JP6735088B2 - 地盤締固め管理装置及び地盤締固め管理方法 - Google Patents

地盤締固め管理装置及び地盤締固め管理方法 Download PDF

Info

Publication number
JP6735088B2
JP6735088B2 JP2015236597A JP2015236597A JP6735088B2 JP 6735088 B2 JP6735088 B2 JP 6735088B2 JP 2015236597 A JP2015236597 A JP 2015236597A JP 2015236597 A JP2015236597 A JP 2015236597A JP 6735088 B2 JP6735088 B2 JP 6735088B2
Authority
JP
Japan
Prior art keywords
ground
deformation amount
wheel
rolling wheel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015236597A
Other languages
English (en)
Other versions
JP2017101483A (ja
Inventor
大道 三上
大道 三上
小林 一三
一三 小林
吉田 輝
輝 吉田
岡本 道孝
道孝 岡本
一成 佐藤
一成 佐藤
恵祐 田中
恵祐 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2015236597A priority Critical patent/JP6735088B2/ja
Publication of JP2017101483A publication Critical patent/JP2017101483A/ja
Application granted granted Critical
Publication of JP6735088B2 publication Critical patent/JP6735088B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本発明は、地盤締固め管理装置及び地盤締固め管理方法に関する。
ロードローラ、タンピングローラ、振動ローラ、タイヤローラ等の転圧輪(ローラ)を備えた締固め機械やプレートコンパクタ、タンパ等の平板式の締固め機械により締固めた地盤の品質を管理するための種々の方法が提案されている。例えば、FWD(Falling Weight Deflectometer)試験では、重錘を自由落下させた地点の近傍の撓み量を当該地点から一直線上に設置された複数の変位センサによって測定する。例えば、特許文献1には、FWD試験による時系列の荷重および変位を取得し、荷重と変位との関係に基づいて地盤の弾性係数を算出する方法が開示されている。
特開2005−42446号公報
ところで、上記のような従来技術では、変位センサ等の測定器を地盤に設置して地盤の撓み又は弾性係数を測定するため、他の地点の地盤の品質を測定するたびに測定器を移設する必要がある。このため、測定に多大な労力と時間を要している。
そこで本発明は、地盤への測定器の設置を必要とせずに地盤の剛性を算出することができる地盤締固め管理装置及び地盤締固め管理方法を提供することを目的とする。
本発明は、地盤に接しつつ地盤の上を回転しながら移動する転輪と、転輪の変形量を計測する変形量計測部と、変形量計測部により計測された転輪の変形量に基づいて、地盤の剛性を算出する地盤剛性算出部とを備えた地盤締固め管理装置である。
この構成によれば、変形量計測部により、地盤に接しつつ地盤の上を回転しながら移動する転輪の変形量が計測され、地盤剛性算出部により、変形量計測部により計測された転輪の変形量に基づいて地盤の剛性が算出される。これにより、転輪が地盤の上を移動しながら地盤の剛性を算出することができるため、地盤への測定器の設置を必要とせずに地盤の剛性を算出することができる。
この場合、転輪は中空であり、変形量計測部は、転輪の内部に配置され、転輪の内周面に接することにより転輪の変形量を計測する変形量センサを有することが好適である。
この構成によれば、変形量計測部の変形量センサは、中空の転輪の内部に配置され、転輪の内周面に接することにより転輪の変形量を計測するため、変形量センサの地盤との接触による破損を防止しつつ、高精度で転輪の変形量を計測することができる。
この場合、変形量センサは、転輪の内周面の第1部位に接する第1接触部と、転輪の内周面の第1部位とは異なる第2部位に接する第2接触部とを含み、第1接触部と第2接触部との間の長さの伸縮量及び第1接触部と第2接触部との間に生じた歪みの少なくともいずれかを計測することにより転輪の変形量を計測することが好適である。
この構成によれば、変形量センサにより、転輪の内周面の第1部位に接する第1接触部と転輪の内周面の第2部位に接する第2接触部との間の長さの伸縮量及び第1接触部と第2接触部との間に生じた歪みの少なくともいずれかを計測することにより転輪の径方向の変形量が計測されるため、より高精度で転輪の変形量を計測することができる。
また、転輪は中空であり、変形量計測部は、転輪の内部に配置され、転輪の内周面に電波、光及び音波のいずれかを発することにより転輪の前記変形量を計測する変形量センサを有することが好適である。
この構成によれば、変形量計測部の変形量センサは、中空の転輪の内部に配置され、転輪の内周面に電波、光及び音波のいずれかを発することにより、転輪に接触せずに転輪の変形量を計測するため、高精度で転輪の変形量を計測することができる。
また、転輪は中空であり、変形量計測部は、転輪の内周面に配置された光ファイバを伝搬する光の波長の変化により転輪の変形量を計測する変形量センサを有することが好適である。
この構成によれば、変形量計測部の変形量センサは、中空の転輪の内部に配置された光ファイバを伝搬する光の波長の変化により転輪の変形量を計測するため、変形量センサを転輪の内部に配置することがより容易となる。
また、転輪は、地盤に圧力を加えつつ回転することにより、地盤を締固める転圧輪であることが好適である。
この構成によれば、転輪は、地盤に圧力を加えつつ回転することにより、地盤を締固める転圧輪であるため、地盤を締固めつつ地盤の剛性を算出することができる。
この場合、転輪は、転輪の地盤に接する外周面から突出した複数のフートを有するタンピング付き転圧輪であることが好適である。
従来、フートを有するタンピング付き転圧輪により地盤を締固めた場合には、地盤にフートによる凹凸が残り、測定器を地盤に設置するための整地等の多大な労力と時間とを要していた。一方、上記構成によれば、地盤への測定器の設置を必要とせずに地盤の剛性を算出することができるため、労力及び時間を著しく軽減することができる。
また、転輪は、内部に空気を充填されたタイヤであり、変形量計測部は、タイヤの内部に充填された空気の空気圧を測定する空気圧センサ及び地盤に対するタイヤの高さを測定するタイヤ高センサの少なくともいずれかを含む変形量センサを有し、空気圧センサにより測定された空気圧及びタイヤ高センサにより測定されたタイヤの高さの少なくともいずれかを含む情報として転輪の変形量を計測し、地盤剛性算出部は、変形量計測部により計測された転輪の変形量に含まれる空気圧及びタイヤの高さの少なくともいずれかに基づいて、地盤の剛性を算出することが好適である。
この構成によれば、変形量計測部により、変形量センサの空気圧センサにより測定された空気圧及び変形量センサのタイヤ高センサにより測定されたタイヤの高さの少なくともいずれかを含む情報として転輪の変形量が計測され、地盤剛性算出部により、変形量計測部により計測された転輪の変形量に含まれる空気圧及びタイヤの高さの少なくともいずれかに基づいて地盤の剛性が算出されるため、測定が容易なタイヤの空気圧や高さを測定することで地盤の剛性をより容易に算出することができる。
この場合、転輪は、地盤に圧力を加えつつ回転することにより、地盤を締固める転圧輪であることが好適である。
また、変形量計測部は、回転する転輪に配置された変形量センサから出力された信号を転輪の外部に伝搬するロータリーコネクタを有し、ロータリーコネクタを介して変形量センサから出力された信号を転輪の外部で受信することにより、転輪の変形量を計測することが好適である。
この構成によれば、変形量計測部は、回転する転輪に配置された変形量センサから出力された信号を転輪の外部に伝搬するロータリーコネクタを介して変形量センサの信号を転輪の外部で受信するため、変形センサの信号を確実に受信することができる。
また、変形量計測部は、回転する転輪に配置された変形量センサから出力された信号を転輪の外部に無線通信により伝搬する無線送信機を有し、無線送信機を介して変形量センサから出力された信号を転輪の外部で受信することにより、転輪の変形量を計測することが好適である。
この構成によれば、変形量計測部は、回転する転輪に配置された変形量センサから出力された信号を転輪の外部に無線通信により伝搬する無線送信機を介して変形量センサの信号を転輪の外部で受信するため、変形量センサの配置がより容易となる。
また、転輪が接した地盤の二次元空間及び三次元空間の少なくともいずれかの位置を検出する位置検出部と、位置検出部により検出された位置ごとに、地盤剛性算出部により算出された地盤の剛性を表示する表示部をさらに備えることが好適である。
この構成によれば、表示部により、位置検出部により検出された転輪が接した地盤の二次元空間及び三次元空間の少なくともいずれかの位置ごとに、地盤剛性算出部により算出された地盤の剛性が表示されるため、各位置における地盤の剛性の算出結果を確認し易くなる。
また、本発明は、地盤締固め管理装置の変形量計測部により、地盤に接しつつ地盤の上を回転しながら移動する転輪の変形量を計測する工程と、地盤締固め管理装置の地盤剛性算出部により、転輪の変形量を計測する工程により計測された転輪の変形量に基づいて、地盤の剛性を算出する工程とを備えた地盤締固め管理方法である。
本発明の地盤締固め管理装置及び地盤締固め管理方法によれば、地盤への測定器の設置を必要とせずに地盤の剛性を算出することができる。
第1実施形態に係る地盤締固め管理装置を示す図である。 (A)はロータリーコネクタを介して転輪に配置された変形量センサから出力された信号を受信する態様を示し、(B)は無線送信機を介して転輪に配置された変形量センサから出力された信号を受信する態様を示す図である。 (A)は転輪が地盤と接触している状態を示し、(B)は地盤への荷重を加えられた転輪が柔らかい地盤と接触している状態を示し、(C)は地盤への荷重を加えられた転輪が硬い地盤と接触している状態を示す図である。 (A)は球状の物体同士が接触している状態を示し、(B)は転輪が地盤と接触している状態を示し、(C)は地盤への荷重を加えられた転輪が地盤と接触している状態を示す図である。 (A)は転輪が接した地盤の二次元空間の位置ごとに算出された地盤の剛性を表示する態様を示す図であり、(B)は転輪が接した地盤の三次元空間の位置ごとに算出された地盤の剛性を表示する態様を示す図である。 (A)は第2実施形態に係る変形量センサを配置された転輪が柔らかい地盤と接触している状態を示し、(B)は第2実施形態に係る変形量センサを配置された転輪が硬い地盤と接触している状態を示す図である。 第3実施形態に係る変形量センサを配置された転輪を示す図である。 第4実施形態に係る変形量センサを配置された転輪を示す図である。 第5実施形態に係る地盤締固め管理装置を示す図である。 第5実施形態に係る変形量センサを配置された転輪を示す図である。 (A)はタイヤである転輪が柔らかい地盤と接触している状態を示し、(B)はタイヤである転輪が中間の硬さの地盤と接触している状態を示し、(C)はタイヤである転輪が硬い地盤と接触している状態を示す図である。 タイヤの空気圧に対するタイヤの基準半径とタイヤの高さとの半径比の変化を示すグラフである。 第6実施形態に係る地盤締固め管理装置を示す図である。
以下、本発明の実施形態に係る地盤締固め管理装置及び地盤締固め管理方法について、図面を用いて詳細に説明する。
(第1実施形態)
図1に示すように、第1実施形態の地盤締固め管理装置10aは、タンピング付き転圧輪を有する締固め機械として構成され、地盤100を締固めつつ地盤100の剛性を算出する。地盤締固め管理装置10aは、転輪20a、駆動輪30、車体40、変形量計測部50、地盤剛性算出部60、運転者席70及び表示部80を備えている。
転輪20aは、金属製であり、円筒形状を有する。転輪20aは、地盤100に接しつつ地盤100の上を回転しながら移動する。転輪20aは、地盤100に圧力を加えつつ回転することにより、地盤100を締固める転圧輪である。また、転輪20aは、転輪20aの地盤100に接する外周面22から突出した複数のフート21を有するタンピング付き転圧輪である。なお、転輪20aは、地盤100に対して振動を加えつつ地盤100を締固めるものであってもよい。また、転輪20aは、フート21を有しない平坦な外周面22を有する転圧輪であってもよい。
駆動輪30は、車体40に搭載された不図示の動力源により回転し、地盤締固め管理装置10aを地盤100の上で移動させる。駆動輪30は、内部に空気を充填されたタイヤである。なお、駆動輪30は、転輪20aと同様に、地盤100を締固める転圧輪であってもよい。また、駆動輪30は、転輪20aと同様に、駆動輪30の地盤100に接する外周面から突出した複数のフートを有するタンピング付き転圧輪であってもよい。
車体40は、変形量計測部50、地盤剛性算出部60、運転者席70、表示部80及び位置検出部90を有する。変形量計測部50は、転輪20aの変形量を計測する。地盤剛性算出部60は、変形量計測部50により計測された転輪20aの変形量に基づいて、地盤100の剛性を算出する。変形量計測部50及び地盤剛性算出部60は、例えば、ECU(Electronic Control Unit)として構成される。ECUは、CPU[CentralProcessing Unit]、ROM[Read Only Memory]、RAM[Random Access Memory]等を有する電子制御ユニットである。ECUでは、ROMに記憶されているプログラムをRAMにロードし、CPUで実行することで、変形量計測部50及び地盤剛性算出部60での処理を実行する。
表示部80は、転輪20aが接した地盤の二次元空間及び三次元空間の少なくともいずれかの位置ごとに、地盤剛性算出部60により算出された地盤100の剛性を表示する。表示部80は、例えば、運転者席70で地盤締固め管理装置10aの運転操作を行う運転者に対し、地盤100の剛性を画像表示する液晶ディスプレイである。
位置検出部90は、転輪20aが接した地盤の二次元空間及び三次元空間の少なくともいずれかの位置を検出する。位置検出部90は、例えば、GPS[Global Positioning System]受信機により構成されていてもよい。GPS受信機は、3個以上のGPS衛星から信号を受信することにより、転輪20aの位置(例えば、緯度及び経度)を測定する。また、位置検出部90は、例えば、地盤締固め管理装置10aの外部に設置された測量機からの地盤締固め管理装置10aの位置の測量結果を無線通信により受信することで、転輪20aの位置を検出してもよい。
図2(A)に示すように、転輪20aは、中空であり、内周面23を有する。なお、以下、外周面22のフート21に関する説明及び図示は省略する。変形量計測部50は、転輪20aの内部に配置され、転輪20aの内周面23に接することにより転輪20aの変形量を計測する複数の変形量センサ51aを有する。変形量センサ51aのそれぞれは、例えば、転輪20aの内周面23に転輪20aの円周方向に沿って等間隔に配置されている。変形量センサ51aは、例えば、転輪20aの内周面23に貼付された歪みゲージである。なお、変形量センサ51aは、転輪20aの外周面22に配置することも可能であるが、変形量センサ51aの破損を防止するために、転輪20aの内部に配置されていることが好ましい。
変形量計測部50は、回転する転輪20aに配置された変形量センサ51aのそれぞれから出力された信号を転輪20aの外部に伝搬するロータリーコネクタ52を有する。変形量計測部50は、ロータリーコネクタ52を介して変形量センサ51aのそれぞれから出力された信号を転輪20aの外部で受信することにより、転輪20aの変形量を計測する。
なお、図2(B)に示すように、変形量計測部50は、回転する転輪20aに配置された変形量センサ51aのそれぞれから出力された信号を転輪20aの外部に無線通信により伝搬する無線送信機53を有していてもよい。無線送信機53は、例えば、WiFi(WirelessFidelity)等のネットワークを経由して、変形量センサ51aのそれぞれから出力された信号を変形量計測部50に伝搬してもよい。変形量計測部50は、無線送信機53を介して変形量センサ51aから出力された信号を転輪20aの外部で受信することにより、転輪20aの変形量を計測することができる。
また、変形量センサ51aにより計測された転輪20aの変形量に関するデータは、ロータリーコネクタ52又は無線送信機53を介して、転輪20aの外部に配置されたデータロガーに収録しておいてもよい。また、小型のデータロガーを転輪20aの内部に配置して、変形量センサ51aにより計測された転輪20aの変形量に関するデータを当該データロガーに収録し、当該データロガーに収録された転輪20aの変形量に関するデータを無線送信機53により転輪20aの外部の変形量計測部50に送信してもよい。
以下、本実施形態に係る地盤締固め管理方法及び地盤締固め管理装置10aの動作について説明する。本実施形態では、地盤締固め管理装置10aの変形量計測部50により、地盤100に接しつつ地盤100の上を回転しながら移動する転輪20aの変形量を計測する工程と、地盤締固め管理装置10aの地盤剛性算出部60により、転輪20aの変形量を計測する工程により計測された転輪20aの変形量に基づいて、地盤100の剛性を算出する工程とが行われる。
本実施形態では、転圧輪である転輪20aの変形量を測定することで、地盤100の剛性(弾性係数(ヤング率))を算出する。図3(A)に示すように、弾性係数E,ポアソン比νの転輪20aが地盤100に接触する場合を想定する。転輪20aに地盤100への荷重Pを加えられている場合は、図3(B)に示すように、地盤100が軟らかい場合よりも、図3(C)に示すように、地盤100が硬い場合の方が、転輪20aの変形量は大きい。そこで、本実施形態では、同じ転輪20aに対して、事前に剛性の異なる地盤100の上で較正を行い、地盤100と転輪20aの変形量との関係を把握しておくことで、転輪20aの変形量から地盤100の剛性を算出することができる。
本実施形態では、Hertzの弾性接触理論を応用して地盤100の弾性係数を算出することもできる。図4(A)に示すように、弾性係数E,ポアソン比ν,半径Rの物体Aと、弾性係数E,ポアソン比ν,半径Rの物体Bとを接触させ、荷重Pを与えた場合を想定する。物体A及び物体Bのいずれも荷重Pにより変形するが、物体Aと物体Bとは点ではなく面で接触し、物体Aと物体Bとの接触面に分布荷重が作用するため、当該接触面の大きさに依存して、物体A及び物体Bの変形量は変化する。Hertzの弾性接触理論では、接触面の圧力が半円状に分布すると仮定して、接触面の大きさを求め、物体A及び物体Bのそれぞれの変形量を求めている。
物体A及び物体Bのそれぞれの変形により、物体Aと物体Bとが接近する距離を接近距離δで示すと、物体Aの弾性係数E,ポアソン比ν,半径Rと、物体Bの弾性係数E,ポアソン比ν,半径Rとに対して、荷重Pは下式(1)で算出することができる。
Figure 0006735088

図4(B)に示すように、物体Aを弾性係数E,ポアソン比ν,半径Rの転輪20aであり、物体Bを弾性係数E,ポアソン比ν,半径Rが無限大の地盤100と考えると、転輪20aの弾性係数E,ポアソン比ν,半径Rは既知量である。従って、図4(C)に示すように、荷重Pによる転輪20aの変形量を計測すれば、接触面の大きさが分かる。一方、地盤100に関しては、弾性係数E,ポアソン比νが不明である。ただし、ポアソン比νは、転輪20aの変形量には大きな影響を与えないパラメータであるため、常に同じ概算値等を用いても実用上問題が無い。すなわち、転輪20aの変形量から求めた接触面の大きさと、荷重Pと、仮定した地盤100のポアソン比νとから、地盤100の弾性係数Eを下式(2)により求めることができる。
Figure 0006735088

接近距離δは、例えば、変形量センサ51aにより検出された転輪20aの歪みから、転輪20aの垂直方向の変形量を算出し、転輪20aの垂直方向の変形量の二分の一を接近距離δとすることができる。荷重Pは、転輪20aを振動させないときは、例えば、転輪20aの自重とすることができる。転輪20aを振動させるときは、転輪20aに加速度センサを配置し、加速度センサにより検出された転輪20aの加速度と転輪20aの質量とから、荷重Pを求めることができる。
なお、本実施形態の地盤100の剛性の算出においては、必ずしも、弾性係数Eの絶対値を算出する必要は無い。例えば、同じ転輪20aに対して、事前に剛性の異なる地盤100の上で較正を行い、予め許容できる地盤100の弾性係数Eが得られる接近距離δ等の転輪20aの変形量を定めておき、当該変形量に達しているか否かにより、地盤100の剛性が許容範囲であるか否かを算出してもよい。
地盤締固め管理装置10aが転輪20aにより地盤100を締固めつつ地盤100の剛性を算出する場合は、図5(A)に示すように、表示部80の表示画面81aに、位置検出部90により検出された転輪20aが接した地盤100の二次元空間の位置ごとに、地盤剛性算出部60により算出された地盤100の剛性が表示される。表示画面81aには、地盤締固め管理装置10aの位置を示す自車両アイコン84aと共に、予め定めた基準の剛性を満たす締固め完了領域82と、予め定めた基準の剛性を満たさない締固め未了領域83とが平面視により平面分布図として表示される。
なお、地盤締固め管理装置10aが転輪20aにより地盤100を締固めつつ地盤100の剛性を算出する場合は、図5(B)に示すように、表示部80の表示画面81bに、位置検出部90により検出された転輪20aが接した地盤100の三次元空間の位置ごとに、地盤剛性算出部60により算出された地盤100の剛性が表示されてもよい。表示画面81bには、地盤締固め管理装置10aの位置を示す自車両アイコン84bと共に、締固め完了領域82と締固め未了領域83とが立体視により空間分布図として表示される。
本実施形態によれば、変形量計測部50により、地盤100に接しつつ地盤100の上を回転しながら移動する転輪20aの変形量が計測され、地盤剛性算出部60により、変形量計測部50により計測された転輪20aの変形量に基づいて地盤100の剛性が算出される。これにより、転輪20aが地盤100の上を移動しながら地盤100の剛性を算出することができるため、地盤100への測定器の設置を必要とせずに地盤100の剛性を算出することができる。また、地盤100に測定器を設置する方法のように、測定地点が離散的とならないため、地盤の品質不良箇所を見落とす可能性も減少する。
また、変形量計測部50の変形量センサ51aは、中空の転輪20aの内部に配置され、転輪20aの内周面23に接することにより転輪20aの変形量を計測するため、変形量センサ51aの地盤100との接触による破損を防止しつつ、高精度で転輪20aの変形量を計測することができる。
また、変形量計測部50は、回転する転輪20aに配置された変形量センサ51aから出力された信号を転輪20aの外部に伝搬するロータリーコネクタ52を介して変形量センサ51aの信号を転輪20aの外部で受信するため、変形量センサ51aの信号を確実に受信することができる。あるいは、変形量計測部50は、回転する転輪20aに配置された変形量センサ51aから出力された信号を転輪20aの外部に無線通信により伝搬する無線送信機53を介して変形量センサ51aの信号を転輪20aの外部で受信する場合は、変形量センサ51aの配置がより容易となる。
また、転輪20aは、地盤100に圧力を加えつつ回転することにより、地盤100を締固める転圧輪であるため、地盤100を締固めつつ地盤100の剛性を算出することができる。従来、フート21を有するタンピング付き転圧輪により地盤100を締固めた場合には、地盤にフート21による凹凸が残り、測定器を地盤に設置するための整地等の多大な労力と時間とを要していた。一方、本実施形態によれば、地盤100への測定器の設置を必要とせずに地盤100の剛性を算出することができるため、労力及び時間を著しく軽減することができる。
また、表示部80により、位置検出部90により検出された転輪20aが接した地盤100の二次元空間及び三次元空間の少なくともいずれかの位置ごとに、地盤剛性算出部60により算出された地盤100の剛性が表示されるため、各位置における地盤100の剛性の算出結果を確認し易くなる。
すなわち、本実施形態では、土地造成工事、築堤工事(ダム、堤防)、道路工事等における地盤100の剛性の評価に関して、剛性の測定装置を車両に搭載し、車両を走行させながら測定を行うことで、測定器を移設する手間を省き、測定に要する労力と時間とを著しく軽減することが可能になる。また、位置検出部90により転輪20aの位置を逐次特定することで、測定した地盤100の剛性に対応する位置を二次元又は三次元で特定することを可能とした。さらに、表示部80により、地盤100の剛性の平面分布図又は空間分布図がリアルタイムに表示画面81a,81bに表示されるため、地盤締固め管理装置10aの運転者は測定結果を視覚的に確認しながら測定作業及び締固め作業を行うことができ、測定作業及び締固め作業の効率を飛躍的に向上させることができる。
(第2実施形態)
以下、本発明の第2実施形態について説明する。以下の説明では、第1実施形態と重複する部分については説明を省略する。図6(A)に示すように、変形量センサ51bは、転輪20aの内周面23の第1部位24aに接する第1接触部54aと、転輪20aの内周面23の第1部位24aとは異なる第2部位24bに接する第2接触部54bとを含む。
変形量センサ51bは、例えば、既存の締固め機械の転輪20aに後から配置可能な転輪20aのスポークとなり得る棒状部材である。棒状部材である変形量センサ51bの両端に、第1接触部54aと第2接触部54bとがそれぞれ配置されている。棒状部材である変形量センサ51bは、例えば、互いに転輪20aの中心軸を挟んで対向する第1部位24a及び第2部位24bに接することが可能な寸法及び素材により構成されている。図6(A)の例では、一対の変形量センサ51bが転輪20aの中心軸から視て、互いに90°をなすように配置されている。転輪20aに配置される変形量センサ51bの数は任意である。なお、転輪20aの種類によっては、棒状部材である変形量センサ51bは、転輪20aの中心軸を避けるように配置される。
棒状部材である変形量センサ51bは、様々な径の転輪20aに対応可能なように、伸縮自在である。棒状部材である変形量センサ51bは、転輪20aの変形により第1部位24aと第2部位24bとの間の距離が伸びた場合に、第1部位24a及び第2部位24bから外れないように、予め圧縮力がかかった状態で配置される。第1接触部54a及び第2接触部54bは、それぞれ第1部位24a及び第2部位24bに接していればよく、必ずしも溶接等で固定されている必要は無い。変形量センサ51bが出力した信号を伝搬するロータリーコネクタ52及び無線送信機53等の配置は、第1実施形態と同様とすることができる。
変形量センサ51bは、第1接触部54aと第2接触部54bとの間の長さの伸縮量を計測することにより転輪20aの変形量を計測する。図6(A)に示すように、地盤100の締固めの初期において地盤100が柔らかいときは、変形量センサ51bのそれぞれの伸縮量に大きな相違は無い。一方、図6(B)に示すように、地盤100の締固めが進行して地盤100が硬くなったときは、垂直方向の変形量センサ51bは縮み、水平方向の変形量センサ51bは伸びる。
このため、例えば、転輪20aを振動させるときに変形量センサ51bの伸縮量の初期値が変動してしまう場合であっても、変形量センサ51bのそれぞれの伸縮量の差を検出することにより、転輪20aの変形量を検出することができる。例えば、変形量センサ51bのそれぞれの伸縮量の差の四分の一を上述した接近距離δとすることができる。また、変形量センサ51bのそれぞれの伸縮量の差が予め較正により設定した値を超えた場合に、地盤100の剛性が基準に達し、地盤100の締固めが完了したと判断してもよい。
なお、棒状部材である変形量センサ51bは、例えば、棒状部材に貼付された歪みゲージにより、第1接触部54aと第2接触部54bとの間に生じた歪みを計測することにより転輪20aの変形量を計測してもよい。これにより、転輪20aの変形量が数mm程度であっても、棒状部材である変形量センサ51bに作用する伸縮による歪みの変動をノイズに埋もれない程度に大きく検出することができる。
また、劣悪条件下や過大な上下振動が転輪20aに作用したときに棒状部材である変形量センサ51bが転輪20aから外れることを防止するため、転輪20aの内周面23に強力な接着剤で、中央に凹部を有するリング状のゴム部材を第1部位24aと第2部位24bとに接着しておいてもよい。変形量センサ51bの第1接触部54a及び第2接触部54bのそれぞれは、第1部位24aと第2部位24bとに接着されたゴム部材の凹部に嵌合するようにしてもよい。これにより、劣悪条件下や過大な上下振動が転輪20aに作用したときでも、変形量センサ51bが転輪20aから外れることを防止することができる。また、ゴム部材を第1部位24aと第2部位24bとに接着する程度の改変では、転輪20aへの影響や改変の労力も小さい。
本実施形態によれば、変形量センサ51bにより、転輪20aの内周面23の第1部位24aに接する第1接触部54aと転輪20aの内周面23の第2部位24bに接する第2接触部54bとの間の長さの伸縮量及び第1接触部54aと第2接触部54bとの間に生じた歪みの少なくともいずれかを計測することにより転輪20aの径方向の変形量が計測されるため、より高精度で転輪20aの変形量を計測することができる。また、転輪20aの内周面23に直接に歪みゲージ等を貼付しないため、振動によるノイズを相対的に小さくすることができる。
また、本実施形態の変形量センサ51bは、既存の締固め機械の転輪20aに後から配置可能であり、転輪20aへの配置、除去、交換作業が容易である。また、本実施形態の変形量センサ51bでは、ケーブル類、コード類等の収納が比較的に容易となる。さらに、本実施形態の変形量センサ51bは、締固め機械の機種が変わり、転輪20aの径が変わっても対応可能である。
(第3実施形態)
以下、本発明の第3実施形態について説明する。以下の説明では、第1実施形態と重複する部分については説明を省略する。図7に示すように、変形量計測部50は、中空の転輪20aの内部に配置され、転輪20aの内周面23に電波、光及び音波のいずれかを発することにより転輪20aの変形量を計測する複数の変形量センサ51cを有する。変形量センサ51cのそれぞれは、例えば、転輪20aの内周面23に転輪20aの円周方向に沿って等間隔に配置されている。変形量センサ51cのそれぞれは、必ずしも、内周面23における転輪20aの円周方向の全周にわたって配置されている必要は無く、例えば、内周面23における転輪20aの円周方向の半周にわたって配置されていればよい。
変形量センサ51cは、例えば、変形量センサ51cの配置場所から対向する転輪20aの内周面23に半導体レーザからレーザ光を照射し、内周面23から反射した光を受光レンズで集光して受光素子上に結像する三角測距方式の非接触式変位計を用いることができる。転輪20aの変形により、変形量センサ51cと内周面23との距離が変動すると、集光される反射光の角度が変わり、それに伴って受光素子上に結像する位置が変化する。受光素子上の結像位置の変化が、変形量センサ51cと内周面23との距離の変化量と比例する。したがって、変形量センサ51cは、結像位置の変化量から、転輪20aの変形量を計測することができる。変形量センサ51cは、レーザ光の替りに電波又は音波を発してもよい。変形量センサ51cが出力した信号を伝搬するロータリーコネクタ52及び無線送信機53等の配置は、第1実施形態と同様とすることができる。
本実施形態によれば、変形量計測部50の変形量センサ51cは、中空の転輪20aの内部に配置され、転輪20aの内周面に電波、光及び音波のいずれかを発することにより、転輪20aに接触せずに転輪20aの変形量を計測するため、高精度で転輪20aの変形量を計測することができる。
(第4実施形態)
以下、本発明の第4実施形態について説明する。以下の説明では、第1実施形態と重複する部分については説明を省略する。図8に示すように、変形量計測部50は、中空の転輪20aの内周面23に配置された光ファイバを伝搬する光の波長の変化により転輪20aの変形量を計測する変形量センサ51dを有する。変形量センサ51dは、転輪20aの内周面23に転輪20aの円周方向の全周にわたって配置された1本の光ファイバから構成されている。なお、変形量センサ51dは、転輪20aの外周面22に配置することも可能であるが、変形量センサ51dの破損を防止するために、転輪20aの内部に配置されていることが好ましい。
周期的に波長が変化する入射光を入射されている光ファイバのある位置に歪みが発生すると、その位置だけ反射光の波長がずれる。そこで、変形量センサ51dでは、入射光と歪んだ後の反射光とを比較することで、光ファイバのどの位置がどのくらい歪んだのかを検出する。これにより、変形量センサ51dでは、転輪20aの変形量を計測することができる。変形量センサ51cが出力した信号を伝搬するロータリーコネクタ52及び無線送信機53等の配置は、第1実施形態と同様とすることができる。
本実施形態によれば、変形量計測部50の変形量センサ51dは、中空の転輪20aの内部に配置された光ファイバを伝搬する光の波長の変化により転輪20aの変形量を計測するため、変形量センサ51dを転輪20aの内部に配置することがより容易となる。つまり、本実施形態では、複数のセンサを転輪20aの内周面23に配置する必要は無く、1本の光ファイバを内周面23に配置すればよいため、変形量センサ51dの転輪20aへの配置、除去、交換作業が容易である。
(第5実施形態)
以下、本発明の第5実施形態について説明する。以下の説明では、第1実施形態と重複する部分については説明を省略する。図9に示すように、本実施形態の地盤締固め管理装置10bでは、転輪20aにより地盤100を締固めつつ転輪20bにより地盤100の剛性を算出する。転輪20bは、内部に空気を充填されたタイヤである。転輪20bは、第1実施形態の地盤締固め管理装置10bの駆動輪30と同様に、地盤締固め管理装置10aを地盤100の上で移動させる。なお、地盤締固め管理装置10bでは、第1実施形態と同様に、転輪20aによっても、地盤100の剛性を算出してもよい。
図10に示すように、変形量計測部50は、転輪20bであるタイヤの内部に充填された空気の空気圧を測定する空気圧センサ55及び地盤100に対する転輪20bであるタイヤの高さrを測定するタイヤ高センサ56を含む変形量センサ51eを有する。変形量計測部50は、空気圧センサ55により測定された空気圧及びタイヤ高センサ56により測定された転輪20bであるタイヤの高さrの少なくともいずれかを含む情報として転輪20bの変形量を計測する。
空気圧センサ55は、転輪20bであるタイヤやタイヤのホイール内部に取付けられ、タイヤの空気圧を計測するセンサである。空気圧センサ55は、タイヤの空気圧を検知し、車体側の変形量計測部50へ無線通信により転輪20bであるタイヤの空気圧に関する情報を送信する。
また、タイヤ高センサ56は、例えば、転輪20bの回転軸に配置され、上述した第3実施形態の変形量センサ51cと同様に、転輪20bの回転軸から地盤100の表面に半導体レーザからレーザ光を照射し、地盤100の表面から反射した光を受光レンズで集光して受光素子上に結像する三角測距方式の非接触式変位計を用いることができる。タイヤ高センサ56は、接触式の変位計により、タイヤの高さrを測定してもよい。また、タイヤ高センサ56は、必ずしも、転輪20bの回転軸に配置されていなくともよく、タイヤの高さrの変動を検出できればよい。タイヤ高センサ56は、車体側の変形量計測部50へ無線通信により地盤100に対する転輪20bであるタイヤの高さrに関する情報を送信する。なお、空気圧センサ55及びタイヤ高センサ56のいずれも、第1実施形態と同様に、ロータリーコネクタ52を用いる形式のものでもよい。
地盤剛性算出部60は、変形量計測部50により計測された転輪20bの変形量に含まれる空気圧及びタイヤの高さrに基づいて、地盤100の剛性を算出する。タイヤの空気圧に対するタイヤの基準半径r0とタイヤの高さrとの半径比(r/r)は、同じ硬さの路面では比例するとされている。タイヤの基準半径rは、締固めが完了し、タイヤが地盤100にめり込む量が0とみなせる地盤100の上におけるタイヤの半径である。
図11(A)及び図12に示すように、地盤100が軟らかく、地盤100の弾性係数が弾性係数Eである場合は、地盤100が柔らかく、転輪20bであるタイヤの変形量が小さいため、タイヤの空気圧pが低くなる。また、転輪20bであるタイヤが地盤100に大きくめり込むため、タイヤの高さrが低くなり、タイヤの基準半径rとタイヤの高さrとの半径比(r/r)は小さくなる。
図11(B)及び図12に示すように、転輪20aによる締固めにより地盤100が硬くなり、地盤100の弾性係数が弾性係数Eから弾性係数Eとなり、弾性係数Eから弾性係数Eとなった場合は、転輪20bであるタイヤの変形量が大きくなるため、タイヤの空気圧pが増加する。また、転輪20bであるタイヤの地盤100にめり込む量が減少するため、タイヤの高さrが高くなり、タイヤの基準半径rとタイヤの高さrとの半径比(r/r)が増加する。
図11(C)及び図12に示すように、転輪20aによる締固めが完了し、地盤100の弾性係数が弾性係数Etgtとなった場合は、転輪20bであるタイヤの空気圧pがさらに増加し、転輪20bであるタイヤの地盤100にめり込む量が0となるため、タイヤの基準半径rとタイヤの高さrとの半径比(r/r)が1となる。
同じ硬さの地盤100の上において、転輪20bであるタイヤの空気圧pと、タイヤの基準半径rとタイヤの高さrとの半径比(r/r)とが図12の実線の直線に示すような比例関係となる初期条件が同一のタイヤでは、様々な硬さの地盤100の上において、上述した図12の破線の曲線に示すような関係が一定となる。これは、上述した第1実施形態の金属製の転輪20aと同様に、Hertzの弾性接触理論から、硬い地盤100ほど転輪20bであるタイヤは変形しようとし、タイヤの変形に伴ってタイヤの空気圧が増加し、逆に、柔らかい地盤100ほどタイヤは変形しなくなり、タイヤの空気圧pが減少するからである。
したがって、タイヤの空気圧pとタイヤの高さrとを連続的に計測することにより、地盤100の剛性が目標値に達したか否かを把握することができる。なお、転輪20bであるタイヤの初期条件が同一のタイヤでは、タイヤの空気圧pと、タイヤの基準半径rとタイヤの高さrとの半径比(r/r)とが、図12の破線の曲線上を推移し、タイヤの基準半径rは既知量であるため、変形量計測部50はタイヤの空気圧p及びタイヤの高さrのいずれか一方のみを計測し、地盤剛性算出部60はタイヤの空気圧p及びタイヤの高さrのいずれか一方のみに基づいて地盤100の剛性を算出することができる。
本実施形態では、変形量計測部50により、変形量センサ51eの空気圧センサ55により測定された空気圧p及び変形量センサ51eのタイヤ高センサ56により測定されたタイヤの高さrの少なくともいずれかを含む情報として転輪20bの変形量が計測され、地盤剛性算出部60により、変形量計測部50により計測された転輪20bの変形量に含まれる空気圧p及びタイヤの高さrの少なくともいずれかに基づいて地盤100の剛性が算出されるため、測定が容易なタイヤの空気圧pやタイヤの高さrを測定することで地盤100の剛性をより容易に算出することができる。
(第6実施形態)
以下、本発明の第6実施形態について説明する。以下の説明では、第1実施形態と重複する部分については説明を省略する。図13に示すように、本実施形態の地盤締固め管理装置10cでは、転輪20bは、内部に空気を充填されたタイヤである。転輪20bは、地盤100に圧力を加えつつ回転することにより、地盤100を締固める転圧輪である。つまり、地盤締固め管理装置10cは、タイヤローラである締固め機械として構成されている。転輪20bにおける変形量センサ51e等の構成は、上記第5実施形態と同様である。
本実施形態によれば、転輪20bは、地盤100に圧力を加えつつ回転することにより、地盤100を締固めるタイヤローラの転圧輪であるため、転輪20bにより地盤100を締固めつつ地盤100の剛性を算出することができる。
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されることなく様々な形態で実施される。例えば、上述した実施形態では、転輪20a,20bは地盤100に圧力を加えつつ回転することにより、地盤100を締固める転圧輪であったが、必ずしも、転輪20a,20bは転圧輪でなくともよい。例えば、地盤締固め管理装置10a,10bは、締固め機械ではなく、動力又は人力により地盤100の上を移動可能な車両として構成されてもよい。
また、地盤締固め管理装置10a,10bは、必ずしも自走により地盤100の上を走行する締固め機械でなくともよく、例えば、牽引式の締固め機械として構成されていてもよい。
さらに、上記実施形態では、転輪20aの変形量は、転輪20aの内周面23又は外周面22の歪み、及び転輪20aの径の変化量として計測され、転輪20bの変形量は、転輪20bであるタイヤの空気圧p及びタイヤの高さrとして計測されたが、転輪20a,20bの変形量は、例えば、転輪20a,20bの外周面22の曲率等の形状の変化量として計測されてもよい。
10a,10b,10c…地盤締固め管理装置、20a,20b…転輪、21…フート、22…外周面、23…内周面、24a…第1部位、24b…第2部位、30…駆動輪、40…車体、50…変形量計測部、51a,51b,51c,51d,51e…変形量センサ、52…ロータリーコネクタ、53…無線送信機、54a…第1接触部、54b…第2接触部、55…空気圧センサ、56…タイヤ高センサ、60…地盤剛性算出部、70…運転者席、80…表示部、81a,81b…表示画面、82…締固め完了領域、83…締固め未了領域、84a,84b…自車両アイコン、90…位置検出部、100…地盤、P…荷重、A,B…物体、R,R…半径、r…高さ、r0…基準半径。

Claims (15)

  1. 地盤に接しつつ前記地盤の上を回転しながら移動する転輪と、
    前記転輪の変形量を計測する変形量計測部と、
    前記変形量計測部により計測された前記転輪の前記変形量に基づいて、前記地盤の剛性を算出する地盤剛性算出部と、
    を備え
    前記転輪は、前記地盤に圧力を加えつつ回転することにより、前記地盤を締固める転圧輪である、地盤締固め管理装置。
  2. 地盤に接しつつ前記地盤の上を回転しながら移動する転輪と、
    前記転輪の変形量を計測する変形量計測部と、
    前記変形量計測部により計測された前記転輪の前記変形量から求めた前記地盤と前記転輪との接触面の大きさと、前記転輪に加えられた前記地盤への荷重と、仮定した前記地盤のポアソン比と、前記地盤及び前記転輪のそれぞれの変形により前記地盤と前記転輪とが接近する距離とから求められる前記地盤の弾性係数に基づいて、前記地盤の剛性を算出する地盤剛性算出部と、
    を備えた地盤締固め管理装置。
  3. 前記転輪は、中空であり、
    前記変形量計測部は、前記転輪の内部に配置され、前記転輪の内周面に接することにより前記転輪の前記変形量を計測する変形量センサを有する、請求項1又は2に記載の地盤締固め管理装置。
  4. 前記変形量センサは、前記転輪の前記内周面の第1部位に接する第1接触部と、前記転輪の前記内周面の前記第1部位とは異なる第2部位に接する第2接触部とを含み、前記第1接触部と前記第2接触部との間の長さの伸縮量及び前記第1接触部と前記第2接触部との間に生じた歪みの少なくともいずれかを計測することにより前記転輪の前記変形量を計測する、請求項に記載の地盤締固め管理装置。
  5. 前記転輪は、中空であり、
    前記変形量計測部は、前記転輪の内部に配置され、前記転輪の内周面に電波、光及び音波のいずれかを発することにより前記転輪の前記変形量を計測する変形量センサを有する、請求項1又は2に記載の地盤締固め管理装置。
  6. 前記転輪は、中空であり、
    前記変形量計測部は、前記転輪の内周面に配置された光ファイバを伝搬する光の波長の変化により前記転輪の前記変形量を計測する変形量センサを有する、請求項1又は2に記載の地盤締固め管理装置。
  7. 前記転輪は、前記地盤に圧力を加えつつ回転することにより、前記地盤を締固める転圧輪である、請求項3〜6のいずれか1項に記載の地盤締固め管理装置。
  8. 前記転輪は、前記転輪の前記地盤に接する外周面から突出した複数のフートを有するタンピング付き転圧輪である、請求項に記載の地盤締固め管理装置。
  9. 前記転輪は、内部に空気を充填されたタイヤであり、
    前記変形量計測部は、前記タイヤの内部に充填された空気の空気圧を測定する空気圧センサ及び前記地盤に対する前記タイヤの高さを測定するタイヤ高センサの少なくともいずれかを含む変形量センサを有し、前記空気圧センサにより測定された前記空気圧及び前記タイヤ高センサにより測定された前記タイヤの高さの少なくともいずれかを含む情報として前記転輪の前記変形量を計測し、
    前記地盤剛性算出部は、前記変形量計測部により計測された前記転輪の前記変形量に含まれる前記空気圧及び前記タイヤの高さの少なくともいずれかに基づいて、前記地盤の剛性を算出する、請求項に記載の地盤締固め管理装置。
  10. 前記転輪は、前記地盤に圧力を加えつつ回転することにより、前記地盤を締固める転圧輪である、請求項に記載の地盤締固め管理装置。
  11. 前記変形量計測部は、回転する前記転輪に配置された前記変形量センサから出力された信号を前記転輪の外部に伝搬するロータリーコネクタを有し、前記ロータリーコネクタを介して前記変形量センサから出力された信号を前記転輪の外部で受信することにより、前記転輪の変形量を計測する、請求項3〜10のいずれか1項に記載の地盤締固め管理装置。
  12. 前記変形量計測部は、回転する前記転輪に配置された前記変形量センサから出力された信号を前記転輪の外部に無線通信により伝搬する無線送信機を有し、前記無線送信機を介して前記変形量センサから出力された信号を前記転輪の外部で受信することにより、前記転輪の変形量を計測する、請求項3〜10のいずれか1項に記載の地盤締固め管理装置。
  13. 前記転輪が接した前記地盤の二次元空間及び三次元空間の少なくともいずれかの位置を検出する位置検出部と、
    前記位置検出部により検出された前記位置ごとに、前記地盤剛性算出部により算出された前記地盤の剛性を表示する表示部をさらに備えた、請求項1〜12のいずれか1項に記載の地盤締固め管理装置。
  14. 地盤締固め管理装置の変形量計測部により、地盤に接しつつ前記地盤の上を回転しながら移動し、前記地盤に圧力を加えつつ回転することにより、前記地盤を締固める転圧輪である転輪の変形量を計測する工程と、
    前記地盤締固め管理装置の地盤剛性算出部により、前記転輪の変形量を計測する工程により計測された前記転輪の前記変形量に基づいて、前記地盤の剛性を算出する工程と、
    を備えた地盤締固め管理方法。
  15. 地盤締固め管理装置の変形量計測部により、地盤に接しつつ前記地盤の上を回転しながら移動する転輪の変形量を計測する工程と、
    前記地盤締固め管理装置の地盤剛性算出部により、前記転輪の変形量を計測する工程により計測された前記転輪の前記変形量から求めた前記地盤と前記転輪との接触面の大きさと、前記転輪に加えられた前記地盤への荷重と、仮定した地盤のポアソン比と、前記地盤及び前記転輪のそれぞれの変形により前記地盤と前記転輪とが接近する距離とから求められる前記地盤の弾性係数に基づいて、前記地盤の剛性を算出する工程と、
    を備えた地盤締固め管理方法。
JP2015236597A 2015-12-03 2015-12-03 地盤締固め管理装置及び地盤締固め管理方法 Active JP6735088B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015236597A JP6735088B2 (ja) 2015-12-03 2015-12-03 地盤締固め管理装置及び地盤締固め管理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015236597A JP6735088B2 (ja) 2015-12-03 2015-12-03 地盤締固め管理装置及び地盤締固め管理方法

Publications (2)

Publication Number Publication Date
JP2017101483A JP2017101483A (ja) 2017-06-08
JP6735088B2 true JP6735088B2 (ja) 2020-08-05

Family

ID=59016321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015236597A Active JP6735088B2 (ja) 2015-12-03 2015-12-03 地盤締固め管理装置及び地盤締固め管理方法

Country Status (1)

Country Link
JP (1) JP6735088B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017006844B4 (de) * 2017-07-18 2019-04-11 Bomag Gmbh Bodenverdichter und Verfahren zur Bestimmung von Untergrundeigenschaften mittels eines Bodenverdichters
FR3088249B3 (fr) * 2018-11-14 2020-10-16 Michelin & Cie Procede de determination de la fermete d'un sol

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135939U (ja) * 1984-08-07 1986-03-05 小松造機株式会社 振動ロ−ラ用鉄輪
JPH0540307U (ja) * 1991-10-28 1993-06-01 株式会社小松エスト 乗用式の転圧機
JP2567515Y2 (ja) * 1992-06-19 1998-04-02 酒井重工業株式会社 振動ローラ
JP2002146766A (ja) * 2000-11-17 2002-05-22 Sumitomo Densetsu Corp 転圧ローラユニット
JP3542780B2 (ja) * 2001-05-02 2004-07-14 不動建設株式会社 締固め管理方法
JP2002363963A (ja) * 2001-06-08 2002-12-18 Taisei Corp 地盤の締固め管理システム
JP2004257190A (ja) * 2003-02-27 2004-09-16 Taisei Corp 盛土施工の管理方法
US10000100B2 (en) * 2010-12-30 2018-06-19 Compagnie Generale Des Etablissements Michelin Piezoelectric based system and method for determining tire load
JP2012218682A (ja) * 2011-04-13 2012-11-12 Honda Motor Co Ltd 車輪荷重値算出装置
DE102011088567A1 (de) * 2011-12-14 2013-06-20 Hamm Ag Vorrichtung zur Erfassung der Bewegung einer Verdichterwalze eines Bodenverdichters
JP6211440B2 (ja) * 2013-03-15 2017-10-11 鹿島建設株式会社 締固め状況管理システム、締固め状況管理方法
DE102013220962A1 (de) * 2013-10-16 2015-04-30 Hamm Ag Vorrichtung und Verfahren zur Ermittlung einer einen Kontaktzustand einer Verdichterwalze mit zu verdichtendem Untergrund repräsentierenden Aufstandsgröße
JP6298313B2 (ja) * 2014-02-18 2018-03-20 鹿島建設株式会社 地盤剛性測定装置、締固め機械及び地盤剛性測定方法

Also Published As

Publication number Publication date
JP2017101483A (ja) 2017-06-08

Similar Documents

Publication Publication Date Title
JP6298313B2 (ja) 地盤剛性測定装置、締固め機械及び地盤剛性測定方法
US10458818B2 (en) Fiber-optic based traffic and infrastructure monitoring system
US20070150147A1 (en) Compactor using compaction value targets
US6973821B2 (en) Compaction quality assurance based upon quantifying compactor interaction with base material
EP3384265B1 (en) A method and system for measuring deformation of a surface
US9534995B2 (en) System and method for determining a modulus of resilience
US20200256775A1 (en) Compaction control system for and methods of accurately determining properties of compacted and/or existing ground materials
CA2569494C (en) Virtual profilograph for road surface quality assessment
CN102535313A (zh) 压实土层结构的可驱动设备、确定该结构最上层层弹性模量的方法
EP2881515B1 (en) Texture automatic monitoring system
JP6735088B2 (ja) 地盤締固め管理装置及び地盤締固め管理方法
Dontu et al. Weigh-in-motion sensors and traffic monitoring systems-Sate of the art and development trends
Zhao et al. Continuous measurement of tire deformation using long-gauge strain sensors
Zarate Garnica et al. Monitoring structural responses during load testing of reinforced concrete bridges: A review
US7428455B2 (en) Compaction indication by effective rolling radius
US20210080242A1 (en) Method and system for measuring deformation of a surface
JP4735079B2 (ja) タイヤ動的接地形状測定方法
KR101584963B1 (ko) Gps를 사용한 경사면의 붕괴 조짐을 예측하는 장치 및 방법
WO2019231336A1 (en) A method and system for measuring deformation of a surface
AU2021477864A1 (en) A system and method to measure a deformation of a geomaterial portion due to compaction of the geomaterial portion
WO2023108190A1 (en) A system and method to measure a deformation of a geomaterial portion due to compaction of the geomaterial portion
RU2705934C1 (ru) Способ контроля антенно-мачтовых сооружений
Bridgelall et al. A Sensor Fusion Approach to Assess Pavement Condition and Maintenance Effectiveness
JP2002296357A (ja) 斜面に存在する岩体の根入れ状態探査装置
JP5693058B2 (ja) 非破壊密度計測装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R150 Certificate of patent or registration of utility model

Ref document number: 6735088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250