JP2013194715A - 太陽熱発電設備、及びその起動方法 - Google Patents
太陽熱発電設備、及びその起動方法 Download PDFInfo
- Publication number
- JP2013194715A JP2013194715A JP2012066363A JP2012066363A JP2013194715A JP 2013194715 A JP2013194715 A JP 2013194715A JP 2012066363 A JP2012066363 A JP 2012066363A JP 2012066363 A JP2012066363 A JP 2012066363A JP 2013194715 A JP2013194715 A JP 2013194715A
- Authority
- JP
- Japan
- Prior art keywords
- turbine
- power generation
- generation facility
- rotor
- solar thermal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/02—Devices for producing mechanical power from solar energy using a single state working fluid
- F03G6/04—Devices for producing mechanical power from solar energy using a single state working fluid gaseous
- F03G6/045—Devices for producing mechanical power from solar energy using a single state working fluid gaseous by producing an updraft of heated gas or a downdraft of cooled gas, e.g. air driving an engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C1/00—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
- F02C1/04—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
- F02C1/05—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/26—Starting; Ignition
- F02C7/268—Starting drives for the rotor, acting directly on the rotor of the gas turbine to be started
- F02C7/275—Mechanical drives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/60—Fluid transfer
- F05D2260/606—Bypassing the fluid
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Control Of Turbines (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
【課題】太陽熱発電設備で、起動時にタービンロータの回転トルクを好適に制御する。
【解決手段】圧縮機10からの圧縮空気の一部をタービン20に対してバイパスさせるタービンバイパス配管74と、タービンバイパス配管74を流れる圧縮空気の流量を調節するタービンバイパス弁75と、起動装置60によるロータ回転数の昇速過程でロータ回転数が定格回転数になる以前から、タービンバイパス弁75を開けて置き、タービンバイパス弁75によりバイパスさせる圧縮空気の流量を調節させて、タービンロータ21の回転トルクを制御する制御装置80と、を備えている。制御装置80は、発電機50が電力系統Sに接続される併入時に、タービンバイパス弁75を瞬間的に全閉にする。
【選択図】図1
【解決手段】圧縮機10からの圧縮空気の一部をタービン20に対してバイパスさせるタービンバイパス配管74と、タービンバイパス配管74を流れる圧縮空気の流量を調節するタービンバイパス弁75と、起動装置60によるロータ回転数の昇速過程でロータ回転数が定格回転数になる以前から、タービンバイパス弁75を開けて置き、タービンバイパス弁75によりバイパスさせる圧縮空気の流量を調節させて、タービンロータ21の回転トルクを制御する制御装置80と、を備えている。制御装置80は、発電機50が電力系統Sに接続される併入時に、タービンバイパス弁75を瞬間的に全閉にする。
【選択図】図1
Description
本発明は、作動媒体を圧縮して圧縮媒体を生成する圧縮機と、太陽光を受けて圧縮空気を加熱する受熱器と、受熱器で加熱された圧縮媒体で駆動するタービンと、タービンの駆動で発電する発電機とを備えている太陽熱発電設備、及びその起動方法に関する。
近年、環境にやさしいクリーンなエネルギーとして、太陽光を集光して得られる熱エネルギーを利用した設備が盛んに開発されている。
このような設備の一例として、例えば、以下の特許文献1に記載されている太陽熱発電設備がある。この太陽熱発電設備は、作動媒体としての空気を圧縮して圧縮空気を生成する圧縮機と、太陽光を受けて圧縮空気を加熱する受熱器と、受熱器に太陽光を照射する集光器(ヘリオスタット)と、受熱器で加熱された圧縮空気で駆動するタービンと、タービンの駆動で発電する発電機とを備えている。
この太陽熱発電設備は、さらに、受熱器で加熱された圧縮空気をタービンに送る加熱空気配管から分岐して、煙突とつながるタービンバイパス配管が設けられていると共に、このタービンバイパス配管を流れる圧縮空気の流量を調節するタービンバイパス弁が設けられている。
この太陽熱発電設備では、受熱器に太陽光を照射する集光器の台数変更、及び、タービンバイパス弁の弁開度の変更により、タービン出力を調節している。
ところで、ガスタービン発電設備としては、空気を圧縮する圧縮機と、この圧縮機からの圧縮空気に燃料を混入させて燃焼させ燃焼ガスを生成する燃焼器と、燃焼ガスにより駆動するタービンと、このタービンの駆動で発電する発電機と、を備えているものが一般的である。このガスタービン発電設備では、起動時に、例えば、電動機を駆動して、タービンのロータ回転数を昇速させる。この際、燃焼器に供給する燃料流量を調節することで、タービンロータの回転トルクを制御している。
上述の一般的なガスタービン発電設備では、起動方法が基本的に確立している。しかしながら、特許文献1に記載されている太陽熱発電設備では、その起動方法や負荷併入時の同期調整方法が未だ確立していない。
そこで、例えば、太陽熱発電設備で、起動時において、上述の一般的なガスタービン発電設備の起動方法を踏襲する方法が考えられる。この場合、電動機でタービンロータの回転数を昇速させつつ、空気の加熱場所である受熱器への熱エネルギー投入量、つまり、受熱器に太陽光を照射する集光器の台数変更でロータの回転トルクを制御する方法が考えられる。
しかしながら、この方法では、太陽光の強さが常時天候に左右され、受熱器に太陽光を照射する集光器の台数変更では、起動時におけるタービンロータの回転トルク制御が極めて難しいことが予想される。また、この方法では、受熱器の熱容量が大きいため、受熱器に太陽光を照射する集光器の数量を変えても、受熱器に太陽光を照射する集光器の台数変化がタービンロータの回転トルクの変化に反映されるまでに数分必要となり応答性が悪く、起動時における微妙なタービンロータの回転トルク制御にあまりむかないと考えられる。
そこで、本発明は、起動時にタービンロータの回転トルクを好適に制御することができる太陽熱発電設備、及びその起動方法を提供することを目的とする。
上記目的を達成するための発明に係る太陽熱発電設備は、
作動媒体を圧縮して圧縮媒体を生成する圧縮機と、太陽光を受けて前記圧縮媒体を加熱する受熱器と、前記受熱器で加熱された前記圧縮媒体でタービンロータが回転するタービンと、前記タービンロータの回転で発電する発電機と、起動時に前記タービンロータを回転させる起動装置と、前記圧縮機からの前記圧縮媒体の少なくとも一部を前記タービン又は前記受熱器に対してバイパスさせるバイパス手段と、前記起動装置によるロータ回転数の昇速過程で該ロータ回転数が定格回転数になる以前から、前記バイパス手段により、前記圧縮媒体をバイパスさせておき、バイパスさせる該圧縮媒体の流量を調節させて、前記タービンロータの回転トルクを制御する制御装置と、を備えていることを特徴とする。
作動媒体を圧縮して圧縮媒体を生成する圧縮機と、太陽光を受けて前記圧縮媒体を加熱する受熱器と、前記受熱器で加熱された前記圧縮媒体でタービンロータが回転するタービンと、前記タービンロータの回転で発電する発電機と、起動時に前記タービンロータを回転させる起動装置と、前記圧縮機からの前記圧縮媒体の少なくとも一部を前記タービン又は前記受熱器に対してバイパスさせるバイパス手段と、前記起動装置によるロータ回転数の昇速過程で該ロータ回転数が定格回転数になる以前から、前記バイパス手段により、前記圧縮媒体をバイパスさせておき、バイパスさせる該圧縮媒体の流量を調節させて、前記タービンロータの回転トルクを制御する制御装置と、を備えていることを特徴とする。
ロータ回転数の昇速過程でロータ回転数が定格回転数になる以前から、バイパス手段により、圧縮媒体をバイパスさせておけば、バイパスさせる圧縮媒体の流量を調節させることで、タービンに流入する圧縮媒体の流量を調節することができる。このため、ロータ回転数が定格回転数になってから発電機の併入時までの間のタービンロータの回転トルクを制御することができる。このように、バイパスさせる圧縮媒体の流量を調節して、回転トルクを制御する方法では、タービンへ送る圧縮媒体の流量を変えることになるため、天候の影響が小さい。さらに、この方法では、バイパスさせる圧縮媒体の流量の変化がタービンロータの回転トルクの変化に反映されるまでの時間が極めて短い。このため、バイパスさせる圧縮媒体の流量を調節することで、起動時にタービンロータの回転トルクを好適に制御することができる。
ここで、前記太陽熱発電設備において、前記制御装置は、前記ロータ回転数が前記定格回転数になった後であって、前記発電機が電力系統に接続される併入時に、前記バイパス手段によりバイパスさせる前記圧縮媒体の流量を瞬間的に減少させてもよい。この場合、前記制御装置は、併入時に、前記バイパス手段よりバイパスさせる前記圧縮媒体の流量を0にさせてもよい。また、前記バイパス手段がバイパスさせる前記圧縮媒体の流量を調節するバイパス流量調節弁を有している場合には、前記制御装置は、前記併入時に、前記バイパス流量調節弁の弁開度を全閉にしてもよい。
発電機が電力系統に併入されると、発電機に急激に負荷がかかり、タービンロータの回転数は急激に低下しようとする。そこで、当該太陽熱発電設備では、発電機の併入と同時に、バイパス手段によりバイパスさせる圧縮媒体の流量を瞬間的に減少させ、圧縮機から送り出された圧縮媒体のうちで、タービンに送られていなかった圧縮媒体をタービンに送り、タービンロータの回転数が定格回転数を維持するようにしている。
また、前記太陽熱発電設備において、前記制御装置は、前記併入直前まで、実際の前記ロータ回転数が予め定められている起動時のロータ回転数パターンに近づくように、前記バイパス手段により、バイパスさせる前記圧縮媒体の流量を調節させてもよい。この場合、前記制御装置は、前記併入時以前に前記起動装置による前記タービンロータの回転補助を停止させてもよい。
当該太陽熱発電設備では、タービンロータの回転数を制御するために、発電機に供給する電力を制御することで発電機の回転数を変える回転数変換機構が不要になる。このため、当該太陽熱発電設備の製造コストを抑えることができる。
また、前記太陽熱発電設備において、前記起動装置は、起動時に前記タービンロータを回転させる電動機と、入力軸から出力軸に伝わるトルクの比率を変えるトルク比変換機構と、を有し、前記トルク比変換機構の前記入力軸は前記電動機の出力軸に接続され、該トルク比変換機構の前記出力軸は前記タービンロータに接続され、前記制御装置は、起動時に前記トルク比変換機構に対して、時間経過に応じた前記トルク比の目標値に対応した制御指令を出力して、前記起動装置から前記タービンロータに伝わる回転トルクを高めて前記ロータ回転数を昇速させてもよい。
また、前記太陽熱発電設備において、前記起動装置は、起動時に前記タービンロータを回転させる電動機として機能する前記発電機と、該発電機に供給する電力を制御することで該発電機の回転数を変える回転数変換機構と、を有し、前記制御装置は、起動時に前記回転数変換機構に対して、時間経過に応じた前記発電機の回転数の目標値に応じた制御指令を出力して、前記起動装置により前記ロータ回転数を昇速させてもよい。
また、前記太陽熱発電設備において、前記バイパス手段は、前記受熱器よりも上流側で前記圧縮媒体をバイパスさせてもよい。
当該太陽熱発電設備では、バイパス手段に受熱器で加熱された高温の圧縮媒体が流れないため、高温用のバイパス手段、例えば、高温用のパイプやバルブが不要となり、このバイパス手段の製造コストを抑えることができる。
また、前記太陽熱発電設備において、前記バイパス手段は、前記圧縮機で圧縮された前記圧縮媒体の少なくとも一部を前記タービンよりも上流側から該タービンの排気側に導くタービンバイパス配管と、該タービンバイパス配管を流れる前記圧縮媒体の流量を調節するタービンバイパス弁と、を有し、前記制御装置は、前記タービンバイパス弁の弁開度を調節してもよい。また、前記太陽熱発電設備において、前記バイパス手段は、前記圧縮機で圧縮された前記圧縮媒体の少なくとも一部を前記受熱器よりも上流側から該受熱器よりも下流側であって前記タービンよりも上流側に導く受熱器バイパス配管と、該受熱器バイパス配管を流れる前記圧縮媒体の流量を調節する受熱器バイパス弁と、を有し、前記制御装置は、前記受熱器バイパス弁の弁開度を調節してもよい。また、前記太陽熱発電設備において、前記バイパス手段は、前記圧縮機で圧縮された前記圧縮媒体の少なくとも一部を前記受熱器よりも上流側から大気に放出する放風配管と、該放風配管から大気に流出する前記圧縮媒体の流量を調節する放風弁と、を有し、前記制御装置は、前記放風弁の弁開度を調節してもよい。
上記目的を達成するための発明に係る太陽熱発電設備の起動方法は、
作動媒体を圧縮して圧縮媒体を生成する圧縮機と、太陽光を受けて前記圧縮媒体を加熱する受熱器と、該受熱器で加熱された該圧縮媒体でタービンロータが回転するタービンと、該タービンロータの回転で発電する発電機と、起動時に前記タービンロータを回転させる起動装置と、を備えている太陽熱発電設備の起動方法において、前記起動装置で前記タービンロータの回転数を昇速させる昇速工程と、前記昇速工程中であって、前記タービンロータの回転数が定格回転数になる以前から、前記圧縮機からの前記圧縮媒体の少なくとも一部を前記タービン又は前記受熱器に対してバイパスさせておき、バイパスさせる該圧縮媒体の流量を調節して、前記発電機が電力系統に接続される併入時迄の前記タービンロータの回転トルクを制御する併入過程制御工程と、を実行することを特徴とする。
作動媒体を圧縮して圧縮媒体を生成する圧縮機と、太陽光を受けて前記圧縮媒体を加熱する受熱器と、該受熱器で加熱された該圧縮媒体でタービンロータが回転するタービンと、該タービンロータの回転で発電する発電機と、起動時に前記タービンロータを回転させる起動装置と、を備えている太陽熱発電設備の起動方法において、前記起動装置で前記タービンロータの回転数を昇速させる昇速工程と、前記昇速工程中であって、前記タービンロータの回転数が定格回転数になる以前から、前記圧縮機からの前記圧縮媒体の少なくとも一部を前記タービン又は前記受熱器に対してバイパスさせておき、バイパスさせる該圧縮媒体の流量を調節して、前記発電機が電力系統に接続される併入時迄の前記タービンロータの回転トルクを制御する併入過程制御工程と、を実行することを特徴とする。
ロータ回転数の昇速過程でロータ回転数が定格回転数になる以前から、圧縮媒体をバイパスさせておけば、バイパスさせる圧縮媒体の流量を調節させることで、タービンに流入する圧縮媒体の流量を調節することができる。このため、ロータ回転数が定格回転数になってから発電機の併入時までの間のタービンロータの回転トルクを制御することができる。このように、バイパスさせる圧縮媒体の流量を調節して、回転トルクを制御する方法では、タービンへ送る圧縮媒体の流量を変えることになるため、天候の影響が小さい。さらに、この方法では、バイパスさせる圧縮媒体の流量の変化がタービンロータの回転トルクの変化に反映されるまでの時間が極めて短い。このため、バイパスさせる圧縮媒体の流量を調節することで、起動時にタービンロータの回転トルクを好適に制御することができる。
ここで、前記太陽熱発電設備の起動方法において、前記併入過程制御工程では、前記併入時に、バイパスさせる前記圧縮媒体の流量を瞬間的に減少させてもよい。この場合、前記併入過程制御工程では、前記併入時に、バイパスさせる前記圧縮媒体の流量を0にさせてもよい。
発電機が電力系統に併入されると、発電機に急激に負荷がかかり、タービンロータの回転数は急激に低下しようとする。そこで、当該起動方法では、発電機の併入と同時に、バイパスさせる圧縮媒体の流量を瞬間的に減少させ、圧縮機から送り出された圧縮媒体のうちで、タービンに送られていなかった圧縮媒体をタービンに送り、タービンロータの回転数が定格回転数を維持するようにしている。
本発明によれば、起動時にタービンロータの回転トルクを好適に制御することができる。
以下、本発明に係る太陽光発電設備の一実施形態及びその変形例について、図面を参照して詳細に説明する。
「実施形態」
まず、図1及び図2を参照して、太陽熱発電設備の一実施形態について説明する。
まず、図1及び図2を参照して、太陽熱発電設備の一実施形態について説明する。
本実施形態の太陽熱発電設備は、図1に示すように、作動媒体としての空気を圧縮して圧縮媒体である圧縮空気を生成する圧縮機10と、太陽光を受けて圧縮空気を加熱する受熱器30と、受熱器30に太陽光を照射する複数のヘリオスタット40と、受熱器30で加熱された圧縮空気で駆動するタービン20と、タービン20の駆動で発電する発電機50と、起動時に圧縮機ロータ11及びタービンロータ21を回転させる起動装置60と、これらを制御する制御装置80と、を備えている。
受熱器30は、太陽光が照射される受熱部31と、この受熱部31を覆うケーシング35と、を有している。受熱部31は、下部ヘッダ配管32と、この下部ヘッダ配管32の上方に配置されている上部ヘッダ配管33と、鉛直方向に延び下部ヘッダ配管32と上部ヘッダ配管33とをつなぐ複数の受熱管34と、を有している。ケーシング35の下部には、受熱部31の内部にヘリオスタット40からの太陽光を導くための開口36が形成されている。この受熱器30は、太陽熱発電設備の設置領域内に建てられたタワー(不図示)上に設けられる。
ヘリオスタット40は、太陽光を反射する反射鏡41と、反射鏡41を支持する支持脚43と、反射鏡41を目的の方向に向ける駆動制御器42と、を有している。このヘリオスタット40は、受熱器30が設けられているタワーの周囲に配置される。
圧縮機10は、回転する前述の圧縮機ロータ11と、この圧縮機ロータ11を回転可能に覆う圧縮機ケーシング12と、有している。
タービン20は、回転する前述のタービンロータ21と、このタービンロータ21を回転可能に覆うタービンケーシング22と、を有している。このタービンロータ21は、圧縮機ロータ11の延長線上に位置に、圧縮機ロータ11に接続されている。また、この圧縮機ロータ11は、発電機ロータ51に接続されている。よって、発電機ロータ51が回転すると、圧縮機ロータ11及びタービンロータ21も回転する。
タービン20の排気側には、タービン20から排気された高温の圧縮空気である排気空気を利用して、圧縮機10からの圧縮空気を加熱する再熱器25が設けられている。さらに、この再熱器25には、圧縮空気を加熱した後の排気空気を排気する排気ダクト28が設けられている。
起動装置60は、起動時に、発電機ロータ51、圧縮機ロータ11及びタービンロータ21を回転させる電動機61と、入力軸65から出力軸66に伝わるトルクの比率を変えるトルクコンバータ(トルク比変換機構)64と、を備えている。トルクコンバータ64は、内蔵されているガイドベーン(不図示)の開度を変えることで、入力軸65から出力軸66に伝わるトルクの比率を変えることができる。トルクコンバータ64の入力軸65は、電動機61の出力軸62に接続され、トルクコンバータ64の出力軸66は、発電機ロータ51に接続されている。発電機ロータ51は、前述したように、圧縮機ロータ11に接続されており、この圧縮機ロータ11は、タービンロータ21に接続されている。このため、トルクコンバータ64の出力軸66は、発電機ロータ51を介して圧縮機ロータ11に接続されていると共に、タービンロータ21にも接続されている。
発電機50は、発電機遮断器55を介して電力系統Sと電気的に接続されている。また、電動機61は、起動装置遮断器56を介して電力系統Sと電気的に接続されている。
圧縮機10の吐出口13と再熱器25の圧縮空気入口26とは圧縮空気配管71で接続されている。再熱器25の圧縮空気出口27と受熱器30の下部ヘッダ配管32とは再熱空気配管72で接続されている。受熱器30の上部ヘッダ配管33とタービン20の吸気口23とは加熱空気配管73で接続されている。圧縮空気配管71と排気ダクト28とはタービンバイパス配管74で接続されている。このタービンバイパス配管74には、ここを通る圧縮空気の流量を調節するタービンバイパス弁75が設けられている。なお、本実施形態では、タービンバイパス配管74とタービンバイパス弁75でバイパス手段を構成している。これらタービンバイパス配管74及びタービンバイパス弁75により、タービン20のトリップ時等、緊急停止を必要とするとき、高温の作動媒体のタービン20への流入が制限され、安全にタービン停止を図ることが可能となる。
加熱空気配管73には、受熱器30で加熱された圧縮空気の温度を測定する受熱器出口温度計38が設けられている。また、受熱器30の受熱管34には、この受熱管34の温度を測定する受熱管温度計39が設けられている。発電機ロータ51と圧縮機ロータ11とタービンロータ21とのうち、いずれかには、これらの回転数であるロータ回転数を測定する回転数計19が設けられている。これら受熱器出口温度計38、受熱管温度計39、及び回転数計19で測定された値は、いずれも、制御装置80に送られる。
制御装置80は、機能的に、起動時にトルクコンバータ64にトルク比指令を出力するトルクコンバータ制御部82と、各遮断器55,56に開閉指令を出力する遮断器制御部83と、複数のヘリオスタット40毎に受熱器30への太陽光の照射オン又はオフ指令を出力するヘリオスタット制御部84と、タービンバイパス弁75に弁開度指令を出力するバイパス弁制御部85と、外部から各種データを受け付けて、以上の各制御部82〜85を制御する統合制御部81と、を有している。
なお、制御装置80は、コンピュータであり、各種演算を実行するCPUと、CPUのワークエリアとなるメモリと、CPUが実行するプログラムや各種データが記憶されている外部記憶装置と、各種データの入出力インタフェースとを備えている。制御装置80の上記機能構成は、いずれも、外部記憶装置に記憶されているプログラムをCPUが実行することで機能する。
次に、図2に示すタイミングチャートに従って、太陽熱発電設備の起動時の動作について説明する。
この太陽熱発電設備では、朝、太陽が昇り始めると、制御装置80のヘリオスタット制御部84が複数のヘリオスタット40に対して、照射オン指令を出力する(t0)。この照射オン指令を受けたヘリオスタット40の駆動制御器42は、反射鏡41で反射した太陽光が受熱器30に向うよう、反射鏡41の向きを調節する。
受熱器30の受熱部31に太陽光が照射されると、受熱部31と共に受熱部31内の空気が加熱され、これらの温度が次第に上昇する。
制御装置80の遮断器制御部83は、受熱器出口温度計38又は受熱管温度計39で測定された温度が予め定められた温度(例えば、200〜300℃)になると(t1)、統合制御部81からの指示で、起動装置遮断器56に対して閉指令を出力する。この結果、電動機61に系統電力が供給され始め、電動機61が駆動し始める。また、制御装置80のトルクコンバータ制御部82は、これと同時に、統合制御部81からの指示で、トルクコンバータ64に対して起動指令を出力する。
トルクコンバータ制御部82は、例えば、予め定められているトルク比パターンで示されている目標トルク比に関する指令をトルクコンバータ64に出力する。具体的に、トルク比パターンは、電動機61の起動開始時からロータ回転数の単位時間当たり増加率が所定の増加率になるようよう、電動機61の起動開始時からの時刻毎における目標トルク比を定めたものである。トルクコンバータ制御部82は、このトルク比パターンに従って、その時刻における目標トルク比が得られるよう、トルクコンバータ64のガイドベーンの開度をトルク比指令として、このガイドベーンに出力する。なお、ここでは、ガイドベーンの開度が大きくなるに伴い、入力トルクに対する出力トルクの大きさが大きくなる。したがって、ここでは、ガイドベーンの開度が時間経過に伴って次第に大きくなる。この結果、トルクコンバータ64の入力軸65から出力軸66に伝わるトルクが時間経過に伴って次第に増加して、発電機ロータ51の回転数、圧縮機10及びタービン20のロータ回転数が時間経過に伴って次第に増加する。
圧縮機ロータ11が回転し始めると、空気を吸引して圧縮空気を生成し、これを圧縮機ケーシング12の吐出口13から吐出する。この圧縮空気は、圧縮空気配管71、再熱器25、再熱空気配管72を経て、受熱器30の受熱部31に送られ、ここで加熱される。受熱器30で加熱された圧縮空気は、加熱空気配管73を経て、タービン20に送られ、タービンロータ21を回転させる。タービンロータ21を回転させた圧縮空気は排気空気として、再熱器25を経て、排気ダクト28から大気に排気される。この過程で、再熱器25において、排気空気と圧縮空気配管71を通ってきた圧縮空気との熱交換により、この圧縮空気が加熱される。
ここで、ロータ回転数が予め定められた回転数Na(例えば、定格回転数Ndの20〜40%の回転数)になると(t2)、トルクコンバータ制御部82によるトルクコンバータ64のトルク比制御を一時中止してトルク比を固定し、受熱器出口温度計38又は受熱管温度計39で測定された温度が予め定められた温度(例えば、500〜700℃)になるまで待ってもよい。そして、受熱器出口温度計38又は受熱管温度計39で測定された温度が予め定められた温度なると(t3)、再び、トルクコンバータ制御部82によるトルクコンバータ64のトルク比制御を実行するようにしてもよい。この方法により、タービン起動に必要なトルクを小さく一定にすることが可能である。
太陽光の光量は、太陽が昇るにつれて増加するため、受熱器30に太陽光を照射するヘリオスタット40の台数が一定であっても、受熱器30の受熱部31が受ける光量、言い換えると熱量は増加する。このため、受熱部31に送られてきた圧縮空気に対する単位時間当たりの加熱量も増加し、圧縮空気でタービンロータ21を回転させる回転トルクが増加する。一方、電動機61でタービンロータ21を回転させる回転トルクは相対的に減少する。
ロータ回転数が次第に増加して、回転数計19で測定されたロータ回転数が予め定められた回転数Nb(例えば、定格回転数Ndの40〜60%の回転数)以上になると(t4)、制御装置80のバイパス弁制御部85は、統合制御部81からの指示で、タービンバイパス弁75に弁開度指令を出力する。この結果、タービンバイパス弁75は、開いて指示された弁開度になる。前述したように、時間経過に伴って受熱器30での圧縮空気への加熱量が増加し、この圧縮空気でタービンロータ21を回転させる力が増加するため、タービンバイパス弁75を開けて、タービン20に送られる加熱された圧縮空気の流量が減す。
この際、バイパス弁制御部85は、回転数計19で測定されたロータ回転数が予め定められた回転数パターンに近づくように、タービンバイパス弁75の弁開度を定める。具体的に、回転数パターンは、電動機61の起動開始時からタービンロータ21が定格回転数Ndになるまで、ロータ回転数の単位時間当たり増加率が所定の増加率になるよう、電動機61の起動開始時からの時刻毎におけるロータ回転数を定めたものである。なお、この回転数パターンは、一端、定格回転数Ndになると、その後、この定格回転数Ndで一定である。バイパス弁制御部85は、例えば、回転数計19で測定されたロータ回転数と、回転数パターンが定めるそのときの目標回転数との偏差に応じて、タービンバイパス弁75の弁開度を定める。タービンバイパス弁75が開き、タービン20に送られる加熱された圧縮空気の流量が変化すると、タービンロータ21を回転させる回転トルクが変化して、ロータ回転数が変わる。すなわち、ここでは、タービンバイパス弁75の弁開度を調節して、タービンロータ21を回転させる回転トルクを制御することで、ロータ回転数を制御している。
ところで、タービンロータ21を回転させる回転トルクは、受熱器30に太陽光を照射するヘリオスタット40の台数を変更する方法でも制御可能である。しかしながら、前述したように、この方法では、太陽光の強さが常時天候に左右され、受熱器30に太陽光を照射するヘリオスタット40の台数変更では、起動時における回転トルクの制御が極めて難しいことが予想される。また、この方法では、受熱器30の熱容量が大きいため、受熱器30に太陽光を照射するヘリオスタット40の台数を変えても、受熱器30に太陽光を照射するヘリオスタット40の台数変化が回転トルクの変化に反映されるまでに数分かかってしまい、起動時における微妙な回転トルクの制御にあまりむかないと考えられる。
一方、タービンバイパス弁75の弁開度を調節して、回転トルクを制御する方法では、タービン20へ送る圧縮空気の流量を変えることになるため、天候の影響が小さい。さらに、この方法では、タービンバイパス弁75の弁開度の変化がタービンロータ21の回転トルクの変化に反映されるまでの時間が極めて短い。このため、タービンバイパス弁75の弁開度を調節することで、起動時にタービンロータ21の回転トルクを好適に制御することができる。
タービンバイパス弁75が開いた後のトルク比パターンは、例えば、次第に小さくなり、回転数パターンが定格回転数Ndになる時刻で0になる、つまり、電動機61から発電機ロータ51に伝えられるトルクが0になる。このため、トルクコンバータ64のトルク比は、このトルク比パターンに従って変化し、ロータ回転数がほぼ定格回転数Ndになると(t5)、0になる。トルクコンバータ64のトルク比が0になると、遮断器制御部83が起動装置遮断器56に対して開指令を出力し、電力系統Sから電動機61への電力供給を断たせて電動機61を停止させる。
タービンロータ21を回転させるトルク成分のうち、加熱された圧縮空気によってタービンロータ21を回転させるトルク成分は、時間経過に伴って、電動機61によってタービンロータ21を回転させるトルク成分に対して相対的に大きくなる。このため、ロータ回転数の制御は、時間経過に伴い、タービンバイパス弁75の弁開度による制御が支配的になってくる。そして、電動機61が停止した以降(t5)、つまり、圧縮機ロータ11及びタービンロータ21が電動機61の補助なして、定格回転数Ndを維持できるようになると、ロータ回転数は、基本的にタービンバイパス弁75の弁開度で制御される。
なお、トルク比パターン及び回転数パターンは、時間経過に伴うトルク比や回転数の変化が基本的に固定的であるが、太陽光が長時間にわたって雲に遮られ、受熱器出口温度計38等で測定された温度が下限温度を下回るような場合には、例えば、受熱器出口温度計38等で測定された温度が下限温度を下回ってから再び下限温度以上になるまで、各パターンのタイムスケジュールは停止する。
ロータ回転数がほぼ定格回転数Ndになってから(t5)、所定時間経過すると(t6)、統合制御部81からの指示で、遮断器制御部83が発電機遮断器55に対して閉指令を出力し、電力系統Sと発電機50とを電気的に接続する、つまり発電機50は電力系統Sに併入される。これと同時には、バイパス弁制御部85は、統合制御部81から指示で、タービンバイパス弁75に対して弁開度0、つまり全閉の指令を与える。
発電機50が電力系統Sに併入されると、発電機50に急激に負荷がかかり、発電機ロータ51やタービンロータ21の回転数は急激に低下しようとする。そこで、ここでは、発電機50の併入と同時に、タービンバイパス弁75を瞬間的に全閉にして、圧縮機10から送り出された圧縮空気のうちで、タービン20に送られずに、タービンバイパス配管74を経て排気ダクト28から排気していた圧縮空気をタービン20に送り、発電機ロータ51やタービンロータ21の回転数が定格回転数Ndを維持するようにしている。
以降、タービン20は、基本的に、受熱器30に太陽光を照射するヘリオスタット40の台数調節で制御される。なお、このヘリオスタット40の台数調節は、ヘリオスタット制御部84が実行する。但し、例えば、電力系統Sの負荷が急激に変化した場合や、受熱器出口温度計38や受熱管温度計39で測定された温度がそれぞれの上限値を超えた場合には、タービンバイパス弁75等の弁開度を調節して、これらの場合に対応する。
なお、本実施形態において、電動機61が駆動している期間、つまり電動機61で圧縮機ロータ11及びタービンロータ21の回転を補助している期間(t1〜t5)が、本実施形態の太陽熱発電設備における昇速工程である。また、本実施形態において、タービンバイパス弁75が開き始めてから全閉になるまでの期間(t4〜t6)が、本実施形態の太陽熱発電設備における併入過程制御工程である。
以上のように、本実施形態では、起動時におけるタービンロータ21の回転トルクを好適に制御することができ、結果として起動時におけるロータ回転数を好適に制御することができる。
「第一変形例」
次に、以上で説明した太陽熱発電設備の一実施形態の第一変形例について、図3を用いて説明する。
次に、以上で説明した太陽熱発電設備の一実施形態の第一変形例について、図3を用いて説明する。
以上で説明した実施形態では、タービンバイパス弁75の弁開度で起動時におけるタービンロータ21の回転トルクを制御するが、以下で説明する変形例では、他の弁の弁開度で起動時における回転トルクを制御する。
例えば、圧縮空気配管71と加熱空気配管73とを接続する受熱器バイパス配管76を設けると共に、この受熱器バイパス配管76に受熱器バイパス弁77を設ける。そして、この受熱器バイパス弁77の弁開度をタービンバイパス弁75の弁開度と同様に調節して、タービンロータ21の回転トルクを制御することで、起動時におけるロータ回転数を制御するようにしてもよい。
また、再熱空気配管72に、ここを通る圧縮空気を大気に放出する放風配管78を設けると共に、ここに放風弁79を設ける。そして、この放風弁79の開度をタービンバイパス弁75の弁開度と同様に調節して、タービンロータ21の回転トルクを制御するようにしてもよい。
以上のように、圧縮機10からの圧縮空気の一部をタービン20又は受熱器30に対してバイパスさせる手段を設け、この手段により、バイパスさせる圧縮空気の流量を調節させて、起動におけるタービンロータ21の回転トルクを制御するものであれば、如何なる方法でも、起動時におけるタービンロータ21の回転トルクを好適に制御することができる。
但し、受熱器30で加熱された後の圧縮空気の一部をタービン20に対してバイパスさせる場合には、この圧縮空気の温度が極めて高いため、バイパスさせる圧縮空気の流量を調節する弁が非常に高価になる。例えば、加熱空気配管73と排気ダクト28とを接続するタービンバイパス配管を設けると共に、このタービンバイパス配管にタービンバイパス弁を設ける場合には、このタービンバイパス弁が非常に高価になる。このため、受熱器30で加熱された後の圧縮空気の一部をタービン20に対してバイパスさせる方法は避けることが好ましい。
また、タービン20又は受熱器30に対してバイパスさせる手段は、1つである必要はなく、複数であってもよく、この場合、複数の手段を併用して、起動時におけるタービンロータ21の回転トルクを制御してもよい。
「第二変形例」
次に、以上で説明した太陽熱発電設備の一実施形態の第二変形例について、図4及び図5を用いて説明する。
次に、以上で説明した太陽熱発電設備の一実施形態の第二変形例について、図4及び図5を用いて説明する。
本変形例は、上記実施形態における起動装置60を変更したものである。
本変形例の起動装置60aは、図4に示すように、電動機としても機能する発電機50aと、この発電機50aの回転数を制御するインバータ(回転数変換機構)69と、を備えている。
電動機としても機能する発電機50aは、上記実施形態と同様、発電機遮断器55を介して電力系統Sと電気的に接続されている。この発電機50aは、さらに、出力側遮断器57を介してインバータ69と電気的に接続されている。このインバータ69は、入力側遮断器58を介して電力系統Sと電気的に接続されている。
このように、本変形例の起動装置60aは、上記実施形態におけるトルクコンバータ64の替わりに、発電機50aの回転数を制御するインバータ69を備えているため、本変形例の制御装置80aは、上記実施形態におけるトルクコンバータ制御部82の替わりに、インバータ制御部86を備えている。
次に、図5に示すタイミングチャートに従って、本変形例における太陽熱発電設備の起動時の動作について説明する。
本変形例では、ヘリオスタット制御部84が複数のヘリオスタット40に対して、照射オン指令を出力し(t0)、受熱器出口温度計38又は受熱管温度計39で測定された温度が予め定められた温度(例えば、200〜300℃)になると(t1)、統合制御部81からの指示で、遮断器制御部83が入力側遮断器58及び出力側遮断器57に対して閉指令を出力する。この結果、インバータ69を介して発電機50aに系統電力が供給され始め、発電機50aが電動機として駆動し始める。また、インバータ制御部86は、これと同時に、例えば、インバータ69の制御を開始する。
インバータ制御部86は、例えば、電動機としての発電機50aが予め定められている回転数パターンで示されている目標ロータ回転数になるよう、この目標回転数又はこれに対応する値を含む制御指令をインバータ69に出力する。具体的に、回転数パターンは、電動機としての発電機50aの起動開始時からロータ回転数の単位時間当たり増加率が所定の増加率になるようよう、この発電機50aの起動開始時からの時刻毎における目標ロータ回転数を定めたものである。この結果、発電機ロータ51、圧縮機ロータ11及びタービンロータ21の回転数であるロータ回転数が時間経過に伴って次第に増加する。なお、インバータ69の出力電力は、図5に示すように、タービン20回転数の増加に伴って増加する。
ここで、ロータ回転数が予め定められた回転数Na(例えば、定格回転数Ndの20〜40%の回転数)になると(t2)、上記実施形態と同様、インバータ制御部86によるインバータ制御を一時中止してロータ回転数を固定し、受熱器出口温度計38又は受熱管温度計39で測定された温度が予め定められた温度(例えば、50〜700℃)になるまで待ってもよい。そして、受熱器出口温度計38又は受熱管温度計39で測定された温度が予め定められた温度なると(t3)、再び、インバータ制御部86によるインバータ制御を実行するようにしてもよい。
ロータ回転数が次第に増加して、回転数計19で測定されたロータ回転数が予め定められた回転数Nb(例えば、定格回転数Ndの40〜60%の回転数)以上になると(t4)、上記実施形態と同様、制御装置80aのバイパス弁制御部85は、統合制御部81からの指示で、タービンバイパス弁75に弁開度指令を出力する。この結果、タービンバイパス弁75は、開いて指示された弁開度になる。前述したように、時間経過に伴って受熱器30での圧縮空気への加熱量が増加し、この圧縮空気でタービンロータ21を回転させる力が増加するため、タービンバイパス弁75を開けて、タービン20に送られる加熱された圧縮空気の流量が減す。
この際、バイパス弁制御部85は、例えば、タービンバイパス弁75の弁開度が予め定められた弁開度パターンの示す目標弁開度になるよう、タービンバイパス弁75の弁開度を定める。具体的に、弁開度パターンは、例えば、弁開度0から、所定弁開度までが単位時間当たりの弁開度の増加率が所定の増加率になり、以降、一定弁開度になっているものである。
前述したように、タービンロータ21を回転させるトルク成分のうち、加熱された圧縮空気によってタービンロータ21を回転させるトルク成分は、時間経過に伴って、発電機50aによってタービンロータ21を回転させるトルク成分に対して相対的に大きくなる。このため、インバータ69による発電機ロータ51の回転数制御が実行されているものの、インバータ69から発電機50aに送られる出力電力は、ある時点を境に減少傾向になる。
本変形例では、ロータ回転数が定格回転数Ndになった以降(t5)も、インバータ69による発電機ロータ51の回転数制御が継続される。これは、本変形例において、タービンバイパス弁75の弁開度の調節が、上記実施形態のようにロータ回転数制御を目的とするものではないからである。
ロータ回転数が定格回転数Ndになってから(t5)、所定時間経過すると(t6)、統合制御部81からの指示で、遮断器制御部83が入力側遮断器58及び出力側遮断器57に対して開指令を出力すると共に、発電機遮断器55に対して閉指令を出力する。この結果、インバータ69を介して発電機50aに系統電力が供給されなくなり、発電機50aは電動機として機能しなくなる。さらに、この際、電力系統Sと発電機50aとが電気的に接続される、つまり発電機50aは電力系統Sに併入され、発電機50aから電力系統Sに電力供給が開始される。
発電機50aが電力系統Sに併入されると、発電機50aに急激に負荷がかかり、発電機ロータ51やタービンロータ21の回転数は急激に低下しようとする。そこで、本変形例でも、発電機50aの併入と同時に、タービンバイパス弁75を瞬間的に全閉にして、圧縮機10から送り出された圧縮空気のうちで、タービン20に送られずに、タービンバイパス配管74を経て排気ダクト28から排気していた圧縮空気をタービン20に送り、発電機ロータ51やタービンロータ21の回転数が定格回転数Ndを維持するようにしている。
以降、タービン20は、上記実施形態と同様、基本的に、受熱器30に太陽光を照射するヘリオスタット40の台数調節で制御される。
以上のように、本変形例でも、起動時におけるタービンロータ21の回転トルクを好適に制御することができる。
なお、本変形例においても、タービンバイパス弁75の替わりに、第一変形例で例示したように、受熱器バイパス弁77や放風弁79を設け、これにより、起動時におけるタービンロータ21の回転トルクを制御するようにしてもよい。
また、上記実施形態及び本変形例では、発電機50,50aが電力系統Sに併入されると、タービンバイパス弁75を瞬間的に全閉にしている。しかしながら、発電機50,50aの併入時にタービンバイパス弁75の弁開度が瞬間的に小さくなり、タービンバイパス配管74を流れる圧縮空気の流量が瞬間的に減少するのであれば、全閉にしなくてもよい。
また、上記実施形態及び上記各変形例では、タービン20の排気側に再熱器25を設けているが、この再熱器25は、太陽熱発電設備において必須のものではない。
10:圧縮機、11:圧縮機ロータ、20:タービン、21:タービンロータ、25:再熱器、28:排気ダクト、30:受熱器、40:ヘリオスタット、50,50a:発電機、60,60a:起動装置、61:電動機、64:トルクコンバータ、69:インバータ、71:圧縮空気配管、72:再熱空気配管、73:加熱空気配管、74:タービンバイパス配管、75:タービンバイパス弁、76:受熱器バイパス配管、77:受熱器バイパス弁、78:放風配管、79:放風弁、80,80a:制御装置、81:統合制御部、82:トルクコンバータ制御部、83:遮断器制御部、84:ヘイオスタット制御部、85:バイパス弁制御部、86:インバータ制御部
Claims (15)
- 作動媒体を圧縮して圧縮媒体を生成する圧縮機と、
太陽光を受けて前記圧縮媒体を加熱する受熱器と、
前記受熱器で加熱された前記圧縮媒体でタービンロータが回転するタービンと、
前記タービンロータの回転で発電する発電機と、
起動時に前記タービンロータを回転させる起動装置と、
前記圧縮機からの前記圧縮媒体の少なくとも一部を前記タービン又は前記受熱器に対してバイパスさせるバイパス手段と、
前記起動装置によるロータ回転数の昇速過程で該ロータ回転数が定格回転数になる以前から、前記バイパス手段により、前記圧縮媒体をバイパスさせておき、バイパスさせる該圧縮媒体の流量を調節させて、前記タービンロータの回転トルクを制御する制御装置と、
を備えていることを特徴とする太陽熱発電設備。 - 請求項1に記載の太陽熱発電設備において、
前記制御装置は、前記ロータ回転数が前記定格回転数になった後であって、前記発電機が電力系統に接続される併入時に、前記バイパス手段によりバイパスさせる前記圧縮媒体の流量を瞬間的に減少させる、
ことを特徴とする太陽熱発電設備。 - 請求項2に記載の太陽熱発電設備において、
前記制御装置は、前記併入時に、前記バイパス手段よりバイパスさせる前記圧縮媒体の流量を0にさせる、
ことを特徴とする太陽熱発電設備。 - 請求項2に記載の太陽熱発電設備において、
前記バイパス手段は、バイパスさせる前記圧縮媒体の流量を調節するバイパス流量調節弁を有し、
前記制御装置は、前記併入時に、前記バイパス流量調節弁の弁開度を全閉にする、
ことを特徴とする太陽熱発電設備。 - 請求項2から4のいずれか一項に記載の太陽熱発電設備において、
前記制御装置は、前記併入直前まで、実際の前記ロータ回転数が予め定められている起動時のロータ回転数パターンに近づくように、前記バイパス手段により、バイパスさせる前記圧縮媒体の流量を調節させる、
ことを特徴とする太陽熱発電設備。 - 請求項5に記載の太陽熱発電設備において、
前記制御装置は、前記併入時以前に前記起動装置による前記タービンロータの回転補助を停止させる、
ことを特徴とする太陽熱発電設備。 - 請求項1から6のいずれか一項に記載の太陽熱発電設備において、
前記起動装置は、起動時に前記タービンロータを回転させる電動機と、入力軸から出力軸に伝わるトルクの比率を変えるトルク比変換機構と、を有し、
前記トルク比変換機構の前記入力軸は前記電動機の出力軸に接続され、該トルク比変換機構の前記出力軸は前記タービンロータに接続され、
前記制御装置は、起動時に前記トルク比変換機構に対して、時間経過に応じた前記トルク比の目標値に対応した制御指令を出力して、前記起動装置から前記タービンロータに伝わる回転トルクを高めて前記ロータ回転数を昇速させる、
ことを特徴とする太陽熱発電設備。 - 請求項1から4のいずれか一項に記載の太陽熱発電設備において、
前記起動装置は、起動時に前記タービンロータを回転させる電動機として機能する前記発電機と、該発電機に供給する電力を制御することで該発電機の回転数を変える回転数変換機構と、を有し、
前記制御装置は、起動時に前記回転数変換機構に対して、時間経過に応じた前記発電機の回転数の目標値に応じた制御指令を出力して、前記起動装置により前記ロータ回転数を昇速させる、
ことを特徴とする太陽熱発電設備。 - 請求項1から8のいずれか一項に記載の太陽熱発電設備において、
前記バイパス手段は、前記受熱器よりも上流側で前記圧縮媒体をバイパスさせる、
ことを特徴とする太陽熱発電設備。 - 請求項1から9のいずれか一項に記載の太陽熱発電設備において、
前記バイパス手段は、前記圧縮機で圧縮された前記圧縮媒体の少なくとも一部を前記タービンよりも上流側から該タービンの排気側に導くタービンバイパス配管と、該タービンバイパス配管を流れる前記圧縮媒体の流量を調節するタービンバイパス弁と、を有し、
前記制御装置は、前記タービンバイパス弁の弁開度を調節する、
ことを特徴とする太陽熱発電設備。 - 請求項1から10のいずれか一項に記載の太陽熱発電設備において、
前記バイパス手段は、前記圧縮機で圧縮された前記圧縮媒体の少なくとも一部を前記受熱器よりも上流側から該受熱器よりも下流側であって前記タービンよりも上流側に導く受熱器バイパス配管と、該受熱器バイパス配管を流れる前記圧縮媒体の流量を調節する受熱器バイパス弁と、を有し、
前記制御装置は、前記受熱器バイパス弁の弁開度を調節する、
ことを特徴とする太陽熱発電設備。 - 請求項1から11のいずれか一項に記載の太陽熱発電設備において、
前記バイパス手段は、前記圧縮機で圧縮された前記圧縮媒体の少なくとも一部を前記受熱器よりも上流側から大気に放出する放風配管と、該放風配管から大気に流出する前記圧縮媒体の流量を調節する放風弁と、を有し、
前記制御装置は、前記放風弁の弁開度を調節する、
ことを特徴とする太陽熱発電設備。 - 作動媒体を圧縮して圧縮媒体を生成する圧縮機と、太陽光を受けて前記圧縮媒体を加熱する受熱器と、該受熱器で加熱された該圧縮媒体でタービンロータが回転するタービンと、該タービンロータの回転で発電する発電機と、起動時に前記タービンロータを回転させる起動装置と、を備えている太陽熱発電設備の起動方法において、
前記起動装置で前記タービンロータの回転数を昇速させる昇速工程と、
前記昇速工程中であって、前記タービンロータの回転数が定格回転数になる以前から、前記圧縮機からの前記圧縮媒体の少なくとも一部を前記タービン又は前記受熱器に対してバイパスさせておき、バイパスさせる該圧縮媒体の流量を調節して、前記発電機が電力系統に接続される併入時迄の前記タービンロータの回転トルクを制御する併入過程制御工程と、
を実行することを特徴とする太陽熱発電設備の起動方法。 - 請求項13に記載の太陽熱発電設備の起動方法において、
前記併入過程制御工程では、前記併入時に、バイパスさせる前記圧縮媒体の流量を瞬間的に減少させる、
ことを特徴とする太陽熱発電設備の起動方法。 - 請求項14に記載の太陽熱発電設備の起動方法において、
前記併入過程制御工程では、前記併入時に、バイパスさせる前記圧縮媒体の流量を0にさせる、
ことを特徴とする太陽熱発電設備の起動方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012066363A JP2013194715A (ja) | 2012-03-22 | 2012-03-22 | 太陽熱発電設備、及びその起動方法 |
US14/372,405 US9482210B2 (en) | 2012-03-22 | 2013-03-18 | Solar thermal power generation facility and method of starting up same |
PCT/JP2013/057650 WO2013141201A1 (ja) | 2012-03-22 | 2013-03-18 | 太陽熱発電設備、及びその起動方法 |
AU2013236290A AU2013236290B2 (en) | 2012-03-22 | 2013-03-18 | Solar thermal power generation facility and method of starting up same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012066363A JP2013194715A (ja) | 2012-03-22 | 2012-03-22 | 太陽熱発電設備、及びその起動方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013194715A true JP2013194715A (ja) | 2013-09-30 |
Family
ID=49222658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012066363A Pending JP2013194715A (ja) | 2012-03-22 | 2012-03-22 | 太陽熱発電設備、及びその起動方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9482210B2 (ja) |
JP (1) | JP2013194715A (ja) |
AU (1) | AU2013236290B2 (ja) |
WO (1) | WO2013141201A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016033360A (ja) * | 2014-07-31 | 2016-03-10 | 三菱日立パワーシステムズ株式会社 | 太陽熱空気タービン発電システム |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2597303B1 (en) | 2011-11-24 | 2015-11-11 | ALSTOM Renewable Technologies | Wind turbine rotor |
WO2015017893A1 (en) * | 2013-08-07 | 2015-02-12 | Raygen Resources Pty Ltd | Storage of solar energy |
WO2015052810A1 (ja) * | 2013-10-10 | 2015-04-16 | 三菱重工業株式会社 | 太陽熱タービンシステム、そのシステム制御装置および方法 |
US10920673B2 (en) * | 2017-03-16 | 2021-02-16 | General Electric Company | Gas turbine with extraction-air conditioner |
JP6945315B2 (ja) | 2017-03-24 | 2021-10-06 | 三菱重工業株式会社 | 発電プラント及び発電プラントの運転方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5713980A (en) | 1980-06-25 | 1982-01-25 | Toshiba Corp | Synchronous starting unit for synchronous motor |
US4761957A (en) * | 1983-03-01 | 1988-08-09 | Solar Turbines Incorporated | Indirectly heated gas turbine engine |
US4834622A (en) * | 1983-06-15 | 1989-05-30 | Sundstrand Corporation | Gas turbine engine/load compressor power plants |
JP2991580B2 (ja) | 1992-11-20 | 1999-12-20 | 東京瓦斯株式会社 | 誘導発電機の系統連系運転方式および系統連系運転装置 |
JP3763610B2 (ja) * | 1996-06-24 | 2006-04-05 | 株式会社アイ・エイチ・アイ・エアロスペース | ガスタービンエンジン |
JP2004044410A (ja) | 2002-07-09 | 2004-02-12 | Ishikawajima Harima Heavy Ind Co Ltd | ガスタービン発電装置とその起動方法 |
JP2004282948A (ja) | 2003-03-18 | 2004-10-07 | Mitsubishi Electric Corp | 同期電動機の同期投入システム |
JP2006283563A (ja) * | 2005-03-31 | 2006-10-19 | Mitsui Eng & Shipbuild Co Ltd | 炉頂圧回収タービンの制御システム |
JP5291541B2 (ja) * | 2009-06-01 | 2013-09-18 | 三菱重工業株式会社 | 太陽熱ガスタービン及び太陽熱ガスタービン発電装置 |
JP5232916B2 (ja) | 2009-06-05 | 2013-07-10 | 三菱重工業株式会社 | 太陽熱ガスタービン及び太陽熱ガスタービン発電装置 |
JP2011032901A (ja) * | 2009-07-30 | 2011-02-17 | Mitsubishi Heavy Ind Ltd | 発電装置及び駆動制御方法 |
US8794002B2 (en) * | 2009-09-17 | 2014-08-05 | Echogen Power Systems | Thermal energy conversion method |
US8869531B2 (en) * | 2009-09-17 | 2014-10-28 | Echogen Power Systems, Llc | Heat engines with cascade cycles |
DE102011007650A1 (de) * | 2011-04-19 | 2012-10-25 | Siemens Aktiengesellschaft | Solarthermische Kraftwerkanlage und Verfahren zum Betreiben einer solarthermischen Kraftwerksanlage |
-
2012
- 2012-03-22 JP JP2012066363A patent/JP2013194715A/ja active Pending
-
2013
- 2013-03-18 US US14/372,405 patent/US9482210B2/en not_active Expired - Fee Related
- 2013-03-18 AU AU2013236290A patent/AU2013236290B2/en not_active Ceased
- 2013-03-18 WO PCT/JP2013/057650 patent/WO2013141201A1/ja active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016033360A (ja) * | 2014-07-31 | 2016-03-10 | 三菱日立パワーシステムズ株式会社 | 太陽熱空気タービン発電システム |
Also Published As
Publication number | Publication date |
---|---|
AU2013236290A1 (en) | 2014-08-07 |
AU2013236290B2 (en) | 2015-11-12 |
US20140360188A1 (en) | 2014-12-11 |
WO2013141201A1 (ja) | 2013-09-26 |
US9482210B2 (en) | 2016-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5232916B2 (ja) | 太陽熱ガスタービン及び太陽熱ガスタービン発電装置 | |
WO2013141201A1 (ja) | 太陽熱発電設備、及びその起動方法 | |
JP6952034B2 (ja) | 陸上または海洋ベースのマルチスプールガスタービンを動作させるためのシステム、方法、およびコンピュータプログラム | |
CA2894926C (en) | Solar/air turbine generator system | |
JP5291541B2 (ja) | 太陽熱ガスタービン及び太陽熱ガスタービン発電装置 | |
JP6194563B2 (ja) | 多軸コンバインドサイクルプラント、その制御装置、及びその運転方法 | |
Ghavami et al. | A comparative study of the control strategies for pure concentrated solar power micro gas turbines | |
JP5745647B2 (ja) | 太陽熱コンバインドサイクル発電プラント | |
US9976478B2 (en) | Solar heat turbine system, and device and method for controlling said system | |
WO2013157629A1 (ja) | 自然エネルギー発電設備、及びその起動方法 | |
JP2017101578A (ja) | 複合タービンシステム及びその発電方法 | |
JP7110122B2 (ja) | タービン加減弁の動的相互作用 | |
CN107023338B (zh) | 一种联合循环发电机组的燃机和汽机同步升负荷方法 | |
JP2011038412A (ja) | 蒸気噴射ガスタービン発電装置 | |
JP2019173697A (ja) | コンバインドサイクル発電プラント及びその運転方法 | |
JP3219186U (ja) | 太陽熱空気発電設備 | |
JP2013224602A (ja) | 太陽熱タービンシステム、そのシステム制御装置および方法 | |
JP6600572B2 (ja) | プラント制御装置およびプラント制御方法 | |
JP2012177352A (ja) | 太陽熱発電システムの制御装置 | |
TR2021004738T (tr) | Bir güneş enerjisi üretim sistemi ve yöntemi. | |
JPH0443803A (ja) | 複合サイクル発電プラントの制御方法 | |
GB2507147A (en) | A gas turbine heat and electricity generating apparatus | |
WO2012031897A1 (en) | Single intermediate pressure operation mode for solar driven steam turbine plants |