WO2013141201A1 - 太陽熱発電設備、及びその起動方法 - Google Patents

太陽熱発電設備、及びその起動方法 Download PDF

Info

Publication number
WO2013141201A1
WO2013141201A1 PCT/JP2013/057650 JP2013057650W WO2013141201A1 WO 2013141201 A1 WO2013141201 A1 WO 2013141201A1 JP 2013057650 W JP2013057650 W JP 2013057650W WO 2013141201 A1 WO2013141201 A1 WO 2013141201A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
rotor
power generation
bypass
heat receiver
Prior art date
Application number
PCT/JP2013/057650
Other languages
English (en)
French (fr)
Inventor
原田 昇一
一也 東
園田 隆
圭介 山本
好史 岩▲崎▼
達也 岩▲崎▼
純雄 豊福
数磨 西澤
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to AU2013236290A priority Critical patent/AU2013236290B2/en
Priority to US14/372,405 priority patent/US9482210B2/en
Publication of WO2013141201A1 publication Critical patent/WO2013141201A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/02Devices for producing mechanical power from solar energy using a single state working fluid
    • F03G6/04Devices for producing mechanical power from solar energy using a single state working fluid gaseous
    • F03G6/045Devices for producing mechanical power from solar energy using a single state working fluid gaseous by producing an updraft of heated gas or a downdraft of cooled gas, e.g. air driving an engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/05Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition
    • F02C7/268Starting drives for the rotor, acting directly on the rotor of the gas turbine to be started
    • F02C7/275Mechanical drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/606Bypassing the fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention includes a compressor that compresses a working medium to generate a compressed medium, a heat receiver that heats compressed air by receiving sunlight, a turbine that is driven by the compressed medium heated by the heat receiver, and a drive of the turbine
  • the present invention relates to a solar thermal power generation facility including a power generator for generating power and a starting method thereof.
  • This solar thermal power generation facility includes a compressor that compresses air as a working medium to generate compressed air, a heat receiver that receives sunlight to heat the compressed air, and a condenser that irradiates sunlight on the heat receiver ( (Heliostat), a turbine driven by compressed air heated by a heat receiver, and a generator that generates electric power by driving the turbine.
  • a compressor that compresses air as a working medium to generate compressed air
  • a heat receiver that receives sunlight to heat the compressed air
  • a condenser that irradiates sunlight on the heat receiver (Heliostat)
  • Heliostat heat receiver
  • Turbine driven by compressed air heated by a heat receiver
  • a generator that generates electric power by driving the turbine.
  • This solar thermal power generation facility is further provided with a turbine bypass pipe that branches from the heated air pipe that sends the compressed air heated by the heat receiver to the turbine, and is connected to the chimney.
  • a turbine bypass valve for adjusting the flow rate is provided.
  • the turbine output is adjusted by changing the number of collectors that irradiate sunlight to the heat receiver and changing the valve opening of the turbine bypass valve.
  • a compressor that compresses air a combustor that mixes fuel with the compressed air from the compressor, burns the compressed air, generates combustion gas, and is driven by the combustion gas.
  • a configuration including a turbine and a generator that generates electric power by driving the turbine is common.
  • an electric motor is driven to increase the rotor rotational speed of the turbine.
  • the rotational torque of the turbine rotor is controlled by adjusting the flow rate of fuel supplied to the combustor.
  • the starting method is basically established.
  • the starting method and the synchronous adjustment method at the time of loading are not yet established.
  • a method of following the above-described general gas turbine power generation facility startup method at startup is conceivable.
  • the amount of heat energy input to the heat receiver, which is the air heating place, that is, the number of concentrators that irradiate the heat receiver with sunlight is changed.
  • a method for controlling the rotational torque of the rotor is conceivable.
  • An object of the present invention is to provide a solar thermal power generation facility that can suitably control the rotational torque of a turbine rotor during startup, and a startup method thereof.
  • the solar thermal power generation facility includes a compressor that compresses a working medium to generate a compressed medium, a heat receiver that receives sunlight and heats the compressed medium, and is heated by the heat receiver.
  • a turbine in which a turbine rotor is rotated by the compression medium, a generator for generating electric power by rotation of the turbine rotor, an activation device for rotating the turbine rotor at the time of activation, and at least a part of the compression medium from the compressor.
  • a control device that controls the rotational torque of the turbine rotor by adjusting the flow rate of the compression medium to be bypassed.
  • the compression flow into the turbine can be adjusted by adjusting the flow rate of the compression medium to be bypassed.
  • the flow rate of the medium can be adjusted. For this reason, it is possible to control the rotational torque of the turbine rotor from when the rotor rotational speed reaches the rated rotational speed until when the generator is inserted.
  • the flow rate of the compression medium to be sent to the turbine is changed, so the influence of the weather is small.
  • the time until the change in the flow rate of the compression medium to be bypassed is reflected in the change in the rotational torque of the turbine rotor is extremely short. For this reason, by adjusting the flow rate of the compression medium to be bypassed, the rotational torque of the turbine rotor can be suitably controlled at the time of startup.
  • the control device causes the flow rate of the compression medium to be bypassed by the bypass means when the generator is connected to the power system after the rotor rotational speed reaches the rated rotational speed. May be reduced instantaneously.
  • the control device may set the flow rate of the compression medium to be bypassed by the bypass means to zero at the time of insertion.
  • the bypass means has a bypass flow rate adjustment valve for adjusting the flow rate of the compression medium to be bypassed
  • the control device fully closes the valve opening degree of the bypass flow rate adjustment valve at the time of the insertion. May be.
  • the flow rate of the compression medium to be bypassed by the bypass means is instantaneously reduced simultaneously with the addition of the generator, and the compressed medium sent from the compressor is not sent to the turbine.
  • the compressed medium is sent to the turbine, and the rotational speed of the turbine rotor is maintained at the rated rotational speed.
  • the controller causes the bypass means to bypass the compression until the actual rotor rotational speed approaches a predetermined rotor rotational speed pattern until immediately before the incorporation.
  • the flow rate of the medium may be adjusted.
  • the control device may stop rotation assistance of the turbine rotor by the starting device before the time of the insertion.
  • the starter device includes an electric motor that rotates the turbine rotor at the time of start-up, and a torque ratio conversion mechanism that changes a ratio of torque transmitted from the input shaft to the output shaft, and the torque ratio conversion mechanism
  • the input shaft is connected to the output shaft of the electric motor
  • the output shaft of the torque ratio conversion mechanism is connected to the turbine rotor
  • the controller is lapsed with respect to the torque ratio conversion mechanism at the time of startup.
  • a control command corresponding to the target value of the torque ratio according to the output may be output to increase the rotational torque transmitted from the starter to the turbine rotor to increase the rotor rotational speed.
  • the starter includes the generator that functions as an electric motor that rotates the turbine rotor at the time of start-up, and a rotational speed that changes the rotational speed of the generator by controlling electric power supplied to the generator.
  • the control device outputs a control command according to a target value of the rotational speed of the generator according to the passage of time to the rotational speed conversion mechanism at the time of startup, and the startup
  • the rotor speed may be increased by a device.
  • the bypass means may bypass the compression medium upstream of the heat receiver.
  • a high-temperature bypass means for example, a high-temperature pipe or valve is unnecessary, and the manufacturing cost of the bypass means is reduced. be able to.
  • the bypass means includes a turbine bypass pipe for guiding at least a part of the compression medium compressed by the compressor from an upstream side of the turbine to an exhaust side of the turbine, and the turbine bypass pipe.
  • a turbine bypass valve that adjusts a flow rate of the flowing compression medium, and the control device may adjust a valve opening degree of the turbine bypass valve.
  • the bypass means bypasses at least a part of the compression medium compressed by the compressor from the upstream side of the heat receiver to the heat receiver, and is downstream of the heat receiver.
  • a heat receiver bypass pipe that guides the compressed medium to the upstream side of the turbine and the turbine, and a heat receiver bypass valve that adjusts a flow rate of the compression medium flowing through the heat receiver bypass pipe, and the control device includes: You may adjust the valve opening degree of the said heat receiver bypass valve.
  • the bypass unit is configured to discharge at least a part of the compression medium compressed by the compressor to the atmosphere from the upstream side of the heat receiver, and from the discharge pipe to the atmosphere.
  • An air discharge valve that adjusts a flow rate of the compressed medium that flows out, and the control device may adjust an opening degree of the air discharge valve.
  • a method for starting a solar thermal power generation facility includes a compressor that compresses a working medium to generate a compressed medium, a heat receiver that receives sunlight and heats the compressed medium, and the heat receiver.
  • a method for starting solar thermal power generation equipment comprising: a turbine in which a turbine rotor is rotated by the compression medium heated in step; a generator that generates electric power by rotation of the turbine rotor; and an activation device that rotates the turbine rotor at the time of activation.
  • the speed increasing step of increasing the rotational speed of the turbine rotor by the starting device and during the speed increasing step, before the rotational speed of the turbine rotor reaches the rated rotational speed, from the compressor
  • the flow rate of the compression medium to be bypassed is adjusted, and the power generator
  • the flow rate of the compression medium flowing into the turbine is adjusted by adjusting the flow rate of the compression medium to be bypassed. Can be adjusted. For this reason, it is possible to control the rotational torque of the turbine rotor from when the rotor rotational speed reaches the rated rotational speed until when the generator is inserted.
  • the flow rate of the compression medium to be sent to the turbine is changed, so the influence of the weather is small.
  • the time until the change in the flow rate of the compression medium to be bypassed is reflected in the change in the rotational torque of the turbine rotor is extremely short. For this reason, by adjusting the flow rate of the compression medium to be bypassed, the rotational torque of the turbine rotor can be suitably controlled at the time of startup.
  • the flow rate of the compressed medium to be bypassed may be instantaneously reduced in the insertion process control step.
  • the flow rate of the compression medium to be bypassed may be set to zero at the time of the insertion.
  • the generator When the generator is inserted into the power system, the generator is suddenly loaded, and the rotational speed of the turbine rotor decreases rapidly. Therefore, in the start-up method, simultaneously with the addition of the generator, the flow rate of the compressed medium to be bypassed is instantaneously reduced, and among the compressed media sent from the compressor, the compressed media that have not been sent to the turbine are removed.
  • the turbine rotor is configured so that the rotation speed of the turbine rotor is maintained at the rated rotation speed.
  • the rotational torque of the turbine rotor can be suitably controlled during startup.
  • the solar thermal power generation facility of this embodiment includes a compressor 10 that compresses air as a working medium to generate compressed air that is a compressed medium, and heat receiving that receives sunlight and heats the compressed air.
  • a plurality of heliostats 40 that irradiate sunlight to the heat receiver 30, a turbine 20 that is driven by compressed air heated by the heat receiver 30, a generator 50 that generates electric power by driving the turbine 20, and at startup
  • An activation device 60 that rotates the compressor rotor 11 and the turbine rotor 21 and a control device 80 that controls them are provided.
  • the heat receiver 30 includes a heat receiving portion 31 that is irradiated with sunlight, and a casing 35 that covers the heat receiving portion 31.
  • the heat receiving unit 31 includes a lower header pipe 32, an upper header pipe 33 disposed above the lower header pipe 32, and a plurality of heat receiving pipes 34 extending in the vertical direction and connecting the lower header pipe 32 and the upper header pipe 33. And have.
  • An opening 36 for guiding sunlight from the heliostat 40 is formed in the heat receiving portion 31 at the lower portion of the casing 35.
  • the heat receiver 30 is provided on a tower (not shown) built in the installation area of the solar thermal power generation facility.
  • the heliostat 40 includes a reflecting mirror 41 that reflects sunlight, a support leg 43 that supports the reflecting mirror 41, and a drive controller 42 that directs the reflecting mirror 41 in a target direction.
  • the heliostat 40 is disposed around the tower where the heat receiver 30 is provided.
  • the compressor 10 includes the above-described compressor rotor 11 that rotates, and a compressor casing 12 that rotatably covers the compressor rotor 11.
  • the turbine 20 includes the above-described turbine rotor 21 that rotates, and a turbine casing 22 that rotatably covers the turbine rotor 21.
  • the turbine rotor 21 is located on an extension line of the compressor rotor 11 and is connected to the compressor rotor 11.
  • the compressor rotor 11 is connected to the generator rotor 51. Therefore, when the generator rotor 51 rotates, the compressor rotor 11 and the turbine rotor 21 also rotate.
  • a reheater 25 that heats the compressed air from the compressor 10 using exhaust air that is high-temperature compressed air exhausted from the turbine 20 is provided. Further, the reheater 25 is provided with an exhaust duct 28 for exhausting the exhaust air after heating the compressed air.
  • the starting device 60 includes an electric motor 61 and a torque converter (torque ratio conversion mechanism) 64 that changes a ratio of torque transmitted from the input shaft 65 to the output shaft 66.
  • the electric motor 61 rotates the generator rotor 51, the compressor rotor 11, and the turbine rotor 21 at the time of startup.
  • the torque converter 64 can change the ratio of torque transmitted from the input shaft 65 to the output shaft 66 by changing the opening of a built-in guide vane (not shown).
  • the input shaft 65 of the torque converter 64 is connected to the output shaft 62 of the electric motor 61, and the output shaft 66 of the torque converter 64 is connected to the generator rotor 51.
  • the generator rotor 51 is connected to the compressor rotor 11, and the compressor rotor 11 is connected to the turbine rotor 21. Therefore, the output shaft 66 of the torque converter 64 is connected to the compressor rotor 11 via the generator rotor 51 and also to the turbine rotor 21.
  • the generator 50 is electrically connected to the power system S through a generator breaker 55.
  • the electric motor 61 is electrically connected to the power system S via the activation device breaker 56.
  • the discharge port 13 of the compressor 10 and the compressed air inlet 26 of the reheater 25 are connected by a compressed air pipe 71.
  • the compressed air outlet 27 of the reheater 25 and the lower header pipe 32 of the heat receiver 30 are connected by a reheated air pipe 72.
  • the upper header pipe 33 of the heat receiver 30 and the intake port 23 of the turbine 20 are connected by a heated air pipe 73.
  • the compressed air pipe 71 and the exhaust duct 28 are connected by a turbine bypass pipe 74.
  • the turbine bypass pipe 74 is provided with a turbine bypass valve 75 that adjusts the flow rate of compressed air passing therethrough.
  • the turbine bypass pipe 74 and the turbine bypass valve 75 constitute bypass means.
  • the heated air pipe 73 is provided with a heat receiver outlet thermometer 38 for measuring the temperature of the compressed air heated by the heat receiver 30. Further, the heat receiving pipe 34 of the heat receiver 30 is provided with a heat receiving pipe thermometer 39 for measuring the temperature of the heat receiving pipe 34. Any one of the generator rotor 51, the compressor rotor 11, and the turbine rotor 21 is provided with a rotational speed meter 19 that measures the rotational speed of the rotor, which is the rotational speed of these. The values measured by the heat receiver outlet thermometer 38, the heat receiving pipe thermometer 39, and the rotation speed meter 19 are all sent to the control device 80.
  • the control device 80 functionally includes a torque converter control unit 82, a circuit breaker control unit 83 that outputs an opening / closing command to each circuit breaker 55, 56, and solar light to the heat receiver 30 for each of the plurality of heliostats 40.
  • a heliostat control unit 84 that outputs an irradiation on or off command, a bypass valve control unit 85 that outputs a valve opening degree command to the turbine bypass valve 75, and an integrated control unit 81 are provided.
  • Torque converter control unit 82 outputs a torque ratio command to torque converter 64 at the time of startup.
  • the integrated control unit 81 receives various data from the outside and controls the control units 82 to 85 described above.
  • the control device 80 is a computer, a CPU that executes various operations, a memory that is a work area of the CPU, an external storage device that stores programs executed by the CPU and various data, and various data input. Output interface. Any of the above functional configurations of the control device 80 functions when the CPU executes a program stored in the external storage device.
  • the heliostat control unit 84 of the control device 80 outputs an irradiation on command to the plurality of heliostats 40 (t0).
  • the drive controller 42 of the heliostat 40 that has received this irradiation on command adjusts the direction of the reflecting mirror 41 so that the sunlight reflected by the reflecting mirror 41 faces the heat receiver 30.
  • the circuit breaker controller 83 of the control device 80 When the temperature measured by the heat receiver outlet thermometer 38 or the heat receiving pipe thermometer 39 reaches a predetermined temperature (for example, 200 to 300 ° C.) (t1), the circuit breaker controller 83 of the control device 80 performs integrated control. In response to an instruction from the unit 81, a closing command is output to the activation device breaker 56. As a result, the system power starts to be supplied to the electric motor 61 and the electric motor 61 starts to be driven. At the same time, the torque converter control unit 82 of the control device 80 outputs an activation command to the torque converter 64 according to an instruction from the integrated control unit 81.
  • a predetermined temperature for example, 200 to 300 ° C.
  • the torque converter control unit 82 outputs, for example, a command related to the target torque ratio indicated by a predetermined torque ratio pattern to the torque converter 64.
  • the torque ratio pattern defines a target torque ratio for each time from the start of the start of the electric motor 61 so that the increase rate per unit time of the rotor speed from the start of the start of the electric motor 61 becomes a predetermined increase rate.
  • the torque converter control unit 82 outputs the guide vane opening of the torque converter 64 to the guide vane as a torque ratio command so that the target torque ratio at that time can be obtained according to the torque ratio pattern.
  • the opening degree of the guide vane gradually increases with time.
  • the torque transmitted from the input shaft 65 to the output shaft 66 of the torque converter 64 gradually increases with time, and the rotational speed of the generator rotor 51 and the rotor speed of the compressor 10 and the turbine 20 increase with time. Increasing gradually.
  • the torque converter control unit 82 controls the torque ratio of the torque converter 64. Stop temporarily and fix the torque ratio. At this time, it may wait until the temperature measured by the heat receiver outlet thermometer 38 or the heat receiving pipe thermometer 39 reaches a predetermined temperature (for example, 500 to 700 ° C.). When the temperature measured by the heat receiver outlet thermometer 38 or the heat receiving pipe thermometer 39 reaches a predetermined temperature (t3), the torque converter control unit 82 again executes the torque ratio control of the torque converter 64. It may be. By this method, it is possible to make the torque required for starting the turbine small and constant.
  • a predetermined rotational speed Na for example, the rotational speed of 20 to 40% of the rated rotational speed Nd
  • the amount of sunlight increases as the sun rises, even if the number of heliostats 40 that irradiate sunlight to the heat receiver 30 is constant, the amount of light received by the heat receiving portion 31 of the heat receiver 30, in other words, the amount of heat is To increase. For this reason, the heating amount per unit time with respect to the compressed air sent to the heat receiving part 31 also increases, and the rotational torque which rotates the turbine rotor 21 with compressed air increases. On the other hand, the rotational torque for rotating the turbine rotor 21 by the electric motor 61 is relatively reduced.
  • the bypass valve control unit 85 of the control device 80 outputs a valve opening command to the turbine bypass valve 75 in response to an instruction from the integrated control unit 81.
  • Nb for example, 40 to 60% of the rated rotational speed Nd
  • the bypass valve control unit 85 of the control device 80 outputs a valve opening command to the turbine bypass valve 75 in response to an instruction from the integrated control unit 81.
  • the turbine bypass valve 75 is opened to the indicated valve opening.
  • the turbine bypass valve 75 is opened, and the turbine The flow of heated compressed air sent to 20 is reduced.
  • the bypass valve control unit 85 determines the opening degree of the turbine bypass valve 75 so that the rotor rotational speed measured by the rotational speed meter 19 approaches a predetermined rotational speed pattern.
  • the rotation speed pattern is determined so that the increase rate of the rotor rotation speed per unit time becomes a predetermined increase rate from the start of the start of the motor 61 until the turbine rotor 21 reaches the rated rotation speed Nd.
  • the number of rotor rotations at each time from the start is determined.
  • the rotational speed pattern is thereafter constant at the rated rotational speed Nd.
  • the bypass valve control unit 85 determines the valve opening degree of the turbine bypass valve 75 according to the deviation between the rotor rotational speed measured by the rotational speed meter 19 and the target rotational speed when the rotational speed pattern is determined.
  • the turbine bypass valve 75 is opened and the flow rate of the heated compressed air sent to the turbine 20 is changed, the rotational torque for rotating the turbine rotor 21 is changed, and the rotor rotational speed is changed. That is, the rotational speed of the rotor is controlled by adjusting the valve opening degree of the turbine bypass valve 75 and controlling the rotational torque that rotates the turbine rotor 21.
  • the rotational torque for rotating the turbine rotor 21 can also be controlled by a method of changing the number of heliostats 40 that irradiate the heat receiver 30 with sunlight.
  • the change in the number of heliostats 40 that irradiate sunlight to the heat receiver 30 can control the rotational torque at startup. It is expected to be extremely difficult.
  • the heat capacity of the heat receiver 30 is large, even if the number of heliostats 40 that irradiate the heat receiver 30 with sunlight is changed, the number of heliostats 40 that irradiate the heat receiver 30 with sunlight changes. It takes several minutes to be reflected in the change in the rotational torque, and it is considered that it is not suitable for delicate control of the rotational torque at the time of startup.
  • the flow rate of the compressed air sent to the turbine 20 is changed, so the influence of the weather is small. Furthermore, in this method, the time until the change in the valve opening degree of the turbine bypass valve 75 is reflected in the change in the rotational torque of the turbine rotor 21 is extremely short. For this reason, by adjusting the valve opening degree of the turbine bypass valve 75, the rotational torque of the turbine rotor 21 can be suitably controlled at the time of startup.
  • the torque ratio pattern after the turbine bypass valve 75 is opened becomes, for example, gradually smaller and becomes 0 at the time when the rotational speed pattern reaches the rated rotational speed Nd. That is, the torque transmitted from the electric motor 61 to the generator rotor 51 becomes zero. For this reason, the torque ratio of the torque converter 64 changes in accordance with this torque ratio pattern, and becomes 0 when the rotor rotational speed is almost the rated rotational speed Nd (t5).
  • the circuit breaker control unit 83 outputs an opening command to the starter circuit breaker 56, cuts off the power supply from the power system S to the motor 61, and stops the motor 61. .
  • the torque component that rotates the turbine rotor 21 by the compressed air that is heated is relatively relative to the torque component that rotates the turbine rotor 21 by the electric motor 61 over time. growing. For this reason, the control of the rotor rotational speed becomes dominant with the passage of time by the control of the opening degree of the turbine bypass valve 75.
  • the electric motor 61 is stopped (t5), that is, when the compressor rotor 11 and the turbine rotor 21 can maintain the rated rotational speed Nd without the assistance of the electric motor 61
  • the rotor rotational speed is basically set to the turbine. It is controlled by the valve opening degree of the bypass valve 75.
  • the torque ratio pattern and the rotational speed pattern are basically fixed in terms of changes in the torque ratio and rotational speed over time, but sunlight is blocked by clouds over a long period of time, and the heat receiver outlet thermometer 38, etc.
  • the temperature measured in step 1 is lower than the lower limit temperature, for example, the time schedule of each pattern until the temperature measured by the heat receiver outlet thermometer 38 falls below the lower limit temperature and becomes equal to or higher than the lower limit temperature again. Stops.
  • the circuit breaker control unit 83 instructs the generator circuit breaker 55 to close in response to an instruction from the integrated control unit 81. Is output, and the electric power system S and the generator 50 are electrically connected. That is, the generator 50 is inserted into the power system S.
  • the bypass valve control unit 85 gives a command for opening the valve to 0, that is, a fully closed state, to the turbine bypass valve 75 according to an instruction from the integrated control unit 81.
  • the generator 50 When the generator 50 is inserted into the electric power system S, the generator 50 is suddenly loaded, and the rotational speed of the generator rotor 51 and the turbine rotor 21 is rapidly reduced.
  • the turbine bypass valve 75 is momentarily fully closed at the same time as the generator 50 is inserted, and the compressed air sent from the compressor 10 is not sent to the turbine 20 but is sent to the turbine bypass pipe 74. Then, the compressed air exhausted from the exhaust duct 28 is sent to the turbine 20 so that the rotational speeds of the generator rotor 51 and the turbine rotor 21 are maintained at the rated rotational speed Nd.
  • the turbine 20 is basically controlled by adjusting the number of heliostats 40 that irradiate the heat receiver 30 with sunlight.
  • the adjustment of the number of heliostats 40 is performed by the heliostat control unit 84.
  • the turbine bypass valve 75 when the load of the electric power system S changes abruptly, or when the temperature measured by the heat receiver outlet thermometer 38 or the heat receiving pipe thermometer 39 exceeds the respective upper limit values, the turbine bypass valve 75. These cases are handled by adjusting the valve opening.
  • the period during which the electric motor 61 is driven is the solar thermal power generation of the present embodiment. It is a speed-up process in equipment. Further, in this embodiment, the period (t4 to t6) from when the turbine bypass valve 75 starts to fully close until it is fully closed is the concurrent process control step in the solar thermal power generation facility of this embodiment.
  • the rotational torque of the turbine rotor 21 at the time of startup can be suitably controlled, and as a result, the rotor rotational speed at the time of startup can be suitably controlled.
  • the rotational torque of the turbine rotor 21 at the time of start-up is controlled by the valve opening degree of the turbine bypass valve 75.
  • the valve opening degree of other valves Controls rotational torque.
  • a heat receiver bypass pipe 76 that connects the compressed air pipe 71 and the heated air pipe 73 is provided, and a heat receiver bypass valve 77 is provided in the heat receiver bypass pipe 76. Then, by adjusting the valve opening degree of the heat receiver bypass valve 77 in the same manner as the valve opening degree of the turbine bypass valve 75 and controlling the rotational torque of the turbine rotor 21, the rotor rotational speed at the time of starting is controlled. It may be.
  • the reheat air pipe 72 is provided with a discharge pipe 78 for releasing compressed air passing therethrough to the atmosphere, and a discharge valve 79 is provided here.
  • the rotational torque of the turbine rotor 21 may be controlled by adjusting the opening degree of the air discharge valve 79 in the same manner as the opening degree of the turbine bypass valve 75.
  • a means for bypassing a part of the compressed air from the compressor 10 to the turbine 20 or the heat receiver 30 is provided, and by this means, the flow rate of the compressed air to be bypassed is adjusted, and the turbine rotor at start-up is adjusted.
  • the rotational torque of the turbine 21 can be suitably controlled by any method.
  • the number of means for bypassing the turbine 20 or the heat receiver 30 is not necessarily one, and may be plural. In this case, a plurality of means may be used in combination to control the rotational torque of the turbine rotor 21 at startup.
  • This modification is configured by changing the activation device 60 in the above embodiment.
  • the starter 60 a of this modification includes a generator 50 a that also functions as an electric motor, and an inverter (rotational speed conversion mechanism) 69 that controls the rotational speed of the generator 50 a. .
  • the generator 50a that also functions as an electric motor is electrically connected to the electric power system S via the generator breaker 55 as in the above embodiment.
  • the generator 50 a is further electrically connected to the inverter 69 via the output circuit breaker 57.
  • the inverter 69 is electrically connected to the power system S via the input side circuit breaker 58.
  • the control apparatus 80a of this modification is Instead of the torque converter control unit 82 in the above embodiment, an inverter control unit 86 is provided.
  • the heliostat control unit 84 outputs an irradiation on command to the plurality of heliostats 40 (t0), and the temperature measured by the heat receiver outlet thermometer 38 or the heat receiving pipe thermometer 39 is determined in advance.
  • the circuit breaker control unit 83 outputs a close command to the input side circuit breaker 58 and the output side circuit breaker 57 according to an instruction from the integrated control unit 81 To do.
  • system power starts to be supplied to the generator 50a via the inverter 69, and the generator 50a starts to be driven as an electric motor.
  • the inverter control part 86 starts control of the inverter 69 simultaneously with this, for example.
  • the inverter control unit 86 includes, for example, a control command including the target rotational speed or a value corresponding to the target rotational speed so that the generator 50a as an electric motor has a target rotor rotational speed indicated by a predetermined rotational speed pattern. Is output to the inverter 69. Specifically, the rotation speed pattern is obtained at each time from the start of the start of the generator 50a so that the increase rate per unit time of the rotor speed becomes a predetermined increase from the start of the start of the generator 50a as the electric motor. The target rotor speed at is determined. As a result, the rotor rotational speed, which is the rotational speed of the generator rotor 51, the compressor rotor 11 and the turbine rotor 21, gradually increases with time. Note that the output power of the inverter 69 increases as the number of rotations of the turbine 20 increases, as shown in FIG.
  • the inverter control by the inverter control unit 86 is performed as in the above embodiment.
  • the rotor rotation speed may be temporarily suspended to wait until the temperature measured by the heat receiver outlet thermometer 38 or the heat receiving pipe thermometer 39 reaches a predetermined temperature (for example, 50 to 700 ° C.). Then, when the temperature measured by the heat receiver outlet thermometer 38 or the heat receiving tube thermometer 39 reaches a predetermined temperature (t3), the inverter control by the inverter control unit 86 may be executed again.
  • the bypass valve control unit 85 of the control device 80a outputs a valve opening degree command to the turbine bypass valve 75 in response to an instruction from the integrated control unit 81.
  • the turbine bypass valve 75 is opened to the indicated valve opening.
  • the amount of heating to the compressed air in the heat receiver 30 increases with time, and the force to rotate the turbine rotor 21 with this compressed air increases. Therefore, the turbine bypass valve 75 is opened, and the turbine The flow of heated compressed air sent to 20 is reduced.
  • the bypass valve control unit 85 determines the valve opening of the turbine bypass valve 75 so that the valve opening of the turbine bypass valve 75 becomes a target valve opening indicated by a predetermined valve opening pattern, for example. Specifically, in the valve opening pattern, for example, from the valve opening 0 to a predetermined valve opening, the increasing rate of the valve opening per unit time becomes a predetermined increasing rate, and thereafter becomes a constant valve opening. ing.
  • the torque components that rotate the turbine rotor 21 by the heated compressed air are the torque components that rotate the turbine rotor 21 by the generator 50a over time. Is relatively large. For this reason, although the rotational speed control of the generator rotor 51 by the inverter 69 is executed, the output power sent from the inverter 69 to the generator 50a tends to decrease after a certain point in time.
  • the rotational speed control of the generator rotor 51 by the inverter 69 is continued even after the rotor rotational speed reaches the rated rotational speed Nd (t5). This is because in the present modification, the adjustment of the valve opening degree of the turbine bypass valve 75 is not intended to control the rotor speed as in the above embodiment.
  • the circuit breaker control unit 83 causes the input side circuit breaker 58 and the output side circuit breaker 57 to be in response to an instruction from the integrated control unit 81. Is output to the generator breaker 55 and a close command is output to the generator breaker 55. As a result, no grid power is supplied to the generator 50a via the inverter 69, and the generator 50a does not function as an electric motor. Further, at this time, the electric power system S and the generator 50a are electrically connected. That is, the generator 50a is inserted into the power system S, and power supply from the generator 50a to the power system S is started.
  • the turbine 20 is basically controlled by adjusting the number of heliostats 40 that irradiate the heat receiver 30 with sunlight, as in the above embodiment.
  • the rotational torque of the turbine rotor 21 at the time of startup can be suitably controlled.
  • a heat receiver bypass valve 77 and an air discharge valve 79 are provided, whereby the rotation of the turbine rotor 21 at the time of startup is provided.
  • the torque may be controlled.
  • the turbine bypass valve 75 when the generators 50 and 50a are inserted into the power system S, the turbine bypass valve 75 is instantaneously fully closed. However, if the opening degree of the turbine bypass valve 75 is instantaneously reduced when the generators 50 and 50a are combined, and the flow rate of the compressed air flowing through the turbine bypass pipe 74 is instantaneously reduced, the valve is not fully closed. May be.
  • the reheater 25 is provided on the exhaust side of the turbine 20, but the reheater 25 is not essential in the solar thermal power generation facility.
  • the rotational torque of the turbine rotor can be suitably controlled at startup.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

 この太陽熱発電設備は、圧縮機(10)からの圧縮空気の一部をタービン(20)に対してバイパスさせるタービンバイパス配管(74)と、タービンバイパス配管(74)を流れる圧縮空気の流量を調節するタービンバイパス弁(75)と、起動装置(60)によるロータ回転数の昇速過程でロータ回転数が定格回転数になる以前から、タービンバイパス弁(75)を開けておき、タービンバイパス弁(75)によりバイパスさせる圧縮空気の流量を調節させて、タービンロータ(21)の回転トルクを制御する制御装置(80)と、を備えている。制御装置(80)は、発電機(50)が電力系統(S)に接続される併入時に、タービンバイパス弁(75)を瞬間的に全閉にする。

Description

太陽熱発電設備、及びその起動方法
 本発明は、作動媒体を圧縮して圧縮媒体を生成する圧縮機と、太陽光を受けて圧縮空気を加熱する受熱器と、受熱器で加熱された圧縮媒体で駆動するタービンと、タービンの駆動で発電する発電機とを備えている太陽熱発電設備、及びその起動方法に関する。本願は、2012年3月22日に、日本に出願された特願2012-066363号に基づき優先権を主張し、その内容をここに援用する。
 近年、環境にやさしいクリーンなエネルギーとして、太陽光を集光して得られる熱エネルギーを利用した設備が盛んに開発されている。
 このような設備の一例として、例えば、以下の特許文献1に記載されている太陽熱発電設備がある。この太陽熱発電設備は、作動媒体としての空気を圧縮して圧縮空気を生成する圧縮機と、太陽光を受けて圧縮空気を加熱する受熱器と、受熱器に太陽光を照射する集光器(ヘリオスタット)と、受熱器で加熱された圧縮空気で駆動するタービンと、タービンの駆動で発電する発電機とを備えている。
 この太陽熱発電設備は、さらに、受熱器で加熱された圧縮空気をタービンに送る加熱空気配管から分岐して、煙突とつながるタービンバイパス配管が設けられていると共に、このタービンバイパス配管を流れる圧縮空気の流量を調節するタービンバイパス弁が設けられている。
 この太陽熱発電設備では、受熱器に太陽光を照射する集光器の台数変更、及び、タービンバイパス弁の弁開度の変更により、タービン出力を調節している。
 ところで、ガスタービン発電設備としては、空気を圧縮する圧縮機と、この圧縮機からの圧縮空気に燃料を混入させて、圧縮空気を燃焼させ燃焼ガスを生成する燃焼器と、燃焼ガスにより駆動するタービンと、このタービンの駆動で発電する発電機と、を備えている構成が一般的である。このガスタービン発電設備では、起動時に、例えば、電動機を駆動して、タービンのロータ回転数を昇速させる。この際、燃焼器に供給する燃料流量を調節することで、タービンロータの回転トルクを制御している。
特開2010-275996号公報
 上述の一般的なガスタービン発電設備では、起動方法が基本的に確立している。しかしながら、特許文献1に記載されている太陽熱発電設備では、その起動方法や負荷併入時の同期調整方法が未だ確立していない。
 例えば、太陽熱発電設備では、起動時において、上述の一般的なガスタービン発電設備の起動方法を踏襲する方法が考えられる。この場合、電動機でタービンロータの回転数を昇速させつつ、空気の加熱場所である受熱器への熱エネルギー投入量、つまり、受熱器に太陽光を照射する集光器の台数を変更してロータの回転トルクを制御する方法が考えられる。
 しかしながら、この方法では、太陽光の強さが常時天候に左右され、受熱器に太陽光を照射する集光器の台数変更では、起動時におけるタービンロータの回転トルク制御が極めて難しいことが予想される。また、この方法では、受熱器の熱容量が大きいため、受熱器に太陽光を照射する集光器の数量を変えても、受熱器に太陽光を照射する集光器の台数変化がタービンロータの回転トルクの変化に反映されるまでに数分必要となり、応答性が悪い。つまり、この方法は、起動時における微妙なタービンロータの回転トルク制御にあまり向かないと考えられる。
 本発明は、起動時にタービンロータの回転トルクを好適に制御することができる太陽熱発電設備、及びその起動方法を提供することを目的とする。
 本発明の第一の態様に係る太陽熱発電設備は、作動媒体を圧縮して圧縮媒体を生成する圧縮機と、太陽光を受けて前記圧縮媒体を加熱する受熱器と、前記受熱器で加熱された前記圧縮媒体でタービンロータが回転するタービンと、前記タービンロータの回転で発電する発電機と、起動時に前記タービンロータを回転させる起動装置と、前記圧縮機からの前記圧縮媒体の少なくとも一部を前記タービン又は前記受熱器に対してバイパスさせるバイパス手段と、前記起動装置によるロータ回転数の昇速過程で前記ロータ回転数が定格回転数になる以前から、前記バイパス手段により、前記圧縮媒体をバイパスさせておき、バイパスさせる前記圧縮媒体の流量を調節させて、前記タービンロータの回転トルクを制御する制御装置と、を備えている。
 ロータ回転数の昇速過程でロータ回転数が定格回転数になる以前から、バイパス手段により、圧縮媒体をバイパスさせておけば、バイパスさせる圧縮媒体の流量を調節させることで、タービンに流入する圧縮媒体の流量を調節することができる。このため、ロータ回転数が定格回転数になってから発電機の併入時までの間のタービンロータの回転トルクを制御することができる。このように、バイパスさせる圧縮媒体の流量を調節して、回転トルクを制御する方法では、タービンへ送る圧縮媒体の流量を変えることになるため、天候の影響が小さい。さらに、この方法では、バイパスさせる圧縮媒体の流量の変化がタービンロータの回転トルクの変化に反映されるまでの時間が極めて短い。このため、バイパスさせる圧縮媒体の流量を調節することで、起動時にタービンロータの回転トルクを好適に制御することができる。
 前記太陽熱発電設備において、前記制御装置は、前記ロータ回転数が前記定格回転数になった後、前記発電機が電力系統に接続される併入時に、前記バイパス手段によりバイパスさせる前記圧縮媒体の流量を瞬間的に減少させてもよい。
 この場合、前記制御装置は、併入時に、前記バイパス手段よりバイパスさせる前記圧縮媒体の流量を0にさせてもよい。
 前記バイパス手段がバイパスさせる前記圧縮媒体の流量を調節するバイパス流量調節弁を有している場合には、前記制御装置は、前記併入時に、前記バイパス流量調節弁の弁開度を全閉にしてもよい。
 発電機が電力系統に併入されると、発電機に急激に負荷がかかり、タービンロータの回転数は急激に低下する。そこで、前記太陽熱発電設備では、発電機の併入と同時に、バイパス手段によりバイパスさせる圧縮媒体の流量を瞬間的に減少させ、圧縮機から送り出された圧縮媒体のうちで、タービンに送られていなかった圧縮媒体をタービンに送り、タービンロータの回転数が定格回転数を維持するように構成されている。
 前記太陽熱発電設備において、前記制御装置は、前記併入直前まで、実際の前記ロータ回転数が予め定められている起動時のロータ回転数パターンに近づくように、前記バイパス手段により、バイパスさせる前記圧縮媒体の流量を調節させてもよい。
 この場合、前記制御装置は、前記併入時以前に前記起動装置による前記タービンロータの回転補助を停止させてもよい。
 前記太陽熱発電設備では、タービンロータの回転数を制御するために、発電機に供給する電力を制御することで発電機の回転数を変える回転数変換機構が不要になる。このため、前記太陽熱発電設備の製造コストを抑えることができる。
 前記太陽熱発電設備において、前記起動装置は、起動時に前記タービンロータを回転させる電動機と、入力軸から出力軸に伝わるトルクの比率を変えるトルク比変換機構と、を有し、前記トルク比変換機構の前記入力軸は、前記電動機の出力軸に接続され、前記トルク比変換機構の前記出力軸は、前記タービンロータに接続され、前記制御装置は、起動時に前記トルク比変換機構に対して、時間経過に応じた前記トルク比の目標値に対応した制御指令を出力して、前記起動装置から前記タービンロータに伝わる回転トルクを高めて前記ロータ回転数を昇速させてもよい。
 前記太陽熱発電設備において、前記起動装置は、起動時に前記タービンロータを回転させる電動機として機能する前記発電機と、前記発電機に供給する電力を制御することで前記発電機の回転数を変える回転数変換機構と、を有し、前記制御装置は、起動時に前記回転数変換機構に対して、時間経過に応じた前記発電機の回転数の目標値に応じた制御指令を出力して、前記起動装置により前記ロータ回転数を昇速させてもよい。
 前記太陽熱発電設備において、前記バイパス手段は、前記受熱器よりも上流側で前記圧縮媒体をバイパスさせてもよい。
 前記太陽熱発電設備では、バイパス手段に受熱器で加熱された高温の圧縮媒体が流れないため、高温用のバイパス手段、例えば、高温用のパイプやバルブが不要となり、このバイパス手段の製造コストを抑えることができる。
 前記太陽熱発電設備において、前記バイパス手段は、前記圧縮機で圧縮された前記圧縮媒体の少なくとも一部を前記タービンよりも上流側から前記タービンの排気側に導くタービンバイパス配管と、前記タービンバイパス配管を流れる前記圧縮媒体の流量を調節するタービンバイパス弁と、を有し、前記制御装置は、前記タービンバイパス弁の弁開度を調節してもよい。
 前記太陽熱発電設備において、前記バイパス手段は、前記圧縮機で圧縮された前記圧縮媒体の少なくとも一部を、前記受熱器よりも上流側から前記受熱器に対してバイパスさせ、前記受熱器よりも下流側且つ前記タービンよりも上流側に前記圧縮媒体を導く受熱器バイパス配管と、前記受熱器バイパス配管を流れる前記圧縮媒体の流量を調節する受熱器バイパス弁と、を有し、前記制御装置は、前記受熱器バイパス弁の弁開度を調節してもよい。
 前記太陽熱発電設備において、前記バイパス手段は、前記圧縮機で圧縮された前記圧縮媒体の少なくとも一部を前記受熱器よりも上流側から大気に放出する放風配管と、前記放風配管から大気に流出する前記圧縮媒体の流量を調節する放風弁と、を有し、前記制御装置は、前記放風弁の弁開度を調節してもよい。
 本発明の第二の態様に係る太陽熱発電設備の起動方法は、作動媒体を圧縮して圧縮媒体を生成する圧縮機と、太陽光を受けて前記圧縮媒体を加熱する受熱器と、前記受熱器で加熱された前記圧縮媒体によってタービンロータが回転するタービンと、前記タービンロータの回転で発電する発電機と、起動時に前記タービンロータを回転させる起動装置と、を備えている太陽熱発電設備の起動方法において、前記起動装置で前記タービンロータの回転数を昇速させる昇速工程と、前記昇速工程中であって、前記タービンロータの回転数が定格回転数になる以前から、前記圧縮機からの前記圧縮媒体の少なくとも一部を前記タービン又は前記受熱器に対してバイパスさせておき、バイパスさせる前記圧縮媒体の流量を調節して、前記発電機が電力系統に接続される併入時迄の前記タービンロータの回転トルクを制御する併入過程制御工程と、を実行する。
 ロータ回転数の昇速過程でロータ回転数が定格回転数になる以前から、圧縮媒体をバイパスさせておけば、バイパスさせる圧縮媒体の流量を調節させることで、タービンに流入する圧縮媒体の流量を調節することができる。このため、ロータ回転数が定格回転数になってから発電機の併入時までの間のタービンロータの回転トルクを制御することができる。このように、バイパスさせる圧縮媒体の流量を調節して、回転トルクを制御する方法では、タービンへ送る圧縮媒体の流量を変えることになるため、天候の影響が小さい。さらに、この方法では、バイパスさせる圧縮媒体の流量の変化がタービンロータの回転トルクの変化に反映されるまでの時間が極めて短い。このため、バイパスさせる圧縮媒体の流量を調節することで、起動時にタービンロータの回転トルクを好適に制御することができる。
 前記太陽熱発電設備の起動方法において、前記併入過程制御工程では、前記併入時に、バイパスさせる前記圧縮媒体の流量を瞬間的に減少させてもよい。
 この場合、前記併入過程制御工程では、前記併入時に、バイパスさせる前記圧縮媒体の流量を0にさせてもよい。
 発電機が電力系統に併入されると、発電機に急激に負荷がかかり、タービンロータの回転数は急激に低下する。そこで、前記起動方法では、発電機の併入と同時に、バイパスさせる圧縮媒体の流量を瞬間的に減少させ、圧縮機から送り出された圧縮媒体のうちで、タービンに送られていなかった圧縮媒体をタービンに送り、タービンロータの回転数が定格回転数を維持するように構成されている。
 本発明によれば、起動時にタービンロータの回転トルクを好適に制御することができる。
本発明に係る一実施形態における太陽熱発電設備の構成を示す説明図である。 本発明に係る一実施形態における太陽熱発電設備の動作を示すタイムチャートである。 本発明に係る一実施形態の第一変形例における太陽熱発電設備の構成を示す説明図である。 本発明に係る一実施形態の第二変形例における太陽熱発電設備の構成を示す説明図である。 本発明に係る一実施形態の第二変形例における太陽熱発電設備の動作を示すタイムチャートである。
 以下、本発明に係る太陽光発電設備の一実施形態及びその変形例について、図面を参照して詳細に説明する。
 「実施形態」
 まず、図1及び図2を参照して、太陽熱発電設備の一実施形態について説明する。
 本実施形態の太陽熱発電設備は、図1に示すように、作動媒体としての空気を圧縮して圧縮媒体である圧縮空気を生成する圧縮機10と、太陽光を受けて圧縮空気を加熱する受熱器30と、受熱器30に太陽光を照射する複数のヘリオスタット40と、受熱器30で加熱された圧縮空気で駆動するタービン20と、タービン20の駆動で発電する発電機50と、起動時に圧縮機ロータ11及びタービンロータ21を回転させる起動装置60と、これらを制御する制御装置80と、を備えている。
 受熱器30は、太陽光が照射される受熱部31と、この受熱部31を覆うケーシング35と、を有している。受熱部31は、下部ヘッダ配管32と、この下部ヘッダ配管32の上方に配置されている上部ヘッダ配管33と、鉛直方向に延び下部ヘッダ配管32と上部ヘッダ配管33とをつなぐ複数の受熱管34と、を有している。ケーシング35の下部には、受熱部31の内部にヘリオスタット40からの太陽光を導くための開口36が形成されている。この受熱器30は、太陽熱発電設備の設置領域内に建てられたタワー(不図示)上に設けられる。
 ヘリオスタット40は、太陽光を反射する反射鏡41と、反射鏡41を支持する支持脚43と、反射鏡41を目的の方向に向ける駆動制御器42と、を有している。このヘリオスタット40は、受熱器30が設けられているタワーの周囲に配置される。
 圧縮機10は、回転する前述の圧縮機ロータ11と、この圧縮機ロータ11を回転可能に覆う圧縮機ケーシング12と、有している。
 タービン20は、回転する前述のタービンロータ21と、このタービンロータ21を回転可能に覆うタービンケーシング22と、を有している。このタービンロータ21は、圧縮機ロータ11の延長線上に位置し、圧縮機ロータ11に接続されている。また、この圧縮機ロータ11は、発電機ロータ51に接続されている。よって、発電機ロータ51が回転すると、圧縮機ロータ11及びタービンロータ21も回転する。
 タービン20の排気側には、タービン20から排気された高温の圧縮空気である排気空気を利用して、圧縮機10からの圧縮空気を加熱する再熱器25が設けられている。さらに、この再熱器25には、圧縮空気を加熱した後の排気空気を排気する排気ダクト28が設けられている。
 起動装置60は、電動機61と、入力軸65から出力軸66に伝わるトルクの比率を変えるトルクコンバータ(トルク比変換機構)64と、を備えている。電動機61は、発電機ロータ51、圧縮機ロータ11及びタービンロータ21を起動時に回転させる。トルクコンバータ64は、内蔵されているガイドベーン(不図示)の開度を変えることで、入力軸65から出力軸66に伝わるトルクの比率を変えることができる。トルクコンバータ64の入力軸65は、電動機61の出力軸62に接続され、トルクコンバータ64の出力軸66は、発電機ロータ51に接続されている。発電機ロータ51は、前述したように、圧縮機ロータ11に接続されており、この圧縮機ロータ11は、タービンロータ21に接続されている。このため、トルクコンバータ64の出力軸66は、発電機ロータ51を介して圧縮機ロータ11に接続されていると共に、タービンロータ21にも接続されている。
 発電機50は、発電機遮断器55を介して電力系統Sと電気的に接続されている。また、電動機61は、起動装置遮断器56を介して電力系統Sと電気的に接続されている。
 圧縮機10の吐出口13と再熱器25の圧縮空気入口26とは、圧縮空気配管71で接続されている。再熱器25の圧縮空気出口27と受熱器30の下部ヘッダ配管32とは、再熱空気配管72で接続されている。受熱器30の上部ヘッダ配管33とタービン20の吸気口23とは、加熱空気配管73で接続されている。圧縮空気配管71と排気ダクト28とは、タービンバイパス配管74で接続されている。このタービンバイパス配管74には、ここを通る圧縮空気の流量を調節するタービンバイパス弁75が設けられている。なお、本実施形態では、タービンバイパス配管74とタービンバイパス弁75でバイパス手段を構成している。これらタービンバイパス配管74及びタービンバイパス弁75により、タービン20のトリップ時等、緊急停止を必要とするとき、高温の作動媒体のタービン20への流入が制限され、安全にタービン停止を図ることが可能となる。
 加熱空気配管73には、受熱器30で加熱された圧縮空気の温度を測定する受熱器出口温度計38が設けられている。また、受熱器30の受熱管34には、この受熱管34の温度を測定する受熱管温度計39が設けられている。発電機ロータ51と圧縮機ロータ11とタービンロータ21とのうち、いずれかには、これらの回転数であるロータ回転数を測定する回転数計19が設けられている。これら受熱器出口温度計38、受熱管温度計39、及び回転数計19で測定された値は、いずれも、制御装置80に送られる。
 制御装置80は、機能的に、トルクコンバータ制御部82と、各遮断器55,56に開閉指令を出力する遮断器制御部83と、複数のヘリオスタット40毎に受熱器30への太陽光の照射オン又はオフ指令を出力するヘリオスタット制御部84と、タービンバイパス弁75に弁開度指令を出力するバイパス弁制御部85と、統合制御部81と、を有している。トルクコンバータ制御部82は、起動時にトルクコンバータ64にトルク比指令を出力する。統合制御部81は、外部から各種データを受け付けて、以上の各制御部82~85を制御する。
 なお、制御装置80は、コンピュータであり、各種演算を実行するCPUと、CPUのワークエリアとなるメモリと、CPUが実行するプログラムや各種データが記憶されている外部記憶装置と、各種データの入出力インタフェースとを備えている。制御装置80の上記機能構成は、いずれも、外部記憶装置に記憶されているプログラムをCPUが実行することで機能する。
 次に、図2に示すタイミングチャートに従って、太陽熱発電設備の起動時の動作について説明する。
 この太陽熱発電設備では、朝、太陽が昇り始めると、制御装置80のヘリオスタット制御部84が複数のヘリオスタット40に対して、照射オン指令を出力する(t0)。この照射オン指令を受けたヘリオスタット40の駆動制御器42は、反射鏡41で反射した太陽光が受熱器30に向うよう、反射鏡41の向きを調節する。
 受熱器30の受熱部31に太陽光が照射されると、受熱部31と共に受熱部31内の空気が加熱され、これらの温度が次第に上昇する。
 制御装置80の遮断器制御部83は、受熱器出口温度計38又は受熱管温度計39で測定された温度が予め定められた温度(例えば、200~300℃)になると(t1)、統合制御部81からの指示で、起動装置遮断器56に対して閉指令を出力する。この結果、電動機61に系統電力が供給され始め、電動機61が駆動し始める。また、制御装置80のトルクコンバータ制御部82は、これと同時に、統合制御部81からの指示で、トルクコンバータ64に対して起動指令を出力する。
 トルクコンバータ制御部82は、例えば、予め定められているトルク比パターンで示されている目標トルク比に関する指令をトルクコンバータ64に出力する。具体的に、トルク比パターンは、電動機61の起動開始時からロータ回転数の単位時間当たり増加率が所定の増加率になるよう、電動機61の起動開始時からの時刻毎における目標トルク比を定めている。トルクコンバータ制御部82は、このトルク比パターンに従って、その時刻における目標トルク比が得られるよう、トルクコンバータ64のガイドベーンの開度をトルク比指令として、このガイドベーンに出力する。なお、ここでは、ガイドベーンの開度が大きくなるに伴い、入力トルクに対する出力トルクの大きさが大きくなる。したがって、ここでは、ガイドベーンの開度が時間経過に伴って次第に大きくなる。この結果、トルクコンバータ64の入力軸65から出力軸66に伝わるトルクが時間経過に伴って次第に増加して、発電機ロータ51の回転数、圧縮機10及びタービン20のロータ回転数が時間経過に伴って次第に増加する。
 圧縮機ロータ11が回転し始めると、空気を吸引して圧縮空気を生成し、これを圧縮機ケーシング12の吐出口13から吐出する。この圧縮空気は、圧縮空気配管71、再熱器25、再熱空気配管72を経て、受熱器30の受熱部31に送られ、ここで加熱される。
 受熱器30で加熱された圧縮空気は、加熱空気配管73を経て、タービン20に送られ、タービンロータ21を回転させる。タービンロータ21を回転させた圧縮空気は排気空気として、再熱器25を経て、排気ダクト28から大気に排気される。この過程で、再熱器25において、排気空気と圧縮空気配管71を通ってきた圧縮空気との熱交換により、この圧縮空気が加熱される。
 ここで、ロータ回転数が予め定められた回転数Na(例えば、定格回転数Ndの20~40%の回転数)になると(t2)、トルクコンバータ制御部82によるトルクコンバータ64のトルク比制御を一時中止してトルク比を固定する。この時、受熱器出口温度計38又は受熱管温度計39で測定された温度が予め定められた温度(例えば、500~700℃)になるまで待ってもよい。そして、受熱器出口温度計38又は受熱管温度計39で測定された温度が予め定められた温度になると(t3)、再び、トルクコンバータ制御部82によるトルクコンバータ64のトルク比制御を実行するようにしてもよい。この方法により、タービン起動に必要なトルクを小さく一定にすることが可能である。
 太陽光の光量は、太陽が昇るにつれて増加するため、受熱器30に太陽光を照射するヘリオスタット40の台数が一定であっても、受熱器30の受熱部31が受ける光量、言い換えると熱量は増加する。このため、受熱部31に送られてきた圧縮空気に対する単位時間当たりの加熱量も増加し、圧縮空気でタービンロータ21を回転させる回転トルクが増加する。一方、電動機61でタービンロータ21を回転させる回転トルクは相対的に減少する。
 ロータ回転数が次第に増加して、回転数計19で測定されたロータ回転数が予め定められた回転数Nb(例えば、定格回転数Ndの40~60%の回転数)以上になると(t4)、制御装置80のバイパス弁制御部85は、統合制御部81からの指示で、タービンバイパス弁75に弁開度指令を出力する。この結果、タービンバイパス弁75は、開いて指示された弁開度になる。前述したように、時間経過に伴って受熱器30での圧縮空気への加熱量が増加し、この圧縮空気でタービンロータ21を回転させる力が増加するため、タービンバイパス弁75を開けて、タービン20に送られる加熱された圧縮空気の流量が減す。
 この際、バイパス弁制御部85は、回転数計19で測定されたロータ回転数が予め定められた回転数パターンに近づくように、タービンバイパス弁75の弁開度を定める。具体的に、回転数パターンは、電動機61の起動開始時からタービンロータ21が定格回転数Ndになるまで、ロータ回転数の単位時間当たり増加率が所定の増加率になるよう、電動機61の起動開始時からの時刻毎におけるロータ回転数を定めている。なお、この回転数パターンは、定格回転数Ndになると、その後、この定格回転数Ndで一定である。バイパス弁制御部85は、例えば、回転数計19で測定されたロータ回転数と、回転数パターンが定めるときの目標回転数との偏差に応じて、タービンバイパス弁75の弁開度を定める。タービンバイパス弁75が開き、タービン20に送られる加熱された圧縮空気の流量が変化すると、タービンロータ21を回転させる回転トルクが変化して、ロータ回転数が変わる。すなわち、タービンバイパス弁75の弁開度を調節して、タービンロータ21を回転させる回転トルクを制御することで、ロータ回転数を制御している。
 ところで、タービンロータ21を回転させる回転トルクは、受熱器30に太陽光を照射するヘリオスタット40の台数を変更する方法でも制御可能である。しかしながら、前述したように、この方法では、太陽光の強さが常時天候に左右されるため、受熱器30に太陽光を照射するヘリオスタット40の台数変更では、起動時における回転トルクの制御が極めて難しいことが予想される。また、この方法では、受熱器30の熱容量が大きいため、受熱器30に太陽光を照射するヘリオスタット40の台数を変えても、受熱器30に太陽光を照射するヘリオスタット40の台数変化が回転トルクの変化に反映されるまでに数分かかってしまい、起動時における微妙な回転トルクの制御にあまり向かないと考えられる。
 一方、タービンバイパス弁75の弁開度を調節して、回転トルクを制御する方法では、タービン20へ送る圧縮空気の流量を変えることになるため、天候の影響が小さい。さらに、この方法では、タービンバイパス弁75の弁開度の変化がタービンロータ21の回転トルクの変化に反映されるまでの時間が極めて短い。このため、タービンバイパス弁75の弁開度を調節することで、起動時にタービンロータ21の回転トルクを好適に制御することができる。
 タービンバイパス弁75が開いた後のトルク比パターンは、例えば、次第に小さくなり、回転数パターンが定格回転数Ndになる時刻で0になる。つまり、電動機61から発電機ロータ51に伝えられるトルクが0になる。このため、トルクコンバータ64のトルク比は、このトルク比パターンに従って変化し、ロータ回転数がほぼ定格回転数Ndになると(t5)、0になる。トルクコンバータ64のトルク比が0になると、遮断器制御部83が起動装置遮断器56に対して開指令を出力し、電力系統Sから電動機61への電力供給を断たせて電動機61を停止させる。
 タービンロータ21を回転させるトルク成分のうち、加熱された圧縮空気によってタービンロータ21を回転させるトルク成分は、時間経過に伴って、電動機61によってタービンロータ21を回転させるトルク成分に対して相対的に大きくなる。このため、ロータ回転数の制御は、時間経過に伴い、タービンバイパス弁75の弁開度による制御が支配的になってくる。そして、電動機61が停止した以降(t5)、つまり、圧縮機ロータ11及びタービンロータ21が電動機61の補助なしで、定格回転数Ndを維持できるようになると、ロータ回転数は、基本的にタービンバイパス弁75の弁開度で制御される。
 なお、トルク比パターン及び回転数パターンは、時間経過に伴うトルク比や回転数の変化が基本的に固定的であるが、太陽光が長時間にわたって雲に遮られ、受熱器出口温度計38等で測定された温度が下限温度を下回るような場合には、例えば、受熱器出口温度計38等で測定された温度が下限温度を下回ってから再び下限温度以上になるまで、各パターンのタイムスケジュールは停止する。
 ロータ回転数がほぼ定格回転数Ndになってから(t5)、所定時間経過すると(t6)、統合制御部81からの指示で、遮断器制御部83が発電機遮断器55に対して閉指令を出力し、電力系統Sと発電機50とを電気的に接続する。つまり、発電機50は電力系統Sに併入される。これと同時に、バイパス弁制御部85は、統合制御部81から指示で、タービンバイパス弁75に対して弁開度0、つまり全閉の指令を与える。
 発電機50が電力系統Sに併入されると、発電機50に急激に負荷がかかり、発電機ロータ51やタービンロータ21の回転数は急激に低下する。ここでは、発電機50の併入と同時に、タービンバイパス弁75を瞬間的に全閉にして、圧縮機10から送り出された圧縮空気のうちで、タービン20に送られずに、タービンバイパス配管74を経て排気ダクト28から排気していた圧縮空気をタービン20に送り、発電機ロータ51やタービンロータ21の回転数が定格回転数Ndを維持するように構成されている。
 以降、タービン20は、基本的に、受熱器30に太陽光を照射するヘリオスタット40の台数を調節することで制御される。なお、このヘリオスタット40の台数の調節は、ヘリオスタット制御部84が実行する。但し、例えば、電力系統Sの負荷が急激に変化した場合や、受熱器出口温度計38や受熱管温度計39で測定された温度がそれぞれの上限値を超えた場合には、タービンバイパス弁75等の弁開度を調節して、これらの場合に対応する。
 なお、本実施形態において、電動機61が駆動している期間、つまり、電動機61で圧縮機ロータ11及びタービンロータ21の回転を補助している期間(t1~t5)が、本実施形態の太陽熱発電設備における昇速工程である。また、本実施形態において、タービンバイパス弁75が開き始めてから全閉になるまでの期間(t4~t6)が、本実施形態の太陽熱発電設備における併入過程制御工程である。
 以上のように、本実施形態では、起動時におけるタービンロータ21の回転トルクを好適に制御することができ、結果として起動時におけるロータ回転数を好適に制御することができる。
 「第一変形例」
 次に、以上で説明した太陽熱発電設備の一実施形態の第一変形例について、図3を用いて説明する。
 以上で説明した実施形態では、タービンバイパス弁75の弁開度によって起動時におけるタービンロータ21の回転トルクを制御するが、以下で説明する変形例では、他の弁の弁開度によって起動時における回転トルクを制御する。
 例えば、圧縮空気配管71と加熱空気配管73とを接続する受熱器バイパス配管76を設けると共に、この受熱器バイパス配管76に受熱器バイパス弁77を設ける。そして、この受熱器バイパス弁77の弁開度をタービンバイパス弁75の弁開度と同様に調節して、タービンロータ21の回転トルクを制御することで、起動時におけるロータ回転数を制御するようにしてもよい。
 また、再熱空気配管72に、ここを通る圧縮空気を大気に放出する放風配管78を設けると共に、ここに放風弁79を設ける。そして、この放風弁79の開度をタービンバイパス弁75の弁開度と同様に調節して、タービンロータ21の回転トルクを制御するようにしてもよい。
 以上のように、圧縮機10からの圧縮空気の一部をタービン20又は受熱器30に対してバイパスさせる手段を設け、この手段により、バイパスさせる圧縮空気の流量を調節させて、起動におけるタービンロータ21の回転トルクを制御するものであれば、如何なる方法でも、起動時におけるタービンロータ21の回転トルクを好適に制御することができる。
 但し、受熱器30で加熱された後の圧縮空気の一部をタービン20に対してバイパスさせる場合には、この圧縮空気の温度が極めて高いため、バイパスさせる圧縮空気の流量を調節する弁が非常に高価になる。例えば、加熱空気配管73と排気ダクト28とを接続するタービンバイパス配管を設けると共に、このタービンバイパス配管にタービンバイパス弁を設ける場合には、このタービンバイパス弁が非常に高価になる。このため、受熱器30で加熱された後の圧縮空気の一部をタービン20に対してバイパスさせる方法は避けることが好ましい。
 また、タービン20又は受熱器30に対してバイパスさせる手段は、1つである必要はなく、複数であってもよい。この場合、複数の手段を併用して、起動時におけるタービンロータ21の回転トルクを制御してもよい。
 「第二変形例」
 次に、以上で説明した太陽熱発電設備の一実施形態の第二変形例について、図4及び図5を用いて説明する。
 本変形例は、上記実施形態における起動装置60を変更して構成されている。
 本変形例の起動装置60aは、図4に示すように、電動機としても機能する発電機50aと、この発電機50aの回転数を制御するインバータ(回転数変換機構)69と、を備えている。
 電動機としても機能する発電機50aは、上記実施形態と同様、発電機遮断器55を介して電力系統Sと電気的に接続されている。この発電機50aは、さらに、出力側遮断器57を介してインバータ69と電気的に接続されている。このインバータ69は、入力側遮断器58を介して電力系統Sと電気的に接続されている。
 このように、本変形例の起動装置60aは、上記実施形態におけるトルクコンバータ64の替わりに、発電機50aの回転数を制御するインバータ69を備えているため、本変形例の制御装置80aは、上記実施形態におけるトルクコンバータ制御部82の替わりに、インバータ制御部86を備えている。
 次に、図5に示すタイミングチャートに従って、本変形例における太陽熱発電設備の起動時の動作について説明する。
 本変形例では、ヘリオスタット制御部84が複数のヘリオスタット40に対して、照射オン指令を出力し(t0)、受熱器出口温度計38又は受熱管温度計39で測定された温度が予め定められた温度(例えば、200~300℃)になると(t1)、統合制御部81からの指示で、遮断器制御部83が入力側遮断器58及び出力側遮断器57に対して閉指令を出力する。この結果、インバータ69を介して発電機50aに系統電力が供給され始め、発電機50aが電動機として駆動し始める。また、インバータ制御部86は、これと同時に、例えば、インバータ69の制御を開始する。
 インバータ制御部86は、例えば、電動機としての発電機50aが予め定められている回転数パターンで示されている目標ロータ回転数になるよう、この目標回転数又はこれに対応する値を含む制御指令をインバータ69に出力する。具体的に、回転数パターンは、電動機としての発電機50aの起動開始時からロータ回転数の単位時間当たり増加率が所定の増加率になるよう、この発電機50aの起動開始時からの時刻毎における目標ロータ回転数を定めている。この結果、発電機ロータ51、圧縮機ロータ11及びタービンロータ21の回転数であるロータ回転数が時間経過に伴って次第に増加する。なお、インバータ69の出力電力は、図5に示すように、タービン20回転数の増加に伴って増加する。
 ここで、ロータ回転数が予め定められた回転数Na(例えば、定格回転数Ndの20~40%の回転数)になると(t2)、上記実施形態と同様、インバータ制御部86によるインバータ制御を一時中止してロータ回転数を固定し、受熱器出口温度計38又は受熱管温度計39で測定された温度が予め定められた温度(例えば、50~700℃)になるまで待ってもよい。そして、受熱器出口温度計38又は受熱管温度計39で測定された温度が予め定められた温度になると(t3)、再び、インバータ制御部86によるインバータ制御を実行するようにしてもよい。
 ロータ回転数が次第に増加して、回転数計19で測定されたロータ回転数が予め定められた回転数Nb(例えば、定格回転数Ndの40~60%の回転数)以上になると(t4)、上記実施形態と同様、制御装置80aのバイパス弁制御部85は、統合制御部81からの指示で、タービンバイパス弁75に弁開度指令を出力する。この結果、タービンバイパス弁75は、開いて指示された弁開度になる。前述したように、時間経過に伴って受熱器30での圧縮空気への加熱量が増加し、この圧縮空気でタービンロータ21を回転させる力が増加するため、タービンバイパス弁75を開けて、タービン20に送られる加熱された圧縮空気の流量が減す。
 この際、バイパス弁制御部85は、例えば、タービンバイパス弁75の弁開度が予め定められた弁開度パターンの示す目標弁開度になるよう、タービンバイパス弁75の弁開度を定める。具体的に、弁開度パターンは、例えば、弁開度0から、所定弁開度までが単位時間当たりの弁開度の増加率が所定の増加率になり、以降、一定弁開度になっている。
 前述したように、タービンロータ21を回転させるトルク成分のうち、加熱された圧縮空気によってタービンロータ21を回転させるトルク成分は、時間経過に伴って、発電機50aによってタービンロータ21を回転させるトルク成分に対して相対的に大きくなる。このため、インバータ69による発電機ロータ51の回転数制御が実行されているものの、インバータ69から発電機50aに送られる出力電力は、ある時点を境に減少傾向になる。
 本変形例では、ロータ回転数が定格回転数Ndになった以降(t5)も、インバータ69による発電機ロータ51の回転数制御が継続される。これは、本変形例において、タービンバイパス弁75の弁開度の調節が、上記実施形態のようにロータ回転数制御を目的とするものではないからである。
 ロータ回転数が定格回転数Ndになってから(t5)、所定時間経過すると(t6)、統合制御部81からの指示で、遮断器制御部83が入力側遮断器58及び出力側遮断器57に対して開指令を出力すると共に、発電機遮断器55に対して閉指令を出力する。この結果、インバータ69を介して発電機50aに系統電力が供給されなくなり、発電機50aは電動機として機能しなくなる。さらに、この際、電力系統Sと発電機50aとが電気的に接続される。つまり、発電機50aは電力系統Sに併入され、発電機50aから電力系統Sに電力供給が開始される。
 発電機50aが電力系統Sに併入されると、発電機50aに急激に負荷がかかり、発電機ロータ51やタービンロータ21の回転数は急激に低下する。そこで、本変形例でも、発電機50aの併入と同時に、タービンバイパス弁75を瞬間的に全閉にして、圧縮機10から送り出された圧縮空気のうちで、タービン20に送られずに、タービンバイパス配管74を経て排気ダクト28から排気していた圧縮空気をタービン20に送り、発電機ロータ51やタービンロータ21の回転数が定格回転数Ndを維持するように構成されている。
 以降、タービン20は、上記実施形態と同様、基本的に、受熱器30に太陽光を照射するヘリオスタット40の台数を調節することで制御される。
 以上のように、本変形例でも、起動時におけるタービンロータ21の回転トルクを好適に制御することができる。
 なお、本変形例においても、タービンバイパス弁75の替わりに、第一変形例で例示したように、受熱器バイパス弁77や放風弁79を設け、これにより、起動時におけるタービンロータ21の回転トルクを制御するようにしてもよい。
 また、上記実施形態及び本変形例では、発電機50,50aが電力系統Sに併入されると、タービンバイパス弁75を瞬間的に全閉にしている。しかしながら、発電機50,50aの併入時にタービンバイパス弁75の弁開度が瞬間的に小さくなり、タービンバイパス配管74を流れる圧縮空気の流量が瞬間的に減少するのであれば、全閉にしなくてもよい。
 また、上記実施形態及び上記各変形例では、タービン20の排気側に再熱器25を設けているが、この再熱器25は、太陽熱発電設備において必須のものではない。
 この太陽熱発電設備によれば、起動時にタービンロータの回転トルクを好適に制御することができる。
 10  圧縮機
 11  圧縮機ロータ
 20  タービン
 21  タービンロータ
 25  再熱器
 28  排気ダクト
 30  受熱器
 40  ヘリオスタット
 50,50a  発電機
 60,60a  起動装置
 61  電動機
 64  トルクコンバータ
 69  インバータ
 71  圧縮空気配管
 72  再熱空気配管
 73  加熱空気配管
 74  タービンバイパス配管
 75  タービンバイパス弁
 76  受熱器バイパス配管
 77  受熱器バイパス弁
 78  放風配管
 79  放風弁
 80,80a  制御装置
 81  統合制御部
 82  トルクコンバータ制御部
 83  遮断器制御部
 84  ヘイオスタット制御部
 85  バイパス弁制御部
 86  インバータ制御部

Claims (15)

  1.  作動媒体を圧縮して圧縮媒体を生成する圧縮機と、
     太陽光を受けて前記圧縮媒体を加熱する受熱器と、
     前記受熱器で加熱された前記圧縮媒体でタービンロータが回転するタービンと、
     前記タービンロータの回転で発電する発電機と、
     起動時に前記タービンロータを回転させる起動装置と、
     前記圧縮機からの前記圧縮媒体の少なくとも一部を前記タービン又は前記受熱器に対してバイパスさせるバイパス手段と、
     前記起動装置によるロータ回転数の昇速過程で前記ロータ回転数が定格回転数になる以前から、前記バイパス手段により、前記圧縮媒体をバイパスさせておき、バイパスさせる前記圧縮媒体の流量を調節させて、前記タービンロータの回転トルクを制御する制御装置と、
     を備えている太陽熱発電設備。
  2.  請求項1に記載の太陽熱発電設備において、
     前記制御装置は、前記ロータ回転数が前記定格回転数になった後、前記発電機が電力系統に接続される併入時に、前記バイパス手段によりバイパスさせる前記圧縮媒体の流量を瞬間的に減少させる
     太陽熱発電設備。
  3.  請求項2に記載の太陽熱発電設備において、
     前記制御装置は、前記併入時に、前記バイパス手段よりバイパスさせる前記圧縮媒体の流量を0にさせる
     太陽熱発電設備。
  4.  請求項2に記載の太陽熱発電設備において、
     前記バイパス手段は、バイパスさせる前記圧縮媒体の流量を調節するバイパス流量調節弁を有し、
     前記制御装置は、前記併入時に、前記バイパス流量調節弁の弁開度を全閉にする
     太陽熱発電設備。
  5.  請求項2から4のいずれか一項に記載の太陽熱発電設備において、
     前記制御装置は、前記併入直前まで、実際の前記ロータ回転数が予め定められている起動時のロータ回転数パターンに近づくように、前記バイパス手段により、バイパスさせる前記圧縮媒体の流量を調節させる
     太陽熱発電設備。
  6.  請求項5に記載の太陽熱発電設備において、
     前記制御装置は、前記併入時以前に前記起動装置による前記タービンロータの回転補助を停止させる
     太陽熱発電設備。
  7.  請求項1から6のいずれか一項に記載の太陽熱発電設備において、
     前記起動装置は、起動時に前記タービンロータを回転させる電動機と、入力軸から出力軸に伝わるトルクの比率を変えるトルク比変換機構と、を有し、
     前記トルク比変換機構の前記入力軸は、前記電動機の出力軸に接続され、
     前記トルク比変換機構の前記出力軸は、前記タービンロータに接続され、
     前記制御装置は、起動時に前記トルク比変換機構に対して、時間経過に応じた前記トルク比の目標値に対応した制御指令を出力して、前記起動装置から前記タービンロータに伝わる回転トルクを高めて前記ロータ回転数を昇速させる
     太陽熱発電設備。
  8.  請求項1から4のいずれか一項に記載の太陽熱発電設備において、
     前記起動装置は、起動時に前記タービンロータを回転させる電動機として機能する前記発電機と、前記発電機に供給する電力を制御することで前記発電機の回転数を変える回転数変換機構と、を有し、
     前記制御装置は、起動時に前記回転数変換機構に対して、時間経過に応じた前記発電機の回転数の目標値に応じた制御指令を出力して、前記起動装置により前記ロータ回転数を昇速させる
     太陽熱発電設備。
  9.  請求項1から8のいずれか一項に記載の太陽熱発電設備において、
     前記バイパス手段は、前記受熱器よりも上流側で前記圧縮媒体をバイパスさせる
     太陽熱発電設備。
  10.  請求項1から9のいずれか一項に記載の太陽熱発電設備において、
     前記バイパス手段は、前記圧縮機で圧縮された前記圧縮媒体の少なくとも一部を前記タービンよりも上流側から前記タービンの排気側に導くタービンバイパス配管と、前記タービンバイパス配管を流れる前記圧縮媒体の流量を調節するタービンバイパス弁と、を有し、
     前記制御装置は、前記タービンバイパス弁の弁開度を調節する
     太陽熱発電設備。
  11.  請求項1から10のいずれか一項に記載の太陽熱発電設備において、
     前記バイパス手段は、前記圧縮機で圧縮された前記圧縮媒体の少なくとも一部を前記受熱器よりも上流側から前記受熱器に対してバイパスさせ、前記受熱器よりも下流側且つ前記タービンよりも上流側に前記圧縮媒体を導く受熱器バイパス配管と、前記受熱器バイパス配管を流れる前記圧縮媒体の流量を調節する受熱器バイパス弁と、を有し、
     前記制御装置は、前記受熱器バイパス弁の弁開度を調節する
     太陽熱発電設備。
  12.  請求項1から11のいずれか一項に記載の太陽熱発電設備において、
     前記バイパス手段は、前記圧縮機で圧縮された前記圧縮媒体の少なくとも一部を前記受熱器よりも上流側から大気に放出する放風配管と、前記放風配管から大気に流出する前記圧縮媒体の流量を調節する放風弁と、を有し、
     前記制御装置は、前記放風弁の弁開度を調節する
     太陽熱発電設備。
  13.  作動媒体を圧縮して圧縮媒体を生成する圧縮機と、太陽光を受けて前記圧縮媒体を加熱する受熱器と、前記受熱器で加熱された前記圧縮媒体によってタービンロータが回転するタービンと、前記タービンロータの回転で発電する発電機と、起動時に前記タービンロータを回転させる起動装置と、を備えている太陽熱発電設備の起動方法において、
     前記起動装置で前記タービンロータの回転数を昇速させる昇速工程と、
     前記昇速工程中であって、前記タービンロータの回転数が定格回転数になる以前から、前記圧縮機からの前記圧縮媒体の少なくとも一部を前記タービン又は前記受熱器に対してバイパスさせておき、バイパスさせる前記圧縮媒体の流量を調節して、前記発電機が電力系統に接続される併入時迄の前記タービンロータの回転トルクを制御する併入過程制御工程と、
     を実行する太陽熱発電設備の起動方法。
  14.  請求項13に記載の太陽熱発電設備の起動方法において、
     前記併入過程制御工程では、前記併入時に、バイパスさせる前記圧縮媒体の流量を瞬間的に減少させる
     太陽熱発電設備の起動方法。
  15.  請求項14に記載の太陽熱発電設備の起動方法において、
     前記併入過程制御工程では、前記併入時に、バイパスさせる前記圧縮媒体の流量を0にさせる
     太陽熱発電設備の起動方法。
PCT/JP2013/057650 2012-03-22 2013-03-18 太陽熱発電設備、及びその起動方法 WO2013141201A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2013236290A AU2013236290B2 (en) 2012-03-22 2013-03-18 Solar thermal power generation facility and method of starting up same
US14/372,405 US9482210B2 (en) 2012-03-22 2013-03-18 Solar thermal power generation facility and method of starting up same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-066363 2012-03-22
JP2012066363A JP2013194715A (ja) 2012-03-22 2012-03-22 太陽熱発電設備、及びその起動方法

Publications (1)

Publication Number Publication Date
WO2013141201A1 true WO2013141201A1 (ja) 2013-09-26

Family

ID=49222658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057650 WO2013141201A1 (ja) 2012-03-22 2013-03-18 太陽熱発電設備、及びその起動方法

Country Status (4)

Country Link
US (1) US9482210B2 (ja)
JP (1) JP2013194715A (ja)
AU (1) AU2013236290B2 (ja)
WO (1) WO2013141201A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9719492B2 (en) 2011-11-24 2017-08-01 Alstom Renewable Technologies Wind turbine rotor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105723086B (zh) * 2013-08-07 2022-07-08 瑞吉恩资源有限公司 太阳能的储存
WO2015052810A1 (ja) * 2013-10-10 2015-04-16 三菱重工業株式会社 太陽熱タービンシステム、そのシステム制御装置および方法
JP6320228B2 (ja) * 2014-07-31 2018-05-09 三菱日立パワーシステムズ株式会社 太陽熱空気タービン発電システム
US10920673B2 (en) * 2017-03-16 2021-02-16 General Electric Company Gas turbine with extraction-air conditioner
JP6945315B2 (ja) * 2017-03-24 2021-10-06 三菱重工業株式会社 発電プラント及び発電プラントの運転方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108996A (ja) * 1996-06-24 1998-01-13 Nissan Motor Co Ltd ガスタービンエンジン
JP2006283563A (ja) * 2005-03-31 2006-10-19 Mitsui Eng & Shipbuild Co Ltd 炉頂圧回収タービンの制御システム
JP2010275996A (ja) * 2009-06-01 2010-12-09 Mitsubishi Heavy Ind Ltd 太陽熱ガスタービン及び太陽熱ガスタービン発電装置
WO2010140565A1 (ja) * 2009-06-05 2010-12-09 三菱重工業株式会社 太陽熱ガスタービン及び太陽熱ガスタービン発電装置
JP2011032901A (ja) * 2009-07-30 2011-02-17 Mitsubishi Heavy Ind Ltd 発電装置及び駆動制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713980A (en) 1980-06-25 1982-01-25 Toshiba Corp Synchronous starting unit for synchronous motor
US4761957A (en) * 1983-03-01 1988-08-09 Solar Turbines Incorporated Indirectly heated gas turbine engine
US4834622A (en) * 1983-06-15 1989-05-30 Sundstrand Corporation Gas turbine engine/load compressor power plants
JP2991580B2 (ja) 1992-11-20 1999-12-20 東京瓦斯株式会社 誘導発電機の系統連系運転方式および系統連系運転装置
JP2004044410A (ja) 2002-07-09 2004-02-12 Ishikawajima Harima Heavy Ind Co Ltd ガスタービン発電装置とその起動方法
JP2004282948A (ja) 2003-03-18 2004-10-07 Mitsubishi Electric Corp 同期電動機の同期投入システム
US8096128B2 (en) * 2009-09-17 2012-01-17 Echogen Power Systems Heat engine and heat to electricity systems and methods
US8869531B2 (en) * 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
DE102011007650A1 (de) * 2011-04-19 2012-10-25 Siemens Aktiengesellschaft Solarthermische Kraftwerkanlage und Verfahren zum Betreiben einer solarthermischen Kraftwerksanlage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108996A (ja) * 1996-06-24 1998-01-13 Nissan Motor Co Ltd ガスタービンエンジン
JP2006283563A (ja) * 2005-03-31 2006-10-19 Mitsui Eng & Shipbuild Co Ltd 炉頂圧回収タービンの制御システム
JP2010275996A (ja) * 2009-06-01 2010-12-09 Mitsubishi Heavy Ind Ltd 太陽熱ガスタービン及び太陽熱ガスタービン発電装置
WO2010140565A1 (ja) * 2009-06-05 2010-12-09 三菱重工業株式会社 太陽熱ガスタービン及び太陽熱ガスタービン発電装置
JP2011032901A (ja) * 2009-07-30 2011-02-17 Mitsubishi Heavy Ind Ltd 発電装置及び駆動制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9719492B2 (en) 2011-11-24 2017-08-01 Alstom Renewable Technologies Wind turbine rotor

Also Published As

Publication number Publication date
AU2013236290B2 (en) 2015-11-12
AU2013236290A1 (en) 2014-08-07
US9482210B2 (en) 2016-11-01
JP2013194715A (ja) 2013-09-30
US20140360188A1 (en) 2014-12-11

Similar Documents

Publication Publication Date Title
JP5232916B2 (ja) 太陽熱ガスタービン及び太陽熱ガスタービン発電装置
WO2013141201A1 (ja) 太陽熱発電設備、及びその起動方法
WO2010147003A1 (ja) 太陽熱ガスタービン発電装置
JP6320228B2 (ja) 太陽熱空気タービン発電システム
JP5291541B2 (ja) 太陽熱ガスタービン及び太陽熱ガスタービン発電装置
Ghavami et al. A comparative study of the control strategies for pure concentrated solar power micro gas turbines
JP2010275997A (ja) 太陽熱ガスタービン及び太陽熱ガスタービン発電装置
JP2017160804A (ja) 蒸気タービンプラント
JP5745647B2 (ja) 太陽熱コンバインドサイクル発電プラント
US9976478B2 (en) Solar heat turbine system, and device and method for controlling said system
JP5321340B2 (ja) 蒸気噴射ガスタービン発電装置
JP2017101578A (ja) 複合タービンシステム及びその発電方法
WO2013157629A1 (ja) 自然エネルギー発電設備、及びその起動方法
JP2019173697A (ja) コンバインドサイクル発電プラント及びその運転方法
WO2020068011A1 (en) A solar power generating system and the method of generating electricity and providing heat in such a system
JP3219186U (ja) 太陽熱空気発電設備
JP2013224602A (ja) 太陽熱タービンシステム、そのシステム制御装置および方法
JP2012177352A (ja) 太陽熱発電システムの制御装置
TR2021004738T (tr) Bir güneş enerjisi üretim sistemi ve yöntemi.
JPH0443803A (ja) 複合サイクル発電プラントの制御方法
GB2507147A (en) A gas turbine heat and electricity generating apparatus
JP2004346945A (ja) コンバインドサイクルプラントの蒸気温度制御方法及び装置
WO2012031897A1 (en) Single intermediate pressure operation mode for solar driven steam turbine plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764990

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14372405

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013236290

Country of ref document: AU

Date of ref document: 20130318

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764990

Country of ref document: EP

Kind code of ref document: A1