、操舵制御モジュール10の構成について説明する。なお、図3は図4のIII−III線断面に対応する図であり、図4は図3のIV−IV線断面に対応する図である。
操舵制御モジュール10は、入力軸11、ハウジング12、出力軸21、操舵反力付与部3、操向制御部5等を備える。
ハウジング12は、ハウジング本体121およびフレームエンド122を有する。ハウジング本体121とフレームエンド122とは、ねじ123により固定される。ハウジング12には、差動減速機構30等が収容されるとともに、入力軸11および出力軸21が挿通される。ハウジング本体121の反フレームエンド122側には、後述する入力ギア33を回転可能に支持する第1軸受部13が設けられる。また、フレームエンド122には、出力軸21を回転可能に支持する第2軸受部14が設けられる。
操舵反力付与部3は、差動減速機構30、および差動減速機構30を駆動する第2のモータとしての反力付与モータ45を有する。
差動減速機構30は、ディファレンシャルギア31およびウォームギア41からなる。ディファレンシャルギア31は、入力ギア33、出力ギア34、およびピニオンギア36を有する。ウォームギア41は、第2の歯車としての差動減速ウォームホイール43および第1の歯車としての差動減速ウォーム44を有する。
入力ギア33は、入力軸11のステアリングホイール8と反対側に設けられる。入力ギア33は、ピニオンギア36と噛み合うかさ歯車であり、金属または樹脂で形成されている。入力ギア33は、筒状の筒部331と、筒部331の径方向外側に設けられる傘状のギア部332とを有する。筒部331には、入力軸11が圧入されている。また、筒部331は、ハウジング本体121に設けられる第1軸受部13により、ハウジング本体121に回転可能に支持される。これにより、入力軸11および入力ギア33は、ハウジング12に回転可能に支持されている。
入力ギア33の反入力軸11側には、出力軸21が挿入される。入力ギア33と出力軸21との間には、ニードル軸受333が設けられる。これにより、出力軸21は、入力軸11に回転可能に支持されている。すなわち、入力軸11と出力軸21とが相対回転可能となっている。
出力ギア34は、ピニオンギア36を挟んで入力ギア33のギア部332と向かい合うように設けられている。出力ギア34は、ピニオンギア36と噛み合うかさ歯車であり、金属または樹脂で形成されている。出力ギア34には、出力軸21が圧入されている。出力ギア34は、軸方向において、ニードル軸受333よりも反入力軸11側に設けられる。
入力ギア33と出力ギア34との間には、複数のピニオンギア36が設けられる。ピニオンギア36は、入力ギア33および出力ギア34に噛み合うかさ歯車である。
ここで、入力ギア33、出力ギア34、および複数のピニオンギア36の関係性について述べておく。ピニオンギア36の歯数は偶数である。一方、入力ギア33および出力ギア34は、歯数が同一であって、その歯数は奇数である。これにより、入力ギア33とピニオンギア36との歯当たりの位置が回転に伴って入れ替わる。同様に、出力ギア34とピニオンギア36との歯当たりの位置が回転に伴って入れ替わる。したがって、特定の歯の摩耗が進行することがなく、偏摩耗によって耐久寿命を損なうことがない。なお、ピニオンギア36の歯数を奇数とし、入力ギア33および出力ギア34の歯数を同一の偶数としてもよい。
また、入力ギア33、出力ギア34、およびピニオンギア36は、その歯が曲がり歯となっており、入力ギア33とピニオンギア36との噛み合い率、および、出力ギア34とピニオンギア36との噛み合い率を高くし、歯当たりによって生じる作動音を低減するとともに、ステアリングホイール8から運転者に伝わる脈動感を低減する。
さらにまた、入力ギア33および出力ギア34が金属で形成される場合、ピニオンギア36は樹脂で形成される。入力ギア33および出力ギア34が樹脂で形成される場合、ピニオンギア36は金属で形成される。これにより、ギアの噛み合い時に発生する歯打ち音が低減される。
ピニオンギア36は、その回転軸が入力軸11および出力軸21の回転軸と直交するように、出力軸21の径方向外側に配置される。ピニオンギア36には軸孔が形成され、この軸孔にピニオンギア軸部材37が挿通される。なお、ピニオンギア36に形成される軸孔は、ピニオンギア軸部材37の外径よりもわずかに大きく形成される。
ピニオンギア36と出力軸21との間には、第3軸受15および内側リング部材38が設けられる。第3軸受15は、軸方向においてニードル軸受333と出力ギア34との間であって、径方向において出力軸21と内側リング部材38との間に設けられる。第3軸受15は、出力軸21の径方向外側において内側リング部材38を回転可能に支持する。
第3軸受15に回転可能に支持される内側リング部材38は、出力軸21の回転軸に直交する方向に貫通する第1孔381が形成される。第1孔381は、内側リング部材38の周方向に等間隔で複数形成される。第1孔381は、ピニオンギア36に挿通されるピニオンギア軸部材37の一方の端部が嵌合している。
外側リング部材39は、ピニオンギア36を挟んで内側リング部材38の径方向外側に設けられる。外側リング部材39は、出力軸21の回転軸に直交する方向に貫通する第2孔391が形成される。第2孔391は、外側リング部材39の周方向に等間隔であって、内側リング部材38の第1孔381と対応する箇所に複数形成されている。第2孔391には、ピニオンギア36に挿通されるピニオンギア軸部材37の他方の端部が嵌合している。これにより、ピニオンギア軸部材37は、内側リング部材38および外側リング部材39により保持される。また、ピニオンギア36は、内側リング部材38と外側リング部材39との間に配置され、内側リング部材38と外側リング部材39とで保持されるピニオンギア軸部材37の軸周りに回転可能に設けられている。このように構成することにより、ピニオンギア軸部材37の形成および組み付けを容易に行うことができる。
外側リング部材39の径方向外側には、樹脂または金属で形成される差動減速ウォームホイール43が嵌合している。すなわち、径方向内側から、出力軸21、第3軸受15、内側リング部材38、ピニオンギア36、外側リング部材39、差動減速ウォームホイール43が、この順で配列されている。また、外側リング部材39、ピニオンギア軸部材37、および差動減速ウォームホイール43は、第3軸受15により回転可能に支持される内側リング部材38と一体となって回転する。
図4に示すように、差動減速ウォームホイール43の径方向外側には、差動減速ウォーム44が噛み合っている。また、差動減速ウォーム44は、ハウジング12に設けられた第4軸受16および第5軸受17により回転可能に支持されている。本実施形態では、差動減速ウォームホイール43および差動減速ウォーム44のリード角は、摩擦角よりも小さく設定されている。これにより、差動減速ウォーム44の回転により差動減速ウォームホイール43は回転するが、差動減速ウォームホイール43の回転により差動減速ウォーム44は回転せず、セルフロック可能に構成されている。差動減速ウォームホイール43と差動減速ウォーム44とがセルフロックされているとき、入力軸11と出力軸21との回転数の比が固定される。差動減速ウォームホイール43と差動減速ウォーム44とによるセルフロック機構が「固定手段」に対応する。なお、本実施形態では、差動減速ウォームホイール43と差動減速ウォーム44とがセルフロックされているときの増速比は1である。
また、差動減速ウォームホイール43は、差動減速ウォームホイール43の回転軸と歯底との距離が一定に形成されている。これにより、加工公差等により差動減速ウォームホイール43と差動減速ウォーム44の設置位置が回転軸方向にずれた場合であっても、正回転時と逆回転時とで歯当たりの状態を保つことができる。
差動減速ウォーム44を回転可能に支持する第5軸受17側には、反力付与モータ45が設けられる。本実施形態の反力付与モータ45はブラシ付きモータであるが、ブラシレスモータ等どのようなモータであってもよい。反力付与モータ45は、通電により差動減速ウォーム44を正逆回転駆動する。差動減速ウォーム44が回転駆動されると、差動減速ウォームホイール43、外側リング部材39、内側リング部材38、およびピニオンギア軸部材37が回転駆動される。本実施形態では、反力付与モータ45により差動減速ウォーム44の駆動を制御することにより、ステアリングホイール8に付与する操舵反力を制御している。
操向制御部5は、入力軸11および出力軸21を挟んで操舵反力付与部3と反対側に設けられる。操向制御部5は、歯車部50および操向制御モータ55を備える。歯車部50は、操向制御ウォームホイール53および操向制御ウォーム54を有している。操向制御ウォームホイール53および操向制御ウォーム54は、ハウジング12内に収容されている。
操向制御ウォームホイール53は、樹脂または金属で形成される。操向制御ウォームホイール53は、出力軸21に嵌合し、出力軸21と一体となって回転する。
操向制御ウォームホイール53の径方向外側には、操向制御ウォーム54が噛み合っている。操向制御ウォーム54は、ハウジング12に設けられる第6軸受18および第7軸受19により回転可能に支持される。なお、操向制御ウォームホイール53の歯筋は、操向制御ウォームホイール53の回転軸と並行に形成されている。また、操向制御ウォームホイール53の歯底が円弧面ではなく平面で形成されている。これにより、加工公差により操向制御ウォームホイール53の設置位置が出力軸21の軸方向にずれたとしても、操向制御ウォームホイール53と操向制御ウォーム54との歯当たりの状態を、正回転時と逆回転時とで同様に保つことができる。
操向制御ウォーム54を回転可能に支持する第7軸受19側には、操向制御モータ55が設けられている。本実施形態では、操向制御モータ55は、ブラシレスの三相モータであるが、ブラシ付きモータ等どのようなモータであってもよい。操向制御モータ55は、通電により操向制御ウォーム54を正逆回転駆動する。これにより、操向制御ウォーム54に噛み合う操向制御ウォームホイール53を正逆回転駆動する。出力軸21に嵌合する操向制御ウォームホイール53の正逆回転駆動により、出力軸21の回転角を制御し、操舵輪7の操舵角θtを制御する。
なお、本実施形態では、操舵反力付与部3と操向制御部5とが出力軸21を挟んで反対側に設けられているので、反力付与モータ45および操向制御モータ55の駆動により生じるラジアル荷重が相殺され、出力軸21の傾きを抑制することができる。また、出力軸21の傾きが抑制されることにより、差動減速ウォームホイール43と差動減速ウォーム44の噛み合い位置、および、操向制御ウォームホイール53と操向制御ウォーム54との噛み合い位置とを確実に保持することができる。
続いて、制御ECU70の操向制御モータ制御部75による操向制御モータ55の制御処理を図5〜図9に基づいて説明する。
操向制御モータ制御部75における操向制御モータ55の駆動制御に係る制御演算処理のメインフローを図5に示す。
最初のステップS100(以下、「ステップ」を省略し、単に記号「S」で示す。)では、車両CAN79から車両の走行速度である車速Vspdを取得する。また、回転角センサ56から操向制御モータ55の回転角θmを取得する。また、ステアリングホイール角センサ81からステアリングホイール角θhを取得する。
S110では、操舵角目標値演算処理を行う。
S120では、操舵角フィードバック制御演算処理を行う。
S130では、PWM指令値演算処理を行う。
S140では、S130にて算出されたPWM指令値に基づき、操向制御インバータ76を構成するスイッチング素子のオン/オフを切り替えることにより、操向制御モータ55の駆動を制御する。
ここで、S110における操舵角目標値演算処理を図6に示すフローチャートに基づいて説明する。
S111では、S100で取得した車速Vspdおよびステアリングホイール角θhを読み込む。
S112では、車速Vspdに基づき、増速比zを取得する。本実施形態では、車速Vspdと増速比zとの関係が、図9に示すマップとして記憶されている。
なお、増速比zは、ステアリングホイール角θhとピニオン角θpとの比であり、本実施形態では、本実施形態では、ステアリングホイール角θhに増速比zを乗じることによりピニオン角θpが算出されるものとする。また、増速比zが1であるとき、ステアリングホイール角θhとピニオン角θpとが一致する。なお、上述の通り、差動減速機構30の作用により、入力軸11の回転方向と出力軸21の回転方向とは反対方向となるので、例えば増速比が1のとき、ステアリングホイール8側からみて入力軸11が右方向にθx回転したとすると、出力軸21が左方向にθx回転する、といった具合である。
図5に戻り、S113では、増速比zおよびステアリングホイール角θhに基づき、操舵角目標値θt*を算出する。操舵角目標値θt*は、以下の式(1)により算出される。
θt*=z×n1×θh …(1)
ただし、n1は、ステアリングホイール角θhに対する操舵輪7の操舵角θtの変化量であって、ギア比等によって規定される所定の定数である。
続いて、S120における操舵角フィードバック制御演算処理を図7に示すフローチャートに基づいて説明する。
S121では、S100にて取得した操向制御モータ55の回転角θm、および、S113にて算出された操舵角目標値θt*を読み込む。
S122では、操舵輪7の操舵角θtを算出する。操舵角θtは、以下の式(2)により算出される。
θt=θm×n2 …(2)
ただし、n2は、操向制御モータ55の回転角θmに対する操舵輪7の操舵角θtの変化量であって、ギア比等によって規定される所定の定数である。
S123では、操向制御モータ55に印加する電圧指令値Vm2を算出する。電圧指令値Vm2は、S122で算出された操舵輪7の操舵角θtとS113にて算出された操舵角目標値θt*とに基づき、PI制御によりフィードバック制御される。操向制御モータ55における比例ゲインをKP2とし、積分ゲインをKI2とすると、電圧指令値Vm2は、以下の式(3)により算出される。
Vm2=KP2×(θt*−θt)+KI2×∫(θt*−θt)dt …(3)
続いて、S130におけるPMW指令値演算処理を図8に基づいて説明する。
S131では、S123にて算出された電圧指令値Vm2を読み込む。
S132では、操向制御モータ55におけるPWM指令値P2を算出する。バッテリ電圧をVbとすると、PWM指令値P2は、以下の式(4)により算出される。
P2=Vm2/Vb×100 …(4)
操向制御モータ制御部75では、S132にて算出されたPWM指令値P2に基づき、操向制御インバータ76を構成するスイッチング素子のオン/オフのタイミングを制御することにより、操向制御モータ55の駆動を制御する(図5中のS140)。
次に、制御ECU70の反力付与モータ制御部71による反力付与モータ45の制御処理を図10〜図15に基づいて説明する。
反力付与モータ制御部71における反力付与モータ45の駆動制御に係る制御演算処理のメインフローを図10に示す。
S200では、車両CAN79から車速Vspdを取得する。また、トルクセンサ82から入力軸11に加わる入力軸トルクTsnを取得する。また、ステアリングホイール角センサ81からステアリングホイール角θhを取得する。
S210では、反力目標値演算処理を行う。
S220では、反力フィードバック制御演算処理を行う。
S230では、PWM指令値演算処理を行う。
S240では、S230にて算出されたPWM指令値に基づき、反力付与インバータ72を構成するスイッチング素子のオン/オフを切り替えることにより、反力付与モータ45の駆動を制御する。
ここで、S210における反力目標値演算処理を図11に示すフローチャートに基づいて説明する。
S211では、S200で取得した車速Vspdおよびステアリングホイール角θhを読み込む。
S212では、S211にて読み込んだステアリングホイール角θhからステアリングホイール角速度dθhを算出する。
S213では、負荷反力目標値Th1を算出する。負荷反力目標値Th1は、操舵輪7の駆動負荷に係る値である。本実施形態では、ステアリングホイール角θhと負荷反力目標値Th1との関係が、図14に示すマップとして記憶されている。なお、ステアリングホイール角θhと負荷反力目標値Th1との関係を示すマップは、車速Vspd毎に記憶されている。すなわち、車速Vspdに応じたマップに基づき、負荷反力目標値Th1を算出する。
S214では、摩擦反力目標値Th2を算出する。摩擦反力目標値Th2は、差動減速機構30等のメカ機構の静止摩擦力に係る値である。本実施形態では、ステアリングホイール角速度dθhと摩擦反力目標値Th2とが、図15に示すマップとして記憶されている。なお、ステアリングホイール角θhと摩擦反力目標値Th2との関係を示すマップは、車速Vspd毎に記憶されている。すなわち、車速Vspdに応じたマップに基づき、摩擦反力目標値Th2を算出する。
S215では、S213で算出された負荷反力目標値Th1およびS214で算出された摩擦反力目標値Th2から、反力目標値Th*を算出する。反力目標値Th*は、以下の式(5)により算出される。
Th*=Th1+Th2 …(5)
なお、本実施形態では操舵輪の駆動負荷とメカ機構の静止摩擦力に基づき反力目標値を生成しているが、必要に応じメカの動摩擦力(ステアリングホイール角速度dθhに比例する力)や慣性モーメント力(ステアリングホイール角速度dθhの微分値に比例する力)を加えて生成しても良く、本発明は趣旨を逸脱しない限りにおいて変形可能である。
続いて、S220における反力フィードバック制御演算処理を図12に示すフローチャートに基づいて説明する。
S221では、S200にて取得した入力軸11に加わる入力軸トルクTsn、および、S215にて算出された反力目標値Th*を読み込む。
S222では、反力付与モータ45に印加する電圧指令値Vm1を算出する。電圧指令値Vm1は、S221にて読み込まれたトルクセンサ82により取得される入力軸トルクTsnとS215にて算出された反力目標値Th*とに基づき、PI制御によりフィードバック制御される。反力付与モータ45における比例ゲインをKP1とし、積分ゲインをKI1とすると、電圧指令値Vm1は、以下の式(6)により算出される。
Vm1=KP1×(Th*−Tsn)+KI1×∫(Th*−Tsn)dt
…(6)
続いて、S230におけるPWM指令値演算処理を図13に基づいて説明する。
S231では、S222にて算出された電圧指令値Vm1を読み込む。
S232では、反力付与モータ45におけるPWM指令値P1を算出する。バッテリ電圧をVbとすると、PWM指令値P1は、以下の式(7)により算出される。
P1=Vm1/Vb×100 …(7)
反力付与モータ制御部71では、S232にて算出されたPWM指令値P1に基づき、反力付与インバータ72を構成するスイッチング素子のオン/オフのタイミングを制御することにより、反力付与モータ45の駆動を制御する(図10中のS240)。
以上詳述したように、操舵制御装置1は、入力軸11と、出力軸21と、ステアリングギアボックス部6と、ステアリングホイール角センサ81と、操向制御部5と、操舵反力付与部3と、を備える。入力軸11は、乗員により操舵されるステアリングホイール8に連結される。出力軸21は、入力軸11と相対回転可能に設けられる。ステアリングギアボックス部6は、出力軸21の回転運動を直線運動に変換し、操舵輪7を揺動させて操舵角θtを変化させる。ステアリングホイール角センサ81は、ステアリングホイール8の操舵により変化する入力軸11の操作量としてステアリングホイール角θhを検出する。操向制御部5は、操向制御モータ55を有し、ステアリングホイール角θhに基づいて操向制御モータ55を制御することにより操舵輪7の操舵角θtを制御する。操舵反力付与部3は、操向制御部5よりもステアリングホイール8側に設けられる。また、操舵反力付与部3は、入力軸11の回転を出力軸21へ伝達する差動減速機構30、および、差動減速機構30を構成する差動減速ウォーム44を駆動する反力付与モータ45を有し、反力付与モータ45を駆動することにより、ステアリングホイール8に操舵反力を付与する。
本実施形態では、ステアリングホイール8と操舵輪7とは、通常時においても、入力軸11、差動減速機構30、出力軸21、およびステアリングギアボックス部6等により機械的に連結されている。また、操舵輪7の操舵角θtは、操向制御部5の操向制御モータ55の駆動を制御することにより、電気的に制御されており、所謂ステアバイワイヤの機能を備えている。すなわち、本実施形態の操舵制御装置1は、ステアバイワイヤの機能を備えつつ、ステアリングホイール8と操舵輪7とが機械的に連結されているセミバイワイヤ型のステアリングシステムであるといえる。本実施形態では、通常時においてもステアリングホイール8と操舵輪7とが機械的に連結されているので、フェイルセーフ手段を別途設ける必要がなく、完全バイワイヤシステムよりもシステムを簡素化することができる。また、操向制御部5よりもステアリングホイール8側に差動減速機構30を有する操舵反力付与部3が設けられ、反力付与モータ45によりステアリングホイール8側へ付与される操舵反力を制御しているので、従来のEPS装置と比較して、ステアリングホイール8へ付与される操舵反力を適切に制御することができる。また例えば車両の自動走行を考慮したとき、従来のEPS装置ではステアリングホイール8と操舵輪7とが機械的に連結されていることに伴う人間の干渉が避けられないが、本実施形態の操舵制御装置1では、入力軸11と出力軸21との間に反力付与モータ45により駆動される差動減速機構30を有しているので、入力軸11と出力軸21との連動性を除去し、人間の干渉を低減することができる。
差動減速機構30は、反力付与モータ45により回転駆動される差動減速ウォーム44、および、差動減速ウォーム44に噛み合う差動減速ウォームホイール43を有する。本実施形態では、差動減速ウォーム44の回転により差動減速ウォームホイール43は回転するが、差動減速ウォームホイール43の回転により差動減速ウォーム44は回転しないようにセルフロック可能なリード角が設定されており、差動減速ウォームホイール43と差動減速ウォーム44とによりセルフロック機構をなしている。差動減速ウォームホイール43と差動減速ウォーム44とがセルフロックされているとき、入力軸11と出力軸21との回転数の比が固定される。本実施形態では、通常時においてもステアリングホイール8と操舵輪7とが機械的に連結されているので、セルフロック機構により入力軸11と出力軸21との回転数の比を固定することにより、別途、機械的連結機構を加えることなく容易にフェイルセーフを実現することができる。特に、本実施形態では、差動減速ウォームホイール43および差動減速ウォーム44のリード角を適切に設定することによるセルフロック機構をなしているので、入力軸11と出力軸21との回転数の比を固定するための部材を別途設ける必要がないので、部品点数を低減することができる。
また、反力付与モータ45は、入力軸11に生じる入力軸トルクTsnに基づいて制御される。これにより、入力軸トルクTsnに基づき、操舵反力を適切に制御することができる。本実施形態では、入力軸トルクTsnを検出するトルクセンサ82を備えている。これにより、入力軸トルクTsnが直接的に検出されるので、精度よく操舵反力を制御することができる。
また、反力付与モータ45は、ステアリングホイール角センサ81により取得されるステアリングホイール角θhに基づいて制御される。ステアリングホイール角θhと操舵輪7の転舵力との間には相関関係があるため、ステアリングホイール角θhに基づいて反力付与モータ45を駆動して操舵反力を制御することにより、車両の操作性を向上することができる。
制御ECU70は、車両の走行速度に関する走行速度情報、操舵輪7と路面との間に生じる回転力に関する操舵輪回転力情報、および車両のモーメントに関する車両モーメント情報を含む車両の状態に関する車両状態情報を取得する。本実施形態では、反力付与モータ45は、車速Vspdに基づいて制御される。これにより、車両の状態に応じてステアリングホイール8側へ付与される操舵反力を適切に制御することができる。また、操向制御モータ55は、車速Vspdに基づいて制御される。これにより、車両の状態に応じて操舵輪7の操舵角θtを適切に制御することができる。特に、操向制御モータ55の制御に係り、車速Vspdが小さいときには増速比zが大きく、車速Vspdが大きいときには増速比zが小さい。これにより、低速時におけるステアリングホイール8の取り回し性向上と、高速時における直進安定性向上を両立させることが出来る。
なお、本実施形態では、制御ECU70が「状態情報取得手段」に対応している。
(第2実施形態)
本発明の第2実施形態は、反力付与モータ45の制御処理のみが異なっているので、反力付与モータ45の制御処理を中心に説明し、その他の説明は省略する。
第2実施形態における制御部70の反力付与モータ制御部71による反力付与モータ45の制御処理を図16および図17等に基づいて説明する。
S300では、車両CAN79から車速Vspdを取得する。また、反力付与モータ45に通電されているモータ電流Imを取得する。このモータ電流Imが「モータに通電される通電量」に対応している。また、ステアリングホイール角センサ81からステアリングホイール角θhを取得する。
S310では反力目標値演算処理を行う。反力目標値演算処理は、第1実施形態と同様であり、図11に示す処理が実行される。
S320では、反力フィードバック制御演算処理を行う。
S330では、PWM指令値演算処理を行う。PWM指令値演算処理は、第1実施形態と同様であり、図13に示す処理が実行される。
S340では、S330にて算出されたPWM指令値に基づき、反力付与インバータ72を構成するスイッチング素子のオン/オフを切り替えることにより、反力付与モータ45の駆動を制御する。
ここで、S320における反力フィードバック制御演算処理を図17に示すフローチャートに基づいて説明する。
S321では、S215にて算出された反力目標値Th*、および、S300で取得したモータ電流Imを読み込む。
S322では、モータ電流Imに基づき、入力軸11に加わる入力軸トルク推定値Thcを算出する。入力軸トルク推定値Thcは、以下の式(8)により算出される。
Thc=Im×Ktm×n3 …(8)
ただし、Ktmは、モータトルク定数であり、n3は、入力軸11の回転数に対応する反力付与モータ45の回転数である。Ktmおよびn3は、いずれも所定の定数である。
S323では、反力付与モータ45に印加する電圧指令値Vm1を算出する。電圧指令値Vm1は、S322にて算出された入力軸トルク推定値ThcとS215にて算出された反力目標値Th*とに基づき、PI制御によりフィードバック制御される。反力付与モータ45における比例ゲインをKP1とし、積分ゲインをKI1とすると、電圧指令値Vm1は、以下の式(9)により算出される。
Vm1=KP1×(Th*−Thc)+KI1×∫(Th*−Thc)dt
…(9)
本実施形態では、上記実施形態と同様の効果を奏する他、入力軸トルクは、反力付与モータ45に通電されるモータ電流Imに基づいて推定され、入力軸トルク推定値Thcが算出され、この入力軸トルク推定値Thcに基づいて操舵反力を制御している。これにより、トルクセンサ82を省略することができるので、部品点数を低減することができる。
(他の実施形態)
他の実施形態では、操舵輪回転力情報に基づき、例えば操舵輪回転力情報とステアリングホイール8に付与する操舵反力とをマップとして記憶しておき、このマップに基づき、反力付与モータを制御してもよい。車両モーメント情報に基づき、例えば車両モーメント情報とステアリングホイール8に付与する操舵反力とをマップとして記憶しておき、このマップに基づき、反力付与モータを制御してもよい。これにより反力付与モータを制御して操舵反力を制御することにより、轍や横風等のロードインフォメーションを運転者にフィードバックすることができる。また、操舵輪回転力情報に基づき、操向制御モータを制御してもよい。車両モーメント情報に基づき、操向制御モータを制御してもよい。
また、上記実施形態では、車両CANから車速を取得したが、車輪速センサにより検出される車輪速から車速を算出してもよい。
上記実施形態では、差動減速ウォーム44の回転により差動減速ウォームホイール43は回転するが、差動減速ウォームホイール43の回転により差動減速ウォーム44は回転しないようにセルフロック可能なリード角が設定されており、差動減速ウォームホイール43と差動減速ウォーム44とがセルフロック機構をなしていた。参考形態では、差動減速機構は、ウォームギアを駆動することにより入力軸と出力軸との回転数の比を変更可能な差動装置であって、ウォームギアをセルフロックするように設計されていれば、例えば遊星歯車を用いたもの等、どのような装置であってもよい。入力軸と出力軸との回転数の比を固定するための固定手段は、セルフロック機構に限らず、例えばロックピンのように、入力軸と出力軸21との回転数の比を固定するための部材を別途設けてもよい。
また、上記実施形態では、操舵反力付与部と操向制御部とが一体にモジュール化されていたが、他の実施形態では、一体にモジュール化されておらず、操舵反力付与部が操向制御部よりも操舵部材側であれば、別々に設けられていてもよい。例えば、操向制御部をステアリングラックバーに設けてもよい。
上記実施形態の操舵制御装置では、ステアリングギアボックス部は、左右の操舵輪の回転中心を結ぶ直線よりも車両後方側に設けられていた。ここで、他の実施形態における操舵制御装置を図18に示す。なお、上記実施形態と実質的に同一の構成には同一の符号を付して説明を省略する。
図18に示す操舵制御装置100のように、ステアリングギアボックス部6は、左右の操舵輪7の回転中心を結ぶ直線Lよりも車両前方側に設けてもよい。図18に示す例において、左右の操舵輪7の回転中心を結ぶ直線Lとステアリングピニオン61との間の距離Aは、左右の操舵輪7の回転中心を結ぶ直線Lとステアリングラックバー63との距離Bよりも長くなっている。
図18に示す例においても、入力軸11と出力軸21との間に設けられるディファレンシャルギア31の作用により出力軸21は入力軸11の回転方向と反対方向に回転するので、ステアリングホイール8が左方向に操舵されると、ピニオン軸62側から見てステアリングピニオン61が右回りに回転し、ステアリングラックバー63は左方向に移動し、車両が左方向へ進行するように操舵輪7の舵角が変更される。
また、ステアリングホイール8が右方向に操舵されると、ピニオン軸62側から見てステアリングピニオン61が左回りに回転し、ステアリングラックバー63は右方向に移動し、車両が右方向に進行するように操舵輪7の舵角が変更される。
このように、上記実施形態と同様、左右の操舵輪7の回転中心を結ぶ直線Lとステアリングピニオン61との間の距離Aを左右の操舵輪7の回転中心を結ぶ直線Lとステアリングラックバー63との距離Bよりも長くする、すなわちA>Bとすることにより、出力軸21、シャフト24、およびステアリングピニオン61の回転方向とは反対方向に操舵輪7が操舵され、ステアリングホイール8の回転方向と操舵輪7の舵角の向きを整合させている。
以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。
1・・・操舵制御装置
2・・・コラム軸
3・・・操舵反力付与部
5・・・操向制御部
6・・・ステアリングギアボックス部
7・・・操舵輪
8・・・ステアリングホイール(操舵部材)
10・・・操舵制御モジュール
11・・・入力軸
12・・・ハウジング
21・・・出力軸
30・・・差動減速機構
31・・・ディファレンシャルギア
41・・・ウォームギア
43・・・差動減速ウォームホイール(第2の歯車)
44・・・差動減速ウォーム(第1の歯車)
45・・・反力付与モータ(第2のモータ)
50・・・歯車部
55・・・操向制御モータ(第1のモータ)
70・・・制御ECU(走行情報取得手段)
71・・・反力付与モータ制御部
72・・・反力付与インバータ
75・・・操向制御モータ制御部
76・・・操向制御インバータ
79・・・車両CAN
81・・・ステアリングホイール角センサ(操作量検出手段)
82・・・トルクセンサ

Claims (14)

  1. 乗員により操舵される操舵部材に連結可能な入力軸と、
    前記入力軸と相対回転可能に設けられる出力軸と、
    前記出力軸の回転運動を直線運動に変換し、操舵輪を揺動させて操舵角を変化させるステアリングギアボックス部と、
    前記操舵部材の操舵により変化する前記入力軸の操作量を検出する操作量検出手段と、
    第1のモータを有し、前記操作量検出手段により検出された前記入力軸の操作量に基づいて前記第1のモータを駆動することにより前記操舵輪の前記操舵角を制御する操向制御部と、
    前記操向制御部よりも前記操舵部材側に設けられ、前記入力軸と前記出力軸とを連結し前記入力軸の回転を前記出力軸へ伝達する差動減速機構、および、前記差動減速機構を駆動する第2のモータを有し、前記第2のモータを駆動することにより前記操舵部材に操舵反力を付与する操舵反力付与部と、
    を備え、
    前記差動減速機構は、ディファレンシャルギア機構であって、前記第2のモータにより回転駆動される第1の歯車、および、前記第1の歯車と噛み合う第2の歯車を有し、
    前記ディファレンシャルギア機構は、前記第1の歯車の回転駆動により回転駆動される第2の歯車、前記入力軸と接続される入力ギア、前記出力軸と接続される出力ギア、および、前記入力軸と前記出力軸とに噛み合うピニオンギアから構成されることを特徴とする操舵制御装置。
  2. 前記操舵反力付与部は、前記入力軸と前記出力軸との回転数の比を固定する固定手段を有することを特徴とする請求項1に記載の操舵制御装置。
  3. 前記第2のモータは、前記入力軸に生じる入力軸トルクに基づいて制御されることを特徴とする請求項1または2のいずれか一項に記載の操舵制御装置。
  4. 前記入力軸トルクを検出するトルクセンサを備えることを特徴とする請求項3に記載の操舵制御装置。
  5. 前記入力軸トルクは、前記第2のモータに通電される通電量に基づいて推定されることを特徴とする請求項3に記載の操舵制御装置。
  6. 前記第2のモータは、前記入力軸の操作量に基づいて制御されることを特徴とする請求項1〜5のいずれか一項に記載の操舵制御装置。
  7. 車両の状態に関する状態情報を取得する状態情報取得手段をさらに備えることを特徴とする請求項1〜6のいずれか一項に記載の操舵制御装置。
  8. 前記第2のモータは、前記状態情報取得手段により取得される前記状態情報に基づいて制御されることを特徴とする請求項7に記載の操舵制御装置。
  9. 前記第1のモータは、前記状態情報取得手段により取得される前記状態情報に基づいて制御されることを特徴とする請求項7または8に記載の操舵制御装置。
  10. 前記状態情報は、前記車両の走行速度に関する走行速度情報を含むことを特徴とする請求項7〜9のいずれか一項に記載の操舵制御装置。
  11. 前記状態情報は、前記操舵輪と路面との間に生じる回転力に関する操舵輪回転力情報を含むことを特徴とする請求項7〜10のいずれか一項に記載の操舵制御装置。
  12. 前記状態情報は、前記車両のモーメントに関する車両モーメント情報を含むことを特徴とする請求項7〜11のいずれか一項に記載の操舵制御装置。
  13. 前記操舵反力付与部と前記操向制御部とは、前記出力軸を挟んで反対側に設けられることを特徴とする請求項1〜12のいずれか一項に記載の操舵制御装置。
  14. 前記操舵反力付与部と前記操向制御部とは、一体に形成されることを特徴とする請求項1〜13のいずれか一項に記載の操舵制御装置。
JP2013122993A 2013-06-11 2013-06-11 操舵制御装置 Pending JP2013212837A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013122993A JP2013212837A (ja) 2013-06-11 2013-06-11 操舵制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013122993A JP2013212837A (ja) 2013-06-11 2013-06-11 操舵制御装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010247549A Division JP2012096722A (ja) 2010-11-04 2010-11-04 操舵制御装置

Publications (1)

Publication Number Publication Date
JP2013212837A true JP2013212837A (ja) 2013-10-17

Family

ID=49586520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013122993A Pending JP2013212837A (ja) 2013-06-11 2013-06-11 操舵制御装置

Country Status (1)

Country Link
JP (1) JP2013212837A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200034383A (ko) * 2018-09-21 2020-03-31 주식회사 만도 전동식 동력 보조 조향장치
CN112585055A (zh) * 2018-06-29 2021-03-30 株式会社万都 电动式转向装置
JP2021510131A (ja) * 2018-01-04 2021-04-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 自動車用の操舵システムを動作させるための方法及び装置、操舵システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206553A (ja) * 1993-01-11 1994-07-26 Aisin Seiki Co Ltd 車輌の副操舵機構付ステアリング装置
JP2002160649A (ja) * 2000-11-28 2002-06-04 Honda Motor Co Ltd 操舵装置
JP2003154951A (ja) * 2001-11-19 2003-05-27 Mitsubishi Electric Corp 車両用操舵装置
JP2005221053A (ja) * 2004-02-09 2005-08-18 Hitachi Ltd 動力伝達装置および車両の操舵装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206553A (ja) * 1993-01-11 1994-07-26 Aisin Seiki Co Ltd 車輌の副操舵機構付ステアリング装置
JP2002160649A (ja) * 2000-11-28 2002-06-04 Honda Motor Co Ltd 操舵装置
JP2003154951A (ja) * 2001-11-19 2003-05-27 Mitsubishi Electric Corp 車両用操舵装置
JP2005221053A (ja) * 2004-02-09 2005-08-18 Hitachi Ltd 動力伝達装置および車両の操舵装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021510131A (ja) * 2018-01-04 2021-04-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 自動車用の操舵システムを動作させるための方法及び装置、操舵システム
JP7026803B2 (ja) 2018-01-04 2022-02-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 自動車用の操舵システムを動作させるための方法及び装置、操舵システム
US11407446B2 (en) 2018-01-04 2022-08-09 Robert Bosch Gmbh Method and device for operating a steering system for a motor vehicle, steering system
CN112585055A (zh) * 2018-06-29 2021-03-30 株式会社万都 电动式转向装置
KR20200034383A (ko) * 2018-09-21 2020-03-31 주식회사 만도 전동식 동력 보조 조향장치
KR102104456B1 (ko) * 2018-09-21 2020-04-24 주식회사 만도 전동식 동력 보조 조향장치

Similar Documents

Publication Publication Date Title
JP2012096722A (ja) 操舵制御装置
US8433477B2 (en) Steering control apparatus
CN111661143B (zh) 转向控制装置和用于控制转向系统的方法
JP5948843B2 (ja) 車両用操舵装置
JP6435080B1 (ja) 操舵装置
JP2012040948A (ja) 操舵制御装置
US9481391B2 (en) Electric power steering apparatus
JP5017423B2 (ja) 操舵制御装置
JP2018020743A (ja) 車両用操舵装置
JP2012045978A (ja) 車両用操舵装置
JP2013212837A (ja) 操舵制御装置
US8554413B2 (en) Steering control apparatus
JP5311102B2 (ja) 車両用操舵装置
JP5332213B2 (ja) ステアバイワイヤシステムの診断装置およびステアバイワイヤシステムの診断方法
JP2011121474A (ja) 車両用操舵装置
JP6467175B2 (ja) 電動パワーステアリング装置
JP4254671B2 (ja) 車両用操舵装置
JP2007190938A (ja) 車両用ステアリングシステム
US20240157999A1 (en) Methods and systems for a steer-by-wire system with sensor devices
JP2006175925A (ja) 車両用操舵装置
JP2007269219A (ja) 車両用操舵装置
JP2010047111A (ja) 車両用操舵装置
JP2007216731A (ja) 車両操舵装置
JP2005145254A (ja) 車両用操舵装置
JP2004322695A (ja) 車両用操舵装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140703