JP2013199802A - 路面たわみ測定装置と測定方法 - Google Patents

路面たわみ測定装置と測定方法 Download PDF

Info

Publication number
JP2013199802A
JP2013199802A JP2012069544A JP2012069544A JP2013199802A JP 2013199802 A JP2013199802 A JP 2013199802A JP 2012069544 A JP2012069544 A JP 2012069544A JP 2012069544 A JP2012069544 A JP 2012069544A JP 2013199802 A JP2013199802 A JP 2013199802A
Authority
JP
Japan
Prior art keywords
load
road surface
distance
deflection
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012069544A
Other languages
English (en)
Other versions
JP5923358B2 (ja
Inventor
Takashi Akimoto
隆 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichireki Co Ltd
Original Assignee
Nichireki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichireki Co Ltd filed Critical Nichireki Co Ltd
Priority to JP2012069544A priority Critical patent/JP5923358B2/ja
Publication of JP2013199802A publication Critical patent/JP2013199802A/ja
Application granted granted Critical
Publication of JP5923358B2 publication Critical patent/JP5923358B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Road Repair (AREA)

Abstract

【課題】 荷重の負荷点を含めた一定領域内の路面のたわみ量を測定装置を移動させながら測定することができる路面たわみ測定装置と測定方法を提供することを課題とする。
【解決手段】 車両と、前記車両に搭載された荷重輪、荷重負荷装置、距離センサを備え、前記荷重輪は路面と接触し、前記車両とともに走行する荷重輪であり、前記荷重負荷装置は前記荷重輪に荷重を負荷する荷重負荷装置であり、前記距離センサは、一回の計測によって、前記距離センサから、前記車両の走行方向に沿った路面上の複数個の地点までの距離を計測する非接触式の距離センサであり、前記複数個の地点を結んで形成される線状領域は前記荷重輪と路面との接触点よりも前記車両の走行方向前方及び後方に延在している、路面たわみ測定装置又は測定方法を提供することによって解決する。
【選択図】 図1

Description

本発明は路面たわみ測定装置と測定方法に関し、より詳細には、車両を走行させながら、路面のたわみを連続して測定する路面たわみ測定装置と測定方法に関する。
従来から路面のたわみを測定する装置は種々提案されている。例えば、特許文献1〜3には、FWD(Falling Weight Deflectionmeter)として、路面又は地盤に衝撃荷重を加え、そのときの路面又は地盤のたわみ量を求めることにより、路面又は地盤の支持力を評価するようにした装置が開示されている。しかし、これらの装置は、基本的に、測定対象となる路面又は地盤上に測定装置を停止させた状態で測定を行うものであり、測定時には他の車両等の通交を規制する交通規制が必要であるとともに、測定が点で行われるので、ややもすれば支持力不足の箇所を見落としてしまうという欠点がある。
一方、特許文献4には、移動式の路面たわみ測定装置が開示されている。この移動式の路面たわみ測定装置は、牽引車両によって測定装置を移動させながら路面に衝撃荷重を加え、そのときの路面のたわみを測定するものであり、従来の停止式のたわみ測定装置が有する上記の欠点がない点で優れている。しかし、特許文献4に開示されている移動式の路面たわみ測定装置は、衝撃荷重の負荷点の前後に配置された2つのたわみ測定センサからの出力を時間的にずらして位置的に重ね合わせ、両者の差分を取ることによって路面のたわみ量を求めているので、真に衝撃荷重の負荷点を中心とした一定領域内のたわみ量を求めているとは言い難い。また、たわみ測定センサとして、路面と直接接触して路面までの距離を計測するリニアゲージセンサが用いられているので、衝撃荷重による路面のたわみによってリニアゲージセンサ本体が移動しないように、リニアゲージセンサ本体をバネマス系で支持する必要があり、測定系の構造が複雑になるという不都合がある。
特開平4−366710号公報 特開2003−176504号公報 特開2007−205955号公報 特開2000−292330号公報
本発明は、上記従来の路面たわみ測定装置が有する欠点を解決するために為されたもので、簡単な構造で、荷重の負荷点を含めた一定領域内の路面のたわみ量を測定装置を移動させながら測定することができる路面たわみ測定装置と測定方法を提供し、さらには、コンピュータに前記の路面たわみ測定方法を実行させる手順を記載したコンピュータプログラムを提供することを課題とする。
本発明者は、上記の課題を解決すべく鋭意研究努力を重ねた。その結果、本発明者は、荷重の負荷点を含めた路面上の線状領域内にある複数個の地点までの距離を計測することができる非接触式の距離センサを用い、荷重の負荷前における路面までの距離を計測するとともに、荷重の負荷時における路面までの距離を計測し、両者を比較することによって、路面のたわみ量を測定装置を移動させながら連続して測定することができることを見出して本発明を完成した。
すなわち、本発明は、車両と、前記車両に搭載された荷重輪、荷重負荷装置、距離センサを備え、前記荷重輪は路面と接触し、前記車両とともに走行する荷重輪であり、前記荷重負荷装置は前記荷重輪に荷重を負荷する荷重負荷装置であり、前記距離センサは、一回の計測によって、前記距離センサから、前記車両の走行方向に沿った路面上の複数個の地点までの距離を計測する非接触式の距離センサであり、前記複数個の地点を結んで形成される線状領域は前記荷重輪と路面との接触点よりも前記車両の走行方向前方及び後方に延在している、路面たわみ測定装置を提供することによって、上記の課題を解決するものである。
本発明の路面たわみ測定装置においては、路面と接触しながら回転する荷重輪を介して荷重が路面に負荷されるので、荷重輪や荷重負荷装置を搭載した車両を走行させながら路面に衝撃荷重又は連続荷重を負荷することができる。また、本発明の路面たわみ測定装置においては、距離センサが非接触式の距離センサであるので、距離センサをバネマス系で支持する必要はなく、例えば車両のフレーム等に取り付ければ良いので、測定系の構造が簡単になる。さらに、本発明の路面たわみ測定装置においては、距離センサが距離を計測する複数個の地点を結んで形成される線状領域が前記荷重輪と路面との接触点よりも前記車両の走行方向前方及び後方に延在しているので、荷重の負荷点を中心とした一定範囲における路面のたわみを測定することが可能となる。なお、本発明の路面たわみ測定装置において、前記荷重輪や荷重負荷装置、距離センサなどが搭載された車両は、自走式の車両であっても良いし、牽引車両によって牽引される車両であっても良い。
本発明の路面たわみ測定装置は、その好適な一態様において、前記荷重輪が前記車両の走行方向と直交する方向に並置された2個の荷重輪で構成されており、前記線状領域が並置された2個の前記荷重輪と路面との接触点の間を、好ましくはその中間を、通過している。このように荷重輪が2個の荷重輪で構成されており、かつ、距離センサによって距離が計測される路面上の線状領域が、2個の荷重輪と路面との接触点の間、好ましくはその中間の地点を通過している場合には、荷重の負荷点における路面のたわみを測定することができるという利点が得られる。
また、本発明の路面たわみ測定装置の好適な一態様において、前記距離センサはレーザスキャナー又は前記車両の走行方向に沿って線状に配置された複数個の非接触式の距離センサである。
さらに、本発明の路面たわみ測定装置は、その好適な一態様において、前記車両の走行距離を計測する距離計と、制御装置を備え、前記荷重負荷装置が前記荷重輪に衝撃荷重を負荷する荷重負荷装置であり、前記制御装置は、
(a)前記荷重負荷装置を作動させて前記荷重輪に衝撃荷重を負荷する手段、
(b)前記衝撃荷重の負荷前に前記距離センサを作動させて前記複数個の地点までの距離を負荷前距離として計測する手段、前記負荷前距離に基づいて対応する地点の負荷前鉛直方向位置を求める手段、前記負荷前距離の計測のタイミングと前記距離計からの信号に基づいて、前記負荷前鉛直方向位置を路面上の位置と関連付ける手段、
(c)前記衝撃荷重の負荷時に前記距離センサを作動させて前記複数個の地点までの距離を負荷時距離として計測する手段、前記負荷時距離に基づいて対応する地点の負荷時鉛直方向位置を求める手段、前記負荷時距離の計測のタイミングと前記距離計からの信号に基づいて、前記負荷時鉛直方向位置を路面上の位置と関連づける手段、
(d)前記負荷前距離が計測される前記線状領域が、衝撃荷重の負荷時にその影響が及ぶたわみ領域を包含するように、前記線状領域の長さ、負荷前距離の計測から負荷時距離の計測までの時間、又は前記車両の走行速度のいずれか1つ又は2つ以上を調整又は設定する手段、それぞれ路面上の位置と関連づけられた前記負荷前鉛直方向位置と前記負荷時鉛直方向位置とに基づいて、路面のたわみ量を路面上の位置と関連づけて求める手段、
を備えている。このような本発明の路面たわみ測定装置によれば、適宜のタイミングで路面に衝撃荷重を負荷するとともに、その衝撃荷重の負荷前及び負荷時に前記距離センサによって路面上の複数個の点までの距離を計測することによって、前記車両を走行させながら、ほぼ連続的に路面のたわみ量を測定することができる。
路面のたわみ量を路面上の位置と関連づけて求める上記手段は、路面上の位置と関連づけられた前記負荷前鉛直方向位置に基づいて負荷前の路面プロファイルを求める手段と、路面上の位置と関連づけられた前記負荷時鉛直方向位置に基づいて負荷時の路面プロファイルを求める手段と、両プロファイルを比較する手段を含んでいるのが望ましい。負荷前鉛直方向位置が計測された複数個の地点と、負荷時鉛直方向位置が計測された複数個の地点とは、それらを結んで形成される線状領域としては一部重なるものの、路面上の位置としては必ずしも一致する訳ではないので、求められた鉛直方向位置に基づいて負荷前及び負荷時の路面プロファイルを求めておくことにより、両プロファイルを比較してたわみ量の測定を容易に行うことが可能となる。
また、本発明の路面たわみ測定装置は、その好適な他の一態様において、前記車両の走行距離を計測する距離計と、制御装置を備え、前記荷重負荷装置が前記荷重輪に連続荷重を負荷する荷重負荷装置であり、前記制御装置は、
(a)前記荷重負荷装置を作動させて前記荷重輪に連続荷重を負荷する手段、
(b)前記距離センサを周期的に作動させて前記複数個の地点までの距離を周期的に計測する手段、前記距離に基づいて対応する地点の鉛直方向位置を求める手段、前記周期的な計測のタイミングと前記距離計からの信号に基づいて、前記鉛直方向位置のそれぞれを路面上の位置と関連付ける手段、
(c)前記線状領域が、前記連続荷重の影響が及ぶたわみ領域と、前記連続荷重の影響が及ばない未負荷領域とを含むように前記線状領域の長さを設定する手段、
(d)前記距離センサによるm回目(mは整数で、m≧2)の計測における前記未負荷領域が、(m−1)回目及び(m+1)回目の計測における前記未負荷領域と路面上で連続するように、前記線状領域の長さ、前記距離センサによる計測の周期、又は前記車両の走行速度のいずれか1つ又は2つ以上を調整する手段、
(e)路面上の位置と関連づけられた前記たわみ領域における前記鉛直方向位置と、路面上の位置と関連づけられた前記未負荷領域における前記鉛直方向位置とに基づいて、路面のたわみ量を路面上の位置と関連づけて求める手段、
を備えている。このような本発明の路面たわみ測定装置によれば、路面に連続荷重を負荷するとともに、前記距離センサによって路面上の複数個の点までの距離を周期的に計測することによって、前記車両を走行させながら、連続的に路面のたわみ量を測定することができる。
路面のたわみ量を路面上の位置と関連づけて求める上記手段は、路面上の位置と関連づけられた前記たわみ領域における前記鉛直方向位置に基づいて荷重負荷時の路面プロファイルを求める手段と、路面上の位置と関連づけられた前記未負荷領域における前記鉛直方向位置に基づいて荷重未負荷領域の路面プロファイルを求める手段と、両プロファイルを比較する手段を含んでいるのが望ましい。
本発明は、さらに、車両と、前記車両に搭載された荷重輪、荷重負荷装置、距離センサ、及び距離計を用いて実行される路面たわみ測定方法であって、前記荷重輪は路面と接触し、前記車両とともに走行する荷重輪であり、前記荷重負荷装置は前記荷重輪に荷重を負荷する荷重負荷装置であり、前記距離センサは、一回の計測によって、前記距離センサから、前記車両の走行方向に沿った路面上の複数個の地点までの距離を計測する非接触式の距離センサであり、前記複数個の地点を結んで形成される線状領域は前記荷重輪と路面との接触点よりも前記車両の走行方向前方及び後方に延在しており、前記距離計は前記車両の走行距離を計測する距離計であり、下記工程(a)〜(f)を含む路面たわみ測定方法を提供することによって、上記の課題を解決するものである:
(a)前記荷重負荷装置を作動させて前記荷重輪に衝撃荷重を負荷する工程、
(b)前記衝撃荷重の負荷前及び負荷時に前記距離センサを作動させて前記複数個の地点までの距離をそれぞれ負荷前距離及び負荷時距離として計測する工程、
(c)前記負荷前距離及び前記負荷時距離に基づいて、それぞれ対応する地点の負荷前鉛直方向位置及び負荷時鉛直方向位置を求める工程、
(d)前記負荷前距離及び前記負荷時距離の計測のタイミングと前記距離計からの信号に基づいて、前記負荷前鉛直方向位置及び前記負荷時鉛直方向位置を路面上の位置と関連付ける工程、
(e)前記負荷前距離が計測される前記線状領域が、衝撃荷重の負荷時にその影響が及ぶたわみ領域を包含するように、前記線状領域の長さ、負荷前距離の計測から負荷時距離の計測までの時間、又は前記車両の走行速度のいずれか1つ又は2つ以上を調整又は設定する工程、
(f)それぞれ路面上の位置と関連づけられた前記負荷前鉛直方向位置と前記負荷時鉛直方向位置とに基づいて、路面のたわみ量を路面上の位置と関連づけて求める工程。
さらに、本発明は、車両と、前記車両に搭載された荷重輪、荷重負荷装置、距離センサ、及び距離計を用いて実行される路面たわみ測定方法であって、前記荷重輪は路面と接触し、前記車両とともに走行する荷重輪であり、前記荷重負荷装置は前記荷重輪に荷重を負荷する荷重負荷装置であり、前記距離センサは、一回の計測によって、前記距離センサから、前記車両の走行方向に沿った路面上の複数個の地点までの距離を計測する非接触式の距離センサであり、前記複数個の地点を結んで形成される線状領域は前記荷重輪と路面との接触点よりも前記車両の走行方向前方及び後方に延在しており、前記距離計は前記車両の走行距離を計測する距離計であり、下記工程(a)〜(g)を含む路面たわみ測定方法を提供することによっても、上記の課題を解決するものである:
(a)前記荷重負荷装置を作動させて前記荷重輪に連続荷重を負荷する工程、
(b)前記距離センサを周期的に作動させて前記複数個の地点までの距離を周期的に計測する工程、
(c)前記距離に基づいて対応する地点の鉛直方向位置を求める工程、
(d)前記周期的な計測のタイミングと前記距離計からの信号に基づいて、前記鉛直方向位置のそれぞれを路面上の位置と関連付ける工程、
(e)前記線状領域が、前記連続荷重の影響が及ぶたわみ領域と、前記連続荷重の影響が及ばない未負荷領域とを含むように前記線状領域の長さを設定する工程、
(f)前記距離センサによるm回目(mは整数で、m≧2)の計測における前記未負荷領域が、(m−1)回目及び(m+1)回目の計測における前記未負荷領域と路面上で連続するように、前記線状領域の長さ、前記距離センサによる計測の周期、又は前記車両の走行速度のいずれか1つ又は2つ以上を調整する工程、
(g)路面上の位置と関連づけられた前記たわみ領域における前記鉛直方向位置と、路面上の位置と関連づけられた前記未負荷領域における前記鉛直方向位置とに基づいて、路面のたわみ量を路面上の位置と関連づけて求める工程。
加えて、本発明は、コンピュータに本発明の路面プロファイル測定方法を実行させる手順を記載したコンピュータプログラムを提供することによって、上記の課題を解決するものである。
本発明の路面たわみ測定装置及び路面たわみ測定方法によれば、簡単な構造で、荷重の負荷点を含めた一定領域内の路面のたわみ量を測定装置を搭載した車両を移動させながら、連続的に測定することができるという利点が得られる。また、本発明のコンピュータプログラムによれば、本発明の路面たわみ測定方法をコンピュータに容易に実行させることができるという利点が得られる。
本発明の路面たわみ測定装置の一例を示す図である。 距離センサによって路面上のn個の点までの距離が計測される様子を示す図である。 計測された路面上の地点までの距離と当該地点の鉛直方向位置との関係を示す図である。 荷重輪及び距離センサとその周辺部だけを拡大して示す図である。 衝撃荷重負荷時の計測状況を示す図である。 路面上の位置Xと鉛直方向位置Zとの関係を示す図である。 連続荷重負荷時の計測状況を示す図である。
以下、図面を用いて本発明を詳細に説明するが、本発明が図示のものに限られないことは勿論である。
図1は本発明の路面たわみ測定装置の一例を示す図である。図1において、1は路面たわみ測定装置であり、2は路面たわみ測定装置1を構成する車両、3は荷重輪、4は荷重負荷装置、5は重錘、6は重錘5を上下動自在に支持する支持軸、7は重錘5の受け台、8は重錘の下面と当接して重錘5を支持する支持爪である。支持爪8は荷重負荷装置4によって昇降可能に支持されている。受け台7には支持爪8の昇降経路にあたる部分に切り欠き部が設けられているので、支持爪8は、受け台7の部分を通過して受け台7の下方から上方まで昇降することができる。荷重負荷装置4は、後述する制御装置からの命令に基づいて、支持爪8を受け台7よりも下方まで下降させて、支持爪8によって支持されている重錘5を受け台7上に載置して荷重輪3に連続荷重を付与したり、支持爪8を受け台7の下方から受け台7よりも上方まで上昇させて、受け台7上に載置されている重錘5を受け台7よりも上方に持ち上げることができる。さらには、荷重負荷装置4は、後述する制御装置からの命令に基づいて、重錘5を支持している支持爪8を開拡若しくは下降自在の状態として、重錘5を受け台7に向かって自由落下させ、荷重輪3に衝撃荷重を付与することができる。
9は距離センサ、10は距離センサ9を取り付ける台座、11a、11bは、それぞれ車両2の前輪タイヤ及び後輪タイヤ、12は距離計、13はGPS用アンテナ、14はGPS装置、15は制御装置、16は記憶装置である。荷重負荷装置4、距離センサ9、距離計12、GPS装置14、及び記憶装置16は、それぞれ制御装置15と接続されており、相互間で命令や信号などの情報のやり取りができるようになっている。Rは路面である。
距離センサ9としては、1回の測定で、車両2の走行方向に沿った路面上の複数個の地点までの距離を計測できるセンサであればどのようなものを用いても良く、例えば、赤外線、レーザ、超音波などを対象物に向かって照射して戻ってくるまでの時間や位相のズレに基づいて対象物までの距離を計測する非接触式のものが好ましい。距離センサ9としてはレーザスキャナーを用いるのが好適であり、距離センサ9としてレーザスキャナーを用いる場合には、レーザスキャナーの1回の走査が1回の測定に相当し、レーザスキャナーの1回の走査でレーザスキャナーから路面R上の複数個の地点までの距離が計測されることになる。距離センサ9が計測した車両2の走行方向に沿った路面上の複数個の地点までの距離を表す信号は制御装置15に送信され、制御装置15は、それらの信号を適宜、記憶装置16に記憶させる。
距離センサ9が1回の測定で計測する路面上の複数個の地点としては、荷重輪3と路面Rとの接触点又はその近傍、及びその車両2の走行方向前後の少なくとも3地点が必要であり、上記複数個をn個(ただしnは整数)とすると、n≧3である。ただし、路面のたわみ量の測定精度が高まるのでnは大きい方が好ましく、通常はn≧50であり、好ましくはn≧100、より好ましくはn≧200である。nの上限には特段の制限はないが、車両2に搭載される距離センサ9の路面Rからの高さを考慮すると、400以下とするのが現実的で好ましい。
距離計12は、例えば車両2の後輪タイヤ11bの車軸に取り付けられたロータリーエンコーダで構成され、後輪タイヤ11bの車軸の回転角度を検出して、その回転角度と後輪タイヤ11bの直径とから、車両2の走行距離を計測し、距離センサ9の路面上の位置Xを表す信号として制御装置15に送信する。また、距離計12としては、例えばレーザドップラ速度計を用いる非接触型の距離計を用いても良い。この場合には、レーザドップラ速度計によって後輪タイヤ11bの車軸又は後輪タイヤ11b自体の回転速度を検出し、検出した回転速度を時間に対して積分して、その積分値と後輪タイヤ11bの直径とから車両2の走行距離を計測して、走行方向位置Xを表す信号として制御装置15に送信すれば良い。距離計12としては、後輪タイヤ11bの磨り減りによる直径の変化に対応できるように、直径の設定値を変更できるものが望ましい。なお、後輪タイヤ11bの車軸の回転角度又は回転速度と後輪タイヤ11bの直径とに基づく車両2の走行距離の計算は距離計12において行っても良いし、制御装置15において行うようにしても良い。車両2の走行距離の計算を制御装置15において行う場合には、距離計12は後輪タイヤ11bの車軸の回転角度又は回転速度だけを検出して、その信号を制御装置15に送信すれば良い。一方、GPS用アンテナ13で受信されたGPS信号はGPS装置14で解析され、車両2の現在位置を表す信号として制御装置15に送信される。制御装置15は、距離計12からの信号、又は距離計12からの信号に基づいて計算した車両2の走行距離、及び、GPS装置14からの信号を適宜、記憶装置16に記憶させる。
図2は、距離センサ9がレーザスキャナーである場合を例に、距離センサ9によって1回の測定で路面R上のn個の地点までの距離が計測される状態を示す図である。図2において、17は距離センサ9から照射されるレーザ光である。距離センサ9は、図中矢印で示す車両2の走行方向に沿った路面R上のn個の地点Q〜Qが順次走査されるように路面Rに向かってレーザ光17を照射し、距離センサ9から路面上の各地点Q〜Qまでの距離を計測する。図2に示すとおり、地点Q〜Qの中では、地点Qが車両2の走行方向に沿った先端、地点Qが後端に位置しており、地点Q〜Qを結ぶ直線状の領域が線状領域Mを形成している。図1に示すように、距離センサ9は、荷重輪3の軸心と同一の鉛直面内に位置しているので、地点Q〜Qを結んで形成される線状領域Mは、荷重輪3と路面Rとの接触点よりも車両2の走行方向前方及び後方に延在している。線状領域Mが荷重輪3と路面Rとの接触点よりも車両2の走行方向前方及び後方に延在する長さは、前方と後方とで異なっていても良いが、前方と後方に同じ長さで延在しているのが好ましい。また、レーザ光17は地点Q〜Qを順次走査できれば良く、走査方向に特段の制限はない。車両2の前方から後方に向かって走査しても良いし、後方から前方に向かって走査しても良く、測定の回ごとに逆方向に走査するようにしても良い。
図2において、αはレーザ光17の全走査角度を示している。距離センサ9は、レーザ光17を車両2の走行方向に沿って角度αの範囲で移動させて路面R上を走査し、角度βごとに路面Rまでの距離を計測する。結果として、距離センサ9は1回の走査、すなわち1回の測定で路面R上のn個の地点Q〜Qまでの距離L〜Lを計測する。つまり、n個の地点Q〜Qのうち任意の1地点Q(但し、sは整数で、1≦s≦n)に当たるレーザ光17と、隣接する地点QS+1に当たるレーザ光17の間の角度は図に示すとおりβであり、本例においては、α=β×(n−1)の関係にある。しかし、地点Q及び/又はQが走査範囲の内側にある場合には、α>β×(n−1)の関係となる。いずれにせよ、全走査角度α、角度β、及び個数nは、作業者が図示しない入出力装置を介して制御装置15に指令することによって、適宜設定、変更が可能である。
1−2は地点Qと地点Q間の水平距離を示し、WS−(S+1)は任意の地点Qと隣接する地点QS+1間の水平距離を示している。角度βが同じであっても、レーザ光17の鉛直方向からの角度が異なると隣接する2地点間の水平距離WS−(S+1)は異なる。水平距離WS−(S+1)は距離センサ9の直下が最も狭く、距離センサ9の直下から離れるにつれて順次大きくなる。一例として、角度αを120度、角度βを0.5度、距離センサ9と路面Rまでの垂直距離を30cmとした場合には、レーザ光17によって照射される隣接する2地点間の水平距離WS−(S+1)は、距離センサ9の直下では約2.4mmであるが、距離センサ9の直下から最も遠い位置では約4.8mmと約2倍になる。このときのnは、n=120度/0.5度=240であり、1回のレーザ光17の走査によって測定される路面R上の線状領域Mの長さは約104cmとなる。
図3は、距離センサ9によって計測された路面R上のn個の地点Q〜Qまでの距離L〜Lと、各地点Q〜Qの鉛直方向位置Z〜Zとの関係を示す図である。図3に示すとおり、距離センサ9から地点Qまでの距離がLと計測され、そのときのレーザ光17の鉛直方向からの角度がγであるとすると、地点Qの鉛直方向位置Zは、Z=L×cosγ で求められる。なお、Hは鉛直方向位置の基準線である。基準線Hは台座10と平行であればその位置はどこに設定しても良く、例えば図示の例においては、距離センサ9の下面上を通過する台座10と平行な線が基準線として設定されている。
なお、距離センサ9としては、レーザスキャナーに代えて、車両2の走行方向に沿って台座10に取り付けられた少なくともn個の非接触式距離センサを用いても良い。距離センサ9として、台座10に取り付けられたn個の非接触式距離センサを用いる場合には、車両2の走行方向に沿った路面R上のn個の地点までの距離は、対応するn個の距離センサによって、同時に或いは逐次に計測されることになり、n個の非接触式距離センサの各々によって路面R上のn個の地点までの距離が同時又は逐次に1回計測されるのが1回の測定に相当する。また、n個の非接触式距離センサがその直下に位置する路面R上の地点までの距離を計測する場合には、n個の距離センサによって求められた路面R上のn個の地点までの距離L〜Lを、そのまま各地点Q〜Qの鉛直方向位置Z〜Zとして採用することができる。
図4は、荷重輪3及び距離センサ9とその周辺部だけを拡大して示す図であり、図1における車両2の先頭側から見た図である。図4に示すとおり、荷重輪3は、車両2の走行方向と直交する方向、すなわち車両2の幅方向に沿って並置された2個の荷重輪3aと3bとから構成されており、荷重輪3a、3bの上部は、2本の支持柱18、18を介して、一枚の受け台7に接続されている。19は車両2の車台である。前述したとおり、支持爪8による重錘5の支持が解除されると、重錘5は受け台7上に自由落下する。これにより、受け台7及び支持柱18を介して2個の荷重輪3a、3bに衝撃荷重が負荷される。衝撃荷重の負荷後、荷重負荷装置4によって支持爪8を受け台7の下方から上方に向かって上昇させると、その途中で支持爪8の上面が受け台7上に位置する重錘5の下面と接触し、重錘5を持ち上げ、荷重輪3a、3bに対する負荷が取り除かれる。荷重負荷装置4によって支持爪8を下降させ、重錘5を受け台7上に載置したままにしておくと、受け台7及び支持柱18を介して、荷重輪3a、3bに連続荷重を負荷することができる。
図4に示すとおり、距離センサ9は、2個の荷重輪3aと3bのちょうど中央に位置しており、距離センサ9がレーザスキャナーである場合、距離センサ9から照射されるレーザ光17は、荷重輪3aと路面Rとの接触点Paと、荷重輪3bと路面Rとの接触点Pbのちょうど中間部を通過して、車両2の走行方向に沿って線状に路面R上を走査することになる。したがって、距離センサ9からの距離が計測される路面R上のn個の点を結んで形成される線状領域Mは、本例の場合、接触点Paと接触点Pbのちょうど中央の地点を通過することになる。これにより、本発明の路面たわみ測定装置によれば、車両2を走行させながら、荷重負荷点における路面Rのたわみを測定することができる。線状領域Mが通過する位置は、2個の荷重輪3a、3bと路面Rとの接触点Pa、Pbの間であれば良く、必ずしも両接触点の中央の地点を通過する必要はないが、本例のように、線状領域Mが2個の荷重輪3a、3bと路面Rとの接触点Pa、Pbのちょうど中央の地点を通過する場合には、2個の荷重輪3a、3bを介して加えられる荷重による路面Rのたわみを、より偏りなく測定することができるという利点が得られるので好ましい。
なお、荷重輪3は、必ずしも2個並置された荷重輪3a、3bから構成される必要はなく、1個の荷重輪3であっても良い。その場合には、距離センサ9を1個の荷重輪3と隣接した位置に配置して、線状領域Mを1個の荷重輪3と路面Rの接触点の近傍を通過させれば良い。
次に、図5及び図6を用いて、まず、衝撃荷重を負荷する場合について、本発明の路面たわみ測定装置並びに測定方法をさらに詳細に説明する。図5において、9はm回目(但し、mは整数でm≧2)の計測をしている距離センサ9を表し、9m−1は(m−1)回目の計測をしている距離センサ9を表している。Mは距離センサ9によるm回目の計測時の線状領域、Mm−1は(m−1)回目の計測時の線状領域、Giは衝撃荷重、tは衝撃荷重Giによる路面Rのたわみ、Tは衝撃荷重Giの影響が及ぶたわみ領域を表している。
制御装置15は、予め定められたタイミングで、距離センサ9に対して(m−1)回目の計測命令を出し、距離センサ9を作動させて、路面R上の線状領域Mm−1を形成するn個の地点Q〜Qまでの距離L〜Lを計測する。なお、このとき、荷重負荷装置4は作動しておらず、荷重輪3a、3bには荷重は負荷されていない。計測された距離L〜Lを表す信号は、負荷前距離LU1〜LUnとして、距離センサ9から制御装置15に送られる。制御装置15は、距離計12からの信号と、距離センサ9が(m−1)回目の計測を行ったタイミングとに基づいて、(m−1)回目の計測時における距離センサ9の路面上の位置Xm−1を割り出し、さらに、全走査角度αと、角度β、及び距離センサ9の路面Rからの高さに基づいて、(m−1)回目の計測時におけるn個の地点Q〜Qの路面R上の位置X〜Xを求め、距離センサ9から送られてきた負荷前距離LU1〜LUnを表す信号を、対応するn個の地点Q〜Qの路面R上の位置X〜Xと関連づけて記憶装置16に記憶させる。
制御装置15は、さらに、全走査角度αと、角度β、及び距離センサ9の路面Rからの高さに基づいて、距離センサ9から送られてきた負荷前距離LU1〜LUnを表す信号から、対応するn個の地点Q〜Qの負荷前鉛直方向位置ZU1〜ZUnを求め、対応するn個の地点Q〜Qの路面R上の位置X〜Xと関連づけて記憶装置16に記憶させる。図6の上段(a)は、斯くして地点Q〜Qの路面R上の位置X〜Xと関連づけて記憶装置16に記憶された負荷前鉛直方向位置ZU1〜ZUnを模式的に表したものである。図6の上段(a)に示すとおり、負荷前鉛直方向位置ZU1〜ZUnには、路面Rの凹凸に伴う若干のばらつきはあるものの、路面Rのたわみは認められない。
次に、制御装置15は、(m−1)回目の計測から予め定められた時間が経過した後に、荷重負荷装置4に信号を送り、重錘5を受け台7上に落下させて衝撃荷重Giを路面Rに負荷する。これにより路面Rのたわみ領域Tには図5にtで示すたわみが発生する。一方、線状領域Mは想定されるたわみ領域Tよりも長く設定されているので、線状領域Mには衝撃荷重Giの影響が及ばない領域が存在し、たわみ領域Tは線状領域Mに包含されることになる。好適な場合、線状領域Mは荷重輪3と路面Rとの接触点よりも車両2の走行方向前方及び後方に同じ長さで延在しているので、たわみ領域Tは線状領域Mの中央に位置し、線状領域Mの車両2の走行方向前方と後方には同じ長さで衝撃荷重Giの影響が及ばない領域が存在することになる。なお、たわみ領域Tの長さは、路面Rに負荷される衝撃荷重の大きさと、路面Rの通常想定される支持力とに基づいて実測等によって予め想定することができる。例えば、衝撃荷重Gi直下のたわみ量の1/10程度のたわみ量となる範囲をたわみ領域Tとして設定すれば良い。
制御装置15は、荷重負荷装置4に衝撃荷重Gi負荷の信号を送信するとともに、同じタイミングで、距離センサ9にm回目の計測命令を出し、距離センサ9を作動させて、路面R上の線状領域Mを形成するn個の地点Q〜Qまでの距離L〜Lを負荷時距離LL1〜LLnとして計測する。計測された負荷時距離LL1〜LLnを表す信号は、距離センサ9から制御装置15に送られる。制御装置15は、距離計12からの信号と、距離センサ9がm回目の計測を行ったタイミングとに基づいて、m回目の計測時における距離センサ9の路面上の位置Xを割り出し、さらに、全走査角度αと、角度β、及び距離センサ9の路面Rからの高さに基づいて、m回目の計測時におけるn個の地点Q〜Qの路面R上の位置X〜Xを求め、距離センサ9から送られてきた負荷時距離LL1〜LLnを表す信号を、対応するn個の地点Q〜Qの路面R上の位置X〜Xと関連づけて記憶装置16に記憶させる。
制御装置15は、さらに、全走査角度αと、角度β、及び距離センサ9の路面Rからの高さに基づいて、距離センサ9から送られてきた負荷時距離LL1〜LLnを表す信号から、対応するn個の地点Q〜Qの負荷時鉛直方向位置ZL1〜ZLnを求め、対応するn個の地点Q〜Qの路面R上の位置と関連づけて記憶装置16に記憶させる。図6の下段(b)は、斯くして記憶装置16に、地点Q〜Qの路面R上の位置X〜Xと関連づけて記憶された負荷時鉛直方向位置ZL1〜ZLnを模式的に表した図である。図6の下段(b)に示すとおり、負荷時鉛直方向位置ZL1〜ZLnには、路面Rの凹凸に伴う若干のばらつきに加えて、衝撃荷重Giによる路面Rのたわみtが明瞭に表れている。
(m−1)回目の計測後に衝撃荷重Giを負荷するタイミング、換言すれば、(m−1)回目の計測からm回目の計測までの時間は、設定されている線状領域Mの長さと、想定されるたわみ領域Tの長さと、距離計12から送信されてくる車両2の走行速度についての情報とに基づいて、m回目の線状領域Mにおけるたわみ領域Tが(m−1)回目の線状領域Mm−1に包含されるように制御装置15によって決定される。換言すれば、m回目の線状領域Mにおけるたわみ領域Tが(m−1)回目の線状領域Mm−1に包含されるようにするには、想定されるたわみ領域Tの長さはある程度定まっているので、(m−1)回目の計測からm回目の計測までの時間、線状領域Mの長さ、又は、距離計12から送信されてくる車両2の走行速度のいずれか1つ又は2つ以上を調整し、設定すれば良いことになる。
また、荷重輪3a、3bに荷重を負荷しない状態で行われる(m−1)回目の計測のタイミングは、車両2が路面Rの何メートル走行するごとにたわみ測定を行うかによって決まるので、制御装置15は、距離計12から送られてくる車両2の走行速度に基づいて、予め定められた間隔で路面Rのたわみが測定されるようにタイミングを見計らい、まず、荷重を負荷しない状態での(m−1)回目の計測命令を距離センサ9に対して出し、次いで、(m−1)回目の計測から所定時間後に、荷重負荷装置4に衝撃荷重Gi負荷の命令を送信することになる。なお、たわみ測定を行う間隔、線状領域Mの長さ、及び、たわみ領域Tの長さなどは、作業者が適宜の入力装置を介して制御装置15に設定、変更が可能である。
路面Rのたわみ量は、基本的には、負荷時鉛直方向位置ZL1〜ZLnから負荷前鉛直方向位置ZU1〜ZUnを減算することによって求められる。但し、(m−1)回目の計測におけるn個の地点Q〜Qの路面R上の位置X〜Xと、m回目の計測におけるn個の地点Q〜Qの路面R上の位置X〜Xとは一般的に一致しないので、好ましくは、図6に示すように路面R上の位置Xを横軸、負荷前鉛直方向位置Z又は負荷時鉛直方向位置Zを縦軸とした図において、負荷前鉛直方向位置Z又は負荷時鉛直方向位置Zの各々を直線で結んで路面Rの負荷前のプロファイルと負荷時のプロファイルを求め、負荷時のプロファイルから負荷前のプロファイルを減算することによって、路面Rのたわみ量を路面R上の位置と関連づけて求めるのが良い。或いは、負荷時鉛直方向位置ZL1〜ZLnに対応するm回目の計測における地点Q〜Qの路面R上の位置X〜Xと最も近い位置にある(m−1)回目の計測における地点Q〜Qを選択し、その選択された地点Q〜Qに対応する負荷前鉛直方向位置ZU1〜ZUnを、それぞれ対応する負荷時鉛直方向位置ZL1〜ZLnから減算することによって、路面Rのたわみ量を路面R上の位置と関連づけて求めるようにしても良い。以上のような計算は全て予め定められたプログラムに基づいて制御装置15によって実行される。
いずれにせよ、本発明の路面たわみ測定装置及び測定方法によれば、衝撃荷重Giを負荷する前に、衝撃荷重Giによって撓むことが予想される路面R上のたわみ領域を包含する線上領域について路面Rの鉛直方向位置を計測するようにしているので、車両2を走行させながら、所望のタイミングで、連続的に衝撃荷重下での路面Rのたわみ量を測定することが可能である。
次に、図7を用いて、連続荷重を負荷する場合について、本発明の路面たわみ測定装置並びに測定方法をさらに詳細に説明する。図7において、9m−1は(m−1)回目(但し、mは整数でm≧2)の計測をしている距離センサ9を、9はm回目の計測をしている距離センサ9を、そして、9m+1は(m+1)回目の計測をしている距離センサ9をそれぞれ表している。Mm−1、M、Mm+1は、それぞれ距離センサ9による(m−1)回目、m回目、及び(m+1)回目の計測時の線状領域である。線状領域Mm−1、M、Mm+1は、本来であれば、いずれも路面R上に存在する領域であり、重ねて表示すべきものであるが、便宜上、図7では線状領域Mm−1、M、Mm+1を順次下方にずらして描いてある。
Gcは連続荷重、tcは連続荷重Gcによる路面Rのたわみ、Tは連続荷重Gcの影響が及ぶたわみ領域である。Ur,m−1、Uf,m−1は、線状領域Mm−1において、連続荷重Gcの影響が及ばない後方未負荷領域、及び前方未負荷領域をそれぞれ表しており、同様に、Ur,m、Uf,m、及びUr,m+1、Uf,m+1は、それぞれ線状領域M及びMm+1における、連続荷重Gcの影響が及ばない後方未負荷領域、及び前方未負荷領域を表している。図7に示すとおり、路面Rには連続荷重Gcが負荷されているので、常にたわみtcが発生しており、たわみtcの位置は車両2の走行に伴い順次、図中右側に向かって移動する。
各線状領域Mm−1、M、Mm+1における前方未負荷領域Uf,m−1、Uf,m、Uf,m+1に注目すると、前方未負荷領域Uf,m−1とUf,m、Uf,mとUf,m+1との間には図中ハッチングで示した重複する領域Dが存在しており、前方未負荷領域Uf,m−1、Uf,m、Uf,m+1は路面R上で連続している。同様に、後方未負荷領域Ur,m−1とUr,m、Ur,mとUr,m+1との間にも重複する領域Dが存在し、後方未負荷領域Ur,m−1、Ur,m、Ur,m+1は路面R上で連続している。そして、これら前方未負荷領域Uf,m−1、Uf,m、Uf,m+1、及び後方未負荷領域Ur,m−1、Ur,m、Ur,m+1は、いずれも距離センサ9によって距離が計測される線状領域Mm−1、M、Mm+1に含まれているので、これら前方未負荷領域Uf,m−1、Uf,m、Uf,m+1又は後方未負荷領域Ur,m−1、Ur,m、Ur,m+1に含まれる各地点Qについて、鉛直方向位置Zと、路面R上の位置Xを求め、X−Z空間内でつなぎ合わせれば、路面Rの未負荷状態における鉛直方向位置を路面R上の位置と関連づけて求めることができる。
なお、前方未負荷領域Uf,m−1、Uf,m、Uf,m+1又は後方未負荷領域Ur,m−1、Ur,m、Ur,m+1に含まれる各地点Qについての鉛直方向位置Z及び路面R上の位置Xは、上述した衝撃荷重Giを負荷するときと同様にして、制御装置15によって求めることができる。
一方、連続荷重Gcの影響が及ぶたわみ領域Tも、距離センサ9によって距離が計測される線状領域Mm−1、M、Mm+1に含まれているので、上述した衝撃荷重Gi負荷時のm回目の計測のときと同様にして、たわみ領域内の各地点Qにおける鉛直方向位置Zを、その路面R上での位置Xと関連づけて求めることができる。
以上のようにして求められた未負荷状態での路面Rの鉛直方向位置と、たわみ領域Tの鉛直方向位置とから路面Rのたわみ量を求めるには、衝撃荷重Giの負荷時と同様に、基本的には、たわみ領域Tにおける鉛直方向位置Zから、路面R上で対応する位置にある未負荷領域における鉛直方向位置Zを減算すれば良い。但し、ある回の計測におけるn個の地点Q〜Qの路面R上の位置X〜Xは他の回の計測おけるn個の地点Q〜Qの路面R上の位置X〜Xとは一般的に一致しないので、好ましくは、たわみ領域における鉛直方向位置Zの各々を直線で結んで荷重負荷時の路面プロファイルを求め、同様に、路面R上で対応する位置にある未負荷領域における鉛直方向位置Zの各々を直線で結んで荷重未負荷時の路面プロファイルを求めて、荷重負荷時の路面プロファイルから減算することによって、路面Rのたわみ量を路面R上の位置と関連づけて求めるのが良い。或いは、衝撃荷重Giの負荷時と同様に、たわみ領域Tの各鉛直方向位置Zに対応する各地点Qの路面R上の位置Xと同じか最も近い位置にある地点Qを選択し、その選択された地点Qが未負荷領域に存在していた時の鉛直方向位置Zを、それぞれ対応するたわみ領域Tにおける鉛直方向位置Zから減算することによって、路面Rのたわみ量を路面R上の位置と関連づけて求めるようにしても良い。以上のような計算は全て予め定められたプログラムに基づいて制御装置15によって実行される。
なお、上述した連続荷重下における本発明の路面たわみ測定装置及び測定方法においては、各回の計測における前方未負荷領域及び/又は後方未負荷領域が路面R上で連続していることが必要であるが、このことは、想定されるたわみ領域Tの長さはある程度定まっているので、線状領域Mの長さ、距離センサ9による計測の周期、又は車両2の走行速度のいずれか1つ又は2つ以上を調整することによって行うことができる。なお、線状領域Mの長さ、及び距離センサ9による計測の周期は、作業者が適宜の入力装置を介して制御装置15に設定したり、変更したりすることが可能であるとともに、距離計12から送られてくる車両2の走行速度についての情報に基づいて、各回の計測における前方未負荷領域及び/又は後方未負荷領域が路面R上で連続するように、制御装置15が自動的に調整するようにしても良い。
また、上記の例では、線状領域Mは、荷重輪3と路面Rとの接触点を中心にして、車両2の走行方向前方及び後方に同じ長さで延在しているので、たわみ領域Tは線状領域Mの中央に位置し、線状領域Mの車両2の走行方向前方と後方には同じ長さで前方未負荷領域Uと後方未負荷領域Uとが存在しているが、線状領域Mを、荷重輪3と路面Rとの接触点を中心にして、車両2の走行方向後方よりも前方に長く延在させ、前方未負荷領域だけを路面R上で連続させるようにしても良く、逆に、線状領域Mを、荷重輪3と路面Rとの接触点を中心にして、車両2の走行方向前方よりも後方に長く延在させ、後方未負荷領域だけを路面R上で連続させるようにしても良い。
いずれにせよ、本発明の路面たわみ測定装置及び測定方法によれば、連続荷重Gcの影響が及ばない未負荷領域についても距離センサ9からの距離を計測し、鉛直方向位置を求めるようにしているので、連続荷重下で、車両2を走行させながら、連続的に路面Rのたわみ量を測定することが可能である。
本発明の路面たわみ測定方法は、本発明の路面たわみ測定装置を用いて実行されるものであり、具体的には、制御装置15による制御の下で、本発明の路面たわみ測定装置を構成する各部材並びに装置が動作して、上述した各工程を含む本発明の路面たわみ測定方法が実行されるものである。制御装置15は、通常、コンピュータで構成され、本発明の路面たわみ測定装置を構成する各部材並びに装置に上述したような動作を実行させるようにプログラムされており、本発明は、制御装置15を構成するコンピュータに本発明の路面たわみ測定方法を実行させる手順を記載したコンピュータプログラムも対象とするものである。また、プログラムに基づいて本発明の路面たわみ測定方法を実行する制御装置15は、本発明の路面たわみ測定方法を構成する各工程を実行する手段を備えているものである。
以上説明したとおり、本発明の路面たわみ測定装置及び測定方法、さらにはコンピュータプログラムによれば、車両を走行させながら、路面のたわみを精度良く連続的に測定することができる。路面のたわみ量は路面や地盤の支持力を評価する指標として極めて重要であり、本発明は、舗装の評価上並びに道路管理上、極めて有用な産業上の利用可能性を有するものである。
1 路面たわみ測定装置
2 車両
3 荷重輪
4 荷重負荷装置
5 重錘
6 支持軸
7 受け台
8 支持爪
9 距離センサ
10 台座
11a、11b タイヤ
12 距離計
13 GPS用アンテナ
14 GPS装置
15 制御装置
16 記憶装置
17 レーザ光
18 支持柱
19 車台
M 線状領域
T たわみ領域
Gi 衝撃荷重
Gc 連続荷重
R 路面
D 重複領域

Claims (12)

  1. 車両と、前記車両に搭載された荷重輪、荷重負荷装置、距離センサを備え、前記荷重輪は路面と接触し、前記車両とともに走行する荷重輪であり、前記荷重負荷装置は前記荷重輪に荷重を負荷する荷重負荷装置であり、前記距離センサは、一回の計測によって、前記距離センサから、前記車両の走行方向に沿った路面上の複数個の地点までの距離を計測する非接触式の距離センサであり、前記複数個の地点を結んで形成される線状領域は前記荷重輪と路面との接触点よりも前記車両の走行方向前方及び後方に延在している、路面たわみ測定装置。
  2. 前記荷重輪が前記車両の走行方向と直交する方向に並置された2個の荷重輪で構成されており、前記線状領域が並置された2個の前記荷重輪と路面との接触点の間を通過している請求項1に記載の路面たわみ測定装置。
  3. 前記距離センサがレーザスキャナー又は前記車両の走行方向に沿って配置された複数個の非接触式の距離センサである請求項1又は2に記載の路面たわみ測定装置。
  4. 前記車両の走行距離を計測する距離計と、制御装置を備え、前記荷重負荷装置が前記荷重輪に衝撃荷重を負荷する荷重負荷装置であり、前記制御装置は、
    (a)前記荷重負荷装置を作動させて前記荷重輪に衝撃荷重を負荷する手段、
    (b)前記衝撃荷重の負荷前に前記距離センサを作動させて前記複数個の地点までの距離を負荷前距離として計測する手段、前記負荷前距離に基づいて対応する地点の負荷前鉛直方向位置を求める手段、前記負荷前距離の計測のタイミングと前記距離計からの信号に基づいて、前記負荷前鉛直方向位置を路面上の位置と関連付ける手段、
    (c)前記衝撃荷重の負荷時に前記距離センサを作動させて前記複数個の地点までの距離を負荷時距離として計測する手段、前記負荷時距離に基づいて対応する地点の負荷時鉛直方向位置を求める手段、前記負荷時距離の計測のタイミングと前記距離計からの信号に基づいて、前記負荷時鉛直方向位置を路面上の位置と関連づける手段、
    (d)前記負荷前距離が計測される前記線状領域が、衝撃荷重の負荷時にその影響が及ぶたわみ領域を包含するように、前記線状領域の長さ、負荷前距離の計測から負荷時距離の計測までの時間、又は前記車両の走行速度のいずれか1つ又は2つ以上を調整又は設定する手段、それぞれ路面上の位置と関連づけられた前記負荷前鉛直方向位置と前記負荷時鉛直方向位置とに基づいて、路面のたわみ量を路面上の位置と関連づけて求める手段、
    を備えている請求項1〜3のいずれかに記載の路面たわみ測定装置。
  5. それぞれ路面上の位置と関連づけられた前記負荷前鉛直方向位置と前記負荷時鉛直方向位置とに基づいて、路面のたわみ量を路面上の位置と関連づけて求める前記手段が、路面上の位置と関連づけられた前記負荷前鉛直方向位置に基づいて負荷前の路面プロファイルを求める手段と、路面上の位置と関連づけられた前記負荷時鉛直方向位置に基づいて負荷時の路面プロファイルを求める手段と、両プロファイルを比較する手段を含んでいる請求項4に記載の路面たわみ測定装置。
  6. 前記車両の走行距離を計測する距離計と、制御装置を備え、前記荷重負荷装置が前記荷重輪に連続荷重を負荷する荷重負荷装置であり、前記制御装置は、
    (a)前記荷重負荷装置を作動させて前記荷重輪に連続荷重を負荷する手段、
    (b)前記距離センサを周期的に作動させて前記複数個の地点までの距離を周期的に計測する手段、前記距離に基づいて対応する地点の鉛直方向位置を求める手段、前記周期的な計測のタイミングと前記距離計からの信号に基づいて、前記鉛直方向位置のそれぞれを路面上の位置と関連付ける手段、
    (c)前記線状領域が、前記連続荷重の影響が及ぶたわみ領域と、前記連続荷重の影響が及ばない未負荷領域とを含むように前記線状領域の長さを設定する手段、
    (d)前記距離センサによるm回目(mは整数で、m≧2)の計測における前記未負荷領域が、(m−1)回目及び(m+1)回目の計測における前記未負荷領域と路面上で連続するように、前記線状領域の長さ、前記距離センサによる計測の周期、又は前記車両の走行速度のいずれか1つ又は2つ以上を調整する手段、
    (e)路面上の位置と関連づけられた前記たわみ領域における前記鉛直方向位置と、路面上の位置と関連づけられた前記未負荷領域における前記鉛直方向位置とに基づいて、路面のたわみ量を路面上の位置と関連づけて求める手段、
    を備えている請求項1〜3のいずれかに記載の路面たわみ測定装置。
  7. 路面上の位置と関連づけられた前記たわみ領域における前記鉛直方向位置と、路面上の位置と関連づけられた前記未負荷領域における前記鉛直方向位置とに基づいて、路面のたわみ量を路面上の位置と関連づけて求める手段が、路面上の位置と関連づけられた前記たわみ領域における前記鉛直方向位置に基づいて荷重負荷時の路面プロファイルを求める手段と、路面上の位置と関連づけられた前記未負荷領域における前記鉛直方向位置に基づいて荷重未負荷時の路面プロファイルを求める手段と、両プロファイルを比較する手段を含んでいる請求項6に記載の路面たわみ測定装置。
  8. 車両と、前記車両に搭載された荷重輪、荷重負荷装置、距離センサ、及び距離計を用いて実行される路面たわみ測定方法であって、
    前記荷重輪は路面と接触し、前記車両とともに走行する荷重輪であり、前記荷重負荷装置は前記荷重輪に荷重を負荷する荷重負荷装置であり、前記距離センサは、一回の計測によって、前記距離センサから、前記車両の走行方向に沿った路面上の複数個の地点までの距離を計測する非接触式の距離センサであり、前記複数個の地点を結んで形成される線状領域は前記荷重輪と路面との接触点よりも前記車両の走行方向前方及び後方に延在しており、前記距離計は前記車両の走行距離を計測する距離計であり、下記工程(a)〜(f)を含む路面たわみ測定方法:
    (a)前記荷重負荷装置を作動させて前記荷重輪に衝撃荷重を負荷する工程、
    (b)前記衝撃荷重の負荷前及び負荷時に前記距離センサを作動させて前記複数個の地点までの距離をそれぞれ負荷前距離及び負荷時距離として計測する工程、
    (c)前記負荷前距離及び前記負荷時距離に基づいて、それぞれ対応する地点の負荷前鉛直方向位置及び負荷時鉛直方向位置を求める工程、
    (d)前記負荷前距離及び前記負荷時距離の計測のタイミングと前記距離計からの信号に基づいて、前記負荷前鉛直方向位置及び前記負荷時鉛直方向位置を路面上の位置と関連付ける工程、
    (e)前記負荷前距離が計測される前記線状領域が、衝撃荷重の負荷時にその影響が及ぶたわみ領域を包含するように、前記線状領域の長さ、負荷前距離の計測から負荷時距離の計測までの時間、又は前記車両の走行速度のいずれか1つ又は2つ以上を調整又は設定する工程、
    (f)それぞれ路面上の位置と関連づけられた前記負荷前鉛直方向位置と前記負荷時鉛直方向位置とに基づいて、路面のたわみ量を路面上の位置と関連づけて求める工程。
  9. 前記工程(f)が、路面上の位置と関連づけられた前記負荷前鉛直方向位置に基づいて負荷前の路面プロファイルを求める工程と、路面上の位置と関連づけられた前記負荷時鉛直方向位置に基づいて負荷時の路面プロファイルを求める工程と、両プロファイルを比較する工程を含んでいる請求項8に記載の路面たわみ測定方法。
  10. 車両と、前記車両に搭載された荷重輪、荷重負荷装置、距離センサ、及び距離計を用いて実行される路面たわみ測定方法であって、
    前記荷重輪は路面と接触し、前記車両とともに走行する荷重輪であり、前記荷重負荷装置は前記荷重輪に荷重を負荷する荷重負荷装置であり、前記距離センサは、一回の計測によって、前記距離センサから、前記車両の走行方向に沿った路面上の複数個の地点までの距離を計測する非接触式の距離センサであり、前記複数個の地点を結んで形成される線状領域は前記荷重輪と路面との接触点よりも前記車両の走行方向前方及び後方に延在しており、前記距離計は前記車両の走行距離を計測する距離計であり、下記工程(a)〜(g)を含む路面たわみ測定方法:
    (a)前記荷重負荷装置を作動させて前記荷重輪に連続荷重を負荷する工程、
    (b)前記距離センサを周期的に作動させて前記複数個の地点までの距離を周期的に計測する工程、
    (c)前記距離に基づいて対応する地点の鉛直方向位置を求める工程、
    (d)前記周期的な計測のタイミングと前記距離計からの信号に基づいて、前記鉛直方向位置のそれぞれを路面上の位置と関連付ける工程、
    (e)前記線状領域が、前記連続荷重の影響が及ぶたわみ領域と、前記連続荷重の影響が及ばない未負荷領域とを含むように前記線状領域の長さを設定する工程、
    (f)前記距離センサによるm回目(mは整数で、m≧2)の計測における前記未負荷領域が、(m−1)回目及び(m+1)回目の計測における前記未負荷領域と路面上で連続するように、前記線状領域の長さ、前記距離センサによる計測の周期、又は前記車両の走行速度のいずれか1つ又は2つ以上を調整する工程、
    (g)路面上の位置と関連づけられた前記たわみ領域における前記鉛直方向位置と、路面上の位置と関連づけられた前記未負荷領域における前記鉛直方向位置とに基づいて、路面のたわみ量を路面上の位置と関連づけて求める工程。
  11. 前記工程(g)が、路面上の位置と関連づけられた前記たわみ領域における前記鉛直方向位置に基づいて荷重負荷時の路面プロファイルを求める工程と、路面上の位置と関連づけられた前記未負荷領域における前記鉛直方向位置に基づいて荷重未負荷時の路面プロファイルを求める工程と、両プロファイルを比較する工程を含んでいる請求項10に記載の路面たわみ測定方法。
  12. コンピュータに請求項8〜11のいずれかに記載の路面プロファイル測定方法を実行させる手順を記載したコンピュータプログラム。
JP2012069544A 2012-03-26 2012-03-26 路面たわみ測定装置と測定方法 Active JP5923358B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012069544A JP5923358B2 (ja) 2012-03-26 2012-03-26 路面たわみ測定装置と測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012069544A JP5923358B2 (ja) 2012-03-26 2012-03-26 路面たわみ測定装置と測定方法

Publications (2)

Publication Number Publication Date
JP2013199802A true JP2013199802A (ja) 2013-10-03
JP5923358B2 JP5923358B2 (ja) 2016-05-24

Family

ID=49520240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012069544A Active JP5923358B2 (ja) 2012-03-26 2012-03-26 路面たわみ測定装置と測定方法

Country Status (1)

Country Link
JP (1) JP5923358B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105648883A (zh) * 2016-02-04 2016-06-08 江苏恒达工程检测有限公司 基于路面弯沉自动检测装置
CN107012772A (zh) * 2017-03-13 2017-08-04 长安大学 一种非接触式快速道路弯沉检测方法
CN107119543A (zh) * 2017-03-13 2017-09-01 长安大学 一种非接触式快速道路弯沉检测系统
WO2018159003A1 (ja) * 2017-02-28 2018-09-07 パナソニックIpマネジメント株式会社 モニタリングシステム
KR101922767B1 (ko) * 2016-04-07 2018-11-27 세종대학교산학협력단 이동식 도로 지지력 평가장비
CN110777624A (zh) * 2019-10-30 2020-02-11 长沙学院 一种公路工程路面物理特性检测移动装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109629380B (zh) * 2019-01-29 2021-04-02 中国一冶集团有限公司 路面平整度检测车及检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459113A (en) * 1987-08-31 1989-03-06 Komatsu Mfg Co Ltd Measurement of deflection for road surface
JPH07248221A (ja) * 1994-03-09 1995-09-26 Gaiaato Kumagai:Kk 路面のたわみ測定装置
JPH11503520A (ja) * 1995-04-03 1999-03-26 グリーンウッド エンジニアリング アンパーツゼルスカブ 道路又はレールのゆがみの非接触測定のための方法と装置
JP2000204515A (ja) * 1999-01-18 2000-07-25 Chubu Regional Constr Bureau Ministry Of Constr 締固め度を管理するための装置及び方法
JP2000292330A (ja) * 1999-04-07 2000-10-20 Shiyuto Kosoku Doro Gijutsu Center 移動式路面たわみ測定装置及び移動式路面たわみ測定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459113A (en) * 1987-08-31 1989-03-06 Komatsu Mfg Co Ltd Measurement of deflection for road surface
JPH07248221A (ja) * 1994-03-09 1995-09-26 Gaiaato Kumagai:Kk 路面のたわみ測定装置
JPH11503520A (ja) * 1995-04-03 1999-03-26 グリーンウッド エンジニアリング アンパーツゼルスカブ 道路又はレールのゆがみの非接触測定のための方法と装置
JP2000204515A (ja) * 1999-01-18 2000-07-25 Chubu Regional Constr Bureau Ministry Of Constr 締固め度を管理するための装置及び方法
JP2000292330A (ja) * 1999-04-07 2000-10-20 Shiyuto Kosoku Doro Gijutsu Center 移動式路面たわみ測定装置及び移動式路面たわみ測定方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105648883A (zh) * 2016-02-04 2016-06-08 江苏恒达工程检测有限公司 基于路面弯沉自动检测装置
KR101922767B1 (ko) * 2016-04-07 2018-11-27 세종대학교산학협력단 이동식 도로 지지력 평가장비
WO2018159003A1 (ja) * 2017-02-28 2018-09-07 パナソニックIpマネジメント株式会社 モニタリングシステム
JPWO2018159003A1 (ja) * 2017-02-28 2019-12-26 パナソニックIpマネジメント株式会社 モニタリングシステム
CN107012772A (zh) * 2017-03-13 2017-08-04 长安大学 一种非接触式快速道路弯沉检测方法
CN107119543A (zh) * 2017-03-13 2017-09-01 长安大学 一种非接触式快速道路弯沉检测系统
CN110777624A (zh) * 2019-10-30 2020-02-11 长沙学院 一种公路工程路面物理特性检测移动装置

Also Published As

Publication number Publication date
JP5923358B2 (ja) 2016-05-24

Similar Documents

Publication Publication Date Title
JP5923358B2 (ja) 路面たわみ測定装置と測定方法
US9057161B2 (en) Road construction machine, as well as method for controlling the distance of a road construction machine moved on a ground surface
JP6298313B2 (ja) 地盤剛性測定装置、締固め機械及び地盤剛性測定方法
KR101452160B1 (ko) 트럭스케일에 있어서의 피계량차량의 무게중심위치계측장치 및 트럭스케일
AU2007249060B2 (en) A road milling machine and method for measuring the milling depth
CN102144144B9 (zh) 用于确定和调整一辆汽车的底盘几何结构的设备和方法
US9417154B2 (en) Monitoring a response of a bridge based on a position of a vehicle crossing the bridge
CN104050811B (zh) 激光机动车分型系统及方法
JP6038281B2 (ja) 軌道をメンテナンスするための機械
EP2881515B1 (en) Texture automatic monitoring system
EP3228976A1 (en) Apparatus and method for assessing vehicle wheel alignment
JP6864500B2 (ja) 測定素子の補正方法、路面性状の評価方法、及び路面性状の評価装置
CN102901458A (zh) 一种汽车最小离地间隙测量仪器
JP6663704B2 (ja) 軌道修正要領生成装置、軌道修正要領生成システム、軌道修正要領生成方法及びプログラム
JP2000204515A (ja) 締固め度を管理するための装置及び方法
JP4240526B2 (ja) 不陸部探査装置
KR101546892B1 (ko) 노면 프로파일 시뮬레이터 및 이를 이용하여 노면 프로파일 측정기의 성능을 평가하는 방법
JP6735088B2 (ja) 地盤締固め管理装置及び地盤締固め管理方法
JP3947988B2 (ja) 道路の路盤等のたわみ量測定機
US7929118B2 (en) Method for geodetic monitoring of rails
CN210163761U (zh) 道路路面平整度测量装置
JP7334753B2 (ja) レール沈み込み量の予測方法、予測装置、レール補修時期判定方法、及びレールの沈み込み異常時期の判定方法
KR100902716B1 (ko) 게임기의 필드 유닛
JPH07248221A (ja) 路面のたわみ測定装置
CN218002438U (zh) 一种新型回弹式机场道面弯沉测试器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R150 Certificate of patent or registration of utility model

Ref document number: 5923358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250