JP2013171965A - Electrochemical element - Google Patents

Electrochemical element Download PDF

Info

Publication number
JP2013171965A
JP2013171965A JP2012034734A JP2012034734A JP2013171965A JP 2013171965 A JP2013171965 A JP 2013171965A JP 2012034734 A JP2012034734 A JP 2012034734A JP 2012034734 A JP2012034734 A JP 2012034734A JP 2013171965 A JP2013171965 A JP 2013171965A
Authority
JP
Japan
Prior art keywords
electrode
electrochemical element
laminate
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012034734A
Other languages
Japanese (ja)
Inventor
Yoshihisa Tanaka
義久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2012034734A priority Critical patent/JP2013171965A/en
Publication of JP2013171965A publication Critical patent/JP2013171965A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an electrochemical element eliminating volume expansion of the electrochemical element by suppressing decomposition of an electrolyte on the polarizable electrode surface of the electrochemical element, thereby achieving excellent long-term reliability with less deterioration in electrostatic capacity.SOLUTION: An electrochemical element 1 includes: an electrode laminate including a polarizable electrode which contains active carbon powder and is used as at least one of a positive electrode or a negative electrode, and formed by being wound or laminated between the positive electrode and the negative electrode with a separator interposed therebetween; and a nonaqueous electrolyte containing at least one electrolyte selected from the group of a quaternary ammonium salt or a lithium salt. The electrode laminate is pressed with a surface pressure of 100-400 N/cmby pressing means 8, 9.

Description

本発明は、各種電子機器に使用される電気二重層キャパシタやリチウムイオンキャパシタに代表されるハイブリッドキャパシタ、リチウムイオン電池等の電気化学素子に関するものである。   The present invention relates to an electrochemical element such as an electric double layer capacitor used in various electronic devices, a hybrid capacitor typified by a lithium ion capacitor, or a lithium ion battery.

従来の電気化学素子として、例えば、電気二重層キャパシタは、正極側の分極性電極と負極側の分極性電極とをその間にセパレータを介在させて積層することにより電極積層体を構成し、かつ、この電極積層体に非水電解液を含浸させることにより構成されている。このような電気二重層キャパシタでは、ある電圧で通電を長時間行うとその内部にガスが発生し、発生したガスによって電気二重層キャパシタ内の圧力が上昇する。そして、発生したガスの内部応力によって電極積層体の変形や、電気二重層キャパシタの静電容量あるいはサイクル寿命の低下を引き起こすことが知られている。   As a conventional electrochemical element, for example, an electric double layer capacitor comprises an electrode laminate by laminating a polarizable electrode on the positive electrode side and a polarizable electrode on the negative electrode side with a separator interposed therebetween, and This electrode laminate is constituted by impregnating with a nonaqueous electrolytic solution. In such an electric double layer capacitor, when energization is performed for a long time at a certain voltage, gas is generated therein, and the pressure in the electric double layer capacitor is increased by the generated gas. Then, it is known that the internal stress of the generated gas causes deformation of the electrode laminate and a decrease in the capacitance or cycle life of the electric double layer capacitor.

一方、電気二重層キャパシタにおいて、電極積層体に所定の面圧を加えることにより、電気二重層キャパシタ内部の電極積層体積層体の密着を保つ技術が知られている(例えば、特許文献1参照)。この技術によれば、前述したような発生したガスの内部応力による電極積層体の変形を抑制することができる。   On the other hand, in an electric double layer capacitor, a technique is known in which a predetermined surface pressure is applied to an electrode laminate to keep the electrode laminate laminate inside the electric double layer capacitor in close contact (see, for example, Patent Document 1). . According to this technique, the deformation of the electrode laminate due to the internal stress of the generated gas as described above can be suppressed.

また、電気化学素子の電極積層体に加える所定の面圧を50N/cm未満とする技術が知られている(例えば、特許文献2参照)。 Moreover, the technique which makes the predetermined surface pressure added to the electrode laminated body of an electrochemical element less than 50 N / cm < 2 > is known (for example, refer patent document 2).

特開2002−289485号公報(平成14年10月4日公開)JP 2002-289485 A (released on October 4, 2002) 特開2005−259500号公報(平成17年9月22日公開)JP 2005-259500 A (published on September 22, 2005)

しかしながら、上記のように長時間の使用による容量の低下やサイクル寿命の低下に対する有用な抑制技術はまだ確立されていない。   However, as described above, a useful suppression technique for reducing the capacity and cycle life due to long-time use has not yet been established.

そこで、本発明は、上記の課題を解決するためになされたものであり、その目的は、電気化学素子の分極性電極の表面における電解液の分解を抑制することで、電気化学素子の体積膨張を解消し、静電容量の低下の少ない長期信頼性に優れた電気化学素子を提供することにある。   Therefore, the present invention has been made to solve the above problems, and its purpose is to suppress the volume expansion of the electrochemical device by suppressing the decomposition of the electrolyte solution on the surface of the polarizable electrode of the electrochemical device. It is an object of the present invention to provide an electrochemical device excellent in long-term reliability with little decrease in capacitance.

本発明の電気化学素子は、上記課題を解決するために、活性炭粉末を含む分極性電極を集電体上に形成した電極を正極または負極の少なくとも一方に用いるとともに、正極と負極との間にセパレータを介在させて巻回または積層してなる電極積層体と、該電極積層体に含浸された非水電解液とを備える電気化学素子であって、前記非水電解液は、第四級アンモニウム塩またはリチウム塩の群から選ばれる少なくとも一種の電解質を含み、前記電極積層体は100〜400N/cmで押圧されることを特徴とする。 In order to solve the above problems, the electrochemical device of the present invention uses an electrode in which a polarizable electrode containing activated carbon powder is formed on a current collector as at least one of a positive electrode and a negative electrode, and between the positive electrode and the negative electrode. An electrochemical element comprising an electrode laminate formed by winding or laminating with a separator interposed therebetween and a nonaqueous electrolyte impregnated in the electrode laminate, wherein the nonaqueous electrolyte is quaternary ammonium. It contains at least one electrolyte selected from the group of salts or lithium salts, and the electrode laminate is pressed at 100 to 400 N / cm 2 .

また、前記セパレータは、セルロース繊維を主成分とし、複合材として少なくとも一種のポリオレフィンを含むことが好ましい。   Moreover, it is preferable that the said separator has a cellulose fiber as a main component and contains at least 1 type of polyolefin as a composite material.

また、前記ポリオレフィンは、ポリエチレンまたはポリプロピレンであることが好ましい。   The polyolefin is preferably polyethylene or polypropylene.

本発明によれば、電極積層体を100〜400N/cmで押圧することにより、従来よりも電極間距離が小さくなり内部抵抗が減少し、電解液分解活性点の利用率が減少して電解液の分解が抑制されると考えられる。したがって、電気化学素子の体積膨張を解消し、静電容量の低下の少ない長期信頼性に優れた電気化学素子を提供することができる。 According to the present invention, by pressing the electrode laminate at 100 to 400 N / cm 2 , the distance between the electrodes becomes smaller than before, the internal resistance is reduced, and the utilization rate of the electrolytic solution decomposition active point is reduced. It is considered that the decomposition of the liquid is suppressed. Therefore, it is possible to provide an electrochemical element that eliminates the volume expansion of the electrochemical element and has excellent long-term reliability with little decrease in capacitance.

本発明の実施形態の一例を示す電気化学素子の断面模式図である。It is a cross-sectional schematic diagram of the electrochemical element which shows an example of embodiment of this invention. 本発明の実施形態の一例を示す電気化学素子の正面図である。It is a front view of the electrochemical element which shows an example of embodiment of this invention. 本発明の実施形態の一例を示す電気化学素子の側面図である。It is a side view of the electrochemical element which shows an example of embodiment of this invention. 本発明の実施形態の一例を示す電気化学素子の側面図である。It is a side view of the electrochemical element which shows an example of embodiment of this invention.

図1から図4を用いて本発明における実施の形態の一例を説明する。図1から図4を参照して、本実施形態における電気化学素子1は、正極2と、負極3と、セパレータ4とで構成される電極積層体5と、リード端子6と、外装7と、押圧板8と、締結部材9とを具備している。   An example of an embodiment of the present invention will be described with reference to FIGS. Referring to FIGS. 1 to 4, an electrochemical element 1 in this embodiment includes an electrode laminate 5 including a positive electrode 2, a negative electrode 3, and a separator 4, a lead terminal 6, an exterior 7, A pressing plate 8 and a fastening member 9 are provided.

正極2および負極3には、金属箔からなる集電体の片面または両面に、活性炭粉末を含む分極性電極が形成されている。   In the positive electrode 2 and the negative electrode 3, polarizable electrodes containing activated carbon powder are formed on one side or both sides of a current collector made of metal foil.

活性炭粉末を含む分極性電極は、公知の電気二重層キャパシタやリチウムイオンキャパシタ等の電極の製造方法によって製造することができる。例えば、石油ピッチ、コークス、ヤシ殻、フェノール樹脂等から選ばれる原料由来の活性炭に結合材、導電材を加えて構成することができる。   A polarizable electrode containing activated carbon powder can be manufactured by a known electrode manufacturing method such as an electric double layer capacitor or a lithium ion capacitor. For example, a binder and a conductive material can be added to activated carbon derived from a raw material selected from petroleum pitch, coke, coconut shell, phenol resin, and the like.

結合材としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリビニルアルコール、カルボキシメチルセルローズ、ポリアクリル酸等が使用されるが、これらの中でポリテトラフルオロエチレンは混練時に繊維状となって活性炭と導電材を強固に結合するとともに、活性炭の細孔を閉塞することが無いことから好ましい。   As the binder, polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl alcohol, carboxymethyl cellulose, polyacrylic acid, and the like are used. Among these, polytetrafluoroethylene becomes a fibrous state during kneading and becomes conductive with activated carbon. It is preferable because the material is firmly bonded and the pores of the activated carbon are not blocked.

導電材としては、ケッチェンブラック、アセチレンブラックの導電性カーボンブラック、天然黒鉛、人造黒鉛、炭素繊維、アルミニウム、ニッケル等の金属繊維を用いることができるが、少量で効果的に導電性が向上するケッチェンブラック、アセチレンブラックが特に好ましい。   As the conductive material, ketjen black, conductive carbon black of acetylene black, natural graphite, artificial graphite, carbon fiber, aluminum, nickel, and other metal fibers can be used, but the conductivity is effectively improved in a small amount. Ketjen black and acetylene black are particularly preferred.

電極は活性炭、導電材、結合材を公知の方法により成型することで製造される。例えば、活性炭とカーボンブラックの混合物にポリテトラフルオロエチレンを添加・混合した後、プレス成型、ロール成型して得られる。また、上記混合物をスラリー状にしてから塗布することで薄い塗布膜とする方法、シート状または板状の成型体の何れであってもよい。   The electrode is manufactured by molding activated carbon, a conductive material, and a binder by a known method. For example, it can be obtained by adding and mixing polytetrafluoroethylene to a mixture of activated carbon and carbon black, followed by press molding and roll molding. Further, any of a method of forming a thin coating film by applying the mixture after making it into a slurry, and a sheet-like or plate-like molded body may be used.

なお、活性炭粉末を含む分極性電極を正極2および負極3の両方に用いる場合には、電気二重層キャパシタを製造できる。また、活性炭粉末を含む分極性電極を正極2に用い、活性炭粉末に代えて黒鉛粉末を用いた電極を負極3に用いる場合には、リチウムイオンキャパシタを製造できる。   In addition, when the polarizable electrode containing activated carbon powder is used for both the positive electrode 2 and the negative electrode 3, an electric double layer capacitor can be manufactured. Further, when a polarizable electrode containing activated carbon powder is used for the positive electrode 2 and an electrode using graphite powder instead of the activated carbon powder is used for the negative electrode 3, a lithium ion capacitor can be manufactured.

セパレータ4は正極2と負極3との間に介在している。そして、電極積層体5は、正極2、負極3およびセパレータ4を積層または巻回して形成されている。   The separator 4 is interposed between the positive electrode 2 and the negative electrode 3. The electrode laminate 5 is formed by laminating or winding the positive electrode 2, the negative electrode 3 and the separator 4.

セパレータ4はセルロース繊維を主成分としていることが好ましく、複合材として少なくとも一種のポリオレフィンを含んでいてもよい。このようなポリオレフィンとしては、ポリエチレンまたはポリプロピレンであることが好ましい。   The separator 4 is preferably composed mainly of cellulose fibers, and may contain at least one kind of polyolefin as a composite material. Such polyolefin is preferably polyethylene or polypropylene.

電極積層体5を構成する正極2および負極3の各々には、集電箔に露出部が形成されている。該露出部は、例えば集電箔の一端に凸形状を有するように設けられていて、正極、負極ごとに集合されている。そして、板状あるいは棒状のリード端子6が該露出部の集合体に超音波溶接やスポット溶接等により取り付けられている。   Each of the positive electrode 2 and the negative electrode 3 constituting the electrode laminate 5 has an exposed portion formed on the current collector foil. The exposed portion is provided, for example, so as to have a convex shape at one end of the current collector foil, and is gathered for each of the positive electrode and the negative electrode. A plate-like or rod-like lead terminal 6 is attached to the aggregate of the exposed portions by ultrasonic welding, spot welding, or the like.

また、電極積層体5は、非水電解液に浸漬されている。本発明に用いる非水電解液には、公知の電気二重層キャパシタやリチウムイオンキャパシタに用いられる電解液を使用することができる。電解液は特に限定されないが、一般的には溶質の溶解度、解離度、液の粘度等を考慮して選択され、高導電率でかつ高電位窓の電解液であることが望ましい。   Moreover, the electrode laminated body 5 is immersed in the non-aqueous electrolyte. As the nonaqueous electrolytic solution used in the present invention, a known electrolytic solution used for an electric double layer capacitor or a lithium ion capacitor can be used. The electrolytic solution is not particularly limited, but is generally selected in consideration of the solubility of solute, the degree of dissociation, the viscosity of the solution, etc., and is preferably an electrolytic solution having a high conductivity and a high potential window.

非水電解液の例を挙げると、環状炭酸エステル、鎖状炭酸エステル、鎖状カルボン酸エステル、環状カルボン酸エステル、含リン有機溶媒、含硫黄有機溶媒等が挙げられる。   Examples of the non-aqueous electrolyte include cyclic carbonates, chain carbonates, chain carboxylic esters, cyclic carboxylic esters, phosphorus-containing organic solvents, sulfur-containing organic solvents, and the like.

また、非水電解液中には、第4級アンモニウム塩またはリチウム塩からなる群から選ばれる一種以上の電解質が含有されている。第4級アンモニウムイオンやリチウムイオンを生成し得る電解質であれば、あらゆる第4級アンモニウム塩またはリチウム塩を用いることができる。第4級アンモニウム塩およびリチウム塩からなる群より選ばれる一種以上を用いることがより好ましい。特に、エチルトリメチルアンモニウムBF4、ジエチルジメチルアンモニウムBF4、トリエチルメチルアンモニウムBF4、テトラエチルアンモニウムBF4、スピロ−(N,N’)−ビピロリジニウムBF4、エチルトリメチルアンモニウムPF6、ジエチルジメチルアンモニウムPF6、トリエチルメチルアンモニウムPF6、テトラエチルアンモニウムPF6、スピロ−(N,N’)−ビピロリジニウムPF6、テトラメチルアンモニウムビス(オキサラト)ボレート、エチルトリメチルアンモニウムビス(オキサラト)ボレート、ジエチルジメチルアンモニウムビス(オキサラト)ボレート、トリエチルメチルアンモニウムビス(オキサラト)ボレート、テトラエチルアンモニウムビス(オキサラト)ボレート、スピロ−(N,N’)−ビピロリジニウムビス(オキサラト)ボレート、テトラメチルアンモニウムジフルオロオキサラトボレート、エチルトリメチルアンモニウムジフルオロオキサラトボレート、ジエチルジメチルアンモニウムジフルオロオキサラトボレート、トリエチルメチルアンモニウムジフルオロオキサラトボレート、テトラエチルアンモニウムジフルオロオキサラトボレート、スピロ−(N,N’)−ビピロリジニウムジフルオロオキサラトボレート、LiBF4、LiPF6、リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等が好ましい。 The non-aqueous electrolyte contains one or more electrolytes selected from the group consisting of quaternary ammonium salts or lithium salts. Any quaternary ammonium salt or lithium salt can be used as long as the electrolyte can generate quaternary ammonium ions and lithium ions. It is more preferable to use one or more selected from the group consisting of quaternary ammonium salts and lithium salts. In particular, ethyl trimethyl ammonium BF 4 , diethyl dimethyl ammonium BF 4 , triethyl methyl ammonium BF 4 , tetraethyl ammonium BF 4 , spiro- (N, N ′)-bipyrrolidinium BF 4 , ethyl trimethyl ammonium PF 6 , diethyl dimethyl ammonium PF 6 , triethylmethylammonium PF 6, tetraethylammonium PF 6, spiro - (N, N ') - bipyrrolidinium PF 6, tetramethyl ammonium bis (oxalato) borate, trimethyl ammonium bis (oxalato) borate, diethyl-dimethyl ammonium bis (oxalato) borate , Triethylmethylammonium bis (oxalato) borate, tetraethylammonium bis (oxalato) borate, spiro- (N, N ′) Bipyrrolidinium bis (oxalato) borate, tetramethylammonium difluorooxalatoborate, ethyltrimethylammonium difluorooxalatoborate, diethyldimethylammonium difluorooxalatoborate, triethylmethylammonium difluorooxalatoborate, tetraethylammonium difluorooxalatoborate, spiro -(N, N ′)-bipyrrolidinium difluorooxalatoborate, LiBF 4 , LiPF 6 , lithium bis (oxalato) borate, lithium difluorooxalatoborate and the like are preferable.

非水電解液中の電解質の濃度は、電解液による内部抵抗を小さくするため少なくとも0.1mol/L以上とすることが好ましく、0.5〜1.5mol/Lの範囲内とすることがさらに好ましい。   The concentration of the electrolyte in the nonaqueous electrolytic solution is preferably at least 0.1 mol / L or more in order to reduce the internal resistance due to the electrolytic solution, and more preferably in the range of 0.5 to 1.5 mol / L. preferable.

電極積層体5は、リード端子6が引き出された状態で外装7により気密に収容される。外装7は、後述する押圧板8からの外部応力によって電気化学素子1を電極の積層方向に押圧する場合には、応力が電極積層体5に有効かつ均一に加わるよう可撓性材料からなることが好ましい。具体的には、外装7はアルミラミネートフィルムであることが好ましい。   The electrode laminate 5 is hermetically accommodated by the exterior 7 in a state where the lead terminal 6 is pulled out. The exterior 7 is made of a flexible material so that the stress is effectively and uniformly applied to the electrode stack 5 when the electrochemical element 1 is pressed in the electrode stacking direction by an external stress from the pressing plate 8 described later. Is preferred. Specifically, the exterior 7 is preferably an aluminum laminate film.

電気化学素子1は、二枚の押圧板8によって挟持され100〜400N/cm、好ましくは200〜400N/cmの範囲の所定の面圧で電極の積層方向に押圧される。電気化学素子1を所定の面圧に押圧しこれを維持する方法の例として、二枚の押圧板8によって挟持された電気化学素子1をプレス機で所定の面圧になるまで押圧し、所定の面圧に達した状態で、押圧板8を締結部材9によって固定する方法が挙げられる。 The electrochemical element 1 is sandwiched between two pressing plates 8 and pressed in the electrode stacking direction with a predetermined surface pressure in the range of 100 to 400 N / cm 2 , preferably 200 to 400 N / cm 2 . As an example of a method of pressing and maintaining the electrochemical element 1 at a predetermined surface pressure, the electrochemical element 1 sandwiched between two pressing plates 8 is pressed by a press machine until a predetermined surface pressure is obtained, A method of fixing the pressing plate 8 with the fastening member 9 in a state in which the surface pressure is reached.

押圧板8はアルミニウムやステンレス等の金属板であればよく、締結部材9はボルトとナットであればよい。   The pressing plate 8 may be a metal plate such as aluminum or stainless steel, and the fastening member 9 may be a bolt and a nut.

なお、本実施形態の例では、電気化学素子1の押圧手段として押圧板8と締結部材9を用いているが、これに限定されず、電気化学素子1に対する公知の押圧手段を広く用いることができる。また、電極の積層方向に三個重ねた電気化学素子1を二枚の押圧板8によって押圧しているが、この電気化学素子1の個数は特に限定されず、一個であっても三個より多くてもよい。   In the example of the present embodiment, the pressing plate 8 and the fastening member 9 are used as pressing means for the electrochemical element 1, but the invention is not limited to this, and well-known pressing means for the electrochemical element 1 can be widely used. it can. In addition, three electrochemical elements 1 stacked in the electrode stacking direction are pressed by two pressing plates 8, but the number of the electrochemical elements 1 is not particularly limited, and even if it is one, more than three. There may be many.

次に本発明の電気化学素子にかかる一実施例を説明する。   Next, an example according to the electrochemical device of the present invention will be described.

1.電極の作製 1. Electrode fabrication

比表面積が1800m/gの活性炭1.0g、ケッチェンブラック0.1g、ポリフッ化ビニリデン0.1gを乳鉢にて混合・混練し、これにN−メチル−2−ピロリドンを適量添加し、粘度調整を行ったスラリー溶液を得た。このスラリー溶液を0.04mm厚のアルミ箔上に片面塗布し、その後120℃、2時間乾燥し、電極層厚0.08mmの片面電極シートを作製した。また、0.05mm厚のアルミ箔上に両面塗布し、その後120℃、2時間乾燥し、電極層厚0.08mmの両面電極シートを作製した。得られた電極シートを規定の大きさに成形し、片面活性炭電極および両面活性炭電極とした。このとき、各電極シートの一端に凸形状を有する外部電極引き出しタブを設けた。 1.0 g of activated carbon having a specific surface area of 1800 m 2 / g, 0.1 g of ketjen black, and 0.1 g of polyvinylidene fluoride are mixed and kneaded in a mortar, and an appropriate amount of N-methyl-2-pyrrolidone is added to the mixture. An adjusted slurry solution was obtained. This slurry solution was applied on one side onto a 0.04 mm thick aluminum foil and then dried at 120 ° C. for 2 hours to produce a single side electrode sheet with an electrode layer thickness of 0.08 mm. Moreover, it applied on both surfaces on 0.05 mm thickness aluminum foil, and then dried at 120 ° C. for 2 hours to prepare a double-sided electrode sheet having an electrode layer thickness of 0.08 mm. The obtained electrode sheet was formed into a prescribed size to obtain a single-sided activated carbon electrode and a double-sided activated carbon electrode. At this time, an external electrode lead-out tab having a convex shape was provided at one end of each electrode sheet.

2.電気化学素子の作製 2. Production of electrochemical devices

負極3の片面活性炭電極を両端に、両面活性炭電極を二枚の活性炭電極間に厚さ0.05mm厚のセルロース製セパレータ4を挟みながら規定枚数積層し電極積層体5とした。正極2および負極3ごとに、外部電極引き出しタブを集合し、各々にアルミ板からなるリード端子6を超音波溶接により取り付けた。この電極積層体5の外周に厚さ0.05mm厚のセルロース製セパレータ4を巻き回し、アルミラミネートフィルムからなる外装7内に電極積層体5を収容した。このとき、外装7の四辺ある端部のうち一辺に開口部を設けるように外装7の端部を熱シールした。   The electrode laminate 5 was obtained by laminating a specified number of sheets with the single-side activated carbon electrode of the negative electrode 3 at both ends and the double-sided activated carbon electrode sandwiching a cellulose separator 4 having a thickness of 0.05 mm between the two activated carbon electrodes. External electrode lead-out tabs were assembled for each of the positive electrode 2 and the negative electrode 3, and lead terminals 6 made of an aluminum plate were attached to each by ultrasonic welding. A cellulose separator 4 having a thickness of 0.05 mm was wound around the outer periphery of the electrode laminate 5, and the electrode laminate 5 was accommodated in an exterior 7 made of an aluminum laminate film. At this time, the edge part of the exterior 7 was heat-sealed so that an opening might be provided in one side among the edge parts with four sides of the exterior 7.

そして、外装7から引き出した正極2と負極3のリード端子6とを導線で結線することにより短絡し、減圧雰囲気下で120℃、10時間乾燥した。   And it short-circuited by connecting with the lead wire 6 of the positive electrode 2 and the negative electrode 3 which were pulled out from the exterior 7 with a conducting wire, and it dried at 120 degreeC for 10 hours in the pressure reduction atmosphere.

そして、非水電解液として1M−トリエチルメチルアンモニウムBF4/プロピレンカーボネートを外装7内に注入し、電極積層体5に真空含浸した。そして、外装7の開口部を熱シールして密封することにより、電気化学素子1を作製した。なお、本実施例における電気化学素子1は、電気二重層キャパシタである。
〔実施例1〕
Then, 1M-triethylmethylammonium BF 4 / propylene carbonate as a non-aqueous electrolyte was injected into the exterior 7 and the electrode laminate 5 was vacuum impregnated. And the electrochemical element 1 was produced by heat-sealing and sealing the opening part of the exterior 7. In addition, the electrochemical element 1 in a present Example is an electrical double layer capacitor.
[Example 1]

電気化学素子1を二枚の押圧板8によって挟持し、プレス機で100N/cmの面圧で電極の積層方向に押圧した。そして、二枚の押圧板8を締結部材9によって固定することにより、実施例1の電気化学素子1を得た。 The electrochemical element 1 was sandwiched between two pressing plates 8 and pressed in the electrode stacking direction with a surface pressure of 100 N / cm 2 with a press machine. And the electrochemical element 1 of Example 1 was obtained by fixing the two press plates 8 with the fastening member 9. FIG.

〔実施例2〕 [Example 2]

電気化学素子1を二枚の押圧板8によって挟持し、プレス機で400N/cmの面圧で電極の積層方向に押圧した。そして、二枚の押圧板8を締結部材9によって固定することにより、実施例2の電気化学素子1を得た。
〔比較例〕
The electrochemical element 1 was sandwiched between the two pressing plates 8 and pressed in the electrode stacking direction with a surface pressure of 400 N / cm 2 with a press machine. And the electrochemical element 1 of Example 2 was obtained by fixing the two press plates 8 with the fastening member 9. FIG.
[Comparative Example]

電気化学素子1を二枚の押圧板8によって挟持し、プレス機で30N/cmの面圧で電極の積層方向に押圧した。そして、二枚の押圧板8を締結部材9によって固定することにより、比較例の電気化学素子1を得た。 The electrochemical element 1 was sandwiched between two pressing plates 8 and pressed in the electrode stacking direction with a surface pressure of 30 N / cm 2 with a press. And the electrochemical element 1 of the comparative example was obtained by fixing the two press plates 8 with the fastening member 9. FIG.

3.評価試験 3. Evaluation test

上記のようにして作製した実施例1、2および比較例の電気化学素子1に対し、60℃の恒温槽中で2.7Vの電圧を200時間印加した。   A voltage of 2.7 V was applied for 200 hours in a thermostat at 60 ° C. to the electrochemical devices 1 of Examples 1 and 2 and Comparative Example produced as described above.

実施例1、2および比較例の電気化学素子1におけるガス発生量と静電容量の変化を表1に示す。ガス発生量は評価試験前後の電気化学素子1の体積変化量により評価した。また、ガス発生量および静電容量の変化は電圧印加前の初期値を100として評価した。   Table 1 shows changes in gas generation amount and capacitance in the electrochemical elements 1 of Examples 1 and 2 and Comparative Example. The amount of gas generation was evaluated based on the volume change of the electrochemical device 1 before and after the evaluation test. Further, changes in gas generation amount and capacitance were evaluated with the initial value before voltage application being 100.

Figure 2013171965
Figure 2013171965

表1に示す結果から明らかなように、本発明により得られた実施例1、2の電気化学素子1は、ガス発生による体積膨張が抑制され、静電容量の低下の少ない優れた効果を有していることが判る。   As is apparent from the results shown in Table 1, the electrochemical devices 1 of Examples 1 and 2 obtained according to the present invention have excellent effects in which volume expansion due to gas generation is suppressed and capacitance is not lowered significantly. You can see that

なお、今回開示された実施例では、電気化学素子1として電気二重層キャパシタを例に用いたが、その他の電気化学素子1として、活性炭粉末を含む分極性電極を正極のみに用いるリチウムイオンキャパシタ等の所謂ハイブリッドキャパシタにおいても、本発明の効果を奏することができる。   In the embodiment disclosed this time, an electric double layer capacitor is used as an example of the electrochemical element 1, but as other electrochemical element 1, a lithium ion capacitor using a polarizable electrode containing activated carbon powder only for the positive electrode, etc. The so-called hybrid capacitor can also achieve the effects of the present invention.

1 電気化学素子
2 正極
3 負極
4 セパレータ
5 電極積層体
6 リード端子
7 外装
8 押圧板
9 締結部材
DESCRIPTION OF SYMBOLS 1 Electrochemical element 2 Positive electrode 3 Negative electrode 4 Separator 5 Electrode laminated body 6 Lead terminal 7 Exterior 8 Pressing plate 9 Fastening member

Claims (3)

活性炭粉末を含む分極性電極を集電体上に形成した電極を正極または負極の少なくとも一方に用いるとともに、正極と負極との間にセパレータを介在させて巻回または積層してなる電極積層体と、該電極積層体に含浸された非水電解液とを備える電気化学素子であって、
前記非水電解液は、第四級アンモニウム塩またはリチウム塩の群から選ばれる少なくとも一種の電解質を含み、前記電極積層体は100〜400N/cmで押圧されることを特徴とする電気化学素子。
An electrode laminate in which a polarizable electrode containing activated carbon powder is formed on a current collector and used as at least one of a positive electrode and a negative electrode, and is wound or laminated with a separator interposed between the positive electrode and the negative electrode; An electrochemical device comprising a non-aqueous electrolyte impregnated in the electrode laminate,
The non-aqueous electrolyte includes at least one electrolyte selected from the group of quaternary ammonium salts or lithium salts, and the electrode laminate is pressed at 100 to 400 N / cm 2. .
前記セパレータは、セルロース繊維を主成分とし、複合材として少なくとも一種のポリオレフィンを含む、請求項1に記載の電気化学素子。   The electrochemical device according to claim 1, wherein the separator includes cellulose fiber as a main component and at least one polyolefin as a composite material. 前記ポリオレフィンは、ポリエチレンまたはポリプロピレンである、請求項2に記載の電気化学素子。   The electrochemical device according to claim 2, wherein the polyolefin is polyethylene or polypropylene.
JP2012034734A 2012-02-21 2012-02-21 Electrochemical element Pending JP2013171965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012034734A JP2013171965A (en) 2012-02-21 2012-02-21 Electrochemical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012034734A JP2013171965A (en) 2012-02-21 2012-02-21 Electrochemical element

Publications (1)

Publication Number Publication Date
JP2013171965A true JP2013171965A (en) 2013-09-02

Family

ID=49265739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012034734A Pending JP2013171965A (en) 2012-02-21 2012-02-21 Electrochemical element

Country Status (1)

Country Link
JP (1) JP2013171965A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380519A (en) * 1989-08-23 1991-04-05 Isuzu Motors Ltd Electric double layer capacitor
JPH04240707A (en) * 1991-01-25 1992-08-28 Nec Corp Electric dipole layer capacitor
JPH04243114A (en) * 1991-01-17 1992-08-31 Nec Corp Electric double-layer capacitor
JPH04278510A (en) * 1991-03-07 1992-10-05 Nec Corp Chip type electric double layer capacitor
JP2000223375A (en) * 1999-01-28 2000-08-11 Tokin Ceramics Corp Electric double layer capacitor and manufacture thereof
JP2009289766A (en) * 2006-09-29 2009-12-10 Japan Pionics Co Ltd Electric double-layer capacitor module
JP2011035373A (en) * 2009-07-10 2011-02-17 Tomoegawa Paper Co Ltd Separator for power storage device
WO2012017954A1 (en) * 2010-08-04 2012-02-09 ダイセル化学工業株式会社 Non-woven fabric comprising cellulose fibers and process for production thereof, and separator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380519A (en) * 1989-08-23 1991-04-05 Isuzu Motors Ltd Electric double layer capacitor
JPH04243114A (en) * 1991-01-17 1992-08-31 Nec Corp Electric double-layer capacitor
JPH04240707A (en) * 1991-01-25 1992-08-28 Nec Corp Electric dipole layer capacitor
JPH04278510A (en) * 1991-03-07 1992-10-05 Nec Corp Chip type electric double layer capacitor
JP2000223375A (en) * 1999-01-28 2000-08-11 Tokin Ceramics Corp Electric double layer capacitor and manufacture thereof
JP2009289766A (en) * 2006-09-29 2009-12-10 Japan Pionics Co Ltd Electric double-layer capacitor module
JP2011035373A (en) * 2009-07-10 2011-02-17 Tomoegawa Paper Co Ltd Separator for power storage device
WO2012017954A1 (en) * 2010-08-04 2012-02-09 ダイセル化学工業株式会社 Non-woven fabric comprising cellulose fibers and process for production thereof, and separator

Similar Documents

Publication Publication Date Title
US20120050950A1 (en) Lithium ion capacitor
KR20160048187A (en) Low resistance ultracapacitor electrode and manufacturing method thereof
JP2012004491A (en) Power storage device
JP5172719B2 (en) Electric storage device and manufacturing method thereof
JP2012119091A (en) Nonaqueous electrolytic solution, electrode, and electrochemical device comprising nonaqueous electrolytic solution and electrode
JP2011077156A (en) Storage device
JP2013140825A (en) Laminate type electrical storage element
JPWO2012127991A1 (en) Power storage device
US20140085773A1 (en) Hybrid electrochemical energy storage device
JP2019145628A (en) Active material particles and power storage device including the same
JP2010287641A (en) Energy storage device
CN111864211B (en) Electrode for secondary battery, method for manufacturing same, and secondary battery
KR102168368B1 (en) Electrolyte for electrochemical device and electrochemical device
JP2008282838A (en) Hybrid electric double layer capacitor
US20120050949A1 (en) Lithium ion capacitor and method of manufacturing the same
WO2016067851A1 (en) Electricity storage device and method for manufacturing electricity storage device
JP2012028366A (en) Power storage device
JP2012064820A (en) Manufacturing method for lithium ion capacitor
JP2008244378A (en) Capacitor device
JP6718905B2 (en) Lithium ion capacitor
JP2013074283A (en) Electric power storage device
JP2013171965A (en) Electrochemical element
JP4826649B2 (en) Electric double layer capacitor
JP2010141065A (en) Electric storage device
JP5852881B2 (en) LAMINATE TYPE ELECTRIC STORAGE ELEMENT AND MANUFACTURING METHOD THEREOF

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160311