JP5172719B2 - Electric storage device and manufacturing method thereof - Google Patents

Electric storage device and manufacturing method thereof Download PDF

Info

Publication number
JP5172719B2
JP5172719B2 JP2009003001A JP2009003001A JP5172719B2 JP 5172719 B2 JP5172719 B2 JP 5172719B2 JP 2009003001 A JP2009003001 A JP 2009003001A JP 2009003001 A JP2009003001 A JP 2009003001A JP 5172719 B2 JP5172719 B2 JP 5172719B2
Authority
JP
Japan
Prior art keywords
electrode
welding
metal
storage device
holding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009003001A
Other languages
Japanese (ja)
Other versions
JP2010161244A (en
Inventor
靖生 鈴木
琢司 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2009003001A priority Critical patent/JP5172719B2/en
Publication of JP2010161244A publication Critical patent/JP2010161244A/en
Application granted granted Critical
Publication of JP5172719B2 publication Critical patent/JP5172719B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric storage device with high output, excellent in vibration resistance. <P>SOLUTION: The electric storage device 11 includes a rectangular metal can 21, a first electrode 31, a second electrode 41, and a separator 46. A laminated electrode group 51 is constituted by laminating the first electrode 31, the second electrode 41 and the separator 46, and housed in the metal can 21. A conductive metal-made connecting plate 52 having an area equal to that of a bottom part 23 of the can 21 is welded to the inner surface of the bottom part 23. A cylindrical part 22 of the can 21 includes a swollen part 24 on a surface which is not located in the thickness direction of the laminated electrode group 51. A holding member 61 formed of an insulating rigid body, which holds the electrode group 51 while pressing the connecting plate 52, is disposed within an internal space 25 of the swollen part 24. The first electrode 31 is connected to the connecting plate 52. A conductive metal-made lid body 54 is fixed to an opening of the can 21 through a gasket 53. The second electrode 31 is connected to the lid body 54. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、大容量・高電圧の蓄電デバイス及びその製造方法に関するものである。   The present invention relates to a large-capacity, high-voltage storage device and a method for manufacturing the same.

太陽光発電や風力発電等の負荷平準化装置、コンピュータ等に代表される電子機器の瞬時電圧低下対策装置、電気自動車やハイブリッドカーのエネルギー回生装置などのような蓄電システムにおいては、エネルギー容量が大きくてかつ急速充放電が可能な蓄電デバイスが必要とされる。そして、このような用途に有望な蓄電デバイスの一種として、近年、非水系蓄電デバイスが注目されている(例えば、特許文献1参照)。特に輸送機などに使用する非水系蓄電デバイスにおいては、高出力性に加えて耐振動性が要求されている。   Energy storage systems such as load leveling devices such as photovoltaic power generation and wind power generation, instantaneous voltage drop countermeasure devices for electronic devices such as computers, and energy regeneration devices for electric vehicles and hybrid cars have a large energy capacity. In addition, an electricity storage device capable of rapid charge / discharge is required. In recent years, non-aqueous power storage devices have attracted attention as a kind of power storage devices that are promising for such applications (see, for example, Patent Document 1). In particular, non-aqueous power storage devices used for transport aircraft and the like are required to have vibration resistance in addition to high output performance.

現在、この種の蓄電デバイスの主流は、電気二重層機能を使用したキャパシタ(いわゆる電気二重層キャパシタ)である。しかしながら、電気二重層キャパシタは、容量が小さくて電圧が低いため、大容量・高電圧を実現しようとすると装置全体が大型化するという問題がある。そこで、この問題を解決しうる新たな蓄電デバイスとして、リチウムプレドープ型リチウムイオンキャパシタが提案されている。このタイプのリチウムイオンキャパシタでは、リチウムの吸蔵及び放出が可能な材料からなる負極電極を用い、その負極電極にリチウムをプレドープすることにより、負極電位を下げている。その結果、電池として高い電圧を得ることができ、これによりエネルギー容量も大きくすることができるようになっている。   Currently, the mainstream of this type of power storage device is a capacitor using an electric double layer function (so-called electric double layer capacitor). However, since the electric double layer capacitor has a small capacity and a low voltage, there is a problem that the whole apparatus becomes large when it is intended to realize a large capacity and a high voltage. Therefore, a lithium pre-doped lithium ion capacitor has been proposed as a new electricity storage device that can solve this problem. In this type of lithium ion capacitor, a negative electrode made of a material capable of inserting and extracting lithium is used, and the negative electrode potential is lowered by pre-doping lithium into the negative electrode. As a result, it is possible to obtain a high voltage as a battery, thereby increasing the energy capacity.

リチウムイオンキャパシタとしては、平板状の正極、負極及びセパレータを積層してなる積層電極群を備えたものや、あるいは、正極、負極及びセパレータをロール状に巻回してなる巻回電極群を備えたものが従来知られている。また、積層電極群や巻回電極群を収容する容器としては、扁平状のアルミラミネート容器や円筒状の金属容器などが従来使用されている(例えば、特許文献1,2参照)。   As a lithium ion capacitor, it was equipped with the laminated electrode group which laminated | stacked a flat positive electrode, a negative electrode, and a separator, or the winding electrode group formed by winding a positive electrode, a negative electrode, and a separator in roll shape. Things are known in the art. Moreover, as a container which accommodates a laminated electrode group and a wound electrode group, a flat aluminum laminated container, a cylindrical metal container, etc. are conventionally used (for example, refer patent document 1, 2).

特開2000−90892号公報JP 2000-90892 A 特開2006−12702号公報JP 2006-12702 A

積層電極群をアルミラミネート容器内に収容してなるリチウムイオンキャパシタの場合、平板状ないし直方体状に形成した積層電極群を特に問題なく容器内に収容することが可能であり、また、正極集電体や負極集電体といった外部引き出し用の導体をそれぞれ太く形成することも可能である。よって、高出力用途に適した構造とすることができるという利点がある。ところが、アルミラミネート容器は柔らかくて剛性がないため、機器に対して確実に固定することができず、優れた耐振動性を付与することが難しいという欠点がある。   In the case of a lithium ion capacitor in which a laminated electrode group is accommodated in an aluminum laminated container, the laminated electrode group formed in a flat plate shape or a rectangular parallelepiped shape can be accommodated in the container without any particular problem. It is also possible to thicken the external lead conductors such as the body and the negative electrode current collector. Therefore, there is an advantage that a structure suitable for high output use can be obtained. However, since the aluminum laminate container is soft and not rigid, it cannot be reliably fixed to the device, and it is difficult to impart excellent vibration resistance.

また、巻回電極群を金属容器内に収容してなるリチウムイオンキャパシタの場合、容器にある程度剛性があることから、機器に対して確実に固定することができ、耐振動性用途に適した構造とすることができるという利点がある。ところが、巻回電極群は平板状ないし直方体状に形成することができないため、正極集電体や負極集電体といった外部引き出し用の導体をそれぞれ太く形成することができず、優れた高出力性を付与することが難しいという欠点がある。より具体的にいうと、一端に開口部を有する金属容器を採用してこれに巻回電極群を収容する場合、構造上、底部側に位置する集電体と底部との接続を図ることができない。よって、開口部側に正極集電体及び負極集電体の2つを配置せざるを得なくなり、各々について太さの制約を受けてしまうことになる。   In addition, in the case of a lithium ion capacitor in which the wound electrode group is housed in a metal container, the container has a certain degree of rigidity, so that it can be securely fixed to the device and has a structure suitable for vibration resistance applications. There is an advantage that can be. However, since the wound electrode group cannot be formed in a flat plate shape or a rectangular parallelepiped shape, it is not possible to form the conductors for external lead such as the positive electrode current collector and the negative electrode current collector thick, and excellent high output performance. There is a drawback that it is difficult to impart. More specifically, when a metal container having an opening at one end is employed and the wound electrode group is accommodated therein, the current collector located on the bottom side can be connected to the bottom on the structure. Can not. Therefore, the positive electrode current collector and the negative electrode current collector have to be arranged on the opening side, and the thickness of each of them is restricted.

本発明は上記の課題に鑑みてなされたものであり、その目的は、高出力でかつ耐振動性に優れた蓄電デバイス及びその製造方法を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide a power storage device having high output and excellent vibration resistance, and a method for manufacturing the same.

上記課題を解決するための手段[1]〜[7]を以下に列挙する。
[1]筒部の一端に開口部を有しかつ前記筒部の他端に底部を有する角型金属缶と、第1電極を第1集電体上に形成した構造の第1極と、前記第1電極とは電気的性質が異なる第2電極を第2集電体上に形成した構造の第2極と、前記第1極及び前記第2極の間に介在されたセパレータとを備え、前記第1極、前記第2極及び前記セパレータを積層することにより積層電極群が構成され、その積層電極群が電解質とともに前記角型金属缶内に収容されている蓄電デバイスにおいて、前記底部と等しい面積を有する導電金属製の接続板が前記底部の内面に溶接され、前記筒部において前記積層電極群の厚さ方向に位置していない面に膨出部が設けられ、前記膨出部の内部空間に、絶縁性の剛体からなり前記接続板を押さえかつ前記積層電極群を保持する保持部材が配置され、前記第1極が前記接続板に接続され、前記角型金属缶の前記開口部に絶縁性のガスケットを介して固定された導電金属製の蓋体に前記第2極が接続されていることを特徴とする蓄電デバイス。
Means [1] to [7] for solving the above problems are listed below.
[1] A rectangular metal can having an opening at one end of the cylindrical portion and a bottom at the other end of the cylindrical portion, a first electrode having a structure in which the first electrode is formed on the first current collector, A second electrode having a structure in which a second electrode having a different electrical property from the first electrode is formed on a second current collector; and a separator interposed between the first electrode and the second electrode. In the electric storage device in which a laminated electrode group is configured by laminating the first electrode, the second electrode, and the separator, and the laminated electrode group is housed in the rectangular metal can together with an electrolyte, A conductive metal connecting plate having an equal area is welded to the inner surface of the bottom portion, and a bulging portion is provided on a surface of the cylindrical portion that is not positioned in the thickness direction of the stacked electrode group. The inner space is made of an insulating rigid body and holds the connection plate and holds the laminated electrode group. A holding member is disposed, the first pole is connected to the connection plate, and the second is attached to the conductive metal lid fixed to the opening of the square metal can via an insulating gasket. An electricity storage device characterized in that poles are connected.

従って、手段1に記載の発明によると、積層電極群を構成する第1極の第1集電体を接続板に接続し、第2極の第2集電体を導電金属製の蓋体に接続する構造を採用したことで、外部引き出し用の導体である各々の集電体の太さが制約を受けにくくなり、高出力用途に適した構造とすることができる。また、積層電極群を剛性のある角型金属缶内に収容する構造を採用した結果、機器に対して確実に固定可能となり、耐振動性用途に適した構造とすることができる。しかも、角型金属缶における所定面に設けた膨出部の内部空間に絶縁性の剛体からなる保持部材を配置し、この保持部材により接続板を押さえかつ積層電極群を保持した結果、これら部材のガタツキや位置ずれが防止される。このことも耐振動性の向上に寄与している。   Therefore, according to the invention described in the means 1, the first current collector of the first electrode constituting the stacked electrode group is connected to the connection plate, and the second current collector of the second electrode is connected to the lid made of conductive metal. By adopting a connection structure, the thickness of each current collector, which is a conductor for external lead-out, is less likely to be restricted, and a structure suitable for high output use can be obtained. Further, as a result of adopting a structure in which the laminated electrode group is accommodated in a rigid rectangular metal can, it can be securely fixed to the device, and a structure suitable for vibration-resistant applications can be obtained. Moreover, as a result of disposing a holding member made of an insulating rigid body in the internal space of the bulging portion provided on a predetermined surface of the square metal can, holding the connection plate and holding the laminated electrode group by this holding member, these members Rattling and misalignment are prevented. This also contributes to the improvement of vibration resistance.

[2]前記筒部の前記開口部側から見たときの前記膨出部の形状が半円形状であることを特徴とする上記手段1に記載の蓄電デバイス。   [2] The electricity storage device according to the above means 1, wherein the shape of the bulging portion when viewed from the opening side of the cylindrical portion is a semicircular shape.

従って、手段2に記載の発明によると、例えば角型金属缶の筒部の外周面全周にわたってかしめ加工を施すような場合において、筒部の外周面に角部がなくなることから、加工が行いやすくなる。   Therefore, according to the invention described in the means 2, for example, in the case where caulking is performed over the entire outer periphery of the cylindrical portion of the square metal can, the outer peripheral surface of the cylindrical portion is free of corners, so that processing is performed. It becomes easy.

[3]前記保持部材は一対の柱状部の基端部を平板部の両端に連結してなる構造を有するとともに、前記筒部の前記開口部側から見たときの前記柱状部の形状が半円形状であることを特徴とする上記手段2に記載の蓄電デバイス。   [3] The holding member has a structure in which base ends of a pair of columnar portions are connected to both ends of a flat plate portion, and the shape of the columnar portions when viewed from the opening side of the cylindrical portion is half. The electricity storage device according to the above means 2, which has a circular shape.

従って、手段3に記載の発明によると、膨出部の内部空間に配置された半円形状の柱状部によって、接続板が押さえられかつ積層電極群が保持されることで、これら部材のガタツキや位置ずれが防止される。また、一対設けた膨出部の各々に柱状部を配置したいような場合であっても、1個の保持部材を用いれば足りるため、部品点数の増加を回避することができる。   Therefore, according to the invention described in the means 3, the connection plate is pressed and the laminated electrode group is held by the semicircular columnar portion arranged in the internal space of the bulging portion, so that these members are not loose. Misalignment is prevented. Moreover, even if it is a case where a columnar part should be arrange | positioned to each of the bulging part provided in one pair, since it is sufficient to use one holding member, the increase in a number of parts can be avoided.

[4]前記第1極は、前記第1電極であって炭素材料からなる正極電極を、前記第1集電体である正極集電体上に形成した構造の正極であり、前記第2極は、前記第2電極であってリチウムの吸蔵及び放出が可能な材料からなる負極電極を、前記第2集電体である負極集電体上に形成した構造の負極であり、前記電解質がリチウム塩を含んでおり、前記保持部材において前記積層電極群に臨む箇所に、プレドープ用のリチウム金属を支持するための導電金属製のリチウム金属支持体が配置され、前記リチウム金属支持体が、前記負極に電気的に接続され、または、前記正極及び前記負極から絶縁された給電用端子に電気的に接続されていることを特徴とする上記手段1乃至3のいずれか1項に記載の蓄電デバイス。   [4] The first electrode is a positive electrode having a structure in which a positive electrode made of a carbon material as the first electrode is formed on a positive electrode current collector that is the first current collector, and the second electrode Is a negative electrode having a structure in which a negative electrode made of a material capable of occluding and releasing lithium is formed on the negative electrode current collector that is the second current collector, and the electrolyte is lithium. A lithium metal support made of a conductive metal for supporting lithium metal for pre-doping is disposed at a position of the holding member facing the laminated electrode group in the holding member, and the lithium metal support is the negative electrode The electrical storage device according to any one of the above means 1 to 3, wherein the electrical storage device is electrically connected to a power feeding terminal electrically insulated from the positive electrode and the negative electrode.

従って、手段4に記載の発明によると、リチウム金属を導電金属製のリチウム金属支持体に支持させたことにより、リチウム金属の取り扱い性が向上することに加え、負極電極に対して当該リチウム金属を早く均一にドーピングすることができる。また、保持部材において積層電極群に臨む箇所に、リチウム金属支持体に支持させたプレドープ用のリチウム金属を配置したことにより、積層電極群を構成する負極電極に対して当該リチウム金属が移動しやすくなり、ドーピングを効率よく行うことが可能となる。さらに、給電用端子を備えるものとした場合には、その給電用端子を介してリチウム金属支持体に給電を行うことができるため、ドーピングをいっそう効率よく行うことが可能となる。   Therefore, according to the invention described in the means 4, the lithium metal is supported on the lithium metal support made of conductive metal, so that the handleability of the lithium metal is improved and the lithium metal is added to the negative electrode. Fast and uniform doping is possible. Further, by arranging the pre-doping lithium metal supported by the lithium metal support at the location facing the laminated electrode group in the holding member, the lithium metal can easily move relative to the negative electrode constituting the laminated electrode group. Thus, the doping can be performed efficiently. Furthermore, when the power supply terminal is provided, power can be supplied to the lithium metal support through the power supply terminal, so that doping can be performed more efficiently.

[5]上記手段1乃至4のいずれか1項に記載の蓄電デバイスの製造方法であって、前記積層電極群の前記第1極を前記接続板に溶接しかつ前記第2極を前記蓋体に溶接する電極溶接工程と、前記電極溶接工程を経た前記積層電極群を前記角型金属缶内に収容する収容工程と、前記収容工程の後、前記角型金属缶における前記膨出部の内部空間に配置した前記保持部材で前記接続板を押圧しつつ、前記角型金属缶の外側から溶接を行うことにより、前記接続板を前記底部の内面に溶接する接続板溶接工程とを含むことを特徴とする蓄電デバイスの製造方法。   [5] The method for manufacturing an electricity storage device according to any one of the above means 1 to 4, wherein the first electrode of the stacked electrode group is welded to the connection plate, and the second electrode is connected to the lid. An electrode welding process for welding to the metal, a housing process for housing the laminated electrode group that has undergone the electrode welding process in the square metal can, and an interior of the bulging portion in the square metal can after the housing process A connection plate welding step of welding the connection plate to the inner surface of the bottom portion by welding from the outside of the rectangular metal can while pressing the connection plate with the holding member disposed in the space. A method for manufacturing an electricity storage device.

従って、手段5に記載の発明によると、収容工程に先立ち電極溶接工程を行うことで、積層電極群の第1極を接続板に確実にかつ容易に接続し、第2極を蓋体に確実にかつ容易に接続することができる。続く接続板溶接工程では、膨出部の内部空間に配置した保持部材で接続板を押圧することにより、角型金属缶の外側から溶接を行うことが可能となるため、積層電極群収容状態であっても接続板を底部の内面に確実にかつ容易に接続することができる。よって、底部側に位置する第1極と角型金属缶の底部とを電気的に接続することができる。   Therefore, according to the invention described in the means 5, by performing the electrode welding process prior to the housing process, the first electrode of the laminated electrode group is reliably and easily connected to the connection plate, and the second electrode is securely connected to the lid. And can be connected easily. In the subsequent connecting plate welding process, it is possible to perform welding from the outside of the rectangular metal can by pressing the connecting plate with a holding member arranged in the internal space of the bulging portion. Even if it exists, it can connect reliably and easily to the inner surface of a bottom part. Therefore, the first pole located on the bottom side and the bottom of the square metal can can be electrically connected.

[6]上記手段4に記載の蓄電デバイスの製造方法であって、前記積層電極群の前記正極を前記接続板に溶接しかつ前記負極を前記蓋体に溶接する電極溶接工程と、前記電極溶接工程を経た前記積層電極群を前記角型金属缶内に収容する収容工程と、前記収容工程の後、前記角型金属缶における前記膨出部の内部空間に配置した前記保持部材で前記接続板を押圧しつつ、前記角型金属缶の外側から溶接を行うことにより、前記接続板を前記底部の内面に溶接する接続板溶接工程とを含み、少なくとも前記接続板溶接工程よりも前の段階にて、プレドープ用のリチウム金属を支持した状態の導電金属製のリチウム金属支持体を前記保持部材において前記積層電極群に臨む箇所に配置するとともに、前記リチウム金属支持体を、前記負極に電気的に接続しておくリチウム金属配置工程を行い、前記接続板溶接工程よりも後の段階にて、前記角型金属缶内に前記電解質を注入する電解質注入工程を行うことを特徴とする蓄電デバイスの製造方法。   [6] The method for manufacturing an electricity storage device according to the above means 4, wherein an electrode welding step of welding the positive electrode of the laminated electrode group to the connection plate and welding the negative electrode to the lid, and the electrode welding The connecting plate is configured to accommodate the laminated electrode group that has undergone a process in the rectangular metal can, and the holding member disposed in the internal space of the bulging portion in the rectangular metal can after the accommodating process. A connection plate welding process for welding the connection plate to the inner surface of the bottom by performing welding from the outside of the rectangular metal can while pressing the metal plate, at least before the connection plate welding process. A conductive metal lithium metal support in a state of supporting a pre-doping lithium metal at a position facing the laminated electrode group in the holding member, and electrically connecting the lithium metal support to the negative electrode. A process for arranging a lithium metal to be connected, and an electrolyte injection process for injecting the electrolyte into the square metal can at a stage after the connection plate welding process is performed. Method.

従って、手段6に記載の発明によると、収容工程に先立ち電極溶接工程を行うことで、積層電極群の正極を接続板に確実にかつ容易に接続し、負極を蓋体に確実にかつ容易に接続することができる。続く接続板溶接工程では、膨出部の内部空間に配置した保持部材で接続板を押圧することにより、角型金属缶の外側から溶接を行うことが可能となるため、積層電極群収容状態であっても接続板を底部の内面に確実にかつ容易に接続することができる。よって、底部側に位置する正極と角型金属缶の底部とを電気的に接続することができる。そしてこの後、リチウム金属配置工程及び電解質注入工程を行うことで、負極に対するリチウム金属のプレドープを確実に行い、蓄電デバイスを得ることができる。   Therefore, according to the invention described in the means 6, by performing the electrode welding process prior to the housing process, the positive electrode of the laminated electrode group is reliably and easily connected to the connection plate, and the negative electrode is reliably and easily connected to the lid. Can be connected. In the subsequent connecting plate welding process, it is possible to perform welding from the outside of the rectangular metal can by pressing the connecting plate with a holding member arranged in the internal space of the bulging portion. Even if it exists, it can connect reliably and easily to the inner surface of a bottom part. Therefore, the positive electrode located on the bottom side and the bottom of the square metal can can be electrically connected. Then, by performing the lithium metal placement step and the electrolyte injection step, lithium metal pre-doping with respect to the negative electrode can be performed reliably, and an electricity storage device can be obtained.

[7]上記手段4に記載の蓄電デバイスの製造方法であって、前記積層電極群の前記正極を前記接続板に溶接しかつ前記負極を前記蓋体に溶接する電極溶接工程と、前記電極溶接工程を経た前記積層電極群を前記角型金属缶内に収容する収容工程と、前記収容工程の後、前記角型金属缶における前記膨出部の内部空間に配置した前記保持部材で前記接続板を押圧しつつ、前記角型金属缶の外側から溶接を行うことにより、前記接続板を前記底部の内面に溶接する接続板溶接工程とを含み、少なくとも前記接続板溶接工程よりも前の段階にて、プレドープ用のリチウム金属を支持した状態の導電金属製のリチウム金属支持体を前記保持部材において前記積層電極群に臨む箇所に配置するとともに、前記リチウム金属支持体を、前記正極及び前記負極から絶縁された給電用端子に電気的に接続しておくリチウム金属配置工程を行い、前記接続板溶接工程の後の段階にて、前記角型金属缶内に前記電解質を注入する電解質注入工程、前記給電用端子に正の電圧を印加しかつ前記負極に負の電圧を印加して給電を行う給電工程及び前記給電用端子が非露出となるように絶縁体で封止する封止工程をこの順序で行うことを特徴とする蓄電デバイスの製造方法。   [7] The method of manufacturing an electricity storage device according to the above means 4, wherein an electrode welding step of welding the positive electrode of the laminated electrode group to the connection plate and welding the negative electrode to the lid, and the electrode welding The connecting plate is configured to accommodate the laminated electrode group that has undergone a process in the rectangular metal can, and the holding member disposed in the internal space of the bulging portion in the rectangular metal can after the accommodating process. A connection plate welding process for welding the connection plate to the inner surface of the bottom by performing welding from the outside of the rectangular metal can while pressing the metal plate, at least before the connection plate welding process. A lithium metal support made of a conductive metal in a state of supporting a pre-doping lithium metal at a position facing the laminated electrode group in the holding member, and the lithium metal support is formed with the positive electrode and the lithium metal support. An electrolyte injection step of performing a lithium metal arrangement step of electrically connecting to a power feeding terminal insulated from a pole, and injecting the electrolyte into the rectangular metal can at a stage after the connection plate welding step A power feeding step in which a positive voltage is applied to the power feeding terminal and a negative voltage is applied to the negative electrode for power feeding, and a sealing step in which the power feeding terminal is sealed with an insulator so that the power feeding terminal is not exposed. A method for manufacturing an electricity storage device, which is performed in this order.

従って、手段7に記載の発明によると、収容工程に先立ち電極溶接工程を行うことで、積層電極群の正極を接続板に確実にかつ容易に接続し、負極を蓋体に確実にかつ容易に接続することができる。続く接続板溶接工程では、膨出部の内部空間に配置した保持部材で接続板を押圧することにより、角型金属缶の外側から溶接を行うことが可能となるため、積層電極群収容状態であっても接続板を底部の内面に確実にかつ容易に接続することができる。よって、底部側に位置する正極と角型金属缶の底部とを電気的に接続することができる。そしてこの後、リチウム金属配置工程、電解質注入工程、給電工程等を行うことで、負極に対するリチウム金属のプレドープをいっそう効率よく確実に行うことができる。   Therefore, according to the invention described in the means 7, by performing the electrode welding process prior to the housing process, the positive electrode of the laminated electrode group is reliably and easily connected to the connection plate, and the negative electrode is reliably and easily connected to the lid. Can be connected. In the subsequent connecting plate welding process, it is possible to perform welding from the outside of the rectangular metal can by pressing the connecting plate with a holding member arranged in the internal space of the bulging portion. Even if it exists, it can connect reliably and easily to the inner surface of a bottom part. Therefore, the positive electrode located on the bottom side and the bottom of the square metal can can be electrically connected. After that, by performing a lithium metal placement step, an electrolyte injection step, a power feeding step, and the like, lithium metal pre-doping to the negative electrode can be performed more efficiently and reliably.

以上詳述したように、請求項1〜4に記載の発明によると、高出力でかつ耐振動性に優れた蓄電デバイスを提供することができる。また、請求項5〜7に記載の発明によると、上記の優れた蓄電デバイスを確実にかつ容易に得ることができる蓄電デバイスの製造方法を提供することができる。   As described in detail above, according to the inventions described in claims 1 to 4, it is possible to provide a power storage device that has high output and excellent vibration resistance. Moreover, according to invention of Claim 5-7, the manufacturing method of the electrical storage device which can obtain said outstanding electrical storage device reliably and easily can be provided.

第1実施形態のリチウムイオンキャパシタを底部側から見たときの斜視図。The perspective view when the lithium ion capacitor of 1st Embodiment is seen from the bottom part side. 同リチウムイオンキャパシタを蓋体側から見たときの斜視図。The perspective view when the lithium ion capacitor is viewed from the lid side. (a)は同リチウムイオンキャパシタの断面図、(b)は(a)のA−A線断面図、(c)は接続板の平面図。(A) is sectional drawing of the lithium ion capacitor, (b) is the sectional view on the AA line of (a), (c) is a top view of a connection board. (a)は第1実施形態における保持部材の正面図、(b)はその平面図、(c)は変形例1における保持部材の正面図、(d)はその平面図、(e)は変形例2における保持部材の正面図、(f)はその平面図。(A) is the front view of the holding member in 1st Embodiment, (b) is the top view, (c) is the front view of the holding member in the modification 1, (d) is the top view, (e) is a deformation | transformation. The front view of the holding member in Example 2, (f) is the top view. 同リチウムイオンキャパシタの製造手順を説明するための図。The figure for demonstrating the manufacturing procedure of the lithium ion capacitor. 同リチウムイオンキャパシタの製造手順を説明するための図。The figure for demonstrating the manufacturing procedure of the lithium ion capacitor. 同リチウムイオンキャパシタの製造手順を説明するための図。The figure for demonstrating the manufacturing procedure of the lithium ion capacitor. (a)は第2実施形態のリチウムイオンキャパシタの断面図、(b)は(a)のB−B線断面図。(A) is sectional drawing of the lithium ion capacitor of 2nd Embodiment, (b) is the BB sectional drawing of (a). 第3実施形態のリチウムイオンキャパシタの断面図。Sectional drawing of the lithium ion capacitor of 3rd Embodiment. 別の実施形態のリチウムイオンキャパシタの断面図。Sectional drawing of the lithium ion capacitor of another embodiment. 別の実施形態のリチウムイオンキャパシタの断面図。Sectional drawing of the lithium ion capacitor of another embodiment.

[第1実施形態]
以下、本発明の蓄電デバイスを、リチウムイオンキャパシタに具体化した一実施の形態を図1〜図7に基づき詳細に説明する。図1,図2は本実施形態のリチウムイオンキャパシタ11の斜視図である。図3(a)は上記リチウムイオンキャパシタ11の断面図、図3(b)はそのA−A線断面図、図3(c)は接続板の平面図である。図4(a)は実施形態における保持部材の正面図、図4(b)はその平面図、図4(c)は変形例1における保持部材の正面図、図4(d)はその平面図、図4(e)は変形例2における保持部材の正面図、図4(f)はその平面図である。図5〜図7はリチウムイオンキャパシタ11の製造手順を説明するための図である。
[First Embodiment]
Hereinafter, an embodiment in which the electricity storage device of the present invention is embodied in a lithium ion capacitor will be described in detail with reference to FIGS. 1 and 2 are perspective views of the lithium ion capacitor 11 of the present embodiment. 3A is a cross-sectional view of the lithium ion capacitor 11, FIG. 3B is a cross-sectional view taken along line AA, and FIG. 3C is a plan view of the connection plate. 4A is a front view of the holding member in the embodiment, FIG. 4B is a plan view thereof, FIG. 4C is a front view of the holding member in the first modification, and FIG. 4D is a plan view thereof. FIG. 4E is a front view of the holding member in the second modification, and FIG. 4F is a plan view thereof. 5-7 is a figure for demonstrating the manufacturing procedure of the lithium ion capacitor 11. FIG.

図3に示されるように、本実施形態のリチウムイオンキャパシタ11は、正極31(第1極)、負極41(第2極)及びセパレータ46を複数枚ずつ積層してなる積層電極群51を備えている。なお、正極31や負極41の枚数は図示されたものに限定されず、これよりも多くても少なくてもよい。   As shown in FIG. 3, the lithium ion capacitor 11 of this embodiment includes a stacked electrode group 51 in which a plurality of positive electrodes 31 (first electrodes), negative electrodes 41 (second electrodes), and separators 46 are stacked. ing. The number of positive electrodes 31 and negative electrodes 41 is not limited to that shown in the figure, and may be more or less than this.

正極31は、炭素材料からなる正極電極(第1電極;図示略)を正極集電体33(第1集電体)上に形成した構造を有している。   The positive electrode 31 has a structure in which a positive electrode (first electrode; not shown) made of a carbon material is formed on a positive electrode current collector 33 (first current collector).

正極電極を形成する炭素材料の例としては、適度な粉砕処理が施された各種の天然黒鉛、合成黒鉛、膨張黒鉛等の黒鉛材料、炭素化処理されたメソカーボンマイクロビーズ、メソフェーズピッチ系炭素繊維、気相成長炭素繊維、熱分解炭素、石油コークス、ピッチコークス及びニードルコークス等の炭素材料に黒鉛化処理を施した合成黒鉛材料、またはこれらの混合物等が挙げられる。これらの炭素材料は、必要に応じて導電剤及びバインダとともに混練され、成形される。   Examples of carbon materials that form the positive electrode include various natural graphites that have been appropriately pulverized, synthetic graphite, graphite materials such as expanded graphite, mesocarbon microbeads that have been carbonized, and mesophase pitch-based carbon fibers. And synthetic graphite materials obtained by subjecting carbon materials such as vapor-grown carbon fiber, pyrolytic carbon, petroleum coke, pitch coke and needle coke to graphitization, or a mixture thereof. These carbon materials are kneaded and molded together with a conductive agent and a binder as necessary.

上記導電剤としては各種黒鉛材料やカーボンブラックが挙げられるが、なかでも導電性カーボンブラック類を使用することが好ましい。その具体例としては、チャンネルブラック、オイルファーネスブラック、ランプブラック、サーマルブラック、アセチレンブラック、ケッチェンブラック等があるが、液体保持力に優れかつ電気抵抗が低いという点でアセチレンブラックを選択することが特に好ましい。   Examples of the conductive agent include various graphite materials and carbon black. Among them, it is preferable to use conductive carbon blacks. Specific examples include channel black, oil furnace black, lamp black, thermal black, acetylene black, ketjen black, etc., but it is possible to select acetylene black in terms of excellent liquid retention and low electrical resistance. Particularly preferred.

上記バインダとしては、有機電解質に対して不溶のものであればよく、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)等のフッ素系樹脂、カルボキシメチルセルロースのアルカリ金属塩またはアンモニウム塩、ポリイミド樹脂、ポリアミド樹脂、ポリアクリル酸及びポリアクリル酸ソーダ等の有機高分子化合物が好適である。   The binder is not particularly limited as long as it is insoluble in the organic electrolyte. For example, a fluorine-based resin such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyvinyl fluoride (PVF), or carboxymethylcellulose. Organic polymer compounds such as alkali metal salts or ammonium salts, polyimide resins, polyamide resins, polyacrylic acid and sodium polyacrylate are suitable.

上記正極集電体33は、正極電極を支持しつつ集電を行うための部材であって、例えばアルミニウム、ステンレス等のような導電性金属箔あるいは導電性金属板の使用が好適である。ステンレスは、リチウムと合金化せず、かつ、電気化学的酸化が起こりにくいという点で、好適な材料であるといえる。   The positive electrode current collector 33 is a member for collecting current while supporting the positive electrode. For example, a conductive metal foil such as aluminum or stainless steel or a conductive metal plate is preferably used. Stainless steel is a suitable material in that it is not alloyed with lithium and is less susceptible to electrochemical oxidation.

正極集電体33は容器である角型金属缶21内に収容可能な大きさの矩形平板状に形成されており、その一部がセパレータ46の下辺側から突出している。   The positive electrode current collector 33 is formed in a rectangular flat plate size that can be accommodated in the rectangular metal can 21 as a container, and a part of the positive electrode current collector 33 protrudes from the lower side of the separator 46.

負極41は、リチウムイオンの吸蔵及び放出が可能な材料からなる負極電極(第2電極;図示略)を負極集電体43(第2集電体)上に形成した構造を有している。ここで、リチウムイオンを供給する金属としては、リチウム金属単体のみを指すばかりでなく、リチウム−アルミニウム合金のように、少なくともリチウムを含有し、リチウムイオンを供給することができる物質全てを広く指している。   The negative electrode 41 has a structure in which a negative electrode (second electrode; not shown) made of a material capable of inserting and extracting lithium ions is formed on a negative electrode current collector 43 (second current collector). Here, the metal supplying lithium ions not only refers to a single lithium metal, but widely refers to all substances that contain lithium and can supply lithium ions, such as lithium-aluminum alloys. Yes.

負極電極はリチウムイオンの吸蔵及び放出が可能な材料によって形成される。その具体例としては、リチウム金属、リチウム−アルミニウム合金、黒鉛材料、易黒鉛化性炭素材料、難黒鉛化性炭素材料、五酸化ニオブ(Nb)、チタン酸リチウム(LiTi12)、一酸化珪素(SiO)、一酸化錫(SnO)、錫とリチウムとの複合酸化物(LiSnO)、リチウム・リン・ホウ素の複合酸化物(例えばLiP0.40.62.9)、等がある。これらのなかでも、黒鉛材料、易黒鉛化性炭素材料、難黒鉛化性炭素材料等の炭素材料は、可逆性が高い等の性質を有するため、負極材料として好適である。 The negative electrode is formed of a material capable of inserting and extracting lithium ions. Specific examples thereof include lithium metal, lithium-aluminum alloy, graphite material, graphitizable carbon material, non-graphitizable carbon material, niobium pentoxide (Nb 2 O 5 ), lithium titanate (Li 4 Ti 5 O). 12 ), silicon monoxide (SiO), tin monoxide (SnO), a composite oxide of tin and lithium (Li 2 SnO 3 ), a composite oxide of lithium, phosphorus and boron (for example, LiP 0.4 B 0. 6 O 2.9 ). Among these, carbon materials such as graphite materials, graphitizable carbon materials, and non-graphitizable carbon materials are suitable as negative electrode materials because they have properties such as high reversibility.

負極電極を形成する炭素材料の例としては、適度な粉砕処理が施された各種の天然黒鉛、合成黒鉛、膨張黒鉛等の黒鉛材料、炭素化処理されたメソカーボンマイクロビーズ、メソフェーズピッチ系炭素繊維、気相成長炭素繊維、熱分解炭素、石油コークス、ピッチコークス及びニードルコークス等の炭素材料、またはこれらの混合物等がある。ここに列挙した負極電極用の炭素材料は、必要に応じて導電剤及びバインダとともに混練され、成形される。なお、導電剤及びバインダとしては、正極電極の説明の際に例示した材料をそのまま使用することができる。   Examples of carbon materials that form the negative electrode include various natural graphites that have been appropriately pulverized, graphite materials such as synthetic graphite, expanded graphite, mesocarbon microbeads that have been carbonized, and mesophase pitch carbon fibers And carbon materials such as vapor grown carbon fiber, pyrolytic carbon, petroleum coke, pitch coke and needle coke, or a mixture thereof. The carbon materials for negative electrodes listed here are kneaded and molded together with a conductive agent and a binder as necessary. As the conductive agent and binder, the materials exemplified in the description of the positive electrode can be used as they are.

負極41及び正極31の間に介在されるセパレータ46は、有機電解質や電極活物質等に対して耐久性があり、連通気孔を有する非導電性の多孔体等からなる。通常、ガラス繊維、ポリエチレン、ポリプロピレン等からなる布、不織布あるいは多孔体が用いられる。セパレータ46の厚さは、キャパシタの内部抵抗を小さくするために薄いほうが好ましいが、有機電解質の保持量、流通性、強度等を勘案して適宜設定することができる。   The separator 46 interposed between the negative electrode 41 and the positive electrode 31 is durable to an organic electrolyte, an electrode active material, and the like, and is made of a non-conductive porous body having continuous air holes. Usually, a cloth, a nonwoven fabric or a porous body made of glass fiber, polyethylene, polypropylene or the like is used. The thickness of the separator 46 is preferably thin in order to reduce the internal resistance of the capacitor, but can be set as appropriate in consideration of the amount of retained organic electrolyte, flowability, strength, and the like.

かかるセパレータ46には通常液状の有機電解質が含浸されているが、漏液を防止するためにゲル状または固体状にした有機電解質を用いることもできる。ここで前記有機電解質は、ドーピングされうるリチウムイオンを生成しうる化合物を、非プロトン性有機溶媒に溶解させてなるものである。上記化合物としては有機リチウム塩を挙げることができ、その好適例としては、LiPFと表記されるリチウムヘキサフルオロフォスフェート、LiN(CFSOと表記されるリチウムビス(トリフルオロメタンスルホン)イミド、LiN(CSOと表記されるリチウムビス(ペンタフルオロエタンスルホン)イミド等がある。また、上記非プロトン性有機溶媒の好適例としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、γ−ブチロラクトン(GBL)、ビニレンカーボネート(VC)、アセトニトリル(AN)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート(MPC)及びこれらの誘導体、あるいはそれらの混合溶媒等がある。 The separator 46 is usually impregnated with a liquid organic electrolyte, but a gel or solid organic electrolyte may be used to prevent leakage. Here, the organic electrolyte is obtained by dissolving a compound capable of generating a doped lithium ion in an aprotic organic solvent. Examples of the compound include organic lithium salts. Preferred examples thereof include lithium hexafluorophosphate represented as LiPF 6 and lithium bis (trifluoromethanesulfone) represented as LiN (CF 3 SO 2 ) 2. Examples include imide and lithium bis (pentafluoroethanesulfone) imide represented by LiN (C 2 F 5 SO 2 ) 2 . Moreover, as a suitable example of the said aprotic organic solvent, propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), (gamma) -butyrolactone (GBL), vinylene carbonate (VC), acetonitrile (AN), for example ), Dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC) and derivatives thereof, or a mixed solvent thereof.

負極集電体43は負極電極を支持しつつ集電を行うための部材であって、例えば銅、ニッケル、ステンレス等のような導電性金属箔あるいは導電性金属板の使用が好適である。   The negative electrode current collector 43 is a member for collecting current while supporting the negative electrode. For example, a conductive metal foil such as copper, nickel, stainless steel, or a conductive metal plate is preferably used.

負極集電体43は角型金属缶21内に収容可能な大きさの矩形平板状に形成されており、その一部がセパレータ46の上辺側から突出している。   The negative electrode current collector 43 is formed in a rectangular flat plate size that can be accommodated in the rectangular metal can 21, and a part thereof protrudes from the upper side of the separator 46.

図1〜図3に示されるように、本実施形態のリチウムイオンキャパシタ11は、上記の積層電極群51を収容するための容器である角型金属缶21を備えている。この角型金属缶21は、筒部22の一端に開口部を有しかつ筒部22の他端に底部23を有している。この開口部には、合成樹脂等からなる絶縁性のガスケット53を介して蓋体54がかしめ加工により固定されている。角型金属缶21の筒部22の外周面には、かしめ加工により生じた溝部26が形成されている。蓋体54は板状本体54aとその板状本体54aから突出するタブ部54bとを有する導電金属製の部材であり、特にタブ部54bは負極41についての外部引き出し用の導体の一部として機能している。そして、このような蓋体54の板状本体54aの下面側には、負極集電体43が溶接により固定されている(図3(a)参照)。   As shown in FIGS. 1 to 3, the lithium ion capacitor 11 of the present embodiment includes a rectangular metal can 21 that is a container for housing the laminated electrode group 51. The rectangular metal can 21 has an opening at one end of the cylindrical portion 22 and a bottom 23 at the other end of the cylindrical portion 22. A lid 54 is fixed to the opening by caulking through an insulating gasket 53 made of synthetic resin or the like. On the outer peripheral surface of the cylindrical portion 22 of the square metal can 21, a groove portion 26 generated by caulking is formed. The lid 54 is a member made of conductive metal having a plate-like main body 54a and a tab portion 54b protruding from the plate-like main body 54a. In particular, the tab portion 54b functions as a part of a conductor for leading out the negative electrode 41. doing. And the negative electrode collector 43 is being fixed to the lower surface side of the plate-shaped main body 54a of such a cover body 54 by welding (refer Fig.3 (a)).

底部23は筒部22に対して接合されていてもよいが、同じ導電金属材料を用いて一体形成されていてもよい。底部23の内面側には、その底部23とほぼ等しい形状及び面積を有する導電金属製の接続板52が設置されるとともに、底部23の内面に対して溶接により固定されている(図1にて示す溶接部27を参照)。   Although the bottom part 23 may be joined with respect to the cylinder part 22, it may be integrally formed using the same electroconductive metal material. On the inner surface side of the bottom portion 23, a conductive metal connecting plate 52 having a shape and an area substantially equal to the bottom portion 23 is installed and fixed to the inner surface of the bottom portion 23 by welding (in FIG. 1). (See weld 27 shown).

ここで、筒部22は一対の大きな平行面を有しており、これら平行面に対して平行になるようにして積層電極群51が角型金属缶21内に収容されるようになっている。筒部22において積層電極群51の厚さ方向に位置していない面には、一対の膨出部24が設けられている。膨出部24の形状は特に限定されないが、本実施形態では筒部22の開口部側から見たときの形状が半円形状の膨出部24が形成されている。これら膨出部24の内側には内部空間25が存在しており、その内部空間25には保持部材61が配置されている。図4(a),(b)に示す本実施形態の保持部材61は、絶縁性の剛体からなる部材であって、角型金属缶21への収容状態において接続板52を押さえかつ積層電極群51を保持する役割を果たしている。絶縁性の剛体であれば任意の材料(合成樹脂やセラミックなど)を使用することができるが、コスト性や加工性などの観点からエポキシ等の合成樹脂の使用が好ましい。ちなみに、ここでいう「剛体」とは、例えばガスケット用の合成樹脂材料と同等以上の強度を有するものなどを指す。保持部材61は筒部22の開口部側から見たときの形状が半円形状である一対の柱状部62を有している。一対の柱状部62は互いの平坦面62aを対向させた状態で離間配置されるとともに、各々の基端部が平板部63の両端に連結されている。平板部63には、正極集電体33の幅に相当する幅を有する矩形状の切欠部64が形成されており、その切欠部64には正極集電体33が配置されるようになっている。正極集電体33は上述した接続板52の上面に対して溶接により固定されている(図3(a)参照)。   Here, the cylindrical portion 22 has a pair of large parallel surfaces, and the laminated electrode group 51 is accommodated in the rectangular metal can 21 so as to be parallel to the parallel surfaces. . A pair of bulging portions 24 are provided on the surface of the cylindrical portion 22 that is not positioned in the thickness direction of the multilayer electrode group 51. Although the shape of the bulging portion 24 is not particularly limited, in the present embodiment, the bulging portion 24 having a semicircular shape when viewed from the opening side of the cylindrical portion 22 is formed. An internal space 25 exists inside the bulging portions 24, and a holding member 61 is disposed in the internal space 25. The holding member 61 of this embodiment shown in FIGS. 4 (a) and 4 (b) is a member made of an insulating rigid body, and holds the connection plate 52 in the accommodated state in the rectangular metal can 21 and is a laminated electrode group. It plays the role of holding 51. Any material (synthetic resin, ceramic, etc.) can be used as long as it is an insulating rigid body, but it is preferable to use a synthetic resin such as epoxy from the viewpoint of cost and workability. Incidentally, the “rigid body” referred to here refers to a material having a strength equal to or higher than that of a synthetic resin material for gaskets, for example. The holding member 61 has a pair of columnar portions 62 having a semicircular shape when viewed from the opening side of the cylindrical portion 22. The pair of columnar portions 62 are spaced apart with the flat surfaces 62 a facing each other, and the respective base end portions are connected to both ends of the flat plate portion 63. The flat plate portion 63 is formed with a rectangular cutout portion 64 having a width corresponding to the width of the positive electrode current collector 33, and the positive electrode current collector 33 is arranged in the cutout portion 64. Yes. The positive electrode current collector 33 is fixed to the upper surface of the connection plate 52 by welding (see FIG. 3A).

図4(c),図4(d)は変形例1の保持部材61Aを示し、この保持部材61Aにおいては切欠部64の代わりに矩形状の貫通溝65が形成されている。図4(e),(f)は変形例2の保持部材61Bを示し、これにおいては連結部分である平板部63が省略されている。   4 (c) and 4 (d) show a holding member 61A according to Modification 1. In this holding member 61A, a rectangular through groove 65 is formed instead of the notch 64. FIG. 4E and 4F show a holding member 61B according to the second modification, in which the flat plate portion 63 that is a connecting portion is omitted.

次に、本実施形態のリチウムイオンキャパシタ11を製造する方法の一例を図5〜図7に基づいて説明する。   Next, an example of a method for manufacturing the lithium ion capacitor 11 of the present embodiment will be described with reference to FIGS.

まず、正極31、負極41及びセパレータ46を積層してなる積層電極群51を作製して準備しておく(図5参照)。本実施形態では正極31の正極集電体33及び負極41の負極集電体43をそれぞれ反対方向に突出させているため、それぞれ十分な太さに形成することが可能となっている。勿論、このことは高出力化に寄与している。   First, the laminated electrode group 51 formed by laminating the positive electrode 31, the negative electrode 41, and the separator 46 is prepared and prepared (see FIG. 5). In the present embodiment, the positive electrode current collector 33 of the positive electrode 31 and the negative electrode current collector 43 of the negative electrode 41 are protruded in opposite directions, so that each can be formed with a sufficient thickness. Of course, this contributes to higher output.

正極31の作製は下記の手順で行う。まず、炭素材料、導電剤及びバインダを含む混合スラリーを用意し、これを正極集電体33である厚さ20μmのアルミニウム箔に塗布して、正極電極を形成する。正極電極の乾燥及びプレスを行った後、金型で所定サイズに裁断して、正極31とする。負極41の作製は下記の手順で行う。まず、炭素材料及びバインダを含む混合スラリーを用意し、これを負極集電体43である厚さ12μmの銅箔に塗布して、負極電極を形成する。次いで、負極電極の乾燥及びプレスを行った後、金型で所定サイズに裁断して、負極41とする。そして、正極31及び負極41間にセパレータ46を介在させて積層し、積層電極群51とする。   The positive electrode 31 is manufactured according to the following procedure. First, a mixed slurry containing a carbon material, a conductive agent and a binder is prepared, and this is applied to an aluminum foil having a thickness of 20 μm which is the positive electrode current collector 33 to form a positive electrode. After the positive electrode is dried and pressed, the positive electrode 31 is formed by cutting into a predetermined size with a mold. The negative electrode 41 is produced by the following procedure. First, a mixed slurry containing a carbon material and a binder is prepared, and this is applied to a copper foil having a thickness of 12 μm which is the negative electrode current collector 43 to form a negative electrode. Next, after drying and pressing the negative electrode, the negative electrode 41 is formed by cutting into a predetermined size with a mold. Then, a separator 46 is interposed between the positive electrode 31 and the negative electrode 41 to form a laminated electrode group 51.

次に、積層電極群51における正極31の各々の正極集電体33を接続板52に溶接して固定し、かつ負極41の各々の負極集電体43を蓋体54に溶接して固定する(電極溶接工程;図6参照)。溶接の方法としては特に限定されず、例えばアーク溶接、電子ビーム溶接、レーザービーム溶接、抵抗溶接、超音波溶接などの従来周知の手法を任意に選択することができる。いずれの溶接法を採用した場合であっても、収容工程に先立ち電極溶接工程を行うことで、正極集電体33の接続や負極集電体43の接続を確実にかつ容易に行うことができる。なお、正極集電体33の溶接及び負極集電体43の溶接は、どちらを先に行ってもよい。   Next, each positive electrode current collector 33 of the positive electrode 31 in the laminated electrode group 51 is fixed by welding to the connection plate 52, and each negative electrode current collector 43 of the negative electrode 41 is fixed by welding to the lid 54. (Electrode welding process; see FIG. 6). The welding method is not particularly limited, and conventionally known methods such as arc welding, electron beam welding, laser beam welding, resistance welding, and ultrasonic welding can be arbitrarily selected. Even if any welding method is adopted, the positive electrode current collector 33 and the negative electrode current collector 43 can be reliably and easily connected by performing the electrode welding process prior to the housing process. . Either the positive electrode current collector 33 or the negative electrode current collector 43 may be welded first.

次に、上記積層電極群51に対して保持部材61を配置する。より詳細には、保持部材61の平板部63に形成された切欠部64に正極集電体33を位置させるようにして、積層電極群51の下面と接続板52の上面との間に平板部63を挟み込む。この場合、保持部材61における一対の柱状部62が積層電極群51の側面に配置されるとともに、柱状部62の平坦面62aが積層電極群51の側面を臨む状態となる。また、蓋体54の板状本体54aの外周部を包囲するようにして、上記積層電極群51に対してガスケット53を配置する。図6によると、ガスケット53の下面が一対の柱状部62の先端面に当接して支持されている。従って、本実施形態の保持部材61は結果的にガスケット53を支持する台座としての役割も果たしている。なお、ガスケット53や保持部材61は電極溶接工程を行う前に配置してもよい。   Next, the holding member 61 is disposed with respect to the laminated electrode group 51. More specifically, the flat plate portion is disposed between the lower surface of the multilayer electrode group 51 and the upper surface of the connection plate 52 so that the positive electrode current collector 33 is positioned in the notch portion 64 formed in the flat plate portion 63 of the holding member 61. 63 is inserted. In this case, the pair of columnar portions 62 in the holding member 61 are disposed on the side surfaces of the stacked electrode group 51, and the flat surface 62 a of the columnar portions 62 faces the side surfaces of the stacked electrode group 51. Further, a gasket 53 is disposed on the laminated electrode group 51 so as to surround the outer peripheral portion of the plate-shaped main body 54 a of the lid 54. According to FIG. 6, the lower surface of the gasket 53 is supported in contact with the front end surfaces of the pair of columnar portions 62. Accordingly, the holding member 61 of this embodiment also plays a role as a pedestal that supports the gasket 53 as a result. In addition, you may arrange | position the gasket 53 and the holding member 61 before performing an electrode welding process.

次に、所定形状の角型金属缶21を準備しておき、電極溶接工程を経た図6の状態の積層電極群51を、接続板52のある側を下側にして角型金属缶21内に収容する(収容工程)。収容後において接続板52は角型金属缶21の底部23の内面に接した状態で配置される。また、角型金属缶21における一対の膨出部24の内部空間25には、保持部材61の有する一対の柱状部62が配置される。そしてこの後、保持部材61に下向きの力を加えて接続板52を底部23の内面側に押圧しつつ、底部23の外面側に抵抗溶接用電極81を接触させて角型金属缶21の外側から溶接を行う(接続板溶接工程;図7参照)。その結果、接続板52を底部23の内面に溶接して固定することで、積層電極群51の正極31が接続板52を介して角型金属缶21に電気的に接続される。この場合、抵抗溶接に代えて、アーク溶接、電子ビーム溶接、のレーザービーム溶接、超音波溶接などを行ってもよい。本実施形態によれば、積層電極群収容状態であっても保持部材61で接続板52を押圧可能なため、角型金属缶21の外側から溶接を行うことができ、それゆえ接続板52を確実にかつ容易に接続することができる。   Next, a rectangular metal can 21 having a predetermined shape is prepared, and the laminated electrode group 51 in the state of FIG. 6 that has undergone the electrode welding process is placed in the rectangular metal can 21 with the connection plate 52 side facing down. (Receiving process). After the housing, the connection plate 52 is disposed in contact with the inner surface of the bottom 23 of the square metal can 21. In addition, a pair of columnar portions 62 of the holding member 61 are disposed in the internal space 25 of the pair of bulging portions 24 in the square metal can 21. Thereafter, a downward force is applied to the holding member 61 to press the connection plate 52 against the inner surface side of the bottom portion 23, and the resistance welding electrode 81 is brought into contact with the outer surface side of the bottom portion 23, so that the outer side of the rectangular metal can 21. Welding is performed (connection plate welding process; see FIG. 7). As a result, the connecting plate 52 is welded and fixed to the inner surface of the bottom portion 23, whereby the positive electrode 31 of the laminated electrode group 51 is electrically connected to the square metal can 21 through the connecting plate 52. In this case, arc welding, electron beam welding, laser beam welding, ultrasonic welding, or the like may be performed instead of resistance welding. According to the present embodiment, since the connection plate 52 can be pressed by the holding member 61 even in the stacked electrode group accommodation state, welding can be performed from the outside of the rectangular metal can 21. The connection can be made reliably and easily.

次に、筒部22の開口部付近をその外周面全体にわたってかしめ加工することにより、ガスケット53を介して蓋体54を当該開口部に固定し、角型金属缶21を封口する。本実施形態では、膨出部24が半円状であり筒部22の外周面に角部がないことから、かしめ加工を比較的容易に行うことができる。さらに、図示しない穴を介して真空引きを行いつつ電解質を注入し、角型金属缶21内に電解質を確実に満たすようにして、図1に示すリチウムイオンキャパシタ11を完成させる。   Next, by crimping the vicinity of the opening of the cylindrical portion 22 over the entire outer peripheral surface, the lid body 54 is fixed to the opening through the gasket 53, and the rectangular metal can 21 is sealed. In this embodiment, since the bulging part 24 is semicircular and there is no corner | angular part in the outer peripheral surface of the cylinder part 22, a crimping process can be performed comparatively easily. Further, the electrolyte is injected while evacuating through a hole (not shown), and the rectangular metal can 21 is surely filled with the electrolyte, thereby completing the lithium ion capacitor 11 shown in FIG.

従って、本実施の形態によれば以下の効果を得ることができる。   Therefore, according to the present embodiment, the following effects can be obtained.

(1)本実施形態のリチウムイオンキャパシタ11では、積層電極群51を構成する正極31の正極集電体33を接続板52に接続し、負極41の負極集電体43を導電金属製の蓋体54に接続する構造を採用している。その結果、外部引き出し用の導体である正極集電体33や負極集電体43の太さが制約を受けにくくなり、高出力用途に適した構造とすることができる。また、積層電極群51を剛性のある角型金属缶21内に収容する構造を採用した結果、機器に対して確実に固定可能となり、耐振動性用途に適した構造とすることができる。しかも、角型金属缶21における所定面に設けた膨出部24の内部空間25に絶縁性の剛体からなる保持部材61を配置し、この保持部材61により接続板52を押さえかつ積層電極群51を保持するようにしている。従って、これら部材のガタツキや位置ずれを防止することができる。このことも耐振動性の向上に寄与している。   (1) In the lithium ion capacitor 11 of the present embodiment, the positive electrode current collector 33 of the positive electrode 31 constituting the multilayer electrode group 51 is connected to the connection plate 52, and the negative electrode current collector 43 of the negative electrode 41 is made of a conductive metal lid. A structure connected to the body 54 is adopted. As a result, the thicknesses of the positive electrode current collector 33 and the negative electrode current collector 43 which are conductors for external lead are less likely to be restricted, and a structure suitable for high output applications can be obtained. Further, as a result of adopting a structure in which the laminated electrode group 51 is accommodated in the rigid rectangular metal can 21, it can be securely fixed to the device, and a structure suitable for vibration-resistant applications can be obtained. In addition, a holding member 61 made of an insulating rigid body is disposed in the internal space 25 of the bulging portion 24 provided on a predetermined surface of the square metal can 21, and the connection plate 52 is pressed by the holding member 61 and the laminated electrode group 51. To keep. Therefore, rattling and displacement of these members can be prevented. This also contributes to the improvement of vibration resistance.

以上のことから、本実施形態によれば、高出力でかつ耐振動性に優れたリチウムイオンキャパシタ11を提供することができる。   From the above, according to the present embodiment, it is possible to provide the lithium ion capacitor 11 having high output and excellent vibration resistance.

(2)本実施形態の保持部材61は、一対の柱状部62の基端部を平板部63の両端に連結してなる構造を有しており、筒部22の開口部側から見たときの柱状部62の形状が半円形状になっている。従って、半円形状の柱状部62によって接続板52が押さえられかつ積層電極群51が保持されることで、これら部材のガタツキや位置ずれが防止される。また、一対設けた膨出部24の各々に柱状部62を配置したいような場合であっても、1個の保持部材61を用いれば足りるため、部品点数の増加を回避することができる。   (2) The holding member 61 of the present embodiment has a structure in which the base end portions of the pair of columnar portions 62 are connected to both ends of the flat plate portion 63, when viewed from the opening side of the cylindrical portion 22. The columnar part 62 has a semicircular shape. Accordingly, the connection plate 52 is pressed by the semicircular columnar portion 62 and the laminated electrode group 51 is held, so that the backlash and displacement of these members are prevented. Moreover, even if it is a case where the columnar part 62 is desired to be arranged in each of the pair of bulging parts 24, since it is sufficient to use one holding member 61, an increase in the number of parts can be avoided.

(3)電極溶接工程、収容工程、接続板溶接工程を順次行う本実施形態の製造方法によれば、高出力でかつ耐振動性に優れた上記の優れたリチウムイオンキャパシタ11を確実にかつ容易に得ることができる。
[第2実施形態]
(3) According to the manufacturing method of this embodiment in which the electrode welding process, the housing process, and the connection plate welding process are sequentially performed, the above-described excellent lithium ion capacitor 11 having high output and excellent vibration resistance is surely and easily obtained. Can get to.
[Second Embodiment]

以下、本発明の蓄電デバイスを、リチウムプレドープ型リチウムイオンキャパシタに具体化した第2実施形態を図8に基づき詳細に説明する。図8(a)は上記リチウムイオンキャパシタ11Aの断面図、図8(b)はそのB−B線断面図である。   Hereinafter, a second embodiment in which the electricity storage device of the present invention is embodied in a lithium pre-doped lithium ion capacitor will be described in detail with reference to FIG. FIG. 8A is a sectional view of the lithium ion capacitor 11A, and FIG. 8B is a sectional view taken along the line BB.

本実施形態のリチウムプレドープ型リチウムイオンキャパシタ11Aは、先に説明した第1実施形態のリチウムイオンキャパシタ11とほぼ共通の同様であるが、以下の点について相違している。即ち、このリチウムイオンキャパシタ11は、角型金属缶21内にプレドープ用のリチウム金属71(例えばリチウム金属箔)をあらかじめ収容した構造となっている。プレドープ用のリチウム金属71は、銅板のような導電金属製のリチウム金属支持体72上に支持されている。リチウム金属71を支持したリチウム金属支持体72は、保持部材61において積層電極群51に臨む箇所、具体的には一対の柱状部62の平坦面62aに配置されている。なお、リチウム金属支持体72は、少なくともプレドープ前に例えば負極集電体43に対して電気的に接続される。   The lithium pre-doped lithium ion capacitor 11A of the present embodiment is substantially the same as the lithium ion capacitor 11 of the first embodiment described above, but differs in the following points. That is, the lithium ion capacitor 11 has a structure in which a lithium metal 71 for pre-doping (for example, a lithium metal foil) is accommodated in a square metal can 21 in advance. The lithium metal 71 for pre-doping is supported on a lithium metal support 72 made of a conductive metal such as a copper plate. The lithium metal support 72 that supports the lithium metal 71 is disposed on the holding member 61 at a location facing the stacked electrode group 51, specifically, on the flat surface 62 a of the pair of columnar portions 62. The lithium metal support 72 is electrically connected to, for example, the negative electrode current collector 43 at least before pre-doping.

以上のような構造のリチウムイオンキャパシタ11Aは、先に説明した第1実施形態の製造手順に準じて製造される。その際、リチウム金属71を支持したリチウム金属支持体72を備える保持部材61を用いて収容工程以降の工程を実施すればよい。そして、製造の最終段階において電解質注入工程を行った後に所定時間保持してプレドープを進行させる。その結果、負極41にリチウムイオンを十分に行き渡らせることができ、プレドープを速やかにかつ確実に進行させることができる。以上の結果、図8に示すリチウムイオンキャパシタ11Aが完成する。なお、プレドープが完了すると、通常、リチウム金属71は溶解して消失してしまう。   The lithium ion capacitor 11A having the above structure is manufactured in accordance with the manufacturing procedure of the first embodiment described above. In that case, what is necessary is just to implement the process after an accommodation process using the holding member 61 provided with the lithium metal support body 72 which supported the lithium metal 71. FIG. Then, after performing the electrolyte injection step in the final stage of manufacture, the pre-doping is advanced by holding for a predetermined time. As a result, lithium ions can be sufficiently distributed to the negative electrode 41, and the pre-doping can proceed promptly and reliably. As a result, the lithium ion capacitor 11A shown in FIG. 8 is completed. When pre-doping is completed, the lithium metal 71 usually dissolves and disappears.

以上説明した第2実施形態であっても、高出力でかつ耐振動性に優れたリチウムイオンキャパシタ11Aを提供することができ、また、上記の優れたリチウムイオンキャパシタ11Aを確実にかつ容易に得ることができる。
[第3実施形態]
Even in the second embodiment described above, the lithium ion capacitor 11A having high output and excellent vibration resistance can be provided, and the above-described excellent lithium ion capacitor 11A can be obtained reliably and easily. be able to.
[Third embodiment]

以下、本発明の蓄電デバイスを、リチウムプレドープ型リチウムイオンキャパシタに具体化した第3実施形態を図9に基づき詳細に説明する。   Hereinafter, a third embodiment in which the electricity storage device of the present invention is embodied in a lithium pre-doped lithium ion capacitor will be described in detail with reference to FIG.

このリチウムイオンキャパシタ11Bは、第2実施形態と同様にリチウム金属71を支持したリチウム金属支持体72を備えている。ただし、本実施形態のリチウム金属支持体72は負極41に対して接続されていない。また、リチウム金属支持体72の上端部は延設されることで給電用端子73とされており、蓋体54の板状本体54aにおいて2箇所設けられた端子用貫通孔に到っている。給電用端子73と端子用貫通孔との隙間は樹脂製の絶縁体74が充填される結果、リチウム金属支持体72が蓋体54からも絶縁されている。   The lithium ion capacitor 11B includes a lithium metal support 72 that supports a lithium metal 71 as in the second embodiment. However, the lithium metal support 72 of this embodiment is not connected to the negative electrode 41. Further, the upper end portion of the lithium metal support 72 is extended to serve as a power feeding terminal 73, and reaches the terminal through holes provided at two places in the plate-like main body 54 a of the lid 54. The gap between the power feeding terminal 73 and the terminal through hole is filled with a resin insulator 74, so that the lithium metal support 72 is also insulated from the lid 54.

以上のような構造のリチウムイオンキャパシタ11Bは、先に説明した第2実施形態の製造手順に準じて製造可能であるが、電解質注入工程を行った後、正極31からも負極41からも絶縁された給電用端子73に正の電圧を印加し、かつ負極41に負の電圧を印加して給電を行う(給電工程)。その結果、負極41に対するリチウム金属71のプレドープをいっそう効率よく確実に行うことができる。プレドープ完了後、給電用端子73が非露出となるようにさらに絶縁体74で封止する封止工程を行い、図9に示すリチウムイオンキャパシタ11Bを完成させる。   The lithium ion capacitor 11B having the above-described structure can be manufactured according to the manufacturing procedure of the second embodiment described above. However, after the electrolyte injection step, the lithium ion capacitor 11B is insulated from the positive electrode 31 and the negative electrode 41. Power is supplied by applying a positive voltage to the power supply terminal 73 and applying a negative voltage to the negative electrode 41 (power supply process). As a result, the lithium metal 71 can be pre-doped into the negative electrode 41 more efficiently and reliably. After completion of pre-doping, a sealing process is further performed with an insulator 74 so that the power supply terminal 73 is not exposed to complete the lithium ion capacitor 11B shown in FIG.

以上説明した第3実施形態であっても、高出力でかつ耐振動性に優れたリチウムイオンキャパシタ11Bを提供することができ、また、上記の優れたリチウムイオンキャパシタ11Bを確実にかつ容易に得ることができる。   Even in the third embodiment described above, the lithium ion capacitor 11B having high output and excellent vibration resistance can be provided, and the above-described excellent lithium ion capacitor 11B can be obtained reliably and easily. be able to.

なお、本発明の実施の形態は以下のように変更してもよい。   In addition, you may change embodiment of this invention as follows.

・上記第2、第3実施形態では、リチウム金属71をリチウム金属支持体72に支持させ、そのリチウム金属支持体72を保持部材61に取り付けていたが、これを別の位置に取り付けてもよい。例えば、図10に示す別の実施形態のリチウムイオンキャパシタ11Cでは、積層電極群51と接続板52との間のスペースや、積層電極群51と蓋体54との間のスペースに、リチウム金属71をリチウム金属支持体72上に支持した構造物が配置されている。なお、このような構造物は負極集電体43に対して何らかの手段により接続されてもよいほか、負極集電体43上に直に接合されてもよい。図11に示す別の実施形態のリチウムイオンキャパシタ11Dも同様の構造を有しているが、保持部材61の内部には給電用端子73が設けられ、その給電用端子73に対して、リチウム金属71をリチウム金属支持体72上に支持した構造物が接続されている。従って、この給電用端子73を利用して給電工程を行えば、負極41に対するリチウム金属71のプレドープをいっそう効率よく確実に行うことが可能である。   In the second and third embodiments, the lithium metal 71 is supported by the lithium metal support 72, and the lithium metal support 72 is attached to the holding member 61. However, this may be attached to another position. . For example, in the lithium ion capacitor 11 </ b> C of another embodiment shown in FIG. 10, the lithium metal 71 is disposed in the space between the multilayer electrode group 51 and the connection plate 52 or in the space between the multilayer electrode group 51 and the lid 54. Is disposed on the lithium metal support 72. Such a structure may be connected to the negative electrode current collector 43 by some means, or may be directly joined on the negative electrode current collector 43. A lithium ion capacitor 11 </ b> D of another embodiment shown in FIG. 11 has the same structure, but a power supply terminal 73 is provided inside the holding member 61, and a lithium metal is connected to the power supply terminal 73. A structure in which 71 is supported on a lithium metal support 72 is connected. Therefore, if a power feeding process is performed using the power feeding terminal 73, the lithium metal 71 can be pre-doped into the negative electrode 41 more efficiently and reliably.

・上記各実施形態では、ある程度剛性のある充実体(非多孔質体)からなる材料を用いて保持部材を構成したが、多孔体からなる材料を用いて保持部材を構成してもよい。この場合には電解質の保液性を向上させることができる。   In each of the above embodiments, the holding member is configured using a material made of a solid body (non-porous body) that is somewhat rigid, but the holding member may be configured using a material made of a porous body. In this case, the liquid retention of the electrolyte can be improved.

・上記各実施形態では半円状の膨出部24を設けたが、半円状以外の形状(例えば矩形状や三角形状など)の膨出部を設けることとしてもよい。また、上記実施形態では膨出部24を一対設けたが、いずれか片方のみ設けることとしてもよい。   In each of the above embodiments, the semicircular bulging portion 24 is provided, but a bulging portion having a shape other than the semicircular shape (for example, a rectangular shape or a triangular shape) may be provided. In the above embodiment, a pair of the bulging portions 24 are provided, but only one of them may be provided.

・上記第2実施形態では、正極31や負極41とのショートを未然に防ぐために、保持部材61における柱状部62の平坦面62aと積層電極群51との間に隙間を設けたが、平坦面62aにリチウム金属71を配置しない場合にはその隙間をなくしてもよい。   In the second embodiment, in order to prevent a short circuit with the positive electrode 31 and the negative electrode 41, a gap is provided between the flat surface 62a of the columnar portion 62 and the stacked electrode group 51 in the holding member 61. When the lithium metal 71 is not disposed in 62a, the gap may be eliminated.

・上記第2、第3実施形態では、本発明をリチウムプレドープ型リチウムイオンキャパシタに具体化したが、リチウム以外のアルカリ金属をプレドープさせるタイプのアルカリ金属イオンキャパシタに具体化することもできる。あるいは、本発明を非水系二次電池や電気二重層キャパシタなどといった蓄電デバイスに具体化することもできる。   In the second and third embodiments, the present invention is embodied in a lithium pre-doped lithium ion capacitor. However, the present invention may be embodied in a type of alkali metal ion capacitor in which an alkali metal other than lithium is pre-doped. Alternatively, the present invention can be embodied in an electricity storage device such as a non-aqueous secondary battery or an electric double layer capacitor.

・上記各実施形態では、蓋体54を角型金属缶21の開口部にかしめ加工により固定したが、かしめ加工以外の方法により固定してもよい。   In each of the above embodiments, the lid 54 is fixed to the opening of the square metal can 21 by caulking, but may be fixed by a method other than caulking.

・上記各実施形態では、正極31を第1極としかつ負極41を第2極としたが、この関係を逆にしてもよい。即ち、負極41を第1極として接続板52に溶接する一方、正極31を第2極として蓋体54に溶接した構成を採用してもよい。   In each of the above embodiments, the positive electrode 31 is the first pole and the negative electrode 41 is the second pole, but this relationship may be reversed. That is, a configuration in which the negative electrode 41 is welded to the connection plate 52 as the first pole while the positive electrode 31 is welded to the lid body 54 as the second pole may be employed.

11,11A,11B,11C,11D…蓄電デバイスとしてのリチウムイオンキャパシタ
21…角型金属缶
22…筒部
23…底部
24…膨出部
25…膨出部の内部空間
33…第1集電体としての正極集電体
31…第1極としての正極
41…第2極としての負極
43…第2集電体としての負極集電体
46…セパレータ
51…積層電極群
52…接続板
53…ガスケット
54…蓋体
61,61A,61B…保持部材
62…柱状部
63…平板部
71…リチウム金属
72…リチウム金属支持体
73…給電用端子
74…絶縁体
DESCRIPTION OF SYMBOLS 11, 11A, 11B, 11C, 11D ... Lithium ion capacitor as an electrical storage device 21 ... Square metal can 22 ... Cylindrical part 23 ... Bottom part 24 ... Swelling part 25 ... Internal space of swelling part 33 ... 1st electrical power collector As a first electrode 41 as a first electrode 41 as a second electrode 43 as a second current collector 46 as a second current collector 46 a separator 51 a laminated electrode group 52 as a connection plate 53 54 ... Lid 61, 61A, 61B ... Holding member 62 ... Columnar portion 63 ... Flat plate portion 71 ... Lithium metal 72 ... Lithium metal support 73 ... Feeding terminal 74 ... Insulator

Claims (7)

筒部の一端に開口部を有しかつ前記筒部の他端に底部を有する角型金属缶と、第1電極を第1集電体上に形成した構造の第1極と、前記第1電極とは電気的性質が異なる第2電極を第2集電体上に形成した構造の第2極と、前記第1極及び前記第2極の間に介在されたセパレータとを備え、前記第1極、前記第2極及び前記セパレータを積層することにより積層電極群が構成され、その積層電極群が電解質とともに前記角型金属缶内に収容されている蓄電デバイスにおいて、
前記底部と等しい面積を有する導電金属製の接続板が前記底部の内面に溶接され、
前記筒部において前記積層電極群の厚さ方向に位置していない面に膨出部が設けられ、
前記膨出部の内部空間に、絶縁性の剛体からなり前記接続板を押さえかつ前記積層電極群を保持する保持部材が配置され、
前記第1極が前記接続板に接続され、前記角型金属缶の前記開口部に絶縁性のガスケットを介して固定された導電金属製の蓋体に前記第2極が接続されている
ことを特徴とする蓄電デバイス。
A square metal can having an opening at one end of a cylindrical portion and a bottom at the other end of the cylindrical portion; a first electrode having a structure in which a first electrode is formed on a first current collector; and the first A second electrode having a structure in which a second electrode having a different electrical property from the electrode is formed on the second current collector, and a separator interposed between the first electrode and the second electrode, In the electricity storage device in which a laminated electrode group is configured by laminating the first electrode, the second electrode, and the separator, and the laminated electrode group is housed in the rectangular metal can together with an electrolyte.
A conductive metal connecting plate having an area equal to the bottom is welded to the inner surface of the bottom,
A bulging portion is provided on the surface of the cylindrical portion that is not positioned in the thickness direction of the stacked electrode group,
In the internal space of the bulging portion, a holding member that is made of an insulating rigid body and holds the laminated electrode group and holds the connection plate is disposed,
The first pole is connected to the connection plate, and the second pole is connected to a conductive metal lid fixed to the opening of the square metal can via an insulating gasket. A power storage device characterized.
前記筒部の前記開口部側から見たときの前記膨出部の形状が半円形状であることを特徴とする請求項1に記載の蓄電デバイス。   The power storage device according to claim 1, wherein a shape of the bulging portion when viewed from the opening side of the cylindrical portion is a semicircular shape. 前記保持部材は一対の柱状部の基端部を平板部の両端に連結してなる構造を有するとともに、前記筒部の前記開口部側から見たときの前記柱状部の形状が半円形状であることを特徴とする請求項2に記載の蓄電デバイス。   The holding member has a structure in which the base end portions of a pair of columnar portions are connected to both ends of a flat plate portion, and the shape of the columnar portions when viewed from the opening side of the cylindrical portion is a semicircular shape. The power storage device according to claim 2, wherein the power storage device is provided. 前記第1極は、前記第1電極であって炭素材料からなる正極電極を、前記第1集電体である正極集電体上に形成した構造の正極であり、
前記第2極は、前記第2電極であってリチウムの吸蔵及び放出が可能な材料からなる負極電極を、前記第2集電体である負極集電体上に形成した構造の負極であり、
前記電解質がリチウム塩を含んでおり、
前記保持部材において前記積層電極群に臨む箇所に、プレドープ用のリチウム金属を支持するための導電金属製のリチウム金属支持体が配置され、前記リチウム金属支持体が、前記負極に電気的に接続され、または、前記正極及び前記負極から絶縁された給電用端子に電気的に接続されている
ことを特徴とする請求項1乃至3のいずれか1項に記載の蓄電デバイス。
The first electrode is a positive electrode having a structure in which a positive electrode made of a carbon material as the first electrode is formed on a positive electrode current collector that is the first current collector,
The second electrode is a negative electrode having a structure in which a negative electrode made of a material capable of occluding and releasing lithium is formed on the negative electrode current collector as the second current collector,
The electrolyte contains a lithium salt;
A conductive metal lithium metal support for supporting the pre-doping lithium metal is disposed at a position facing the laminated electrode group in the holding member, and the lithium metal support is electrically connected to the negative electrode. 4. The power storage device according to claim 1, wherein the power storage device is electrically connected to a power feeding terminal insulated from the positive electrode and the negative electrode. 5.
請求項1乃至4のいずれか1項に記載の蓄電デバイスの製造方法であって、
前記積層電極群の前記第1極を前記接続板に溶接しかつ前記第2極を前記蓋体に溶接する電極溶接工程と、
前記電極溶接工程を経た前記積層電極群を前記角型金属缶内に収容する収容工程と、
前記収容工程の後、前記角型金属缶における前記膨出部の内部空間に配置した前記保持部材で前記接続板を押圧しつつ、前記角型金属缶の外側から溶接を行うことにより、前記接続板を前記底部の内面に溶接する接続板溶接工程と
を含むことを特徴とする蓄電デバイスの製造方法。
It is a manufacturing method of the electrical storage device according to any one of claims 1 to 4,
An electrode welding step of welding the first electrode of the stacked electrode group to the connection plate and welding the second electrode to the lid;
An accommodating step of accommodating the laminated electrode group that has undergone the electrode welding step in the rectangular metal can;
After the housing step, the connection is performed by welding from the outside of the square metal can while pressing the connection plate with the holding member arranged in the internal space of the bulging portion of the square metal can. And a connecting plate welding step of welding a plate to the inner surface of the bottom portion.
請求項4に記載の蓄電デバイスの製造方法であって、
前記積層電極群の前記正極を前記接続板に溶接しかつ前記負極を前記蓋体に溶接する電極溶接工程と、
前記電極溶接工程を経た前記積層電極群を前記角型金属缶内に収容する収容工程と、
前記収容工程の後、前記角型金属缶における前記膨出部の内部空間に配置した前記保持部材で前記接続板を押圧しつつ、前記角型金属缶の外側から溶接を行うことにより、前記接続板を前記底部の内面に溶接する接続板溶接工程と
を含み、
少なくとも前記接続板溶接工程よりも前の段階にて、プレドープ用のリチウム金属を支持した状態の導電金属製のリチウム金属支持体を前記保持部材において前記積層電極群に臨む箇所に配置するとともに、前記リチウム金属支持体を、前記負極に電気的に接続しておくリチウム金属配置工程を行い、
前記接続板溶接工程よりも後の段階にて、前記角型金属缶内に前記電解質を注入する電解質注入工程を行う
ことを特徴とする蓄電デバイスの製造方法。
It is a manufacturing method of the electrical storage device according to claim 4,
An electrode welding step of welding the positive electrode of the laminated electrode group to the connecting plate and welding the negative electrode to the lid;
An accommodating step of accommodating the laminated electrode group that has undergone the electrode welding step in the rectangular metal can;
After the housing step, the connection is performed by welding from the outside of the square metal can while pressing the connection plate with the holding member arranged in the internal space of the bulging portion of the square metal can. A connecting plate welding step of welding a plate to the inner surface of the bottom,
At least prior to the connection plate welding step, a conductive metal lithium metal support in a state of supporting the pre-doping lithium metal is disposed at a location facing the laminated electrode group in the holding member, and Performing a lithium metal placement step of electrically connecting a lithium metal support to the negative electrode;
A method for manufacturing an electricity storage device, comprising performing an electrolyte injection step of injecting the electrolyte into the rectangular metal can at a stage after the connection plate welding step.
請求項4に記載の蓄電デバイスの製造方法であって、
前記積層電極群の前記正極を前記接続板に溶接しかつ前記負極を前記蓋体に溶接する電極溶接工程と、
前記電極溶接工程を経た前記積層電極群を前記角型金属缶内に収容する収容工程と、
前記収容工程の後、前記角型金属缶における前記膨出部の内部空間に配置した前記保持部材で前記接続板を押圧しつつ、前記角型金属缶の外側から溶接を行うことにより、前記接続板を前記底部の内面に溶接する接続板溶接工程と
を含み、
少なくとも前記接続板溶接工程よりも前の段階にて、プレドープ用のリチウム金属を支持した状態の導電金属製のリチウム金属支持体を前記保持部材において前記積層電極群に臨む箇所に配置するとともに、前記リチウム金属支持体を、前記正極及び前記負極から絶縁された給電用端子に電気的に接続しておくリチウム金属配置工程を行い、
前記接続板溶接工程の後の段階にて、前記角型金属缶内に前記電解質を注入する電解質注入工程、前記給電用端子に正の電圧を印加しかつ前記負極に負の電圧を印加して給電を行う給電工程及び前記給電用端子が非露出となるように絶縁体で封止する封止工程をこの順序で行う
ことを特徴とする蓄電デバイスの製造方法。
It is a manufacturing method of the electrical storage device according to claim 4,
An electrode welding step of welding the positive electrode of the laminated electrode group to the connecting plate and welding the negative electrode to the lid;
An accommodating step of accommodating the laminated electrode group that has undergone the electrode welding step in the rectangular metal can;
After the housing step, the connection is performed by welding from the outside of the square metal can while pressing the connection plate with the holding member arranged in the internal space of the bulging portion of the square metal can. A connecting plate welding step of welding a plate to the inner surface of the bottom,
At least prior to the connection plate welding step, a conductive metal lithium metal support in a state of supporting the pre-doping lithium metal is disposed at a location facing the laminated electrode group in the holding member, and Performing a lithium metal placement step of electrically connecting a lithium metal support to a power feeding terminal insulated from the positive electrode and the negative electrode;
An electrolyte injection step of injecting the electrolyte into the rectangular metal can at a later stage of the connection plate welding step, applying a positive voltage to the power supply terminal and applying a negative voltage to the negative electrode A method for manufacturing an electricity storage device, wherein a power feeding step for feeding power and a sealing step for sealing with an insulator so that the power feeding terminal is not exposed are performed in this order.
JP2009003001A 2009-01-08 2009-01-08 Electric storage device and manufacturing method thereof Expired - Fee Related JP5172719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009003001A JP5172719B2 (en) 2009-01-08 2009-01-08 Electric storage device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009003001A JP5172719B2 (en) 2009-01-08 2009-01-08 Electric storage device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010161244A JP2010161244A (en) 2010-07-22
JP5172719B2 true JP5172719B2 (en) 2013-03-27

Family

ID=42578208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009003001A Expired - Fee Related JP5172719B2 (en) 2009-01-08 2009-01-08 Electric storage device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5172719B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2416398A1 (en) * 2009-03-31 2012-02-08 Mitsubishi Heavy Industries, Ltd. Rechargeable battery and battery system
JP5887776B2 (en) * 2010-12-10 2016-03-16 株式会社Gsユアサ Electricity storage element
DE112012000620T5 (en) * 2011-01-31 2013-11-07 Gs Yuasa International Ltd. Electric storage element and method for its production
CN103875120B (en) * 2011-09-30 2016-05-25 株式会社村田制作所 Battery outer structure
JP5397528B2 (en) 2012-04-13 2014-01-22 株式会社豊田自動織機 Power storage device and secondary battery
JP2014130717A (en) 2012-12-28 2014-07-10 Ricoh Co Ltd Nonaqueous electrolyte storage element
JP7096991B2 (en) * 2017-10-23 2022-07-07 株式会社Gsユアサ Power storage element and manufacturing method of power storage element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07326551A (en) * 1994-05-30 1995-12-12 Fuji Elelctrochem Co Ltd Electric double-layer capacitor
JP2000200738A (en) * 1999-01-07 2000-07-18 Ccr:Kk High-power type double-layer capacitor, electrode and manufacture thereof
KR100570625B1 (en) * 2004-07-28 2006-04-12 삼성에스디아이 주식회사 Secondary battery
JP4928824B2 (en) * 2006-05-02 2012-05-09 Fdk株式会社 Method for manufacturing lithium ion storage element
JP2007335156A (en) * 2006-06-13 2007-12-27 Honda Motor Co Ltd Power storage element
JP4948109B2 (en) * 2006-10-11 2012-06-06 Fdk株式会社 Electricity storage element
JP4986694B2 (en) * 2007-04-19 2012-07-25 日立ビークルエナジー株式会社 Secondary battery

Also Published As

Publication number Publication date
JP2010161244A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
JP4979465B2 (en) Non-aqueous power storage device, manufacturing method thereof, and assembled battery
JP5172719B2 (en) Electric storage device and manufacturing method thereof
JP5172496B2 (en) Power storage unit and manufacturing method thereof
KR102037266B1 (en) Electrode structure and apparatus for storaging energy with the same
JP2011108507A (en) Secondary battery
JP2010161249A (en) Lithium ion capacitor
JP5855893B2 (en) Method for producing non-aqueous lithium storage element
JP2012156405A (en) Electricity storage device
JP2008305928A (en) Nonaqueous electrical storage device
JP2011103249A (en) Secondary battery
JP5937969B2 (en) Non-aqueous secondary battery
JP2010080326A (en) Power storage element and method for manufacturing the same
JP2013140825A (en) Laminate type electrical storage element
JP5623073B2 (en) Secondary battery
JP2008305648A (en) Nonaqueous power storage device
JP2011096485A (en) Secondary battery
JP2011222128A (en) Secondary battery
US20180233773A1 (en) Lithium ion secondary battery
JP5363058B2 (en) Storage element and method for manufacturing the same
JP2018067396A (en) Lithium ion secondary battery
JP2010161245A (en) Electric storage device and method of manufacturing the same
JP2011216576A (en) Electric storage device
CN111164782A (en) Film-covered battery, battery pack, and method for manufacturing film-covered battery
JP6299125B2 (en) Lithium ion capacitor
JP2018156724A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

R150 Certificate of patent or registration of utility model

Ref document number: 5172719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees