JP2011096485A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2011096485A
JP2011096485A JP2009248671A JP2009248671A JP2011096485A JP 2011096485 A JP2011096485 A JP 2011096485A JP 2009248671 A JP2009248671 A JP 2009248671A JP 2009248671 A JP2009248671 A JP 2009248671A JP 2011096485 A JP2011096485 A JP 2011096485A
Authority
JP
Japan
Prior art keywords
battery
battery element
current collector
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009248671A
Other languages
Japanese (ja)
Inventor
Yuki Tominaga
由騎 冨永
Takeshi Fujino
健 藤野
Eisuke Komazawa
映祐 駒澤
Minoru Noguchi
実 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009248671A priority Critical patent/JP2011096485A/en
Publication of JP2011096485A publication Critical patent/JP2011096485A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery having a structure improved in impact resistance and vibration resistance in a vehicular secondary battery structure horizontally loading a large-sized battery element. <P>SOLUTION: The secondary battery includes: the battery element having nonaqueous electrolytic solution; a positive electrode current collecting foil and a negative electrode current collecting foil led out from both ends of the battery element; a positive electrode lead plate and a negative electrode lead plate respectively connecting the current collecting foils to a positive electrode terminal and a negative electrode terminal; and a battery case to house the battery element, the current collecting foil, and the lead plates. At both side faces of the battery element, elastic members are respectively installed between the battery element and a wall face of the longitudinal direction of the battery case. One of the elastic members is integrated with the positive electrode lead plate and forms a complex and the other of the elastic members is integrated with the negative electrode lead plate and forms a complex. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、たとえば自動車駆動用電源に用いて好適な二次電池に係り、特に、電池の耐衝撃性、耐振動性を向上させる技術に関する。   The present invention relates to a secondary battery suitable for use in, for example, an automobile driving power source, and more particularly to a technique for improving the impact resistance and vibration resistance of a battery.

車載用のリチウムイオン二次電池においては、それぞれ正極、負極および電解液を有する単電池(セル)が複数個直列に配置されて組電池を形成し、充放電制御のためのセルコントローラが接続され、必要な電圧が得られるようにバッテリーモジュールを形成する。   In an in-vehicle lithium ion secondary battery, a plurality of single cells (cells) each having a positive electrode, a negative electrode, and an electrolyte are arranged in series to form an assembled battery, and a cell controller for charge / discharge control is connected. Then, the battery module is formed so as to obtain a necessary voltage.

このような二次電池の単電池には、巻回した電池要素、あるいは、平板状の電極とセパレータを積層した電池要素を、円筒型のケースに収納したものや、角型、扁平型のケースに収納したものがある。   Such secondary battery cells include a wound battery element or a battery element in which a flat electrode and a separator are stacked in a cylindrical case, or a square or flat case. There is something stored in.

巻回した電池要素を角型ケースに収納する場合、電池要素の両端部から導出される正極側および負極側の集電箔は重ねられ、それぞれ正極側および負極側の集電体(リード)に溶接され、ケースに収納される。このような電池が自動車等に搭載される際は、電池ケース自体あるいは電池ケースの外部に導出されている電極端子によって自動車等に対して固定される。   When storing the wound battery element in a square case, the positive electrode side and negative electrode side current collector foils led out from both ends of the battery element are overlapped, and the positive electrode side and negative electrode side current collectors (leads) are overlaid respectively. Welded and stored in case. When such a battery is mounted on an automobile or the like, the battery case is fixed to the automobile or the like by the battery case itself or an electrode terminal led out of the battery case.

しかしながら、ケース内部の電池要素は、集電箔によって電極端子と電気的に接続されてはいるものの、ケースあるいは電極端子に対して固定されておらず、ケース内で懸垂された状態なので、電池要素の重量はこの集電箔のみに掛かり、さらに、自動車の振動により集電箔に負荷が加わる。この集電箔は、電池要素と電極端子を電気的に接続する箔状の部材であるので、振動に弱い。このような振動は、二次電池が小型電池要素である場合は、軽量であり問題とならないが、自動車用の大型電池要素となると、その集電箔に加わる応力は大きく、亀裂が入り切断の恐れがある。   However, the battery element inside the case is electrically connected to the electrode terminal by the current collector foil, but is not fixed to the case or the electrode terminal and is suspended in the case. The weight is applied only to the current collector foil, and further, a load is applied to the current collector foil due to the vibration of the automobile. Since the current collector foil is a foil-like member that electrically connects the battery element and the electrode terminal, it is vulnerable to vibration. Such vibration is light and not a problem when the secondary battery is a small battery element, but when it becomes a large battery element for automobiles, the stress applied to the current collector foil is large, cracking and cutting. There is a fear.

このような課題に対して、円筒型電池においては、電池要素自身を膨張させて、ケースに電池要素を押し付けて、耐振動性を向上させる方法が知られている(例えば、特許文献1参照)。しかしながら、角型電池に入る扁平電池要素では、巻き芯が無く、均一に径方向に膨張圧が発生しないため、ケース内での拘束に際して十分な電池要素の固定ができない。   In order to solve such a problem, in a cylindrical battery, a method is known in which the battery element itself is expanded and the battery element is pressed against the case to improve vibration resistance (for example, see Patent Document 1). . However, in the flat battery element that enters the square battery, there is no winding core, and no expansion pressure is uniformly generated in the radial direction. Therefore, the battery element cannot be sufficiently fixed when restrained in the case.

さらに、角型電池においては、電池要素の膨張を拘束するためにケース面での押し付けやケース面の形状変更を行って、電池要素を拘束する技術が知られている(例えば、特許文献2参照)。しかしながら、自動車用電池等の大型電池の場合はケース厚さが0.5mm以上となり、これ以上厚さが大きくなると、ケース面の形状変形はケースの破断を招く可能性があり好ましない。さらに、ケース変形で電池要素を後続する構造は、生産性が低下してコストが上昇するという問題がある。   Furthermore, in a rectangular battery, a technique for restraining the battery element by pressing on the case surface or changing the shape of the case surface to restrain the expansion of the battery element is known (see, for example, Patent Document 2). ). However, in the case of a large battery such as an automobile battery, the case thickness is 0.5 mm or more. If the thickness is larger than this, the shape deformation of the case surface may cause breakage of the case, which is not preferable. Further, the structure in which the battery element is followed by the case deformation has a problem that the productivity is lowered and the cost is increased.

ところで近年は、電池要素の正負の集電箔間方向を水平にして充填した場合の溶接構造についても検討されており、電池要素から正負の集電箔をそれぞれ左右に露出させ、各極で集電箔を重ねてリードプレートに溶接する技術が知られている(例えば、特許文献3参照)。しかしながら、上記の方法では銅箔またはアルミ箔を束ねたて溶接するため、電池要素が大型となりアルミ箔の重ね合わせの厚みが多くなると、リードプレートと接する最上部のアルミ箔の集電体の部分には金属疲労が残り、リチウムイオン電池では、機械的な衝撃や振動により、タブの端部付近で、アルミ箔集電体が破断する可能性がある。特に、高エネルギー密度化するために電極箔を薄肉すると溶接部の耐振動性に不安があり、最悪は断線の恐れがある。   By the way, in recent years, a welding structure in which the direction between the positive and negative current collector foils of the battery element is filled horizontally has been studied, and the positive and negative current collector foils are exposed from the battery element to the left and right, and collected at each electrode. A technique is known in which electric foils are stacked and welded to a lead plate (see, for example, Patent Document 3). However, in the above method, since copper foil or aluminum foil is bundled and welded, when the battery element becomes large and the thickness of the aluminum foil overlap increases, the uppermost aluminum foil current collector part in contact with the lead plate In the lithium ion battery, the aluminum foil current collector may break near the end of the tab due to mechanical shock or vibration. In particular, if the electrode foil is made thin in order to increase the energy density, the vibration resistance of the welded portion is uneasy, and in the worst case, there is a risk of disconnection.

耐振動性の溶接手法については特許文献4に記載の技術が知られているが、この文献には、振動の発生自体を抑制する方法については記載されていない。特に、自動車用大型電池になると、電極群が大きくなり重量が大きくなる。電池要素を水平に配置する構造の場合、蓋に極板群をぶら下げ担持させる構造になっており、これを自動車用電池として用いると、上下方向への振動により、リードと集電箔接合部の振動、耐久性に問題がある。巻型構造上部には、接続端子があり、電池要素接触により電池要素の保護フィルムを傷つけるなどの可能性がある。   Regarding the vibration-resistant welding technique, the technique described in Patent Document 4 is known, but this document does not describe a method for suppressing the occurrence of vibration itself. In particular, in a large battery for an automobile, the electrode group becomes large and the weight increases. In the case of a structure in which the battery elements are arranged horizontally, the electrode plate group is suspended and supported on the lid, and when this is used as a battery for an automobile, the lead and the collector foil joint portion are caused by vibration in the vertical direction. There are problems with vibration and durability. There is a connection terminal on the upper part of the winding structure, and there is a possibility that the protective film of the battery element is damaged by the battery element contact.

このように、大型の電池要素を水平に装填した自動車用二次電池構造において、耐衝撃性、耐振動性を満足するものはなく、これら性能の向上が求められていた。   As described above, there is no secondary battery structure for automobiles in which a large battery element is horizontally loaded, which does not satisfy the impact resistance and vibration resistance, and improvement of these performances has been demanded.

特開2001−273933号公報JP 2001-273933 A 特開2006−40879号公報JP 2006-40879 A 特開2009−032670号公報JP 2009-032670 A 特開2009−134971号公報JP 2009-134971 A

本発明は、上記従来技術の課題を解決するためになされたもので、大型の電池要素を水平に装填した自動車用二次電池構造において、耐衝撃性、耐振動性を向上させた構造を有する二次電池を提供することを目的としている。   The present invention has been made to solve the above-described problems of the prior art, and has a structure in which impact resistance and vibration resistance are improved in a secondary battery structure for an automobile in which a large battery element is horizontally loaded. The object is to provide a secondary battery.

本発明の二次電池は、非水系電解液を有する電池要素と、電池要素の両端から導出される正極集電箔および負極集電箔と、集電箔を正極端子および負極端子にそれぞれ接続する正極リード板および負極リード板と、電池要素、集電箔およびリード板を収容する電池ケースとを備えた二次電池であって、電池要素の両側面には、電池要素と電池ケースの長手方向の壁面との間にそれぞれ弾性部材が設けられ、弾性部材の一方は正極リード板と一体となり複合体を形成し、弾性部材の他方は負極リード板と一体となり複合体を形成していることを特徴としている。   The secondary battery of the present invention includes a battery element having a non-aqueous electrolyte, a positive electrode current collector foil and a negative electrode current collector foil derived from both ends of the battery element, and connecting the current collector foil to the positive electrode terminal and the negative electrode terminal, respectively. A secondary battery including a positive electrode lead plate and a negative electrode lead plate, and a battery case that accommodates the battery element, current collector foil, and lead plate, on both sides of the battery element, the longitudinal direction of the battery element and the battery case Each of the elastic members is integrated with the positive electrode lead plate to form a composite, and the other elastic member is integrated with the negative electrode lead plate to form a composite. It is a feature.

上記構成の二次電池にあっては、2つの弾性部材が電池要素を挟むように圧縮するので、弾性部材の圧縮力により常に電池要素に力がかかる状態となり、電池要素は電池ケースに対して固定される。これにより、電池要素の耐衝撃性および耐振動性が向上し、集電箔などの破損を防止することができる。また、常に電池要素に力が掛かるので、電池要素内で正極や負極のシートが剥離することが抑制され、正極・負極間の距離が一定となり素子内での内部抵抗が一定となり局部的な劣化を防止することができる。さらに、電池要素からの熱が、弾性部材から放熱面の広い電池ケースの壁面を介して電池外部へ放熱するので、放熱効率も向上させることができる。   In the secondary battery having the above configuration, since the two elastic members are compressed so as to sandwich the battery element, the battery element is always applied with a force by the compression force of the elastic member. Fixed. Thereby, the impact resistance and vibration resistance of the battery element are improved, and damage to the current collector foil and the like can be prevented. In addition, since a force is constantly applied to the battery element, it is possible to suppress separation of the positive and negative electrode sheets within the battery element, and the distance between the positive electrode and the negative electrode is constant, and the internal resistance in the element is constant, resulting in local deterioration. Can be prevented. Furthermore, since the heat from the battery element radiates from the elastic member to the outside of the battery through the wall surface of the battery case having a wide heat dissipation surface, the heat dissipation efficiency can be improved.

本発明の二次電池においては、電池要素が巻回型の電池要素であり、弾性部材が電池ケースの壁面から電池要素に向かって突出する突出部を有し、突出部は電池要素の凹み部に追従していることを好ましい態様としている。   In the secondary battery of the present invention, the battery element is a wound battery element, the elastic member has a protrusion protruding from the wall surface of the battery case toward the battery element, and the protrusion is a recess of the battery element. It is preferable to follow the above.

電池要素が巻回型の場合、曲面部は曲げられた電極シートの反発力により膨らもうとする傾向にあるが、平面部は反発力がないために撓み易い傾向があり、場合によっては電池要素中心部へ向かって凹部を形成してしまう。上記構成の二次電池にあっては、電極シート平面部分が電池要素中心部へ凹んだ場合でも、弾性部材から電池要素に向かって突出部が突出し、その凹部の形状に追従するようにして電池要素を押圧するので、より確実に素子を保持することができる。   When the battery element is a wound type, the curved surface portion tends to swell due to the repulsive force of the bent electrode sheet, but the flat surface portion tends to bend easily because there is no repulsive force. A recess is formed toward the center of the element. In the secondary battery having the above configuration, even when the electrode sheet plane portion is recessed toward the center of the battery element, the protrusion protrudes from the elastic member toward the battery element, and follows the shape of the recess. Since the element is pressed, the element can be held more reliably.

本発明によれば、電池要素を電池ケースに対して確実に固定することができ、集電箔の破損を抑制し、電池要素の耐振動性および放熱効率を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, a battery element can be reliably fixed with respect to a battery case, the failure | damage of current collection foil can be suppressed, and the vibration resistance and heat dissipation efficiency of a battery element can be improved.

本発明の単電池を示す透視斜視図である。It is a see-through | perspective perspective view which shows the single battery of this invention. 本発明の電池要素を示し、(a)は正面図、(b)は側面図、(c)は正面図である。The battery element of this invention is shown, (a) is a front view, (b) is a side view, (c) is a front view. 本発明の集電体を示し、(a)は平面図、(b)は正面図である。The current collector of the present invention is shown, (a) is a top view and (b) is a front view. 本発明の集電箔固定部材を示す斜視図である。It is a perspective view which shows the current collection foil fixing member of this invention. 本発明の電池要素、集電体および集電箔固定部材の接合工程を示し、(a)は正面図、(b)は側面図、(c)は平面図である。The joining process of the battery element of this invention, a collector, and a collector foil fixing member is shown, (a) is a front view, (b) is a side view, (c) is a top view. 本発明の電池要素、集電体および集電箔固定部材を接合した複合体を示し、(a)は正面図、(b)は側面図、(c)は平面図である。The composite_body | complex which joined the battery element of this invention, a collector, and the collector foil fixing member is shown, (a) is a front view, (b) is a side view, (c) is a top view. 本発明の複合体を電池ケースに収納する工程を示す模式図である。It is a schematic diagram which shows the process of accommodating the composite_body | complex of this invention in a battery case. 本発明の集電体の他の実施形態を示し、(a)は斜視図であり、(b)は当該集電体を電池要素に用いた状態を説明する側面図である。The other embodiment of the collector of this invention is shown, (a) is a perspective view, (b) is a side view explaining the state which used the said collector for the battery element.

以下、図面を参照して本発明の実施の形態を説明する。
図1は、本発明に係る単電池を示す透視斜視図である。単電池は、公知のリチウムイオン二次電池等であって、電池ケース10および電池蓋11を有する。電池ケース10内には、電解液が含浸された巻回体等からなる電池要素40と、電池要素40の両端から導出された正極集電箔41および負極集電箔42に接続された正極リード板20bおよび負極リード板21bとが収容されている。正極リード板20bおよび負極リード板21bのそれぞれには、電池蓋11を貫通して電池外部に露出するように正極端子20aおよび負極端子21aが設けられている。また、正極集電箔固定部材30および負極集電箔固定部材31は、それぞれ正極集電箔41および負極集電箔42を正極リード板20bおよび負極リード板21bに対して溶接されることにより挟持して固定している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a perspective view showing a unit cell according to the present invention. The unit cell is a known lithium ion secondary battery or the like, and includes a battery case 10 and a battery lid 11. In the battery case 10, a battery element 40 made of a wound body impregnated with an electrolytic solution, and a positive electrode lead connected to a positive electrode current collector foil 41 and a negative electrode current collector foil 42 led out from both ends of the battery element 40. The plate 20b and the negative electrode lead plate 21b are accommodated. Each of the positive electrode lead plate 20b and the negative electrode lead plate 21b is provided with a positive electrode terminal 20a and a negative electrode terminal 21a so as to penetrate the battery lid 11 and be exposed to the outside of the battery. The positive electrode current collector foil fixing member 30 and the negative electrode current collector foil fixed member 31 are sandwiched by welding the positive electrode current collector foil 41 and the negative electrode current collector foil 42 to the positive electrode lead plate 20b and the negative electrode lead plate 21b, respectively. And fixed.

電池要素40の側面と電池ケース10の長手方向の壁面との間には、金属板からなる正極弾性部材20cが設けられており、その一端は自由端であり、他端は正極リード板20bに対して接合され、一体化されている。また、電池要素40の反対側の側面と電池ケース10の長手方向の壁面との間にも、同様に負極弾性部材21cが設けられており、その一端は自由端であり、他端は負極リード板21bに対して接合され、一体化されている。   Between the side surface of the battery element 40 and the longitudinal wall surface of the battery case 10, a positive electrode elastic member 20c made of a metal plate is provided, one end of which is a free end and the other end is connected to the positive electrode lead plate 20b. They are joined and integrated. Similarly, a negative electrode elastic member 21c is also provided between the opposite side surface of the battery element 40 and the longitudinal wall surface of the battery case 10, with one end being a free end and the other end being a negative electrode lead. It is joined to and integrated with the plate 21b.

上記構成の第1実施形態の単電池によれば、電池要素40の両面に設けられた弾性部材20cおよび21cの圧縮力により電池要素40は電池ケース10に対して押し付けられて保持されているので、搭載している自動車等に衝撃や振動が発生した場合であっても、電池ケース10と電池要素40が一体となって振動し、集電箔41および42に応力が加わることが抑制され、集電箔の破損を防止することができる。また、常に電池要素に力が掛かるので、電池要素内で正極や負極のシートが剥離することが抑制され、正極・負極間の距離が一定となり素子内での内部抵抗が一定となり局部的な劣化を防止することができる。   According to the unit cell of the first embodiment having the above configuration, the battery element 40 is pressed against the battery case 10 and held by the compressive force of the elastic members 20c and 21c provided on both surfaces of the battery element 40. Even when an impact or vibration is generated in the mounted vehicle or the like, the battery case 10 and the battery element 40 vibrate together, and stress is suppressed from being applied to the current collector foils 41 and 42. Damage to the current collector foil can be prevented. In addition, since a force is constantly applied to the battery element, it is possible to suppress separation of the positive and negative electrode sheets within the battery element, and the distance between the positive electrode and the negative electrode is constant, and the internal resistance in the element is constant, resulting in local deterioration. Can be prevented.

さらに、電池ケース10と電池要素40とが弾性部材20cおよび21cを介して接触しているため、電池要素40からの熱が、集電箔41(42)、リード板20b(21b)、弾性部材20c(21c)の順に伝熱し、あるいは、電池要素40から直接弾性部材20c(21c)へ伝熱し、弾性部材40から放熱面の広い電池ケース11の壁面を介して電池外部へ放熱するので、放熱効率も向上させることができる。特に、弾性部材20cおよび21cは電池要素の2つの面を覆うために、電池ケースに伝わる熱が分散されるため、モジュール化の際に二次電池の配置の自由度が広がる。   Further, since the battery case 10 and the battery element 40 are in contact with each other via the elastic members 20c and 21c, the heat from the battery element 40 is collected by the current collector foil 41 (42), the lead plate 20b (21b), and the elastic member. Heat transfer in the order of 20c (21c), or heat transfer directly from the battery element 40 to the elastic member 20c (21c), and heat is radiated from the elastic member 40 to the outside of the battery through the wall surface of the battery case 11 having a wide heat dissipation surface. Efficiency can also be improved. In particular, since the elastic members 20c and 21c cover the two surfaces of the battery element, the heat transmitted to the battery case is dispersed, so that the degree of freedom of arrangement of the secondary battery is expanded when modularized.

次に、本発明の単電池の作製方法を説明する。
図2は、本発明に用いて好適な電池要素40を示す。電池要素40は、後述するように正極箔および負極箔の表面に正極材料および負極材料を塗布してシート状正極層およびシート状負極層を作製し、間にシート状セパレータを挟み、巻き芯の周囲に巻回して作製する。このとき、正極箔および負極箔の一端には正極材料および負極材料を塗布しない領域を確保し、巻回した後にこれら非塗布領域が電池要素40の両端部に正極集電箔41および負極集電箔42を形成するように作製されている。巻回体を作製した後、巻き芯を引き抜いて、電池要素40の中心に中空部43が形成され、また、巻回体は押し潰されて図2に示すように偏平形状とされる。
Next, a method for manufacturing the unit cell of the present invention will be described.
FIG. 2 shows a battery element 40 suitable for use in the present invention. As will be described later, the battery element 40 is prepared by applying a positive electrode material and a negative electrode material to the surfaces of the positive electrode foil and the negative electrode foil to produce a sheet-like positive electrode layer and a sheet-like negative electrode layer, sandwiching a sheet-like separator therebetween, Wrap around to make. At this time, a region where the positive electrode material and the negative electrode material are not applied is secured at one end of the positive electrode foil and the negative electrode foil, and these uncoated regions are wound on both ends of the battery element 40 after winding. The foil 42 is produced. After producing the wound body, the winding core is pulled out to form a hollow portion 43 at the center of the battery element 40, and the wound body is crushed into a flat shape as shown in FIG.

図3は、本発明の正極集電体20および同じ形状を有する負極集電体21を示す。集電体20(21)は、電池ケース外部に貫通して外部から充放電を行うための正極端子20a(負極端子21a)と、集電箔41(42)に溶接によって接続される正極リード板20b(負極リード板21b)と、電池要素40の両側面に設けられる弾性部材20c(21c)とが一体化されている。また、図4は、集電箔41(42)をリード板20b(21b)と溶接する際に反対側から集電箔41(42)を保持するための正極集電箔固定部材30(負極集電箔固定部材31)を示す。   FIG. 3 shows a positive electrode current collector 20 of the present invention and a negative electrode current collector 21 having the same shape. The current collector 20 (21) includes a positive electrode terminal 20a (negative electrode terminal 21a) for charging and discharging from the outside through the battery case and a positive electrode lead plate connected to the current collector foil 41 (42) by welding. 20b (negative electrode lead plate 21b) and the elastic member 20c (21c) provided on both side surfaces of the battery element 40 are integrated. FIG. 4 also shows a positive current collector foil fixing member 30 (negative current collector) for holding the current collector foil 41 (42) from the opposite side when the current collector foil 41 (42) is welded to the lead plate 20b (21b). The electric foil fixing member 31) is shown.

図5に示すように、電池要素40の両側面には集電体20および21が取り付けられ、集電箔41(42)は、両側をリード板20b(21b)と集電箔固定部材30(31)によって挟持される。集電箔41(42)は、そのまま押し潰されて集電箔41(42)が束ねられ全ての隣接する箔が接触した状態で、リード板20b(21b)と集電箔固定部材30(31)に対して溶接され、複合体を形成する。   As shown in FIG. 5, current collectors 20 and 21 are attached to both side surfaces of the battery element 40, and the current collector foil 41 (42) has a lead plate 20 b (21 b) and a current collector foil fixing member 30 ( 31). The current collector foil 41 (42) is crushed as it is, bundled with the current collector foil 41 (42), and in contact with all adjacent foils, the lead plate 20b (21b) and the current collector foil fixing member 30 (31) ) To form a composite.

続いて、図6に示すように複合体の周囲には絶縁フィルム50が取り付けられ、図7に示すように電池ケース10内に収納される。絶縁フィルム50は、電池ケース10と複合体の短絡を防止するために設けられる。以上により、本発明の二次電池を作製することができる。   Subsequently, as shown in FIG. 6, an insulating film 50 is attached around the composite and is housed in the battery case 10 as shown in FIG. 7. The insulating film 50 is provided to prevent a short circuit between the battery case 10 and the composite. As described above, the secondary battery of the present invention can be manufactured.

図8は、本発明の他の実施形態に係る正極集電体22および負極集電体23を示す。集電体22(23)は、電池ケース外部に貫通して外部から充放電を行うための正極端子22a(負極端子23a)と、集電箔41(42)に溶接によって接続される正極リード板22b(負極リード板23b)と、電池要素40の両側面に設けられる弾性部材22c(23c)とが一体化されている。本実施形態では、弾性部材22c(23c)は、図に示すように、電池要素40と接触する側に凸状の突出部22d(23d)を有している。   FIG. 8 shows a positive electrode current collector 22 and a negative electrode current collector 23 according to another embodiment of the present invention. The current collector 22 (23) has a positive electrode terminal 22a (negative electrode terminal 23a) for charging and discharging from the outside through the battery case and a positive electrode lead plate connected by welding to the current collector foil 41 (42) 22b (negative electrode lead plate 23b) and elastic members 22c (23c) provided on both side surfaces of the battery element 40 are integrated. In the present embodiment, the elastic member 22c (23c) has a convex protrusion 22d (23d) on the side in contact with the battery element 40, as shown in the drawing.

電池要素40が巻回型の場合、曲面部(図8(b)において電池要素40の上端と下端)では曲げられた電極シートの反発力により膨らもうとする傾向にあるが、上端と下端の間の平面部では反発力がないために撓み易い傾向があり、巻き芯を抜いた後の中空部43の存在により、電池要素40の中心部へ向かって凹部を形成してしまう傾向にある。しかしながら、本実施形態の集電体22(23)によれば、電池要素40平面部分に凹部が形成された場合でも、その凹部形状に沿うように形成された弾性部材突出部22d(23d)によって電池要素を均一に押圧するので、より確実に電池要素を保持することができる。これにより、中空部43を有する電池要素40が凹んだ場合であっても、電池要素の耐振動性、耐衝撃性、放熱効率を向上させることができる。   When the battery element 40 is a wound type, the curved surface portion (the upper end and the lower end of the battery element 40 in FIG. 8B) tends to swell due to the repulsive force of the bent electrode sheet. Since there is no repulsive force in the plane portion between the two, there is a tendency to bend easily, and the presence of the hollow portion 43 after the winding core is removed tends to form a recess toward the center of the battery element 40. . However, according to the current collector 22 (23) of the present embodiment, even when the concave portion is formed in the plane portion of the battery element 40, the elastic member protruding portion 22d (23d) formed so as to follow the concave portion shape. Since the battery element is pressed uniformly, the battery element can be held more reliably. Thereby, even if it is a case where the battery element 40 which has the hollow part 43 is dented, the vibration resistance of a battery element, impact resistance, and heat dissipation efficiency can be improved.

以下、本発明の各構成要素について詳細に説明する。
シート状正極層
電池要素を構成する正極層は、アルミニウムからなる正極集電体の両面に正極材料が結着した構造を有する。本実施例の正極材料としては、Li酸化物粉末を用い、導電フィラーとして、アセチレンブラック、ケッチエンブラック、VGCFなどが挙げられる。
Hereinafter, each component of the present invention will be described in detail.
The positive electrode layer constituting the sheet-like positive electrode layer battery element has a structure in which a positive electrode material is bound on both surfaces of a positive electrode current collector made of aluminum. As the positive electrode material of this example, Li oxide powder is used, and as the conductive filler, acetylene black, ketjen black, VGCF, and the like can be given.

シート状負極層
電池要素を構成する負極層は、銅などからなる負極集電体の両面に負極材料が結着した構造を有する。本実施例の負極材料としては、リチウムイオンを吸蔵放出する炭素材料やLiと金属化合物を形成するSn、Pb、Coなどの合金を用いることができる。炭素材料としては、天然黒鉛、人造黒鉛、活性炭、600〜1200℃で焼成した低温炭素体(例えば、易黒鉛性炭素前駆体として、ピッチ、メソフェーズピッチ、または難黒鉛化性炭素前駆体として、フェノール樹脂、キシレン樹脂、PPS、セルロース等)を不活性雰囲気中で熱処理して合成した炭素などが挙げられる。
The negative electrode layer constituting the sheet negative electrode layer battery element has a structure in which a negative electrode material is bound on both surfaces of a negative electrode current collector made of copper or the like. As the negative electrode material of this embodiment, a carbon material that occludes and releases lithium ions or an alloy such as Sn, Pb, and Co that forms a metal compound with Li can be used. Examples of the carbon material include natural graphite, artificial graphite, activated carbon, a low-temperature carbon body calcined at 600 to 1200 ° C. (for example, pitch, mesophase pitch as an easily graphitizable carbon precursor, or phenol as a non-graphitizable carbon precursor). Resin, xylene resin, PPS, cellulose, etc.) synthesized by heat treatment in an inert atmosphere.

シート状セパレータ層
電池要素を構成するセパレータ層は、ポリオレフィン系微多孔質セパレータ、例えば、ポリエチレン、ポリプロピレンや不織布セパレータ、例えば、ポリエステル繊維、アラミド繊維を用いることができる。
As the separator layer constituting the sheet-like separator layer battery element, a polyolefin microporous separator such as polyethylene, polypropylene or a nonwoven fabric separator such as polyester fiber or aramid fiber can be used.

非水電解液
非水溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ−ブチロラクトン(γ−BL)、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン等を挙げることができる。非水溶媒は、単独で使用しても、2種以上混合して使用しても良い。電解質としては、例えば過塩素酸リチウム(LiClO)、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ素リチウム(LiBF)、六フッ化砒素リチウム(LiAsF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CFSO]等のリチウム塩を挙げることができる。電解質は、単独で使用しても、2種以上混合して使用しても良い。電解質の非水溶媒に対する溶解量は、通常は0.2mol/L〜2mol/L程度である。 またLiTFSIを混合してもよい。加えて、電解液の保持する、ゲル電解質としてもよくその保持材料としては、ポリエチレンオキサイド、ポリプロピレンオキサイド、ビニリデンフロライド(VdF)やヘキサフルオロプロピレン(HFP)またはその誘導体、または共重合体を用いることができる。
Examples of the nonaqueous electrolyte nonaqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), γ- Examples include butyrolactone (γ-BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), and 2-methyltetrahydrofuran. Nonaqueous solvents may be used alone or in combination of two or more. Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium boron tetrafluoride (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and lithium trifluoromethanesulfonate. Examples include lithium salts such as (LiCF 3 SO 3 ) and bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 3 ) 2 ]. The electrolyte may be used alone or in combination of two or more. The amount of the electrolyte dissolved in the non-aqueous solvent is usually about 0.2 mol / L to 2 mol / L. Further, LiTFSI may be mixed. In addition, it may be a gel electrolyte retained by the electrolytic solution, and the retaining material may be polyethylene oxide, polypropylene oxide, vinylidene fluoride (VdF), hexafluoropropylene (HFP) or a derivative thereof, or a copolymer. Can do.

電池要素作製
円筒、扁平巻でも積層形でも可能であるが、本発明は捲回型の電池要素、特に扁平形状の捲回電池要素に好適である。
The battery element manufacturing cylinder can be a flat wound type or a laminated type, but the present invention is suitable for a wound battery element, particularly a flat wound battery element.

電極端子
正極端子および負極端子の電極端子には、銅、ニッケル、アルミニウム、ステンレスといった金属またはこれらを含む合金やこれら金属を母材にしてニッケルメッキを施したものが使用可能である。集電箔と端子部分の接合面積を稼ぐためには、板状であることが好ましい。
As the electrode terminal of the electrode terminal positive electrode terminal and the negative electrode terminal, a metal such as copper, nickel, aluminum, stainless steel, an alloy containing these, or a metal plated with these metals as a base material can be used. In order to increase the bonding area between the current collector foil and the terminal portion, a plate shape is preferable.

電池ケース
底面部の形状を加工するには、アルミ、ステンレス合金、樹脂を用いることができるが、インパクト成型、トランスファープレス加工によって作製したアルミニウム合金が好ましい。ケース底面部の加工は外側もしくは内側でR10.0mm以上R90.0mm以下が好ましい。ケースは、電池要素と密着する構造が好ましく、これによりケース底面の空間が少なくなり、電解液を注液した際の、液面が上昇するので電池要素吸収が改善され含浸時間を短くできる効果がある。
To process the shape of the battery case bottom surface, aluminum, stainless alloy, or resin can be used, but an aluminum alloy produced by impact molding or transfer press processing is preferable. The processing of the bottom surface of the case is preferably R10.0 mm or more and R90.0 mm or less on the outside or inside. The case preferably has a structure in close contact with the battery element, which reduces the space at the bottom of the case, and when the electrolyte is injected, the liquid level rises, so that the battery element absorption is improved and the impregnation time can be shortened. is there.

絶縁フィルム
絶縁フィルムにはPPやPE、シート状セパレータ等の、耐電解液性を有し、絶縁体であるものが好ましい。
The insulating film is preferably an insulating film having an electrolytic solution resistance, such as PP, PE, or a sheet-like separator.

集電体
一般的に正極にAl、負極にCuが使用されていることが多く、金属で正負極の電位による溶出のない材料が好ましい。また、電食を防ぐ為に正極、負極それぞれに使用されている集電箔と同材料にすることが好ましい。
Current collector In general, Al is often used for the positive electrode and Cu is used for the negative electrode, and a metal that does not elute due to the potential of the positive and negative electrodes is preferable. In order to prevent electrolytic corrosion, it is preferable to use the same material as the current collector foil used for each of the positive electrode and the negative electrode.

以上説明したように、本発明によれば、下記の各効果を奏する。
1)集電体の弾性部材が有するバネ弾性によって、電池要素を電池ケースに固定するので、耐振動性および耐衝撃性を向上させることができ、端子接合部の破壊を防止できる。
2)集電箔とリード板が接続されることで電池要素内部の熱が集電箔からリード板を介して弾性部材に伝熱するのに加え、さらに電池要素と弾性部材が接触していることで電池要素から弾性部材を介して電池ケースへ伝熱させることもでき、伝熱面積を大きくすることができるので、放熱性が向上しセルの冷却性能を向上できる。また、大型の電池要素でも内部の熱ばらつきが低減でき、電極内の局部的な劣化を抑制することができ、寿命向上が可能である。
3)2)に関連して、内部短絡などの異常時に、セルの内部温度が上昇しても、集電版からの放熱により、熱暴走を抑制することができる。
4)集電体の形状を変更するだけの為、部品点数の増加もなく、特殊な製造技術も不要であるため、設備投資が必要なく低コストである。
5)弾性部材による押さえ込み構造は、電極体は巻回型でも積層型でも対応が可能であるが特に扁平巻素子構造では、巻き軸を抜くことで弛みが生じやすい難点がある。弛みにより、特に、長期の使用において、電解液などの分解により極板間にガスが発生するが、温度の高い素子の中心部にガスが滞留しやすく、この部分の極板間の距離が大きくなり、局部劣化を引き起こしやすい。本構造は集電体を圧迫する構造を同時に備えるため、正、負極の極板間の距離が一定になり、素子内での内部抵抗が均一となるため内部抵抗が減少でき、さらにガス発生によっても極板間の距離が大きくなることがないため電極内の局部的な劣化を抑えることができ、耐久信頼性が向上できる。
As described above, according to the present invention, the following effects can be obtained.
1) Since the battery element is fixed to the battery case by the spring elasticity of the elastic member of the current collector, vibration resistance and impact resistance can be improved, and destruction of the terminal joint portion can be prevented.
2) By connecting the current collector foil and the lead plate, the heat inside the battery element is transferred from the current collector foil to the elastic member via the lead plate, and the battery element and the elastic member are in contact with each other. As a result, heat can be transferred from the battery element to the battery case via the elastic member, and the heat transfer area can be increased, so that heat dissipation is improved and the cooling performance of the cell can be improved. Further, even in a large battery element, internal heat variation can be reduced, local deterioration in the electrode can be suppressed, and the life can be improved.
3) In relation to 2), even if the internal temperature of the cell rises due to an abnormality such as an internal short circuit, thermal runaway can be suppressed by heat dissipation from the current collector.
4) Since only the shape of the current collector is changed, there is no increase in the number of parts, and no special manufacturing technique is required, so that no capital investment is required and the cost is low.
5) The pressing structure by the elastic member can be applied to the electrode body of either a wound type or a laminated type, but in particular, in the flat wound element structure, there is a problem that loosening is likely to occur when the winding shaft is pulled out. Due to the slackness, gas is generated between the electrode plates due to decomposition of the electrolyte solution, especially in long-term use. However, gas tends to stay in the center of the element at a high temperature, and the distance between the electrode plates in this part is large. It tends to cause local deterioration. Since this structure is equipped with a structure that presses the current collector at the same time, the distance between the positive and negative electrode plates is constant, the internal resistance in the element is uniform, and the internal resistance can be reduced. In addition, since the distance between the electrode plates does not increase, local deterioration in the electrodes can be suppressed, and durability reliability can be improved.

以下、本発明の具体的な作製例について説明する。
電池要素の作製
電極は、正極の塗工幅120mm、負極塗工幅122mmであり、未塗工部が15mmの電極体を用いた。セパレータ厚みは25μmのものを用いた。負極の集電箔としてCu箔は厚み10μmの箔を用い、正極の集電箔としてAl箔は12μmの箔を用いた。正極活物質として粒径D50=12μmのLiNi0.33Mn0.33Co0.33を用い、負極活物質は、粒径22μmの人造黒鉛粒子を用いた。PVDFをバインダを用いて電極を作製し、電極体プレス後の活物質層の厚みはそれぞれ100μmとした。負極の電極密度は1.5g/cm、正極の電極密度は3.8g/cmであった。
Hereinafter, specific production examples of the present invention will be described.
The electrode for producing the battery element was an electrode body having a positive electrode coating width of 120 mm, a negative electrode coating width of 122 mm, and an uncoated portion of 15 mm. A separator having a thickness of 25 μm was used. As the negative electrode current collector foil, a Cu foil was used with a thickness of 10 μm, and as the positive electrode current collector foil, an Al foil was used with a 12 μm foil. LiNi 0.33 Mn 0.33 Co 0.33 O 2 having a particle diameter D 50 = 12 μm was used as the positive electrode active material, and artificial graphite particles having a particle diameter of 22 μm were used as the negative electrode active material. An electrode was prepared using PVDF as a binder, and the thickness of the active material layer after pressing the electrode body was 100 μm. The electrode density of the negative electrode was 1.5 g / cm 2 , and the electrode density of the positive electrode was 3.8 g / cm 3 .

セパレータを2軸の巻き芯で巻き取り、セパレータ間に正、負極を挿入して巻回した。終了後、巻き芯を抜き、図2に示す幅161mm、厚さ35mm、高さ80mmの扁平型の電池要素を作製した。集電箔として、正極、負極にそれぞれAlおよびCuの未塗工部を左右に出した。   The separator was wound with a biaxial core, and the positive and negative electrodes were inserted between the separators and wound. After completion, the winding core was removed, and a flat battery element having a width of 161 mm, a thickness of 35 mm, and a height of 80 mm shown in FIG. 2 was produced. As the current collector foil, uncoated portions of Al and Cu were left and right on the positive electrode and the negative electrode, respectively.

集電体の作製
図3に示す正負一組の集電体を作製した。集電体のうち弾性部材部分は、板厚1mm、幅115mm、高さ50mmとし、波形に屈曲させて板バネとして機能するように成型した。リード板部分は、板厚1mm、幅5mm、高さ50mmとした。集電体は、次工程の集電箔溶接の前に正負極とも電池蓋と一体化しておいた。
Production of current collector A pair of positive and negative current collectors shown in FIG. 3 was produced. The elastic member portion of the current collector had a plate thickness of 1 mm, a width of 115 mm, and a height of 50 mm, and was molded so as to function as a leaf spring by being bent into a waveform. The lead plate portion had a plate thickness of 1 mm, a width of 5 mm, and a height of 50 mm. Both the positive and negative electrodes were integrated with the battery lid before the current collector foil welding in the next step.

集電体の接合(複合体の作製)
電池要素を正負極のそれぞれの集電体で挟み込み、正負極それぞれの集電箔を集電体と集電箔固定部材で挟み込んで溶接した。溶接の場所は集電箔の端面から5mmの部分とした。このようにして複合体を作製した。
Junction of current collector (production of composite)
The battery element was sandwiched between the positive and negative current collectors, and the current collector foils of the positive and negative electrodes were sandwiched between the current collector and the current collector foil fixing member and welded. The place of welding was a portion 5 mm from the end face of the current collector foil. In this way, a composite was produced.

複合体の固定
接合され一体となった複合体の外周をPPフィルムの絶縁シートで巻き付けて固定した。
The outer periphery of the composite body that was fixedly joined and integrated with the composite body was wound around and fixed with an insulating sheet of PP film.

ケースの作製および装填
3003のアルミニウム合金を用いて、インパクト成型によりケース板厚を1mm、ケース外形寸法をL165×W40×H85mm、1mmとした。上記で作製した複合体を、この電池ケース内に挿入し、上部を電池蓋にて封止し、蓋とケースをYAG溶接で封口後、80℃で24hr真空乾燥した。
Case production and loading 3003 using an aluminum alloy, the case plate thickness was 1 mm and the case outer dimensions were L165 × W40 × H85 mm, 1 mm by impact molding. The composite produced above was inserted into this battery case, the upper part was sealed with a battery lid, the lid and the case were sealed by YAG welding, and then vacuum dried at 80 ° C. for 24 hours.

含浸
真空乾燥後、グローブボックス内でセル内部を減圧し、その後、電解液1.0MのLiPF/(EC+DMC+EMC)を注入して、含浸を行った。充放電装置で、4.2Vまで0.2Cの電流でCCCV充電を8時間行った。その後、減圧して脱泡して、注液口を溶接・封止してセルを完成させた。SOC50まで放電を行い、初期抵抗測定を行った(容量は60Ah相当になる)。
After the impregnation vacuum drying, the inside of the cell was depressurized in the glove box, and then impregnation was performed by injecting 1.0 M electrolyte LiPF 6 / (EC + DMC + EMC). CCCV charging was performed for 8 hours at a current of 0.2 C up to 4.2 V with a charging / discharging device. Thereafter, the pressure was reduced and degassed, and the injection hole was welded and sealed to complete the cell. Discharge was performed up to SOC 50, and initial resistance was measured (capacity was equivalent to 60 Ah).

[比較例]
弾性部材を設けなかった以外は実施例と同様にして、比較例のセルを作製した。
[Comparative example]
A cell of a comparative example was produced in the same manner as in the example except that no elastic member was provided.

各実施例および比較例のセルを振動試験機に固定し、自動車部品振動試験方法JIS D1601に基づき、周波数範囲を20〜400Hz、掃引時間を10分間、3方向各48時間印加し、加速度は15Gにおいて試験を行った。試験後10、20、30、40Aにて、4点法で内部抵抗を算出し比較を行った。その結果を表1に示す。この結果、比較例では、不安定電圧を示したため容量を測定することができなかった。内部を解体して確認したところ正極と正極の端子金属と集電箔部分に亀裂が生じていることを確認した。   The cell of each example and comparative example is fixed to a vibration tester, and a frequency range of 20 to 400 Hz, a sweep time of 10 minutes, and three directions of 48 hours are applied according to an automobile parts vibration test method JIS D1601, and an acceleration is 15G. The test was conducted at After the test, the internal resistance was calculated by a four-point method at 10, 20, 30, and 40 A and compared. The results are shown in Table 1. As a result, in the comparative example, an unstable voltage was shown, so that the capacity could not be measured. When the inside was disassembled and confirmed, cracks were confirmed in the positive electrode, the terminal metal of the positive electrode, and the current collector foil.

Figure 2011096485
Figure 2011096485

本発明によれば、電極要素の耐衝撃性および耐振動性を向上させることができ、さらには電池要素の冷却効果が高いから、車載用リチウムイオン二次電池システムに適用して極めて有望である。   According to the present invention, the impact resistance and vibration resistance of the electrode element can be improved, and further, since the battery element has a high cooling effect, it is extremely promising when applied to an in-vehicle lithium ion secondary battery system. .

10…電池ケース、
11…電池蓋、
12…電解液注入口、
20、22…正極集電体、
20a、22a…正極端子、
20b、22b…正極リード板、
20c、22c…正極弾性部材、
21、23…負極集電体、
21a、23a…負極端子、
21b、23b…負極リード板、
21c、23c…負極弾性部材、
22d…正極弾性部材突出部、
23d…負極弾性部材突出部、
30…正極集電箔固定部材、
31…負極集電箔固定部材、
40…電池要素、
41…正極集電箔、
42…負極集電箔、
43…中空部、
50…絶縁フィルム。

10 ... Battery case,
11 ... Battery cover,
12 ... electrolyte inlet,
20, 22 ... positive electrode current collector,
20a, 22a ... positive terminal,
20b, 22b ... positive electrode lead plate,
20c, 22c ... positive electrode elastic member,
21, 23 ... negative electrode current collector,
21a, 23a ... negative electrode terminal,
21b, 23b ... negative electrode lead plate,
21c, 23c ... negative electrode elastic member,
22d ... positive electrode elastic member protrusion,
23d ... negative electrode elastic member protrusion,
30 ... Positive current collector foil fixing member,
31 ... Negative electrode current collector foil fixing member,
40 ... Battery element,
41 ... positive electrode current collector foil,
42 ... negative electrode current collector foil,
43 ... hollow part,
50: Insulating film.

Claims (2)

非水系電解液を有する電池要素と、前記電池要素の両端から導出される正極集電箔および負極集電箔と、前記集電箔を正極端子および負極端子にそれぞれ接続する正極リード板および負極リード板と、前記電池要素、前記集電箔および前記リード板を収容する電池ケースとを備えた二次電池であって、
前記電池要素の両側面には、電池要素と前記電池ケースの長手方向の壁面との間にそれぞれ弾性部材が設けられ、
前記弾性部材の一方は前記正極リード板と一体となり複合体を形成し、
前記弾性部材の他方は前記負極リード板と一体となり複合体を形成していることを特徴とする二次電池。
A battery element having a non-aqueous electrolyte, a positive current collector foil and a negative current collector foil led out from both ends of the battery element, and a positive electrode lead plate and a negative electrode lead connecting the current collector foil to a positive electrode terminal and a negative electrode terminal, respectively A secondary battery comprising a plate and a battery case that houses the battery element, the current collector foil, and the lead plate,
On both side surfaces of the battery element, elastic members are provided between the battery element and the wall surface in the longitudinal direction of the battery case, respectively.
One of the elastic members is integrated with the positive electrode lead plate to form a composite,
2. The secondary battery according to claim 1, wherein the other elastic member is integrated with the negative electrode lead plate to form a composite.
前記電池要素は巻回型の電池要素であり、前記弾性部材は、前記電池ケースの壁面から前記電池要素に向かって突出する突出部を有し、前記突出部は前記電池要素の凹み部に追従していることを特徴とする請求項1に記載の二次電池。



The battery element is a wound battery element, and the elastic member has a protrusion that protrudes from the wall surface of the battery case toward the battery element, and the protrusion follows the recess of the battery element. The secondary battery according to claim 1, wherein:



JP2009248671A 2009-10-29 2009-10-29 Secondary battery Pending JP2011096485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009248671A JP2011096485A (en) 2009-10-29 2009-10-29 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009248671A JP2011096485A (en) 2009-10-29 2009-10-29 Secondary battery

Publications (1)

Publication Number Publication Date
JP2011096485A true JP2011096485A (en) 2011-05-12

Family

ID=44113203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009248671A Pending JP2011096485A (en) 2009-10-29 2009-10-29 Secondary battery

Country Status (1)

Country Link
JP (1) JP2011096485A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082490A (en) * 2013-10-24 2015-04-27 株式会社Gsユアサ Power storage element and power supply module
JP2016001580A (en) * 2014-06-12 2016-01-07 三井化学株式会社 Manufacturing method of secondary battery and secondary battery
JP2018163858A (en) * 2017-03-27 2018-10-18 三洋電機株式会社 Manufacturing method of square secondary battery
JP2021089856A (en) * 2019-12-04 2021-06-10 トヨタ自動車株式会社 Secondary battery and manufacturing method for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082490A (en) * 2013-10-24 2015-04-27 株式会社Gsユアサ Power storage element and power supply module
JP2016001580A (en) * 2014-06-12 2016-01-07 三井化学株式会社 Manufacturing method of secondary battery and secondary battery
JP2018163858A (en) * 2017-03-27 2018-10-18 三洋電機株式会社 Manufacturing method of square secondary battery
JP2021089856A (en) * 2019-12-04 2021-06-10 トヨタ自動車株式会社 Secondary battery and manufacturing method for the same
JP7236035B2 (en) 2019-12-04 2023-03-09 トヨタ自動車株式会社 Secondary battery and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4726896B2 (en) Cathode material for non-aqueous electrolyte lithium ion battery and battery using the same
JP5699559B2 (en) Non-aqueous electrolyte battery
JP4158440B2 (en) Secondary battery and assembled battery using the same
JP5693982B2 (en) Non-aqueous secondary battery
US20130177787A1 (en) Current collector and nonaqueous secondary battery
JP5172496B2 (en) Power storage unit and manufacturing method thereof
JP3997370B2 (en) Non-aqueous secondary battery
JP2012252888A (en) Secondary battery and assembled battery
JP2011108507A (en) Secondary battery
JP6667932B2 (en) Battery module including porous cooling buffer member
JP2004111219A (en) Laminate secondary cell, cell pack module made of a plurality of laminated secondary cells, cell pack made of a plurality of cell pack modules, and electric car loading either thereof
JP2011103249A (en) Secondary battery
CN112204791A (en) Battery and battery pack
JP2006164752A (en) Battery structure
JP2005174691A (en) Bipolar battery
JP2006202680A (en) Polymer battery
JP2022188177A (en) Film outer package battery, battery pack, and manufacturing method of the film outer package battery
JP4367235B2 (en) Bipolar battery, battery pack, and vehicle equipped with the same
JP5623073B2 (en) Secondary battery
JP5937969B2 (en) Non-aqueous secondary battery
JP2011096485A (en) Secondary battery
JP4348492B2 (en) Non-aqueous secondary battery
JP2011086483A (en) Laminated secondary battery
JP6048477B2 (en) Method for producing non-aqueous electrolyte battery
JP4092543B2 (en) Non-aqueous secondary battery