JP2013188421A - 超音波診断装置 - Google Patents

超音波診断装置 Download PDF

Info

Publication number
JP2013188421A
JP2013188421A JP2012058268A JP2012058268A JP2013188421A JP 2013188421 A JP2013188421 A JP 2013188421A JP 2012058268 A JP2012058268 A JP 2012058268A JP 2012058268 A JP2012058268 A JP 2012058268A JP 2013188421 A JP2013188421 A JP 2013188421A
Authority
JP
Japan
Prior art keywords
unit
signal
voltage
reception
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012058268A
Other languages
English (en)
Other versions
JP6005956B2 (ja
Inventor
Isao Uchiumi
勲 内海
Yasuo Miyajima
泰夫 宮島
Hironobu Hongo
宏信 本郷
Toru Hirano
亨 平野
Fumiyasu Sakaguchi
文康 坂口
Nobuyuki Iwama
信行 岩間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Priority to JP2012058268A priority Critical patent/JP6005956B2/ja
Publication of JP2013188421A publication Critical patent/JP2013188421A/ja
Application granted granted Critical
Publication of JP6005956B2 publication Critical patent/JP6005956B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

【課題】超音波画像を劣化させることなく、エコー信号を増幅する増幅器の飽和を防止することが可能な超音波診断装置を提供すること。
【解決手段】超音波診断装置は、送信信号が超音波プローブを介して被検体に超音波信号を送信する送信部と、被検体内で反射されて得られた受信信号を処理する受信部を備える。受信部は、送信信号の受信部への回り込みを防止する送受分離のための送受切換えスイッチ部と、受信信号を増幅する増幅部と、送受切換えスイッチ部と増幅部の間に配置され、受信信号を減衰させる減衰部とを備える。減衰部は、送信終了直後から大振幅の信号を受信する近距離からの反射信号を減衰させ、信号振幅の小さい遠距離から信号を減衰させないように、受信時間の経過と共に減衰量を大から小へ変化させる。
【選択図】図1

Description

本発明の実施形態は、超音波診断装置に関する。
医療用の超音波診断装置は、被検者の体表に当接させた超音波プローブから超音波を体内に送信すると共に、体内の音響インピーダンスの相違する各部位で反射された超音波信号を受信し、その信号を基に体内の情報を示す超音波画像を生成する装置であり、その高い安全性から種々の診断に利用されている。
図7に従来の超音波診断装置200の概略構成を示す。超音波診断装置200は、送信部(パルス発生部)201と、送受信切換えスイッチ部(以下、「TRSW」と呼ぶ。)202と、超音波プローブ203と、増幅部204、処理部205、表示部206とを備えている。送信部201から送信されるパルス信号(以下、「送信信号」と呼ぶ。)が超音波プローブ203に入力されると、超音波プローブ203に内蔵された図示しない超音波振動子が送信信号に応じた超音波を発生する。体内で反射された超音波は超音波振動子で受けて電気信号に変換され、その電気信号(以下、「エコー信号」と呼ぶ。)は、受信信号としてTRSW202を介して増幅部204に入力され、所定の増幅率で増幅された後、処理部205で信号処理等が施され、これにより生成された超音波画像が表示部206に表示される。
TRSW202は、図8に示すようにダイオードブリッジ回路210とクランプ回路220を組み合わせて構成されている。ダイオードブリッジ回路210は、バイアス電源V10、V11と、それぞれバイアス電源V10、V11に接続されるバイアス抵抗器R10、R11と、ダイオードD10〜D13とを含んで構成されている。クランプ回路220は、接地され互いに極性が異なるダイオードD14、D15を含んで構成されている。
ダイオードブリッジ回路210では、送信部201からパルス信号が送信された場合、送信信号の振幅が大きい(例えば、数10Vpp以上)ので、高圧パルスが正のパルスであった場合にはダイオードD10,D13が逆バイアスでオフし、高圧パルスが負のパルスであった場合にはダイオードD11,D12が逆バイアスでオフする。このため、高圧パルスはダイオードブリッジ回路210とクランプ回路220で決まる振幅に制限され、そのまま通過することはない。つまり、送信時にはダイオードブリッジ回路210とクランプ回路220を組み合わせた振幅制限機能により増幅部204の入力は送信信号の高圧パルスから保護される。
一方、超音波プローブ203を介して受信されたエコー信号のように、入力信号の振幅が小さい時(例えば、数100mVpp未満)には、入力信号はダイオードブリッジ回路210の抵抗器R10、ダイオードD10〜D13、抵抗器R11を経由して流れるバイアス電流よりも微弱であるため、ダイオードD10〜D13はオフしないので、入力信号はそのまま通過する。
ここで、エコー信号が、例えば体表面付近における近距離の反射エコーである場合、そのエコー信号の振幅は増幅部204の入力振幅の飽和レベルを超える程大きい。クランプ回路220は、送信信号やエコー信号の振幅が、例えば後段の増幅器の飽和レベルを超えるような過大振幅であるような場合に、増幅部204飽和してしまい、体表面付近の画像を正しく表示できなくなる。なお、TRSWは上記の他にFET等の半導体スイッチで構成することもできる。
特開2006−68090号公報
上記した従来技術では、エコー信号が体表面付近において反射されたものである場合に、入力されたエコー信号の内、所定電圧以上の信号部分をカットしていたため、増幅器の出力信号波形は歪んでしまう。このような歪んだ信号波形に基づいて表示部に表示された超音波診断画像は、不要なアーチファクトを含んでしまうので、体表面付近において反射されたエコー信号を正確に再現(描画)できない。
実施形態は、前述の問題点を解決するためになされたものであり、エコー信号が体表面付近において反射されたものである場合にも、超音波画像を劣化させることなく、エコー信号を増幅する増幅器の飽和を防止することが可能な超音波診断装置を提供することを目的とする。
実施形態の超音波診断装置は、送信信号が超音波プローブを介して被検体に超音波信号を送信する送信部と、被検体内で反射されて得られた受信信号を処理する受信部を備える。受信部は、送信信号の受信部への回り込みを防止する送受分離のためのTRSWと、受信信号を増幅する増幅部と、TRSWと増幅部の間に配置され、受信信号を減衰させる減衰部とを備える。減衰部は、送信終了直後から大振幅の信号を受信する近距離からの反射信号を減衰させ、信号振幅の小さい遠距離から信号を減衰させない様に、受信時間の経過と共に減衰量を大から小へ変化させる。
実施形態に係る超音波診断装置のブロック図である。 受信部の構成を示す図である。 減衰部が動作しているときのTRSW前段の信号波形と減衰部前段における信号波形を示す図である。 減衰部が動作していないときのTRSW前段の信号波形と減衰部前段における信号波形を示す図である。 バイアス制御部の構成を示す図である。 正極側における可変バイアス電源の供給を制御するのに用いられる制御データの一例を示す図である。 負極側における可変バイアス電源の供給を制御するのに用いられる制御データの一例を示す図である。 従来の超音波診断装置のブロック図である。 入力保護回路の構成を示す図である。
図1〜図5を参照して、実施形態に係る超音波診断装置1について説明する。図1は、実施形態に係る超音波診断装置のブロック図である。図2は、受信部の構成を示す図である。図3は、減衰部が動作しているときのTRSW前段の信号波形と減衰部前段における信号波形を示す図である。図4は、減衰部が動作していないときのTRSW前段の信号波形と減衰部前段における信号波形を示す図である。図5Aは、正極側における可変バイアス電源の供給を制御するのに用いられる制御データの一例を示す図であり、減衰部のダイオードに供給されるバイアス電圧の時間変化を示した図である。図5Bは、負極側における可変バイアス電源の供給を制御するのに用いられる制御データの一例を示す図であり、減衰部のダイオードに供給されるバイアス電圧の時間変化を示した図である。
<超音波診断装置の全体構成>
図1に示すように、超音波診断装置1は、超音波プローブ15と、送信部(パルス発生部)11と、受信部12と、処理部21と、バイアス制御部23と、操作部25と、表示部27とを備えて構成されている。受信部12は、受信チャンネルごとに設けられ、TRSW13、減衰部17及び増幅部19を含んで構成されている。なお、受信部12は受信チャンネル数と同じだけ設けられているが、説明の便宜上、図1には一つの受信部12のみ示すこととし、説明も受信部12を一つとして行うこととする。また、受信チャンネルの数は後述する超音波振動子の数と同じである。なお、応用例として、送信、受信チャンネルの数を超音波振動子の数よりも少ないチャンネル数として、アナログスイッチを組み合わせて、送受信チャンネルを切換えて全ての超音波振動子に接続できるような構成であってもよい。
超音波プローブ15は、生体に対して超音波を送受波する、複数の振動素子によって構成されるアレイ状の超音波振動子を含んで構成される。なお、R1は、超音波プローブ15を等価的に信号源Vsとみなした場合の信号源インピーダンス(内部インピーダンス)である。
送信部11は、送信信号(高圧パルス)を超音波プローブ15に内蔵された図示しない超音波振動子に対して供給する。受信時において、超音波振動子から出力された受信信号は、TRSW13を介して減衰部17に入力される。
送信部11からの送信信号が超音波プローブ15に入力されると、超音波プローブ15の超音波振動子が送信信号に応じた超音波を発生する。体内で反射された超音波は超音波振動子により電気信号に変換される。この電気信号(以下、「エコー信号」と呼ぶ。)は、受信信号としてTRSW13に入力される。TRSW13に入力されたエコー信号は、減衰部17を介して増幅部19へ入力される。増幅部19によって増幅されたエコー信号は、処理部21へと送られ、そこで所定の信号処理等が行われることによって超音波画像が構成される。
取得された超音波画像データは図示しない表示制御部に入力され、表示部27の画面上に表示可能な形式に変換される。そして超音波画像が表示部27に表示される。なお、バイアス制御部23は、減衰部17に設けられた後述する可変バイアス電源によるバイアス電圧の供給を制御する(詳細は後述する)。
TRSW13は、図2に示すようにダイオードブリッジ回路(高圧遮断用スイッチング回路)31とクランプ回路(振幅制限回路)34を組み合わせて構成されている。ダイオードブリッジ回路31は、極性を同じにして直列に接続されたダイオードD1,D3の組み合わせと、同様に極性を同じにして直列に接続されたダイオードD2,D4の組み合わせとを並列に接続(いわゆるブリッジ接続)した構成となっている。
ダイオードD1,D2のアノード側には、バイアス電源V1に接続されるバイアス抵抗R3が接続されている。ダイオードD3,D4のカソード側には、バイアス電源V2に接続されるバイアス抵抗R4が接続されている。クランプ回路34は、接地され互いに極性が異なるダイオードD5、D6を含んで構成されている。
減衰部17は、信号線L1に接続された抵抗R5、ダイオードD7及び可変バイアス電源V3を含む第1の回路17aと、信号線L1に接続された抵抗R6、ダイオードD8及び可変バイアス電源V4を含む第2の回路17bとを並列に接続して構成される。減衰部17には、可変バイアス電源V3,V4におけるバイアス電圧を制御するバイアス制御部23が接続されている。バイアス制御部23の制御は操作部25からの選択指示により予め設定された制御データ(後述する)に基づいて行われる。これについての詳細は後述する。
ダイオードD7のアノード側には可変バイアス電源V3が接続され、カソード側には抵抗R5が接続されている。ダイオードD8のカソード側には可変バイアス電源V4が接続され、アノード側には抵抗R6が接続されている。
増幅部19は、増幅器(プリアンプ)40を備えて構成され、入力されたエコー信号を所定の増幅率で増幅する。なお、R2は、増幅部19の等価的な入力インピーダンス(抵抗)である。
処理部21では、増幅されたエコー信号に公知の信号処理(例えば、A/D変換処理、遅延加算処理等)を施し、これにより生成された超音波画像が表示部27に表示される。
<TRSW13の動作>
次に、TRSW13の動作について、送信信号および受信信号のそれぞれの流れに沿って説明する。
送信部11は、図示しない送信制御部から入力される所定の送信タイミング信号により高圧パルス波(以下、「送信信号」と呼ぶ。)を出力する。この送信信号は、超音波プローブ15の超音波振動子を駆動する通常100Vpp程度の大振幅を有し、TRSW13の入力を経由して超音波プローブ15に送出される。この大振幅の送信信号は、超音波振動子に印加される。超音波振動子は送信信号の印加により励振し、超音波プローブ15は超音波信号を放射する。
なお、上記した送信信号は、TRSW13において振幅制限されるので、送信信号がそのまま増幅部19側には印加されない。この原理は、前記従来例の説明部分ですでに上述しているのでここではその説明を省略する。
次に、超音波プローブ15から放射された超音波信号が、被検体内部の生体組織により反射され、その反射されたエコー信号(受信信号)が再びこの超音波プローブ15に受信される。
このエコー信号の信号レベルは通常数10mVpp以下とTRSWのダイオードD5、D6の順方向電圧で制限される概略±0.7Vよりも非常に小さいため、エコー信号はそのままTRSWを通過する。通過したエコー信号は減衰部17に入力される。
<減衰部17の動作>
ダイオードD7の順方向電圧をVfとし、ダイオードD7のアノード側の電圧(可変バイアス電源V3のバイアス電圧)をv3とし、エコー信号受信時における受信部2の入力電圧(TRSW13の入力電圧(ノードP1における電圧)を±Vinとすると、ダイオードD7は−Vinが到来したとき、以下の数式(1)の関係を満たしたときに導通する。
−Vin+v3≦Vf・・・・・・(1)
ダイオードD8の順方向電圧をVfとし、ダイオードD8のカソード側の電圧(可変バイアス電源V4のバイアス電圧)をv4とすると、ダイオードD8は、+Vinが到来したとき、以下の数式(2)の関係を満たしたときに導通する。v4は通常−数100mV程度の電圧を持つことでダイオードD5,D6の動作電圧よりも小さい電圧でD8をオンさせることが出来る。
Vin+v4>Vf・・・・・・・(2)
ところで、エコー信号は、披検体を伝播するときに減衰の影響を受ける。つまり被検体表面からの深さが深いほど信号レベルの減衰量が増大していくことになる。従って、披検体表面付近において反射されたエコー信号と被検体表面から十数cm程度の深さまで行ったところで反射されたエコー信号とを比較すると、被検体表面付近において反射されたエコー信号の方が被検体表面から十数cm程度の深さまで行ったところで反射されたエコー信号よりも信号振幅(信号レベル)が遥かに大きい。
本発明では、被検体表面付近において反射されたエコー信号を受信した場合には、減衰部17を動作させて、増幅部19の入力電圧を減少させるように増幅部19の前段における分圧比を変更する。一方、被検体表面から所定の深さまで行って反射された信号を受信した場合には、減衰部17の動作を停止させて、TRSW13に入力されたエコー信号をそのまま増幅部19に入力するようにする。
まず、被検体表面付近で反射された信号を受信した場合における減衰部17の動作について説明する。以下では、ダイオードD7,D8の順方向電圧Vfを例えば0.7Vpp、被検体表面付近において反射されたエコー信号S1(図3参照)のノードP1における電圧Vinを、例えば2Vpp(±1V)とし、可変バイアス電源V3のエコー信号S1受信直後におけるバイアス電圧v3を、例えば0.4Vとし、可変バイアス電源V4のエコー信号S1受信直後におけるバイアス電圧v4を、例えば−0.4Vとして説明する。
受信部2が、被検体表面付近において反射されたエコー信号S1を受信したとき、−Vinが到来したとき、電圧Vin(=−1V)、バイアス電圧v3(=0.4V)、ダイオードD7の順方向電圧Vf(0.7V)の関係が、上記した数式(1)のか関係を満たすので、ダイオードD7はオンする。同様に、+Vinが到来したとき、電圧Vin(=+1V)、バイアス電圧v3(=0.4V)、ダイオードD8の順方向電圧Vf(0.7V)の関係が、上記した数式(2)の関係を満たすので、D8はオンする。
ダイオードD7,D8がオンすると、減衰部17の入力側のノードP2におけるエコー信号S2(図3参照)の電圧Voutは、以下の数式(3)で求められる。
Vout=Rx・Vin/(R1+Rx)・・・・・(3)
なお、ダイオードD7,D8を理想的なスイッチと仮定している。実際にはダイオードD7,D8のオン抵抗が加味されることになるが、ダイオードD7,D8のオン抵抗よりも抵抗R5、R6の抵抗値が十分に大きければ概略上記(3)式が成り立つ。
ここで、Rxは、以下の数式(4)で求められる。なお、抵抗R5と抵抗R6は電圧Vinに対し、半波ずつ効いてくるので抵抗R5と抵抗R6で1波長分(正負の両波)の働きをする。したがって、R5=R6とすることで波形の対称性を確保させることができる。
Rx=R2・R5/(R2+R5)・・・・・・(4)
ここで、仮に抵抗R1,R2を200Ω、抵抗R5及び抵抗R6をそれぞれ50Ωとすると、電圧Voutについては、Vout=0.167Vinとなる。
したがって、体表面付近において反射されたエコー信号S1を受信した直後において、増幅部19に入力されるエコー信号の振幅(信号電圧レベル)を低減させることができる。その様子を図3に示す。図3に示されたエコー信号S1,S2については、説明の便宜上、受信部12を構成する抵抗R1〜R4の抵抗値が上記した値とは異なる値を用いている場合において、増幅部19の前段に流れる信号である。
図3の例では、ノードP1におけるエコー信号S1の振幅は、±1.0Vであり、ノードP2におけるエコー信号S2の振幅は、±0.4V程度にまで小さくなっており、大振幅のエコー信号S1が受信部2に入力された場合にその振幅(信号電圧レベル)が増幅部19の前段で低減されているのがわかる。なお、図3の例では、Vout=0.4Vinである。
その後、時間の経過にしたがって体表面付近からより深い位置にまで行って反射されたエコー信号が次々と受信される。ここで、増幅部19を構成する増幅器40を飽和させることがない程度にまでエコー信号の振幅が小さくなってきたら、バイアス電圧v3,v4の供給を停止し、ダイオードD7,D8をオフさせる。
ダイオードD7,D8がオフすると、減衰部17の入力側のノードP2における電圧Voutは、以下の数式(5)で求められる。
Vout=R1・Vin/(R1+R2)・・・・・(5)
したがって、電圧Voutについては、抵抗R1,R2を200Ωとすると、Vout=0.5Vinとなる。このため、減衰部17が動作を停止した後、超音波プローブ15から出力されるエコー信号は、ほぼそのままの状態を維持しながら増幅部19に入力される。この様子を図4に示す。信号S3は、増幅器40を飽和させることがない程度にまで振幅(例えば、電圧40mVpp)が小さくなった信号であり、信号S4は、ノードP2におけるエコー信号である。図4に示すように小振幅のエコー信号S3がTRSW13、減衰部17を介してほぼそのままの状態で増幅部19に入力されているのがわかる。つまり、小信号振幅の場合、減衰部17はエコー信号に対して特性を劣化させるような影響を及ぼすことはない。
ここで、減衰部17は、被検体表面付近から反射するエコー信号S1(S3)の振幅レベルに関連付けられ、送信信号の送信終了直後からの経過に伴って変化する複数の電圧波形情報に基づいて、送信終了直後から所定時間が経過するまで動作し、所定時間が経過した後に動作を停止するように動作する。ここで、所定時間とは送信終了直後からエコー信号の受信継続時間よりも短い時間で、送信直後から体表面付近の近距離エコー信号を受信している時間をいう。なお、送信部11の送信時間と受信部12の受信時間とを合わせて1周期となる。
具体的には、可変バイアス電源V3は、送信終了直後から所定時間が経過するまで正電位から零電位に向かってバイアス電圧をダイオードD7に供給し、所定時間が経過した後にダイオードD7への電圧供給を停止する。可変バイアス電源V4は、送信終了直後から所定時間が経過するまで負電位から零電位に向かってバイアス電圧をダイオードD8に供給し、所定時間が経過した後にダイオードD8への電圧供給を停止する。
<バイアス電圧の制御>
上記したバイアス電圧の供給制御は、バイアス制御部23で行われる。このバイアス制御部23は、図5に示すように制御部23Aと、記憶部23Bとを備えて構成されている。記憶部23Bには、例えば、図6A及び図6Bに示すようなバイアス電圧波形が記憶されている。
制御部23Aは、操作部25から設定されたバイアス制御モード指示に基づく制御モードを記憶部23Bから読み出して、これに基づく制御信号を減衰部17に入力するようになっている。
ここで、制御部23Aは、例えば、CPU(Central Processing Unit)、GPU(Graphic Processing Unit)、FPGA(Field Programmable Gate Array)、又はASIC(Application Specific Integrated Circuit)と、ROM(Read Only Memory)、RAM(Random Access Memory)又はHDD(Hard Disc Drive)とを含んで構成されている。また、記憶部23Bとしては、例えば、ROM、RAM又はHDD等が挙げられる。
記憶部23Bには、被検体表面付近から反射するエコー信号S1の振幅レベルに関連付けられ、送信信号の送信終了直後からの経過に伴って変化する複数のバイアス電圧波形情報(制御データ)が予め記憶されている。操作部25を介してこの記憶部に記憶されている複数のバイアス電圧波形情報の中から最適の波形がユーザにより選択される。バイアス制御部23は、ユーザにより選択されたバイアス電圧波形を決定し、決定されたバイアス電圧波形に基づいて減衰部17に対するバイアス制御を実行する。なお、操作部25としては、例えばキーボードや各種操作ボタン、トラックボール等が挙げられる。可変バイアス電源V3、V4のそれぞれは、決定された電圧波形情報にしたがってダイオードD7,D8にバイアス電圧を供給する。
バイアス制御部23は、超音波の送受信周期と同期した周期で、超音波の送信終了直後から所定時間だけ供給され、操作部25を介して選択・決定されたバイアス電圧波形に基づいてバイアス電圧を変化させるように可変バイアス電源V3、V4を制御する。
可変バイアス電源V3については、送信終了直後のバイアス電圧(正電圧)の値を最大(400mV)とし、時間の経過と共にバイアス電圧の供給量が徐々に減少していく。その後、送信信号の超音波プローブ15への供給停止直後から所定時間が経過すると、バイアス電圧の供給が停止される。バイアス制御部23は、このバイアス電圧の供給量を、エコー信号(受信信号)のレベルに対応して変化させている。例えば、ノードP2における電圧Voutが徐々に減少していく場合、その減少率に応じてバイアス電圧の供給量を変化させる。そして、ノードP2における電圧Voutが増幅部19の増幅器40を飽和させない程度まで減少した場合に、バイアス電圧の供給を停止させる。
ここで、所定時間とは、送信終了直後からエコー信号の振幅レベルが増幅器40を飽和させない程度まで減少するまでに要する時間である。この時間は、例えば、被検体の体型や検査環境(超音波プローブ種類や動作モード等)に応じて様々である。このため、あらかじめ様々な被検体の体型や検査環境の下で複数のバイアス電圧波形を確保しておくことが望ましい。ここで記載している「バイアス電圧(正電圧)の値を最大(400mV)」は一例であり、増幅器19の飽和レベルと入力信号レベル等の条件により適宜決められる。
可変バイアス電源V4については、送信終了直後のバイアス電圧(負電圧)の値を最大(−400mV)とし、時間の経過と共にバイアス電圧の供給量が徐々に増加していく。その後、送信信号の超音波プローブ15への供給停止直後から所定時間が経過すると、バイアス電圧の供給が停止される。バイアス制御部23は、このバイアス電圧の供給量を、エコー信号(受信信号)のレベルに対応して変化させている。
なお、バイアス制御部23では、可変バイアス電源V3で発生するバイアス電圧の最大値をダイオードD7の順方向電圧Vf未満とするように設定し、可変バイアス電源V4で発生するバイアス電圧の最大値をダイオードD8の順方向電圧未満とするように設定することが望ましい。
このように設定すれば、例えば、被検体表面から所定の深さで反射されたエコー信号(小振幅のエコー信号)が受信されたときでも、減衰部17のダイオードD7,D8がオンすることはないので、小振幅のエコー信号の減衰停止を確実に行うことができる。
バイアス電圧を上記のように変化させることにより、振幅レベル(信号レベル)の高い被検体表面付近からのエコー信号については減衰部17を通過する際に大きく減衰させ、信号レベルの低い深部領域からのエコー信号は信号強度を維持したまま減衰部17を通過させることができる。
また、バイアス電圧を図6A,図6Bのように変化させるための制御データは、例えば以下のような方法によって作成することができる。
制御データは、被検体から反射したエコー信号の信号レベル(被検体表面からの深さ)に応じて、増幅器19のゲインを可変したり、AD変換後のデジタル信号のゲインを調整したりして作成される。この制御データは、増幅器19の入力に換算した飽和レベルよりも大きな受信信号を減衰させるように構成される。制御データは、通常、超音波プローブの種類、動作モード(断層像を表示するBモード、血流のドップラ信号を表示するドップラモード等)により切換えられる。
なお、上記した実施形態において、送信から受信までの帰投時間(被検体表面からの深さ)に応じて受信利得(受信ゲイン)を調整するTGC機能を上記した制御データ作成方法に連動させて制御データを作成してもよい。
ここで、TGC機能を発揮させるために、タイムゲインコントロール(以下、「TGC」と呼ぶ。)処理部(図示せず)及びTGC処理に関するTGCデータを設定する設定部(図示せず)を減衰部17の後段に設ける。このTGCによる受信ゲイン調整を連動させることにより、作成する制御データの内容をより細かく設定することができ、結果として作成する制御データの種類を増加させることができる。
このようにして、送信終了直後からの経過時間に対応したバイアス電圧の値が決定する。バイアス制御部23内の記憶部には上記のように得られたバイアス電圧波形が所定数予め記憶される。送信開始前に操作部25を介して記憶部に記憶されている複数のバイアス電圧波形から所望のバイアス電圧波形が選択され、バイアス制御部23は、選択されたバイアス電圧波形に基づいて可変バイアス電源V3,V4を制御する。
上記したバイアス電圧波形の一例を図6A,図6Bに示す。図6Aに示したバイアス電圧波形は、送信終了直後(T=0)に400mVのバイアス電圧v3をダイオードD7に供給し、5.0μsec経過した時点でダイオードD7に供給するバイアス電圧v3を200mVにまで減少し、10.0μsec経過した時点(上記説明の所定時間に相当)でダイオードD7へのバイアス電圧の供給を停止するような波形である。
図6Bに示したバイアス電圧波形は、送信終了直後(T=0)に−400mVのバイアス電圧v4をダイオードD8に供給し、5.0μsec経過した時点でダイオードD8に供給するバイアス電圧v4を−200mVにまで増加し、10.0μsec経過した時点(上記説明の所定時間に相当)でダイオードD8へのバイアス電圧の供給を停止するような波形である。
なお、図6A,図6Bで、0.0μsec〜10,0μsecの期間において、ダイオードD7,D8は、信号の半波ごとに、概念的には、オンからオフまで動作することにより、その間のそれぞれの抵抗値がR5,R6に直列に入ることになる。
FET等を用いた半導体スイッチやダイオードスイッチ、メカニカルスイッチ等を利用すると、スイッチの切換え時に制御信号がエコー信号にクロストークすることによるスイッチングノイズがエコー信号に加算されてしまう。したがって減衰部17のスイッチ制御を受信時間だけで制御する場合、仮に信号振幅が微小なタイミングであれば、スイッチングノイズが画像に表示されてしまう。一方、本実施形態では、FET等を用いた半導体スイッチを用いずに減衰部17のスイッチ制御を行っているので、上記した問題点は生じない。
また、信号の半波ごとにオン/オフを制御する本発明の場合、減衰部17をオン/オフするスイッチは必ずエコー信号振幅が大振幅の場合だけ動作し、その前記のスイッチングノイズは信号振幅に重畳するので、画像には表れない。
<効果>
本実施形態の超音波診断装置1は、正負両極性の送信信号が超音波プローブ15を介して被検体内で反射されて得られた受信信号を処理する受信部2を備える。受信部2は、送信信号の受信部2への回り込みを防止するTRSW13と、受信信号を増幅する増幅部19と、TRSW13と増幅部19の間に配置され、受信信号を減衰させる減衰部17とを備える。減衰部17は、送信終了直後から受信時間より短い所定時間を経るまで減衰量を大から小へ変化させる。
具体的には、減衰部17は、第1の回路17aと第2の回路17bを有して構成される。第1の回路17aは、直列接続されたダイオードD7と抵抗R5を含み、正電位から零電位に向かって変化するバイアス電圧v3を発生する可変バイアス電源V3を備えて構成される。第2の回路17bは、直列接続されたダイオードD8と抵抗R6を含み、負電位から零電位に向かって変化するバイアス電圧v4を発生する可変バイアス電源V4を備えて構成される。
可変バイアス電源V3は、送信終了直後から所定時間が経過するまで正電位から零電位に向かってバイアス電圧をダイオードD7に供給し、所定時間が経過した後にダイオードD7へのバイアス電圧供給を停止する。可変バイアス電源V4は、送信終了直後から所定時間が経過するまで負電位から零電位に向かってバイアス電圧をダイオードD8に供給し、所定時間が経過した後にダイオードD8への電圧供給を停止する。
このように、被検体表面付近より深い位置において反射された振幅の小さいエコー信号を受信した場合には、減衰部17を動作させずに、エコー信号をそのままの状態で増幅部19に入力する。一方、被検体表面付近において反射された振幅の大きいエコー信号を受信した場合には、減衰部17を動作させ、増幅部19の前段における抵抗分圧比を小さくし、これによりエコー信号の振幅を減衰させる。
したがって、被検体表面付近において反射された振幅の大きいエコー信号が受信された場合でも、増幅部前段に至るまでに信号振幅が減衰され、結果として波形歪を抑制することができる。すなわち、本実施形態によれば、被検体表面付近において反射されたエコー信号を増幅する増幅器の飽和を防止するとともに、表示部に表示させる超音波画像の画像品質の向上を図ることができる。
また、本実施形態の超音波診断装置1は、受信信号のレベルに関連付けられ、送信終了直後からの経過に伴って変化する複数の電圧波形情報を記憶する記憶部と、記憶部から選択された電圧波形情報に基づいて可変バイアス電源V3,V4に対して所定時間だけバイアス電圧を発生させるバイアス制御部23とを備える。バイアス制御部23は、予め記憶された関連付け情報の中から、可変バイアス電源V3,V4で発生させる電圧波形情報を操作部25からの選択に応じてそれぞれ決定する。
このように、関連付け情報の中から適宜バイアス電圧波形のパターンを選択して決定できるので、例えば被験者の体型に応じて最適なバイアス電圧波形のパターンを選択することができる。したがって、被験者の体型にかかわらず常に正確な超音波画像を表示させることができる。
また、減衰部17が動作したときの減衰比が既知であるので、例えばAD変換後に振幅に応じた減衰比を補正することで元の信号をより正確に再現することができる。
以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1 超音波診断装置
11 送信部
12 受信部
13 送受信切換えスイッチ部(TRSW)
15 超音波プローブ
17 減衰部
19 増幅部
21 処理部
23 バイアス制御部
23A 制御部
23B 記憶部
25 操作部
27 表示部

Claims (5)

  1. 送信信号が超音波プローブを介して被検体内に超音波信号を送信する送信部と、被検体内で反射されて得られた受信信号を処理する受信部とを含む超音波診断装置であって、
    前記受信部は、
    前記送信信号の前記受信部への回り込みを防止する送受信分離のための送受信切換えスイッチ部と、
    前記受信信号を増幅する増幅部と、
    前記送受信切換えスイッチ部と前記増幅部の間に配置され、前記受信信号を減衰させる減衰部とを備え、
    前記減衰部は、送信終了直後から受信期間中の時間より短い所定時間を経るまで減衰量を大から小へ変化させる
    ことを特徴とする超音波診断装置。
  2. 前記減衰部は、直列接続された第1のダイオードと第2の抵抗を含み、正電位から零電位に向かって変化する電圧を発生する第1の電圧発生部を備えて構成された第1の回路と、直列接続された第2のダイオードと第2の抵抗を含み、負電位から零電位に向かって変化する電圧を発生する第2の電圧発生部を備えて構成された第2の回路とを有し、
    第1の電圧発生部は、送信終了直後から所定時間が経過するまで正電位から零電位に向かって電圧を第1のダイオードに供給し、所定時間が経過した後に第1のダイオードへの電圧供給を停止し、
    第2の電圧発生部は、送信開始から所定時間が経過するまで負電位から零電位に向かって電圧を第2のダイオードに供給し、前記所定時間が経過した後に第2のダイオードへの電圧供給を停止する
    ことを特徴とする請求項1に記載の超音波診断装置。
  3. 前記受信信号のレベルに関連付けられ、送信終了直後からの経過に伴って変化する複数の電圧波形情報を記憶する記憶部と、
    前記記憶部から選択された電圧波形情報に基づいて前記第1の電圧発生部及び前記第2の電圧発生部に対して前記所定時間だけ電圧を発生させる制御部とを備えた
    ことを特徴とする請求項1又は2に記載の超音波診断装置。
  4. 前記第1の電圧発生部で発生する最大電圧は前記第1のダイオードの順方向電圧未満であり、前記第2の電圧発生部で発生する最大電圧は前記第2のダイオードの順方向電圧未満である
    ことを特徴とする請求項1〜3のいずれかに記載の超音波診断装置。
  5. さらに、前記減衰部の後段に、送信から受信までの帰投時間に応じて受信利得を調整するタイムゲインコントロール処理部と、タイムゲインコントロール処理に関するタイムゲインコントロールデータを設定する設定部とを設け、
    前記第1の電圧発生部及び前記第2の電圧発生部で発生される電圧の波形は、前記電圧波形情報及び前記タイムゲインコントロールデータの設定情報に基づいて構成される
    ことを特徴とする請求項3又は4に記載の超音波診断装置。
JP2012058268A 2012-03-15 2012-03-15 超音波診断装置 Active JP6005956B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012058268A JP6005956B2 (ja) 2012-03-15 2012-03-15 超音波診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012058268A JP6005956B2 (ja) 2012-03-15 2012-03-15 超音波診断装置

Publications (2)

Publication Number Publication Date
JP2013188421A true JP2013188421A (ja) 2013-09-26
JP6005956B2 JP6005956B2 (ja) 2016-10-12

Family

ID=49389318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012058268A Active JP6005956B2 (ja) 2012-03-15 2012-03-15 超音波診断装置

Country Status (1)

Country Link
JP (1) JP6005956B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170033222A (ko) * 2015-09-16 2017-03-24 삼성메디슨 주식회사 초음파 프로브, 이를 포함하는 초음파 영상 장치 및 그 제어 방법
KR20190049378A (ko) * 2017-11-01 2019-05-09 삼성메디슨 주식회사 초음파 장치 및 그 제어 방법
JP2019187975A (ja) * 2018-04-27 2019-10-31 株式会社日立製作所 超音波診断装置、及びそれに用いる探触子
CN110881998A (zh) * 2018-09-10 2020-03-17 株式会社日立制作所 超声波诊断装置及其使用的探头
KR20200097471A (ko) * 2019-02-08 2020-08-19 삼성메디슨 주식회사 초음파 장치 및 그 제어 방법
KR20200099855A (ko) * 2019-02-15 2020-08-25 삼성메디슨 주식회사 초음파 장치 및 그 제어 방법
US11844653B2 (en) 2021-06-04 2023-12-19 Fujifilm Healthcare Corporation Probe and ultrasound diagnostic device using the same
US11921241B2 (en) 2020-05-25 2024-03-05 Fujifilm Healthcare Corporation Ultrasonic probe and ultrasonic diagnostic apparatus using thereon

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277978A (en) * 1980-01-17 1981-07-14 General Electric Company Adaptive input circuit
JPH0249645A (ja) * 1988-08-12 1990-02-20 Tokyo Keiki Co Ltd 超音波診断装置
JPH0496741A (ja) * 1990-08-14 1992-03-30 Yokogawa Medical Syst Ltd 超音波診断装置
JPH0515528A (ja) * 1991-07-10 1993-01-26 Hitachi Medical Corp 超音波診断装置
JP2004008684A (ja) * 2002-06-11 2004-01-15 Hitachi Medical Corp 超音波診断装置
US20050256409A1 (en) * 2002-06-21 2005-11-17 Thales Ultrasonics Sas Input arrangement for ultrasonic echography
JP2007312839A (ja) * 2006-05-23 2007-12-06 Hitachi Medical Corp 超音波診断装置
JP2010148644A (ja) * 2008-12-25 2010-07-08 Shimadzu Corp 超音波診断装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277978A (en) * 1980-01-17 1981-07-14 General Electric Company Adaptive input circuit
JPH0249645A (ja) * 1988-08-12 1990-02-20 Tokyo Keiki Co Ltd 超音波診断装置
JPH0496741A (ja) * 1990-08-14 1992-03-30 Yokogawa Medical Syst Ltd 超音波診断装置
JPH0515528A (ja) * 1991-07-10 1993-01-26 Hitachi Medical Corp 超音波診断装置
JP2004008684A (ja) * 2002-06-11 2004-01-15 Hitachi Medical Corp 超音波診断装置
US20050256409A1 (en) * 2002-06-21 2005-11-17 Thales Ultrasonics Sas Input arrangement for ultrasonic echography
JP2007312839A (ja) * 2006-05-23 2007-12-06 Hitachi Medical Corp 超音波診断装置
JP2010148644A (ja) * 2008-12-25 2010-07-08 Shimadzu Corp 超音波診断装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102704205B1 (ko) 2015-09-16 2024-09-09 삼성메디슨 주식회사 초음파 프로브, 이를 포함하는 초음파 영상 장치 및 그 제어 방법
KR20170033222A (ko) * 2015-09-16 2017-03-24 삼성메디슨 주식회사 초음파 프로브, 이를 포함하는 초음파 영상 장치 및 그 제어 방법
KR20190049378A (ko) * 2017-11-01 2019-05-09 삼성메디슨 주식회사 초음파 장치 및 그 제어 방법
KR102627724B1 (ko) 2017-11-01 2024-01-23 삼성메디슨 주식회사 초음파 장치 및 그 제어 방법
US11191527B2 (en) 2018-04-27 2021-12-07 Hitachi, Ltd. Ultrasonic diagnostic apparatus and probe used for the same
JP2019187975A (ja) * 2018-04-27 2019-10-31 株式会社日立製作所 超音波診断装置、及びそれに用いる探触子
CN110403629A (zh) * 2018-04-27 2019-11-05 株式会社日立制作所 超声波诊断装置及用于该超声波诊断装置的探头
JP7128649B2 (ja) 2018-04-27 2022-08-31 富士フイルムヘルスケア株式会社 超音波診断装置、及びそれに用いる探触子
US11357476B2 (en) 2018-09-10 2022-06-14 Fujifilm Healthcare Corporation Ultrasonic diagnostic apparatus and probe used for the same
CN110881998B (zh) * 2018-09-10 2022-06-03 富士胶片医疗健康株式会社 超声波诊断装置及其使用的探头
JP7128693B2 (ja) 2018-09-10 2022-08-31 富士フイルムヘルスケア株式会社 超音波診断装置、及びそれに用いる探触子
JP2020039542A (ja) * 2018-09-10 2020-03-19 株式会社日立製作所 超音波診断装置、及びそれに用いる探触子
CN110881998A (zh) * 2018-09-10 2020-03-17 株式会社日立制作所 超声波诊断装置及其使用的探头
KR20200097471A (ko) * 2019-02-08 2020-08-19 삼성메디슨 주식회사 초음파 장치 및 그 제어 방법
KR102635039B1 (ko) 2019-02-08 2024-02-08 삼성메디슨 주식회사 초음파 장치 및 그 제어 방법
KR20200099855A (ko) * 2019-02-15 2020-08-25 삼성메디슨 주식회사 초음파 장치 및 그 제어 방법
KR102709905B1 (ko) 2019-02-15 2024-09-26 삼성메디슨 주식회사 초음파 장치 및 그 제어 방법
US11921241B2 (en) 2020-05-25 2024-03-05 Fujifilm Healthcare Corporation Ultrasonic probe and ultrasonic diagnostic apparatus using thereon
US11844653B2 (en) 2021-06-04 2023-12-19 Fujifilm Healthcare Corporation Probe and ultrasound diagnostic device using the same
JP7473505B2 (ja) 2021-06-04 2024-04-23 富士フイルムヘルスケア株式会社 探触子、および、それを用いた超音波診断装置

Also Published As

Publication number Publication date
JP6005956B2 (ja) 2016-10-12

Similar Documents

Publication Publication Date Title
JP6005956B2 (ja) 超音波診断装置
JP5238438B2 (ja) 超音波診断装置
JP5614406B2 (ja) 超音波診断装置
JP5559697B2 (ja) 超音波診断装置
WO2011058956A1 (ja) 超音波診断装置
US20140184330A1 (en) Time gain compensation
JPWO2009148068A1 (ja) 超音波診断装置
US20210328564A1 (en) Methods and circuitry for built-in self-testing of circuitry and/or transducers in ultrasound devices
JP6038735B2 (ja) 超音波診断装置及び超音波プローブ
JP2011229630A (ja) ダイオードブリッジ型送受分離回路及びそれを備える超音波診断装置
US11844653B2 (en) Probe and ultrasound diagnostic device using the same
JP5804854B2 (ja) 超音波診断装置
JP5127255B2 (ja) 超音波プローブ、超音波診断装置、及び超音波プローブ出力制御方法
JP2007185525A (ja) 超音波診断装置
JP2015116332A (ja) 超音波プローブおよび超音波診断装置
JP3500099B2 (ja) 超音波診断装置の送信回路
JP2006068090A (ja) 超音波診断装置
JP2010148644A (ja) 超音波診断装置
JP2004008684A (ja) 超音波診断装置
JP3857676B2 (ja) 超音波診断装置の送信回路
JP2015097657A (ja) 超音波診断装置
JP2012239773A (ja) 超音波探触子、超音波診断装置
JP2005334197A (ja) 超音波診断装置
JP2006116018A (ja) 超音波診断装置および超音波プローブ
JP2024069873A (ja) 超音波診断装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160908

R150 Certificate of patent or registration of utility model

Ref document number: 6005956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350