JP2013179874A - セルロースの可溶化方法 - Google Patents

セルロースの可溶化方法 Download PDF

Info

Publication number
JP2013179874A
JP2013179874A JP2012044810A JP2012044810A JP2013179874A JP 2013179874 A JP2013179874 A JP 2013179874A JP 2012044810 A JP2012044810 A JP 2012044810A JP 2012044810 A JP2012044810 A JP 2012044810A JP 2013179874 A JP2013179874 A JP 2013179874A
Authority
JP
Japan
Prior art keywords
cellulose
pressure
water
water vapor
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012044810A
Other languages
English (en)
Inventor
Toru Joboji
亨 上坊寺
Koichi Shiraishi
剛一 白石
Kento Taneda
憲人 種田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2012044810A priority Critical patent/JP2013179874A/ja
Publication of JP2013179874A publication Critical patent/JP2013179874A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

【課題】触媒等の薬品を使うことなく、過分解物の発生量も少なく、短時間にセルロースを可溶化することができる方法を提供することを解決すべき課題としている。
【解決手段】ポット蓋14を開けて、これらの容器内にセルロースを含有する原料と水とボール17とを投入する。ポット蓋14を閉め、ポット11内の温度が100℃以上300℃未満の所定の温度となるように加熱制御する。これにより原料にもともと含まれていた水分及び添加した水は、水蒸気となり体積を増す。このとき、最終的に到達する全圧は、圧力調整弁16によって飽和水蒸気圧未満に制御されるため、過分解物の発生量も少なく、短時間にセルロースを可溶化することができる。
【選択図】図3

Description

本発明は、セルロースを含有する原料を飽和水蒸気よりも低い水蒸気圧下において触媒の存在しない条件下で水と反応させて、水に可溶な成分に変換するセルロースの可溶化方法に関する。
近年、石油代替燃料としてバイオ燃料が注目され、サトウキビやとうもろこし等のバイオマスを原料としたバイオエタノールの生産が実用化されている。しかし、食料品をバイオエタノールの原料とした場合、食料品との競合によって価格が大きく変動する等の問題が生ずる。このため、木材、草、稲わらなど非食料品であるセルロース系バイオマスを原料としたバイオ燃料の生産が望まれている。
ところが、強固なセルロースを糖に加水分解するのは容易ではない。硫酸等の液体の強酸を用いてセルロースを糖化する手法が古くから知られているが、強酸によって装置が腐食したり、強酸の中和処理した場合、石膏等が廃棄物として大量に発生したりするなどの問題があり、実用化に至っていない。
こうした問題を解決すべく、近年、触媒を用いることなく、加圧熱水によってセルロースを水に可溶な低分子量多糖類とする水熱処理が注目されている(例えば特許文献1、2)。この水熱処理では「加圧熱水」が用いられる。加圧熱水とは、飽和蒸気圧以上に加圧されることにより、液体状態で存在する高温高圧の水のことをいう。加圧熱水はイオン積が増加するため、セルロースの加水分解反応を促進すると考えられている(特許文献1 段落番号[0024]参照)。このため、水熱処理法は、特別な薬品を使うことなく、短時間でセルロース原料を可溶化することができるという長所を有しており、環境に対する負荷も小さいセルロース原料の可溶化法であるということができる。
特開2010−166831号公報 特開2010−279255号公報
しかし、上記従来の水熱処理によるセルロースの可溶化では、可溶化物がさらに反応して乳酸や酢酸やヒドロキシメチルフルフラール(HMF)等の過分解物を多量に生じるという問題があった。本発明は、上記従来の実情に鑑みてなされたものであり、触媒等の薬品を使うことなく、過分解物の発生量も少なく、短時間にセルロースを可溶化することができる方法を提供することを解決すべき課題としている。
本発明者らは、上記課題を解決するために、水によるセルロースの加水分解反応の条件について再検討した。従来の水熱処理の原理は、全圧を高めることにより水の沸点を高くし、100℃以上の高温においても液体の状態を保つ加圧熱水を存在させることにある。前述したように、水は高温下においてイオン積が増加し(250〜300℃付近で最大となる)、水素イオンや水酸化イオンの濃度が高まることから、セルロースの加水分解反応が促進されるものと考えられている。このため、100℃以上の高温で、且つ、全圧を高くして水の沸点を高め、液体状態の加圧熱水が存在できる条件下で反応を行うことが当業者の技術的常識であった。
ところが、発明者らは、全圧が飽和蒸気圧未満であって(すなわち、水が沸騰する条件下であって)、加圧熱水が存在し得ない(すなわち、水が液体状態を保ち得ない)ような高温低圧領域内において、セルロースの加水分解が促進される領域が存在するという、驚くべき事実を発見した。しかも、この新たに発見した高温低圧領域内でのセルロースでの加水分解反応は、乳酸や酢酸やヒドロキシメチルフルフラール(HMF)等の過分解物の生成がきわめて少ないという有利な効果を奏することを見出し、本発明を完成するに至った。
すなわち、本発明のセルロースの可溶化方法の第1の局面は、セルロースを含有する原料を飽和水蒸気よりも低い水蒸気圧下において触媒の存在しない条件下で水と反応させて水可溶性成分に変換するセルロースの可溶化方法であって、反応温度は100℃以上300℃未満であり、全圧が飽和水蒸気圧以上とならないように圧力制御することを特徴とする。
本発明のセルロースの可溶化方法の第1の局面では、全圧が飽和水蒸気圧未満となるように制御されるため、水は沸騰状態となって迅速に気体(すなわち水蒸気)となり、液体状態の水が安定に存在し得ない。したがって、従来の加圧熱水による加水分解反応とは全く異なり、セルロースと気体状態の水との反応になる。そして、反応温度は100℃以上300℃未満とされている。発明者らの試験結果によれば、このような反応条件であってもセルロースの加水分解反応は迅速に進行し、しかも乳酸や酢酸やヒドロキシメチルフルフラール(HMF)等の過分解物の生成がきわめて少ないという利点を有する。
しかも、反応容器に投入された原料の重量や水分含有量を特に考慮しなくても、絶えず液体の水が存在しない状態で反応が進行する(これに対して、全圧を制御しないで密閉容器内で反応させたとした場合には、投入した原料の重量、水分量、温度及び反応容器の容量を考慮し、仕込み量を計算しなければ、水が存在しない状態での反応を確実に行うことができなくなる)。
制御される圧力としては、全圧が飽和水蒸気圧未満であって飽和水蒸気圧の1/2以上となるように制御することが好ましく、飽和水蒸気圧未満であって飽和水蒸気圧の2/3以上となるように制御することがさらに好ましい。
反応が100℃未満ではセルロースの加水分解反応が遅くなるため、可溶化に時間がかかる。また、反応が300℃を超えると過分解物の生成が多くなるおそれがある。さらに好ましいのは150℃以上270℃未満であり、最も好ましいのは170℃以上250℃未満である。
本発明のセルロースの可溶化方法の第2の局面では、圧力制御は密閉した反応容器に設けられた圧力調整弁によって行うこととした。これにより、全圧が飽和水蒸気圧以上とならないような圧力制御を容易に行うことができる。
圧力調整弁としては、所定の閾値圧力を境に開閉を行う圧力調整弁や、ある閾値圧力を境に弁を開状態にして外部と連通させるリリーフ弁等が挙げられる。
セルロースの可溶化方法を示す工程図である。 水の状態図である。 実施形態で用いた圧力調整弁付ボールミル10の一部断面側面図である。 タンデムリングミルを用いて圧力制御熱処理工程S2を行う場合の装置の模式図である。 試験例及び比較例の反応条件及び各種成分の生成率を示すグラフである。 セルロースの可溶化反応において、全圧を飽和水蒸気圧以下となるように制御した場合と、全圧を制御せずに密閉系で行った場合とを比較した場合のグラフである。
本発明のセルロースの可溶化方法の実施形態では、図1に示すように、セルロースを含有する原料を粉砕(前粉砕処理工程S1)した後、全圧を飽和水蒸気圧未満に制御しつつ粉砕しながら熱処理を行う(圧力制御加熱粉砕S2)。そして、熱処理によって加水分解されて水溶性となった原料に水を加えて抽出し(抽出工程S3)、固液分離して固形分と水溶液に分ける(固−液分離工程S4)。以下、工程ごとに詳述する。
(原 料)
セルロースを含有する原料となるのは、セルロースを含む植物系の原料であり、セルロースの他に、でん粉、ヘミセルロース、ペクチンなど、セルロース以外の多糖を含むものであっても用いることができる。具体的には、稲わら、麦わら、バガス等の草類、竹、笹などの間伐材、おがくず、チップ、端材などの木材加工木屑、街路樹剪定材、木質建築廃材、樹皮、流木等の木質系バイオマス、古紙等のセルロース製品からのバイオマス等が挙げられる。また、セルロースを原料として使用可能な程度含むものであれば、汚泥、畜糞、農業廃棄物、都市ゴミ等も用いることができる。
(前粉砕処理工程)S1
これらの原料は、セルロースの可溶化を促進させるために、前粉砕処理工程S1を行い、セルロースの結晶化度を下げておくことが好ましい。粉砕方法としては特に限定されず、原料の形態に応じて適当な方法を適宜選択すればよいが、まず数〜数十mm程度に粗粉砕してハンドリングし易い状態にしてから、さらに細かく粉砕すると、微粉砕を効率的に行なうことができる。粗粉砕にはハンマーミルやカッターミルなどの汎用粉砕機が使用できる。また、微粉砕には、振動ミル、ボールミル、ロッドミル、ローラーミル、コロイドミル、ディスクミル、ジェットミルなどの汎用粉砕機が使用でき、原料を数〜数十ミクロンに微細化するとともに、セルロース結晶性を低下させることができる。微粉砕処理は、乾式、湿式いずれの方式も適用できるが、セルロースの結晶性を低下させる面で、乾式粉砕が望ましい。原料の含水量が多い場合には、あらかじめ遠心脱水や熱風乾燥などで含水率を30%以下にしてから乾式粉砕を行うことで、セルロースの結晶性を効率的に低下させることができる。
(圧力制御加熱粉砕処理工程)S2
次に、実施形態のセルロースの可溶化方法では、従来行われていた温度−圧力の領域とは全く異なった温度−圧力の領域において粉砕処理を行う(圧力制御加熱粉砕処理工程S2)。すなわち、従来の加圧熱水法では、図2に示した亜臨界領域や超臨界領域で処理を行っている。亜臨界領域では飽和水蒸気圧よりも全圧が高い領域であり、換言すれば水が水蒸気以外に液体の水として安定に共存する領域である。このため、亜臨界領域でのセルロースの加水分解反応は、イオン積が大きくなっている液体の水によって進行するものと推定される。また、超臨界領域でのセルロースの加水分解反応は、気−液の区別ができなくなった超臨界状態という特殊な状態の水による加水分解反応である。
これに対して、実施形態のセルロースの可溶化方法では、100℃以上300℃未満であって、且つ、全圧が飽和水蒸気圧未満という高温−低圧の領域で加水分解反応を行うことが特徴である。このような領域は、図2における斜線内の部分で示され、亜臨界領域や超臨界領域とは全く異なる状況である。この差異により、後述するように、本発明のセルロースの可溶化方法では、乳酸や酢酸やヒドロキシメチルフルフラール(HMF)等の過分解物の生成がきわめて少ないというという特徴を有することとなる。
このような、圧力制御加熱粉砕処理工程S2を行うための装置として、図3に示す圧力調整弁付ボールミル10を用いることができる。この圧力調整弁付ボールミル10は、ポット11とポット11を回転するための回転機構12とポット11を加熱するための加熱ヒータ13を備えている。ポット11の開口部はポット蓋14が締結ねじ15によって取り付けられており、ポット蓋14の中央には、所定の閾値圧力を境に開閉を行う圧力調整弁16が取り付けられている。なお、圧力調整弁16の替りに、ある閾値圧力を境に弁を開状態にして外部と連通させるリリーフ弁を用いることもできる。
この装置を用い、次のようにして圧力制御加熱粉砕処理工程S2を行う。
まず、ポット蓋14を開けて、これらの容器内にセルロースを含有する原料と水とボール17とを投入する。投入量については、反応容器の大きさや加熱のためのヒータの熱容量等を考慮して適宜決定すればよく、原料に含まれる水分量を正確に把握する必要はない。なぜならば、反応進行中は圧力調整弁16によって全圧が飽和水蒸気圧未満とされているため、余分な水分は圧力制御に伴って水蒸気となり、圧力調整弁16から外気に散逸し、ポット11内は絶えず飽和水蒸気圧よりも低い水蒸気圧となるように制御されるからである。
そして、ポット蓋14を閉め、ポット11内の温度が100℃以上300℃未満の所定の温度となるように、図示しない温度制御装置によって加熱ヒータ13を加熱制御する。これにより原料にもともと含まれていた水分及び添加した水は、水蒸気となり体積を増す。このとき、最終的に到達する全圧は、圧力調整弁16によって飽和水蒸気圧未満に制御される。なお、加熱方法として電気ヒータ13の替りに、高周波、マイクロ波、スチーム等を用いることもできる。
(抽出工程)S3
以上のようにして製造された水可溶化物は、水によって抽出することによって水可溶性物抽出液を得ることができる。こうして得られた水可溶性物抽出液には、オリゴ糖等の低分子量多糖類や、グルコースが主成分として含まれている。このとき、乳酸や酢酸やヒドロキシメチルフルフラール(HMF)等の過分解物も生成するが、その割合は上述した加圧熱水法に比べて極めて少ない。
(固−液分離工程)S4
以上のようにして得られた水可溶性物抽出液には、水に溶けない不溶性物質も含まれているため、反応液に対して0.1〜500倍量となるように水を加えて混合し、固液分離装置で固液分離を行う。固液分離装置としては、例えば、重力沈降方式、遠心分離方式、膜分離方式、凝集分離方式、浮上分離方式等を用いた装置が挙げられる。
上記実施形態では圧力調整弁付ボールミル10を用いて圧力制御加熱粉砕処理工程S2を行ったが、温度制御可能なリングミルやタンデムリングミルを用いることもできる。例えば、図4に示すように、圧力調整弁21を取り付けた加熱炉22内にタンデムリングミル23を設置する。ここで、タンデムリングミル23の内部と加熱炉22内部は連通しており、同じ圧力となるようにされている。
加熱炉22内の温度を100℃以上300℃未満の所定の温度となるように、図示しない温度制御装置によって加熱炉22を加熱制御する。これにより原料にもともと含まれていた水分及び添加した水は、水蒸気となり体積を増す。このとき、最終的に到達する加熱炉22内の全圧は、圧力調整弁21によって飽和水蒸気圧未満に制御される。これにより、加熱炉22内と連通しているタンデムリングミル23の内部の全圧も加熱炉22内と同じ圧力となり、飽和水蒸気圧未満の制御が可能となる。
飽和水蒸気圧よりも低い水蒸気圧下において、セルロースの加水分解が促進され、しかも過分解物の生成がきわめて少ないということを確かめるため、次の試験例及び比較例を行った。
(試験例1〜7)
試験例1〜7では試薬のセルロースを原料として、以下のようにして可溶化反応を行った。
・粉砕工程
セルロースを含有する原料として、試薬のセルロース(MERCK社製 製品名 微結晶セルロース)を用い、これを遊星ボールミル(伊藤製作所製 製品名 遊星回転ボールミル)によって10時間粉砕した。
・水分調整工程
こうして得られた粉砕セルロース粉15mgを秤取り、2重構造の蓋付きの耐圧PTFE容器(内側容器は容積28cmのPTFE容器、外側容器はステンレス製容器)に入れ、水を所定量(試験例1〜3では0mg、試験例4,5では15mg、試験例6,7では100mg)加えて蓋をした。
・熱処理工程及び抽出工程
試料をいれた耐圧PTFE容器を電気加熱炉に入れ、200℃で所定時間の加熱を行った後、内容物を4.75mlの水で抽出し、フィルターでろ過し、水抽出液を得た。
(比較例1〜9)
比較例1〜3では水分調整工程における水添加の量を500mg、比較例4〜7では1500mg、比較例8,9では4750mgとした。その他の条件は試験例1〜7と同様であり、説明を省略する。
<評 価>
以上のようにして得られた試験例1〜7及び比較例1〜9の抽出液の成分及びその量を高速液体クロマトグラフィーによって分析するとともに、可溶化率を全有機炭素計(TOC計)による測定値から求めた。結果を表1及び図5に示す。
Figure 2013179874
表1に示すように、試験例1〜7及び比較例1〜9は全て反応温度が200℃であり、このときの飽和水蒸気圧は1.56MPaとなる。一方、試験例1〜7における全圧は表1及び図5に示すように、0.17〜0.94MPaの範囲内であるのに対し、比較例1〜9における全圧は飽和水蒸気圧の1.56MPaよりも大きい。以上のことから、試験例1〜7では添加された水およびセルロースに含まれていた水分は全て水蒸気となっており、液体状の水は存在していないことが分かる。これに対して、比較例1〜9では添加された水の量が多いため、液体の水と飽和水蒸気とが平衡状態となっており、添加した水の多くは液体状の水として残っていることが分かる。
また、可溶化率、グルコース及び過分解物の生成率についての試験例1〜7及び比較例1〜9の比較から、全圧が飽和水蒸気圧よりも低い試験例1〜7においては、可溶化率に対するグルコース及び過分解物の生成率の割合が著しく低く、オリゴ糖等に代表される水溶性の多糖類の割合が高いことが分かる。特に水蒸気圧の小さい試験例1〜3では、水溶性成分のほとんどが水溶性多糖類であり、グルコースや過分解物は極僅かであった。以上の結果、試験例1〜7の処理方法は、グルコースを採取するための前段階のセルロースの水溶化処理方法として、極めて好ましいことが分かった。
これに対して、全圧が飽和水蒸気圧よりも高い比較例1〜9においては、可溶化率に対するグルコース及び過分解物の生成率の割合が高く、グルコースを採取するための前段階のセルロースの水溶化処理方法として好ましくない。なぜならば、前段階のセルロースの水溶化処理方法としてグルコース及び過分解物が多量に生成した場合、さらにそれを固体酸触媒や硫酸などの存在下で処理すると、グルコースからの過分解物が加わって、過分解物の量がさらに多くなるからである。
以上の結果から、反応温度は100℃以上300℃未満であり、全圧が飽和水蒸気圧以上とならないように圧力制御するという本発明のセルロースの可溶化方法によれば、試料の充填量に関わらず、水蒸気圧が飽和水蒸気圧を越えないため、図6の右側のグラフに示すように、絶えず高い可溶化率を示すこととなる。
これに対して、密閉系において圧力を制御せずにセルロースの可溶化を行った場合には、図6の左側のグラフに示すように、飽和水蒸気圧を越えた段階で、可溶化率が急激に低下することが分った。
したがって、本発明のセルロースの可溶化方法によれば、触媒等の薬品を使うことなく、過分解物の発生量も少なく、短時間にセルロースを可溶化することができることとなる。
この発明は、上記発明の実施形態の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。

Claims (2)

  1. セルロースを含有する原料を飽和水蒸気よりも低い水蒸気圧下において触媒の存在しない条件下で水と反応させて水可溶性成分に変換するセルロースの可溶化方法であって、
    反応温度は100℃以上300℃未満であり、全圧が飽和水蒸気圧以上とならないように圧力制御するセルロースの可溶化方法。
  2. 前記圧力制御は密閉した反応容器に設けられた圧力調整弁によって行うことを特徴とする請求項1に記載のセルロースの可溶化方法。
JP2012044810A 2012-02-29 2012-02-29 セルロースの可溶化方法 Pending JP2013179874A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012044810A JP2013179874A (ja) 2012-02-29 2012-02-29 セルロースの可溶化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012044810A JP2013179874A (ja) 2012-02-29 2012-02-29 セルロースの可溶化方法

Publications (1)

Publication Number Publication Date
JP2013179874A true JP2013179874A (ja) 2013-09-12

Family

ID=49270989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012044810A Pending JP2013179874A (ja) 2012-02-29 2012-02-29 セルロースの可溶化方法

Country Status (1)

Country Link
JP (1) JP2013179874A (ja)

Similar Documents

Publication Publication Date Title
CN114481656B (zh) 用于从植物基和再生材料生产纸浆、能源和生物衍生物的方法和系统
Baêta et al. Steam explosion pretreatment improved the biomethanization of coffee husks
Sambusiti et al. Benefit of sodium hydroxide pretreatment of ensiled sorghum forage on the anaerobic reactor stability and methane production
US9683328B2 (en) Preparation of biofuels and other useful products such as 5-(hydroxymethyl)-furfural
Jin et al. High-pressure homogenization pretreatment of four different lignocellulosic biomass for enhancing enzymatic digestibility
EA025362B1 (ru) Переработка биомассы
Ahuja et al. Fractionation and physicochemical characterization of lignin from waste jute bags: Effect of process parameters on yield and thermal degradation
Awedem Wobiwo et al. Bioethanol potential of raw and hydrothermally pretreated banana bulbs biomass in simultaneous saccharification and fermentation process with Saccharomyces cerevisiae
Xie et al. Pretreatment of quinoa straw with 1-butyl-3-methylimidazolium chloride and physiochemical characterization of biomass
JP5849464B2 (ja) セルロースから水可溶性成分を抽出する抽出方法
JP5861820B2 (ja) セルロースの可溶化及び水可溶性成分の抽出方法
MX2011012376A (es) Sistema para tratamiento de biomasa para facilitar la produccion de etanol.
Tekaligne et al. Bioethanol production from finger millet (Eleusine coracana) straw
JP5938879B2 (ja) セルロースからの水可溶性成分の抽出方法及びセルロース可溶化の前処理方法
JP2013179874A (ja) セルロースの可溶化方法
Oruganti et al. Kraft lignin recovery from de-oiled Jatropha curcas seed by potassium hydroxide pretreatment and optimization using response surface methodology
JP2014034570A (ja) 糖化方法及び糖化反応装置
TWI734005B (zh) 可提升纖維原料沼氣生成效率之解聚技術及其與厭氧消化之整合方法
JP2014068627A (ja) セルロース系バイオマス原料の糖化方法
JP2012231683A (ja) セルロースの糖化方法
JP2013066420A (ja) セルロース系バイオマス原料の可溶化方法
JP2013179872A (ja) セルロース可溶化液の糖化方法及びそれに用いる糖化装置
JP6007393B2 (ja) セルロース可溶化液の糖化方法及び糖化装置
JP2014087307A (ja) セルロースの分解回収装置及びその方法
Sarip et al. In situ autohydrolysis for the glucose production from sago pith waste with DIC technology