JP2013177947A - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
JP2013177947A
JP2013177947A JP2012043114A JP2012043114A JP2013177947A JP 2013177947 A JP2013177947 A JP 2013177947A JP 2012043114 A JP2012043114 A JP 2012043114A JP 2012043114 A JP2012043114 A JP 2012043114A JP 2013177947 A JP2013177947 A JP 2013177947A
Authority
JP
Japan
Prior art keywords
cooling water
internal combustion
combustion engine
reduction ratio
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012043114A
Other languages
English (en)
Inventor
Koji Fujii
孝治 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2012043114A priority Critical patent/JP2013177947A/ja
Publication of JP2013177947A publication Critical patent/JP2013177947A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Transmission Device (AREA)

Abstract

【課題】高負荷低回転の運転領域等における冷却性能を良化し、内燃機関の過加熱を適切に抑制する。
【解決手段】内燃機関の冷却水温が所定閾値以上である場合、そうでない場合と比較して自動変速機の減速比をより大きくする補正制御を行うとともに、前記補正制御における減速比の増大補正量を、ガード値を超えない範囲で冷却水温が高いほど大きく設定する。つまり、高負荷低回転の運転領域等において、敢えて変速機をローギア化することで、エンジン回転数を高めて機械式ウォータポンプによる冷却水の吐出量を増加させるようにした。
【選択図】図3

Description

本発明は、内燃機関及び自動変速機を備える車両の制御装置に関する。
近時の自動車は、自動変速機を実装したAT車であることが少なくない。車両用の自動変速機として、トルクコンバータ及びベルト式連続可変変速機構(Continuously Variable Transmission)を具備してなる無段変速機が公知である(例えば、下記特許文献を参照)。
無段変速機の変速比は、内燃機関の燃費率(燃料消費率)特性に合わせて最適な燃費を具現できるように制御する。図3に示しているように、エンジン回転数を横軸、エンジントルクを縦軸とおくと、エンジン回転数とエンジントルクとの積である内燃機関の出力が一定となる等出力線(図中破線で示す)は双曲線の形で描かれる。さらに、燃費率が一定となるエンジン回転数とエンジントルクとの組が等燃費率線(図中細実線で示す)として表される。両者を組み合わせることで、ある出力を達成する場合に最も燃費がよくなる変速比を、様々な出力についてプロットすることができる。これが、図3に示している変速線(図中太実線で示す)である。車載の電子制御装置(Electronic Control Unit)は、運転者により指令される要求負荷(出力)の増減に応じ、変速線に沿って無段変速機の変速比を操作する。
ところで、内部に形成した冷却水通路に冷却水を流通させる態様の水冷式内燃機関には、冷却水を吐出し圧送するウォータポンプが付帯している。ウォータポンプとしては、内燃機関のクランクシャフトから回転トルクの伝達を受けて駆動される機械式のものが多く用いられている。
車両の登坂時等、高い出力が要求される一方でエンジン回転数が低い高負荷低回転の運転領域が連続しているような状況や、外気温が高い状況においては、内燃機関の温度が上昇するにもかかわらず、ウォータポンプによる冷却水の吐出量が逓減するという背反が起こる。このため、冷却水が十分に循環せず、冷却性能が低下して内燃機関が過加熱し、ノッキングを誘発する等、燃費やドライバビリティを悪化させるきらいがあった。
特開2010−071427号公報
本発明は、高負荷低回転の運転領域等における冷却性能を良化し、内燃機関の過加熱を適切に抑制することを所期の目的としている。
本発明では、アクセルペダルの踏込量に応じて自動変速機による減速比を変化させるものであって、内燃機関の冷却水温が所定閾値以上である場合、そうでない場合と比較して自動変速機の減速比をより大きくする補正制御を行うこととし、前記補正制御における減速比の増大補正量を、ガード値を超えない範囲で冷却水温が高いほど大きく設定することを特徴とする制御装置を構成した。
つまり、高負荷低回転の運転領域等において、敢えて変速機をローギア化することで、エンジン回転数を高めて機械式ウォータポンプによる冷却水の吐出量を増加させるようにしたのである。
尤も、エンジン回転数の高回転化は、気筒における燃焼回数(膨張行程の回数)を増加させるとともに、摩擦による発熱の増大をも招く。それ故、徒に高回転化させると、内燃機関に対する加熱の増大が冷却水の循環強化による冷却性能の向上を上回ってしまい、却って内燃機関の温度が上昇するおそれがある。そこで、補正制御における減速比の増大補正量についてガード値を設け、このガード値を超えて減速比を増大させないようにする。
本発明によれば、高負荷低回転の運転領域等における冷却性能を良化し、内燃機関の過加熱を適切に抑制することができる。
本発明の一実施形態における車両用内燃機関の全体構成を示す図。 同実施形態における駆動系の構成を示す図。 同実施形態の制御装置が実施する減速比制御の変速線を示す図。
本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関の概要を示す。
本実施形態における内燃機関は、火花点火式ガソリンエンジンであり、複数の気筒1(図1には、そのうち一つを図示している)を具備している。各気筒1の吸気ポート近傍には、燃料を噴射するインジェクタ11を設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を惹起するものである。点火コイルは、半導体スイッチング素子であるイグナイタとともに、コイルケースに一体的に内蔵される。
吸気を供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、電子スロットルバルブ32、サージタンク33、吸気マニホルド34を、上流からこの順序に配置している。
排気を排出するための排気通路4は、気筒1内で燃料を燃焼させた結果発生した排気を各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42及び排気浄化用の三元触媒41を配置している。
図2に、車両が備える駆動系の例を示す。この駆動系は、トルクコンバータ7及び自動変速機8、9を備えてなる。特に、本実施形態では、自動変速機8、9の構成要素として、遊星歯車機構を利用した前後進切換装置8、及び無段変速機の一種であるベルト式CVT(Continuously Variable Transmission)9を採用している。
内燃機関が出力する回転トルクは、内燃機関のクランク軸からトルクコンバータ7の入力側のポンプインペラ71に入力され、出力側のタービンランナ72に伝達される。タービンランナ72の回転は、前後進切換装置8を介してCVT9の駆動軸94に伝わり、CVT9における変速を経て従動軸95を回転させる。従動軸95の回転は、出力ギア101に伝達される。出力ギア101は、デファレンシャル装置のリングギア102と噛合し、デファレンシャル装置を介して車軸103及び駆動輪(図示せず)を回転させる。
トルクコンバータ7は、ロックアップ機構を備える。ロックアップ機構は、この分野では既知のもので、トルクコンバータ7の入力側と出力側とを相対回動不能に締結するロックアップクラッチ73と、ロックアップクラッチ73を断接切換駆動するための作動液圧(油圧)を制御するロックアップソレノイドバルブ(図示せず)とを要素とする。ロックアップソレノイドバルブは、制御信号lを受けてその開度を変化させる流量制御弁である。
一般的に、ロックアップ機構は、自動変速機8、9による減速比(変速比)の変更を伴わない状況において、トルクコンバータ7の入力側と出力側とを締結する。ロックアップ時、ロックアップクラッチ73はトルクコンバータカバー74に押し付けられ、トルクコンバータカバー74と一体となって回転する。ロックアップ時、トルクコンバータ7の入力側(のドライブプレート)に入力された機関のトルクは、トルクコンバータカバー74からロックアップクラッチ73を経由してトルクコンバータ7の出力側、ひいては前後進切換装置8に直接伝達される。ロックアップ時、トルクコンバータ7の出力側回転数の入力側回転数に対する比である速度比は1となる。
翻って、非ロックアップ時には、ロックアップクラッチ73がトルクコンバータカバー74から離反する。非ロックアップ時、トルクコンバータ7の入力側に入力された機関のトルクは、トルクコンバータカバー74からポンプインペラ71、タービン72へと伝わり、前後進切換装置8に伝達される。非ロックアップ時、トルクコンバータ7の速度比は1よりも小さくなる。
前後進切換装置8は、そのサンギア81がタービンランナ72と連絡し、リングギア82が駆動軸94と連絡している。プラネタリギア831を支持するプラネタリキャリア83と変速機ケースとの間には、断接切換可能な液圧クラッチたるフォワードブレーキ84を介設している。また、プラネタリキャリア83とサンギア81(または、トルクコンバータ7の出力側)との間にも、断接切換可能な液圧クラッチたるリバースクラッチ85を介設している。
走行レンジのうちのDレンジでは、フォワードブレーキ84を締結し、リバースクラッチ85を切断する。これにより、トルクコンバータ7の出力軸の回転が逆転されかつ減速されて駆動軸94に伝達され、前進走行となる。翻って、Rレンジでは、リバースクラッチ85を締結し、フォワードブレーキ84を切断する。これにより、サンギア81とプラネタリキャリア83とが一体的に回転し、トルクコンバータ7の出力軸と駆動軸94とが直結して後進走行となる。フォワードブレーキ84またはリバースクラッチ85断接切換駆動するための作動液圧を制御するソレノイドバルブ(図示せず)は、制御信号mを受けてその開度を変化させる流量制御弁である。
非走行レンジであるNレンジ、Pレンジでは、フォワードブレーキ84及びリバースクラッチ85をともに切断する。
CVT9は、駆動プーリ91及び従動プーリ92と、両プーリ91、92に巻き掛けられたベルト93とを要素とする。駆動プーリ91は、駆動軸94に固定した固定シーブ911と、駆動軸91上にローラスプラインを介して軸方向に変位可能に支持させた可動シーブ912と、可動シーブ912の後背に配設された液圧サーボ913とを有しており、液圧サーボ913を操作し可動シーブ912を変位させることを通じて減速比を無段階に変更できる。並びに、従動プーリ92は、従動軸95に固設した固定シーブ921と、従動軸95上にローラスプラインを介して軸方向に変位可能に支持させた可動シーブ922と、可動シーブ922の後背に配設された液圧サーボ923とを有しており、液圧サーボ923を操作し可動シーブ922を変位させることを通じてトルク伝達に必要なベルト推力を与える。
走行レンジを操作するべくフォワードブレーキ84またはリバースクラッチ85に供給される作動液(作動油)、また減速比を操作するべく液圧サーボ913、923に供給される作動液を吐出する液圧ポンプ(図示せず)は、内燃機関のクランクシャフトからトルクの伝達を受けて稼働する、既知の機械式(非電動式)のものである。この作動液は、トルクコンバータ7に用いられる流体と共通である。
本実施形態の制御装置たるECU0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。
入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、クランクシャフトの回転角度及びエンジン回転数を検出するエンジン回転センサから出力されるクランク角信号(N信号)b、アクセルペダルの踏込量またはスロットルバルブ32の開度をアクセル開度として検出するセンサから出力されるアクセル開度信号c、ブレーキペダルの踏込量を検出するセンサから出力されるブレーキ踏量信号d、吸気通路3(特に、サージタンク33)内の吸気温及び吸気圧を検出する温度・圧力センサから出力される吸気温・吸気圧信号e、機関の冷却水温を検出する水温センサから出力される冷却水温信号f、外気温を検出するセンサから出力される外気温信号g、吸気カムシャフトまたは排気カムシャフトの複数のカム角にてカム角センサから出力されるカム角信号(G信号)h等が入力される。アクセル開度はいわば、運転者が指令する要求負荷、要求出力である。
出力インタフェースからは、点火プラグ12のイグナイタに対して点火信号i、インジェクタ11に対して燃料噴射信号j、スロットルバルブ32に対して開度操作信号k、ロックアップクラッチ73の断接切換用のロックアップソレノイドバルブに対して開度制御信号l、フォワードブレーキ84またはリバースクラッチ85の断接切換用のソレノイドバルブに対して開度制御信号m、CVT9に対して減速比制御信号n等を出力する。
ECU0のプロセッサは、予めメモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、内燃機関の運転制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、エンジン回転数を知得するとともに気筒1に充填される吸気量を推算する。そして、それらエンジン回転数及び吸気量等に基づき、要求される燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、点火タイミング、トルクコンバータ7のロックアップを行うか否か、自動変速機8、9の減速比といった各種運転パラメータを決定する。運転パラメータの決定手法自体は、既知のものを採用することが可能である。しかして、ECU0は、運転パラメータに対応した各種制御信号i、j、k、l、m、nを出力インタフェースを介して印加する。
特に、CVT9を搭載した車両においては、車速が所定値(例えば、10km/h)以上である場合、ほぼ常時トルクコンバータ7をロックアップする。
本実施形態のECU0は、運転者がアクセルペダルを介して指令される要求負荷即ち出力を達成しつつ燃費が最適化するように、CVT9の減速比を設定する。既に述べた通り、ある出力を実現するエンジン回転数及びトルクの組は等出力線上に無数に存在するが、そのうち最も燃費効率のよい組は内燃機関の出力特性である等燃費線によって一意に定まる。様々な出力について、最も燃費効率のよいエンジン回転数及びトルクの組をプロットしたものが変速線である。図3に、内燃機関の出力が一定となる等出力線(図中破線で示す)、燃費率が一定となる等燃費率線(図中細実線で示す)、及び最も燃費がよくなる減速比をプロットした変速線(図中太実線で示す)を、それぞれ示す。
ECU0のメモリには予め、変速線のマップデータが記憶保持されている。ECU0は、要求負荷をキーとしてこのマップデータを検索し、変速線上にある減速比を知得する。そして、可動シーブ912、922を操作して、CVT9をその減速比に制御する。
その上で、本実施形態のECU0は、内燃機関の冷却水温が所定閾値以上である場合において、CVT9の減速比を、上記の変速線上のそれよりも大きくする補正制御を実行する。
本実施形態における内燃機関は、その内部に形成した冷却水通路に冷却水を流通させる態様の水冷式内燃機関である。この内燃機関には、冷却水を圧送する機械式のウォータポンプ(図示せず)が付帯している。ウォータポンプは、内燃機関のクランクシャフトから回転トルクの伝達を受けて回転駆動され、冷却水を吐出する。ウォータポンプが吐出した冷却水は、内燃機関の内部を循環した後、ラジエータ(図示せず)へと導かれる。ラジエータは、走行風及び/または電動ファンの送風によって冷却される空冷式のものであり、ラジエータ内を流通する冷却水を冷ます働きをする。ラジエータにて放熱し降温した冷却水は、ウォータポンプに吸引され、再び内燃機関に向けて吐出される。
車両の登坂時等、高い出力が要求される一方でエンジン回転数が低い高負荷低回転の運転領域においては、内燃機関の温度が上昇するにもかかわらず、ウォータポンプによる冷却水の吐出量が逓減するという背反が起こる。このため、冷却水が十分に循環せず、冷却性能が低下して内燃機関が過加熱する懸念があった。
そこで、本実施形態では、冷却水温が閾値以上に上昇した場合、内燃機関を高回転化してウォータポンプによる冷却水の吐出量を増大させる目的で、CVT9の減速比をより大きくする。例えば、図3に示しているように、ある要求負荷の下で、冷却水温が閾値よりも低い平時における減速比Pに対して、冷却水が閾値以上に上昇した場合における補正制御中の減速比Qは、Pと同じ等出力線上に沿ってエンジン回転数が上昇する方向(図中右方向)に遷移した値となる。図中の太鎖線は、補正制御中の変速線である。
補正制御における減速比の増大補正量、換言すれば平時の変速線と補正制御中の変速線との差分の量は、冷却水温が高いほど大きく設定する。但し、その増大補正量は、ガード値を超えないものとする。図3に変速線と併せて例示しているように、ある要求負荷の下でのガード値Rは、エンジン回転数の高回転化に起因したウォータポンプの冷却水吐出能力の向上による冷却性能の向上を、気筒1における燃焼回数の増加及び摩擦熱の増大による昇温が超越しない限度において、最も減速比が大きくなる値(結果的に冷却水温が極小値をとる値、またはそれよりも図中左方向に遷移した値)に定めることが望ましい。
ガード値は、ラジエータの放熱性能に影響を与えるパラメータに応じて可変とすることができる。例えば、車速が速いほど、ラジエータにおいて冷却水が冷まされやすくなることから、ガード値(つまりは、減速比の増大補正量)を大きくすることができる。また、外気温が低いほど、ガード値(つまりは、減速比の増大補正量)を大きくすることができる。
ECU0のメモリには予め、ラジエータの放熱性能に影響を与えるパラメータ(車速、外気温等)と、これに対応したガード値との関係を規定したマップデータが記憶保持されている。ECU0は、上記のパラメータをキーとしてこのマップデータを検索し、ガード値を知得する。そして、ガード値を超えない範囲で、冷却水温に応じてCVT9の減速比に補正を加える。
本実施形態では、アクセルペダルの踏込量に応じて自動変速機による減速比を変化させるものであって、内燃機関の冷却水温が所定閾値以上である場合、そうでない場合と比較して自動変速機9の減速比をより大きくする補正制御を行うとともに、前記補正制御における減速比の増大補正量を、ガード値を超えない範囲で冷却水温が高いほど大きく設定することを特徴とする制御装置0を構成した。
本実施形態によれば、高負荷低回転の運転領域等において、敢えて変速機9をローギア化し、エンジン回転数を高めて機械式ウォータポンプによる冷却水の吐出量を増加させ、冷却能力を向上させることが可能である。ひいては、内燃機関のオーバヒート、ノッキングの誘発を回避できる。
加えて、補正制御中の変速機9の減速比を、ガード値を超えて増大させないようにしているので、エンジン回転数の高回転化による副作用、即ち内燃機関に対する加熱の増大は抑止される。
なお、本発明は以上に詳述した実施形態に限られるものではない。例えば、自動変速機はベルト式CVTには限定されない。有段変速機を搭載した車両に、本発明を適用することも可能である。有段変速機を制御する制御装置は、要求負荷(アクセル開度)及び車速に応じて変速段を決定するが、内燃機関の冷却水温が所定閾値以上である場合、そうでない場合と比較して自動変速機の減速比をより大きくする、即ち変速段をよりローギア化するという点で、上記実施形態と同様とすることができる。
その他、各部の具体的構成や処理の手順等は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
本発明は、内燃機関及び自動変速機を備える車両の制御に利用できる。
0…制御装置(ECU)
7…トルクコンバータ
8、9…自動変速機(前後進切換装置、CVT)

Claims (1)

  1. アクセルペダルの踏込量に応じて自動変速機による減速比を変化させるものであって、
    内燃機関の冷却水温が所定閾値以上である場合、そうでない場合と比較して自動変速機の減速比をより大きくする補正制御を行うこととし、
    前記補正制御における減速比の増大補正量を、ガード値を超えない範囲で冷却水温が高いほど大きく設定することを特徴とする制御装置。
JP2012043114A 2012-02-29 2012-02-29 制御装置 Pending JP2013177947A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012043114A JP2013177947A (ja) 2012-02-29 2012-02-29 制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012043114A JP2013177947A (ja) 2012-02-29 2012-02-29 制御装置

Publications (1)

Publication Number Publication Date
JP2013177947A true JP2013177947A (ja) 2013-09-09

Family

ID=49269768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012043114A Pending JP2013177947A (ja) 2012-02-29 2012-02-29 制御装置

Country Status (1)

Country Link
JP (1) JP2013177947A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014337A (ja) * 2014-07-01 2016-01-28 トヨタ自動車株式会社 車両制御装置
CN114258458A (zh) * 2019-08-07 2022-03-29 卡特彼勒公司 基于检测到的机械负载要求来控制机械的发动机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014337A (ja) * 2014-07-01 2016-01-28 トヨタ自動車株式会社 車両制御装置
US9447718B2 (en) 2014-07-01 2016-09-20 Toyota Jidosha Kabushiki Kaisha Vehicle control device
CN114258458A (zh) * 2019-08-07 2022-03-29 卡特彼勒公司 基于检测到的机械负载要求来控制机械的发动机
CN114258458B (zh) * 2019-08-07 2024-05-03 卡特彼勒公司 基于检测到的机械负载要求来控制机械的发动机

Similar Documents

Publication Publication Date Title
JP2014097707A (ja) 車両の制御装置
JP6775884B2 (ja) 車両の制御装置
JP2013177947A (ja) 制御装置
JP2016117449A (ja) 車両の制御装置
US11565686B2 (en) Hybrid vehicle control apparatus
JP6210695B2 (ja) 制御装置
JP2014070592A (ja) 制御装置
JP2015105604A (ja) 内燃機関の制御装置
JP6534459B2 (ja) 車両の制御装置
JP7337452B2 (ja) 車両の制御装置
JP2016151327A (ja) 車両の制御装置
JP7234890B2 (ja) 冷却装置
JP6280330B2 (ja) 車両の制御装置
JP5946383B2 (ja) 制御装置
JP2018003675A (ja) 内燃機関の制御装置
JP6192462B2 (ja) 車両の制御装置
JP2017226415A (ja) 制御装置
JP4107251B2 (ja) 車両の制御装置
JP7238833B2 (ja) 車両用動力伝達装置のロックアップ制御装置
JP2020159424A (ja) 車両の制御装置
JP2021055595A (ja) 車両の制御装置
JP2017082682A (ja) 制御装置
JP6021548B2 (ja) アイドルストップ車両の制御装置
JP2014181648A (ja) 内燃機関の制御装置
JP2020045079A (ja) 車両の制御装置