JP5623073B2 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP5623073B2
JP5623073B2 JP2009295596A JP2009295596A JP5623073B2 JP 5623073 B2 JP5623073 B2 JP 5623073B2 JP 2009295596 A JP2009295596 A JP 2009295596A JP 2009295596 A JP2009295596 A JP 2009295596A JP 5623073 B2 JP5623073 B2 JP 5623073B2
Authority
JP
Japan
Prior art keywords
storage element
power storage
negative electrode
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009295596A
Other languages
Japanese (ja)
Other versions
JP2011134685A (en
Inventor
藤野 健
健 藤野
由騎 冨永
由騎 冨永
映祐 駒澤
映祐 駒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009295596A priority Critical patent/JP5623073B2/en
Publication of JP2011134685A publication Critical patent/JP2011134685A/en
Application granted granted Critical
Publication of JP5623073B2 publication Critical patent/JP5623073B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、たとえば自動車駆動用電源に用いて好適な二次電池に係り、特に、電池の耐久性および放熱性を向上させる技術に関する。   The present invention relates to a secondary battery suitable for use in, for example, an automobile driving power source, and more particularly to a technique for improving the durability and heat dissipation of the battery.

車載用のリチウムイオン二次電池においては、それぞれ正極、負極および電解液を有する単電池(セル)が複数個直列に配置されて組電池を形成し、充放電制御のためのセルコントローラが接続され、必要な電圧が得られるようにバッテリーモジュールを形成する。   In an in-vehicle lithium ion secondary battery, a plurality of single cells (cells) each having a positive electrode, a negative electrode, and an electrolyte are arranged in series to form an assembled battery, and a cell controller for charge / discharge control is connected. Then, the battery module is formed so as to obtain a necessary voltage.

このような二次電池の単電池には、電極シートとセパレータを重ね、図2(a)および図3(a)に示すように扁平型や円筒型に巻回した後に図2(b)および図3(b)に示すように潰した巻回型蓄電素子、あるいは、平板状に切り出した電極とセパレータを積層した積層型蓄電素子の2種類があり、これらを、円筒型のケースに収納したものや、角型、扁平型のケースに収納したものがある(例えば、特許文献1参照)。   In such a secondary battery unit cell, an electrode sheet and a separator are stacked, and after being wound into a flat type or a cylindrical type as shown in FIGS. 2 (a) and 3 (a), FIG. As shown in FIG. 3 (b), there are two types: a crushed wound type storage element, or a laminated type storage element in which electrodes and separators cut out in a flat plate shape are stacked, and these are stored in a cylindrical case. Some are housed in a rectangular or flat case (for example, see Patent Document 1).

蓄電素子を角型ケースに収納する場合、蓄電素子の両端部から導出される正極側および負極側の集電箔は重ねられ、それぞれ正極側および負極側の集電体(リード)に超音波溶接され、ケースに収納される。   When the storage element is housed in a square case, the current collector foils on the positive electrode side and the negative electrode side, which are led out from both ends of the power storage element, are overlapped and ultrasonically welded to the current collectors (leads) on the positive electrode side and the negative electrode side, respectively And stored in a case.

上記のうち積層型の蓄電素子は、各電極への面圧が一定であり、巻回型の蓄電素子に比べて屈曲部が無く、活物質の脱落などの課題が少ない。しかしながら、電極の切り出し、蓄電素子をスタックして積み重ねのための工程が煩雑であり、生産性が低下するため製造コストが上がる。   Among the above, the stacked power storage element has a constant surface pressure to each electrode, has no bent portion, and has less problems such as dropping off of the active material than the wound power storage element. However, the process for cutting out the electrodes and stacking and accumulating the power storage elements is complicated, and the manufacturing cost increases because the productivity decreases.

一方、巻回型の蓄電素子は、長尺のシートを巻回して蓄電素子を作製するため、工程が簡素化でき、低コスト化できる。しかしながら、扁平型では巻き芯部分が空間となるとためケースへの充填密度が積層型の蓄電素子より上がりにくいという課題があり、充填密度を向上するためには、ケースに装填する際に蓄電素子をつぶして装填する。   On the other hand, since the winding type power storage element is manufactured by winding a long sheet, the process can be simplified and the cost can be reduced. However, in the flat type, there is a problem that when the winding core portion becomes space, the filling density of the case is less likely to increase than the stacked type storage element, and in order to improve the packing density, the storage element is inserted when loading the case. Crush and load.

蓄電素子の高エネルギー密度化を図るために、蓄電素子の電極活物質比率を高める必要があるが、そのためには電極箔を薄くし、活物質層を厚くする必要がある。発明者らが検討した結果、PVDFやSBRからなる樹脂バインダを用いて粒子状活物質を形成すると、図4のグラフで検討したように、活物質合材層が厚いほど、屈曲に対して合材で割れが発生し、金属集電箔から活物質が脱落することが分かった。炭素質材料、特に黒鉛粒子からなる電極では、図2および3に示すように、蓄電素子24または25の巻回後、巻き芯を抜いた後の中心部30または31の空間をつぶすと、曲率Rが小さい両端のコーナー領域Aで電極のクラックが発生し易いことがわかった。このクラック部分では、活物質層と電極箔との密着性が低下し、活物質が脱落し、電極の抵抗が増大する。一般的に、VGCFなどの繊維状のフィラーで電極の割れを強化する方法もあるが、VGCFなどの添加量が多くなると、分散混合工程の時間が長くなり、スラリーの粘度が増大して塗工速度が低下することで生産性が低下する。また、VGCF自体の材料コストが高いため、コストの増大という問題があった。   In order to increase the energy density of the power storage element, it is necessary to increase the electrode active material ratio of the power storage element. To this end, it is necessary to make the electrode foil thinner and the active material layer thicker. As a result of investigations by the inventors, when a particulate active material is formed using a resin binder made of PVDF or SBR, the thicker the active material mixture layer is, the more the active material mixture layer becomes, as examined in the graph of FIG. It was found that cracking occurred in the material and the active material dropped out from the metal current collector foil. In an electrode made of a carbonaceous material, particularly graphite particles, as shown in FIGS. 2 and 3, when the space of the center portion 30 or 31 after the winding core is removed after winding of the electricity storage element 24 or 25, the curvature becomes It was found that electrode cracks are likely to occur in the corner regions A at both ends where R is small. In the crack portion, the adhesion between the active material layer and the electrode foil is lowered, the active material is dropped, and the resistance of the electrode is increased. In general, there is a method of strengthening electrode cracking with a fibrous filler such as VGCF. However, if the amount of VGCF or the like is increased, the time of the dispersion and mixing process becomes longer, and the viscosity of the slurry is increased. Productivity decreases as speed decreases. Moreover, since the material cost of VGCF itself is high, there existed a problem of an increase in cost.

その結果、蓄電素子24(25)の両端のコーナー領域Aを一定以上の程度で潰すことができないため、素子は中空部30(31)を有する楕円形状となり、電極の充填密度が向上できないため電池容量が向上できないという問題が生じる。特に電気自動車などに用いられる大型素子になると、このデッドスペースが大きくなる。   As a result, the corner regions A at both ends of the electricity storage device 24 (25) cannot be crushed to a certain degree or more, so the device has an elliptical shape having the hollow portion 30 (31), and the packing density of the electrodes cannot be improved. There arises a problem that the capacity cannot be improved. In particular, this dead space becomes large when a large element used in an electric vehicle or the like is used.

さらに、楕円形状のうち両端のコーナー領域A間に存在する長手領域Bは拘束されていないために中空部30(31)に対して内側に凹み、図2(b)に示すようなアレイ型の形状となってしまう。このように素子中心部ではケースからの拘束力がないため、(1)素子中央部からケースへの伝熱面積が小さくなり、放熱性が低下することにより、温度が上昇しやすく、これにより、素子内部の温度ばらつきが大きくなり、活物質の劣化が起きる。また、(2)電解液の分解により発生したガスが電極間に溜まり易く、気泡が滞留すると、有効な電極面積が小さくなり、抵抗が増大する。さらに、(3)負極での膨張・収縮により負極活物質と電極箔の間の荷重による密着性が低下して接触抵抗が増大する。これら(1)〜(3)の理由により、結果として電池の耐久性および寿命が低下する問題が発生していた。   Furthermore, since the longitudinal region B existing between the corner regions A at both ends of the elliptical shape is not constrained, it is recessed inward with respect to the hollow portion 30 (31), and an array type as shown in FIG. It becomes a shape. Thus, since there is no binding force from the case at the center of the element, (1) the heat transfer area from the center of the element to the case is reduced and the heat dissipation is reduced, so that the temperature is likely to rise. The temperature variation inside the device increases, and the active material deteriorates. Further, (2) the gas generated by the decomposition of the electrolytic solution is likely to accumulate between the electrodes, and if bubbles remain, the effective electrode area decreases and the resistance increases. Further, (3) due to expansion / contraction of the negative electrode, the adhesion due to the load between the negative electrode active material and the electrode foil is lowered, and the contact resistance is increased. For these reasons (1) to (3), there has been a problem that the durability and life of the battery are reduced as a result.

特開2009−032670号公報JP 2009-032670 A

本発明は、以上述べた従来技術の課題を解決するためになされたもので、巻回型の蓄電素子を装填した自動車用二次電池構造において、放熱性および耐久性を向上させた構造を有する二次電池を提供することを目的としている。   The present invention has been made in order to solve the above-described problems of the prior art, and has a structure in which heat dissipation and durability are improved in a secondary battery structure for an automobile loaded with a winding type storage element. The object is to provide a secondary battery.

本発明の二次電池は、正極シート、セパレータおよび負極シートが重ねられて巻回された電解液を有する第1蓄電素子と、第1蓄電素子を収容する電池ケースとを備えた二次電池であって、第1蓄電素子は扁平形状であって、長手領域およびコーナー領域を構成し、長手領域の中央部分は、面圧発生部材によって電池ケースに押圧されることを特徴としている。   A secondary battery according to the present invention is a secondary battery including a first power storage element having an electrolyte solution in which a positive electrode sheet, a separator, and a negative electrode sheet are stacked and wound, and a battery case that houses the first power storage element. The first power storage element has a flat shape and forms a longitudinal region and a corner region, and a central portion of the longitudinal region is pressed against the battery case by a surface pressure generating member.

上記構成の二次電池にあっては、電池内に面圧発生部材が収容されていて、第1蓄電素子を押圧するので、第1蓄電素子において撓みの発生し易い長手領域の中央部分と電池ケースが接しているため、蓄電素子から発生する熱が電池ケースに伝わり易くなっており、放熱性が向上する。また、電池に加わる振動に対する耐久性や、充放電の繰り返しによる蓄電素子自体の膨張・収縮に対する耐久性が向上する。   In the secondary battery having the above configuration, since the surface pressure generating member is accommodated in the battery and presses the first power storage element, the central portion of the longitudinal region where the first power storage element is likely to be bent and the battery Since the case is in contact, heat generated from the power storage element is easily transmitted to the battery case, and heat dissipation is improved. Further, durability against vibration applied to the battery and durability against expansion / contraction of the power storage element itself due to repeated charge / discharge are improved.

本発明の二次電池においては、第1蓄電素子は、面圧発生部材に巻回され、面圧発生部材は、正極シート、セパレータおよび負極シートを巻回した第2蓄電素子から構成され、第2蓄電素子の活物質層は、第1蓄電素子の活物質層よりも薄く形成されることをさらなる特徴としている。
In the secondary battery of the present invention, the first storage element is wound around the surface pressure generating member, the surface pressure generating member is composed of a second storage element which turned positive electrode sheet, a separator and a negative electrode sheet winding, the The active material layer of the two electricity storage elements is further characterized by being formed thinner than the active material layer of the first electricity storage element.

また、本発明の二次電池においては、第1蓄電素子は、面圧発生部材に巻回され、面圧発生部材は、正極シート、セパレータおよび負極シートを巻回あるいは積層した第2蓄電素子から構成され、正極シートは、正極活物質及び正極活物質が形成される正極集電箔からなり、負極シートは、負極活物質及び負極活物質が形成される負極集電箔からなり、第2蓄電素子における正極または負極活物質に対する正極または負極集電箔の厚みの割合は、第1蓄電素子における正極または負極活物質に対する正極または負極集電箔の厚みの割合よりも、大きいことをさらなる特徴としている。
In the secondary battery of the present invention, the first power storage element is wound around a surface pressure generating member, and the surface pressure generating member is formed from a second power storage element in which a positive electrode sheet, a separator, and a negative electrode sheet are wound or stacked. The positive electrode sheet is composed of a positive electrode active material and a positive electrode current collector foil on which the positive electrode active material is formed, and the negative electrode sheet is composed of a negative electrode current collector foil on which the negative electrode active material and the negative electrode active material are formed. As a further feature , the ratio of the thickness of the positive electrode or negative electrode current collector foil to the positive electrode or negative electrode active material in the element is larger than the ratio of the thickness of the positive electrode or negative electrode current collector foil to the positive electrode or negative electrode active material in the first power storage element. Yes.

上記構成の二次電池にあっては、第1蓄電素子の内部に第2蓄電素子が面圧発生部材として存在しているので、蓄電素子の長手領域の撓みを防止して、ケースに密着することができ、これにより蓄電素子の放熱性および耐久性を向上できるだけでなく、蓄電素子のコーナー領域の潰れを抑制して曲率を大きいまま維持することができるので、活物質の脱落を防止することができ、また、電池ケースと蓄電素子との接触面積が増えて蓄電素子に拘束力を均等に付与し、電極間の距離が一定となるので、内部抵抗の上昇を防止することができる。なお、以下、本願明細書において単に「薄い」「薄膜」「厚い」「厚膜」という場合は、「相対的に薄い」「相対的に厚い」を意味する。また、電極合材層、活物質層の厚みとは、集電箔の片面に形成された厚みのこと示す。   In the secondary battery having the above configuration, since the second power storage element exists as a surface pressure generating member inside the first power storage element, the longitudinal region of the power storage element is prevented from being bent and is in close contact with the case. This can not only improve the heat dissipation and durability of the electricity storage device, but also suppress the collapse of the corner area of the electricity storage device and maintain a large curvature, thereby preventing the active material from falling off. In addition, since the contact area between the battery case and the power storage element is increased, a binding force is evenly applied to the power storage element, and the distance between the electrodes is constant, so that an increase in internal resistance can be prevented. In the following description of the present application, the terms “thin”, “thin film”, “thick”, and “thick film” mean “relatively thin” and “relatively thick”. Moreover, the thickness of an electrode compound-material layer and an active material layer shows the thickness formed in the single side | surface of current collection foil.

また、上記構成の二次電池にあっては、面圧発生部材が第2蓄電素子を兼ねているので、蓄電素子量すなわち総活物質量が増加して、二次電池の容量を向上させることができる。   Further, in the secondary battery having the above configuration, since the surface pressure generating member also serves as the second power storage element, the amount of the power storage element, that is, the total amount of the active material is increased, thereby improving the capacity of the secondary battery. Can do.

さらに、上記構成の二次電池にあっては、第2蓄電素子の活物質層が第1蓄電素子の活物質層よりも薄いか、あるいは、第2蓄電素子における正極または負極活物質層に対する正極または負極集電箔の厚みの割合が第1蓄電素子における正極または負極活物質層に対する正極または負極集電箔の厚みの割合よりも大きいため、集電箔の割合が相対的に多くなって熱が伝わり易く、蓄電素子中心部の熱が集電箔を通じて外部に放熱され易くなっている。また、第1蓄電素子に較べて活物質層が薄いためクラックが入りにくいので、曲率が小さくなるように素子を潰して密に充填することができる。   Further, in the secondary battery having the above configuration, the active material layer of the second power storage element is thinner than the active material layer of the first power storage element, or the positive electrode with respect to the positive electrode or the negative electrode active material layer in the second power storage element Alternatively, since the ratio of the thickness of the negative electrode current collector foil is larger than the ratio of the thickness of the positive electrode or negative electrode current collector foil to the positive electrode or negative electrode active material layer in the first power storage element, Is easily transmitted, and the heat at the center of the power storage element is easily radiated to the outside through the current collector foil. In addition, since the active material layer is thinner than the first power storage element, cracks are less likely to occur, so that the element can be crushed and densely filled so as to reduce the curvature.

本発明の二次電池においては、第1蓄電素子は複数設けられ、複数の第1蓄電素子の間に面圧発生部材が設けられることをさらなる特徴としている。
The secondary battery of the present invention is further characterized in that a plurality of first power storage elements are provided, and a surface pressure generating member is provided between the plurality of first power storage elements.

上記構成の二次電池にあっては、複数の第1蓄電素子の間の面圧発生部材が、隣接する第1蓄電素子を潰して固定するので、第1蓄電素子は押圧され、第1蓄電素子において撓みの発生し易い長手領域の中央部分と電池ケースが接し、放熱性および耐久性が向上する。また、蓄電素子のコーナー領域の潰れを抑制して曲率を大きいまま維持することができるので、活物質の脱落を防止することができ、さらに、電池ケースと蓄電素子との接触面積が増えて蓄電素子に拘束力を均等に付与し、電極間の距離が一定となるので、内部抵抗の上昇を防止することができる。   In the secondary battery having the above configuration, the surface pressure generating member between the plurality of first power storage elements crushes and fixes the adjacent first power storage elements, so that the first power storage elements are pressed and the first power storage elements are pressed. The battery case is in contact with the central portion of the longitudinal region where the element is likely to be bent, and heat dissipation and durability are improved. In addition, since the curvature of the corner area of the power storage element can be suppressed and maintained with a large curvature, the active material can be prevented from falling off, and the contact area between the battery case and the power storage element can be increased. Since the restraining force is evenly applied to the elements and the distance between the electrodes is constant, an increase in internal resistance can be prevented.

本発明の二次電池においては、面圧発生部材は、正極シート、セパレータおよび負極シートを巻回した第2蓄電素子から構成されることをさらなる特徴としている。
In the secondary battery of the present invention, the surface pressure generating member is further characterized in that the surface pressure generating member is composed of a second power storage element in which a positive electrode sheet, a separator, and a negative electrode sheet are wound .

上記構成の二次電池にあっては、面圧発生部材が第2蓄電素子を兼ねているので、蓄電素子量すなわち総活物質量が増加して、二次電池の容量を向上させることができる。   In the secondary battery having the above configuration, since the surface pressure generating member also serves as the second power storage element, the amount of the power storage element, that is, the total active material amount can be increased, and the capacity of the secondary battery can be improved. .

本発明の二次電池においては、第2蓄電素子は、巻回されており、第2蓄電素子の活物質層は、第1蓄電素子の活物質層よりも薄く形成されることをさらなる特徴としている。
In the secondary battery of the present invention, the second storage element is wound, the active material layer of the second power storage device, as a further feature that it is thinner than the active material layer of the first storage element Yes.

上記構成の二次電池にあっては、第2蓄電素子の活物質層が第1蓄電素子の活物質層よりも薄いので、集電箔の割合が相対的に多くなって熱が伝わり易く、蓄電素子中心部の熱が集電箔を通じて外部に放熱され易くなっている。また、第1蓄電素子に比べて薄いためクラックが入りにくいので、曲率が小さくなるよう素子を潰して密に充填することができる。   In the secondary battery having the above configuration, since the active material layer of the second power storage element is thinner than the active material layer of the first power storage element, the ratio of the current collector foil is relatively large, and heat is easily transmitted. The heat at the center of the storage element is easily radiated to the outside through the current collector foil. In addition, since it is thinner than the first power storage element, cracks are less likely to occur, so that the element can be crushed and densely filled so that the curvature is reduced.

本発明の二次電池においては、第2蓄電素子は、巻回された扁平形状であって、長手領域およびコーナー領域を構成し、コーナー領域の活物質層の厚みは、長手領域の活物質層の厚みよりも薄く形成されることを好ましい態様としている。   In the secondary battery of the present invention, the second power storage element has a wound flat shape, and forms a longitudinal region and a corner region. The thickness of the active material layer in the corner region is the active material layer in the longitudinal region. It is a preferred embodiment that the thickness is less than the thickness.

上記構成の二次電池にあっては、中心ほど曲率が小さくなるが活物質層にクラックの発生し易い中心部のコーナー領域において、活物質層が薄く電極箔の占める割合が大きいから、クラックの発生を抑制することができ、より密に蓄電素子を充填することができる。   In the secondary battery having the above-described configuration, the curvature becomes smaller toward the center, but the active material layer is thin and the proportion of the electrode foil is large in the central corner region where the active material layer is likely to crack. Generation | occurrence | production can be suppressed and an electrical storage element can be filled more densely.

本発明によれば、面圧発生部材が蓄電素子を電池ケースに対して押圧して確実に拘束することができるので、電極要素の耐久性および放熱性を向上させ、電池の寿命を向上させることができる。また、面圧発生部材を付加的な蓄電素子とすれば、エネルギー密度を向上させることができる。   According to the present invention, the surface pressure generating member can press the power storage element against the battery case and reliably restrain the battery element, thereby improving the durability and heat dissipation of the electrode elements and improving the battery life. Can do. Further, if the surface pressure generating member is an additional power storage element, the energy density can be improved.

本発明の各実施形態に共通する単電池の構造を示す透視斜視図である。It is a see-through | perspective perspective view which shows the structure of the cell common to each embodiment of this invention. 従来の単電池の蓄電素子を示す断面図である。It is sectional drawing which shows the electrical storage element of the conventional cell. 従来の単電池の蓄電素子を示す断面図である。It is sectional drawing which shows the electrical storage element of the conventional cell. 従来の単電池における電極層の厚さとクラックの起こる曲率の関係を示すグラフである。It is a graph which shows the thickness of the electrode layer in the conventional cell, and the relationship between the curvature in which a crack arises. 本発明の一実施形態に係る蓄電素子および単電池を示し、(a)は蓄電素子単体の断面図、(b)は単電池の側断面図、(c)は単電池の集電体部分のケースを透視した側面図である。1 shows a power storage element and a single battery according to an embodiment of the present invention, wherein (a) is a cross-sectional view of a single power storage element, (b) is a side cross-sectional view of the single battery, and (c) is a current collector portion of the single battery. It is the side view which saw through the case. 本発明の他の実施形態に係る蓄電素子および単電池を示し、(a)は蓄電素子単体の断面図、(b)は単電池の側断面図、(c)は単電池の集電体部分のケースを透視した側面図である。The electrical storage element and unit cell which concern on other embodiment of this invention are shown, (a) is sectional drawing of an electrical storage element single-piece | unit, (b) is a sectional side view of a unit cell, (c) is the collector part of a unit cell It is the side view which saw through the case. 本発明の他の実施形態に係る蓄電素子および単電池を示し、(a)は蓄電素子単体の断面図、(b)は単電池の側断面図、(c)は単電池の集電体部分のケースを透視した側面図である。The electrical storage element and unit cell which concern on other embodiment of this invention are shown, (a) is sectional drawing of an electrical storage element single-piece | unit, (b) is a sectional side view of a unit cell, (c) is the collector part of a unit cell It is the side view which saw through the case. 本発明の他の実施形態に係る蓄電素子および単電池を示し、(a)は蓄電素子単体の断面図、(b)は単電池の側断面図、(c)は単電池の集電体部分のケースを透視した側面図である。The electrical storage element and unit cell which concern on other embodiment of this invention are shown, (a) is sectional drawing of an electrical storage element single-piece | unit, (b) is a sectional side view of a unit cell, (c) is the collector part of a unit cell It is the side view which saw through the case. 本発明の他の実施形態に係る単電池を示し、(a)は単電池の側断面図、(b)は単電池の集電体部分のケースを透視した側面図である。FIG. 5 shows a unit cell according to another embodiment of the present invention, in which (a) is a side sectional view of the unit cell, and (b) is a side view seen through a case of a current collector portion of the unit cell. 従来の単電池を示し、(a)は単電池の側断面図、(b)は単電池の集電体部分のケースを透視した側面図である。A conventional cell is shown, (a) is a sectional side view of the cell, and (b) is a side view of a case of a current collector portion of the cell. 本発明の一実施形態に係る蓄電素子を構成する各層を示す断面図である。It is sectional drawing which shows each layer which comprises the electrical storage element which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る蓄電素子を構成する各層を示す断面図である。It is sectional drawing which shows each layer which comprises the electrical storage element which concerns on other embodiment of this invention. 本発明の他の実施形態に係る蓄電素子を構成する各層を示す断面図である。It is sectional drawing which shows each layer which comprises the electrical storage element which concerns on other embodiment of this invention. 本発明の単電池の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the cell of this invention. 本発明の単電池の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the cell of this invention. 本発明の実施例および比較例における充放電回数と容量低下率の関係を示すグラフである。It is a graph which shows the relationship between the frequency | count of charging / discharging and the capacity | capacitance fall rate in the Example and comparative example of this invention. 本発明の実施例および比較例における充放電回数と抵抗上昇率の関係を示すグラフである。It is a graph which shows the relationship between the frequency | count of charging / discharging and a resistance increase rate in the Example and comparative example of this invention.

以下、図面を参照して本発明の実施の形態を説明する。
図1は、本発明を適用することができる一般的な単電池を示す透視図である。単電池は、公知のリチウムイオン二次電池等であって、電池ケース10および電池蓋11を有する。電池ケース10内には、正極活物質が塗布された正極シート、セパレータおよび負極活物質が塗布された負極シートが重ねられて巻回され、電解液が含浸された巻回体の蓄電素子24と、蓄電素子24の両端から導出された正負の集電箔に接続された正極リード板21および負極リード板23とが収容されている。正極リード板21および負極リード板23のそれぞれには、電池蓋11を貫通して正極端子20および負極端子22が電池外部に設けられている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a perspective view showing a general cell to which the present invention can be applied. The unit cell is a known lithium ion secondary battery or the like, and includes a battery case 10 and a battery lid 11. In the battery case 10, a positive electrode sheet coated with a positive electrode active material, a separator, and a negative electrode sheet coated with a negative electrode active material are stacked and wound, and a storage element 24 of a wound body impregnated with an electrolyte solution The positive electrode lead plate 21 and the negative electrode lead plate 23 connected to positive and negative current collector foils led out from both ends of the electric storage element 24 are accommodated. In each of the positive electrode lead plate 21 and the negative electrode lead plate 23, a positive electrode terminal 20 and a negative electrode terminal 22 are provided outside the battery through the battery lid 11.

このような従来の単電池においては、電極層の厚みが大きくなると、図10の蓄電素子の断面図に示すように、蓄電素子24が中空部30を有しており、蓄電素子24の両端のコーナー領域間に存在する長手領域において蓄電素子24が拘束されていないため、すでに述べたように長手領域が中空部30に対して凹んでしまうという問題があった。   In such a conventional unit cell, when the thickness of the electrode layer is increased, as shown in the cross-sectional view of the power storage element in FIG. 10, the power storage element 24 has a hollow portion 30, and Since the power storage element 24 is not restrained in the longitudinal region existing between the corner regions, there is a problem that the longitudinal region is recessed with respect to the hollow portion 30 as described above.

第1実施形態(同軸型)
図5(a)は、そのような従来の問題を解決するもので、本発明の第1実施形態に係る単電池における蓄電素子を示す断面図である。蓄電素子24は、中空部に、同軸型の面圧発生部材である第2蓄電素子40を有する。第2蓄電素子40は、第1蓄電素子24と同様に正極シート、セパレータおよび負極シートが重ねられて巻回された構造を有する。このようにして形成された第1および第2蓄電素子は、図5(b)の断面図および(c)の透視側面図に示すように、ケース10に収められる。
First embodiment (coaxial type)
FIG. 5A is a cross-sectional view illustrating a power storage element in the unit cell according to the first embodiment of the present invention, which solves such a conventional problem. The power storage element 24 has a second power storage element 40 that is a coaxial surface pressure generating member in a hollow portion. Similar to the first power storage element 24, the second power storage element 40 has a structure in which a positive electrode sheet, a separator, and a negative electrode sheet are stacked and wound. The first and second power storage elements thus formed are housed in the case 10 as shown in the cross-sectional view of FIG. 5B and the perspective side view of FIG.

上記構成の第1実施形態の単電池によれば、第2蓄電素子が第1蓄電素子を押圧するので、第1蓄電素子において撓みの発生し易い長手領域の中央部分と電池ケースが接しているため、蓄電素子から発生する熱が電池ケースに伝わり易くなっており、放熱性が向上する。また、電池に加わる振動に対する耐久性や、充放電の繰り返しによる蓄電素子自体の膨張・収縮に対する耐久性が向上する。   According to the single battery of the first embodiment configured as described above, since the second power storage element presses the first power storage element, the central portion of the longitudinal region where the first power storage element is likely to bend is in contact with the battery case. Therefore, heat generated from the power storage element is easily transmitted to the battery case, and heat dissipation is improved. Further, durability against vibration applied to the battery and durability against expansion / contraction of the power storage element itself due to repeated charge / discharge are improved.

また、蓄電素子のコーナー領域の潰れを抑制して曲率を大きいまま維持することができるので、活物質の脱落を防止することができ、また、電池ケースと蓄電素子との接触面積が増えて蓄電素子に拘束力を均等に付与し、電極間の距離が一定となるので、長期の使用においても内部抵抗の上昇を防止することができる。   In addition, the corner area of the power storage element can be prevented from being crushed and the curvature can be kept large, so that the active material can be prevented from falling off, and the contact area between the battery case and the power storage element can be increased. Since the restraining force is evenly applied to the elements and the distance between the electrodes becomes constant, an increase in internal resistance can be prevented even during long-term use.

さらに、面圧発生部材が第2蓄電素子を兼ねているので、蓄電素子量すなわち総活物質量が増加して、二次電池の容量を向上させることができる。   Furthermore, since the surface pressure generating member also serves as the second power storage element, the amount of the power storage element, that is, the total active material amount can be increased, and the capacity of the secondary battery can be improved.

ここで、第1実施形態においては、第2蓄電素子の活物質層が第1蓄電素子の活物質層よりも薄いことが好ましい。このような構造の利点を以下に説明する。図11(a)は、本発明のそのような第2蓄電素子の相対的に薄い活物質層を示しており、図11(b)は、第1蓄電素子の相対的に厚い活物質層を示している。また、図12(a)および(b)は、それぞれ活物質層の厚さが変化しない第2蓄電素子および第1蓄電素子を示している。図11(a)に示すように、第2蓄電素子の活物質層すなわち正極材料51および負極材料53が薄いと、厚さが不変である集電箔すなわち正極箔50および負極箔54の割合が相対的に多くなって、熱が伝わり易く、蓄電素子中心部の熱が集電箔を通じて外部に放熱され易くなる。そのため、蓄電素子中心部と外周部の熱ばらつきが小さくなり、中心部の極端な温度上昇による劣化を防止できる。また、第1蓄電素子に比べて薄いため曲げてもクラックが入りにくいので、曲率が小さくなるよう素子を潰して密に充填することができる。   Here, in 1st Embodiment, it is preferable that the active material layer of a 2nd electrical storage element is thinner than the active material layer of a 1st electrical storage element. The advantages of such a structure will be described below. FIG. 11A shows a relatively thin active material layer of such a second power storage element of the present invention, and FIG. 11B shows a relatively thick active material layer of the first power storage element. Show. FIGS. 12A and 12B show a second power storage element and a first power storage element in which the thickness of the active material layer does not change, respectively. As shown in FIG. 11A, when the active material layer of the second power storage element, that is, the positive electrode material 51 and the negative electrode material 53 is thin, the ratio of the current collector foil, that is, the positive electrode foil 50 and the negative electrode foil 54 whose thickness remains unchanged. It becomes relatively large, heat is easily transmitted, and heat at the center of the power storage element is easily radiated to the outside through the current collector foil. For this reason, the thermal variation between the central portion and the outer peripheral portion of the power storage element is reduced, and deterioration due to an extreme temperature rise in the central portion can be prevented. In addition, since it is thinner than the first power storage element, it is difficult to crack even if it is bent. Therefore, the element can be crushed and densely filled so as to reduce the curvature.

図6は、第1実施形態の変更例を示す。図6に示すように、巻回型の第2蓄電素子40は、積層型の第2蓄電素子41に変更してもよい。積層型の第2蓄電素子41の場合も同様に、活物質が塗布されていない両端の集電箔によって、第1蓄電素子24と並列に超音波溶接される。   FIG. 6 shows a modification of the first embodiment. As illustrated in FIG. 6, the wound second power storage element 40 may be changed to a stacked second power storage element 41. Similarly, in the case of the stacked second power storage element 41, ultrasonic welding is performed in parallel with the first power storage element 24 by current collecting foils at both ends to which no active material is applied.

第1実施形態では、第1蓄電素子の活物質層の厚さは50〜500μmの範囲で設定されることが好ましく、この場合の第2蓄電素子の活物質層の厚さは10〜50μmの範囲で設定されることが好ましい。   In the first embodiment, the thickness of the active material layer of the first power storage element is preferably set in the range of 50 to 500 μm. In this case, the thickness of the active material layer of the second power storage element is 10 to 50 μm. It is preferable to set the range.

第1実施形態においては、中心部と外周部の好ましい電極の厚みは、電極合材層のクラックタフネスにより異なる。例えば、集電箔と電極合材層の接着性や電極合材層を構成する活物質の種類、粒径、電極合材層の密度、電極合材層を形成するバインダ量が挙げられる。第1蓄電素子に装填可能な第2蓄電素子の比率は、次の方法で最適化することができる。まず、外側の第1蓄電素子の電極厚みに応じて、コーナー部の電極クラックの発生する曲率を実験的に求めることができる。この「クラック限界」を超えない曲率を有する中空部に、より薄い電極層からなり、最外周が当該中空部に装填可能なサイズの第2蓄電素子を装填すればよい。例えば、図7において、第1蓄電素子24の電極厚さが100μmであり、この電極層のクラック限界極率が8mmとなる場合は、内部の8mmの中空部に装填するように第2蓄電素子42を作成する。例えばその電極活物質層の厚さは、50μmと設定される。   In the first embodiment, the preferred electrode thicknesses at the center and the outer periphery vary depending on the crack toughness of the electrode mixture layer. For example, the adhesion between the current collector foil and the electrode mixture layer, the type of active material constituting the electrode mixture layer, the particle size, the density of the electrode mixture layer, and the amount of the binder forming the electrode mixture layer can be mentioned. The ratio of the 2nd electrical storage element which can be loaded in a 1st electrical storage element can be optimized with the following method. First, the curvature at which corner electrode cracks occur can be experimentally determined according to the electrode thickness of the outer first power storage element. What is necessary is just to load the 2nd electrical storage element of the size which can be loaded in the said hollow part which consists of a thinner electrode layer in the hollow part which has a curvature which does not exceed this "crack limit". For example, in FIG. 7, when the electrode thickness of the first power storage element 24 is 100 μm and the crack limit polarity of this electrode layer is 8 mm, the second power storage element is loaded into the hollow portion of 8 mm inside. 42 is created. For example, the thickness of the electrode active material layer is set to 50 μm.

第1実施形態においては、図8に示すように、第2蓄電素子42内にさらに第3蓄電素子43を装填してもよい。この場合は、それぞれの蓄電素子の曲率とクラック限界を勘案して、例えば、第1蓄電素子24の電極厚さが120μm、第2蓄電素子42の電極厚さが80μm、第3蓄電素子43の電極厚さが50μmと設定される。   In the first embodiment, a third power storage element 43 may be further loaded in the second power storage element 42 as shown in FIG. In this case, considering the curvature and crack limit of each power storage element, for example, the electrode thickness of the first power storage element 24 is 120 μm, the electrode thickness of the second power storage element 42 is 80 μm, and the third power storage element 43 The electrode thickness is set to 50 μm.

複数の蓄電素子を装填する方法としては、後述する薄い活物質層からなる蓄電素子を最初に作製してその外側に厚い活物質層からなる蓄電素子を巻回する方法や、積層型の蓄電素子を最初に作製してその外側に蓄電素子を巻回する方法、外側の蓄電素子を作製してその内側の中空部に薄い活物質層からなる蓄電素子を挿入する方法が挙げられる。   As a method of loading a plurality of power storage elements, a method of winding a power storage element consisting of a thin active material layer, which will be described later, and winding a power storage element consisting of a thick active material layer on the outside thereof, or a stacked type power storage element And a method of winding an electricity storage element around the outside, and a method of producing an outside electricity storage element and inserting an electricity storage element made of a thin active material layer into the hollow portion inside.

なお、図7および8に示すように、最も内側の蓄電素子の中央には僅かに中空部があってもよいが、その場合、蓄電素子と電池ケースとの密着を維持するためには、当該中空部のコーナー部の曲率直径Rに対して、蓄電素子の長手領域の凹む長さをR/2以下に維持しなければならない。   As shown in FIGS. 7 and 8, there may be a slight hollow portion in the center of the innermost power storage element. In that case, in order to maintain the close contact between the power storage element and the battery case, With respect to the curvature diameter R of the corner portion of the hollow portion, the length of depression of the longitudinal region of the power storage element must be maintained at R / 2 or less.

第1実施形態では、2個の蓄電素子をケースに収容しているが、蓄電素子の個数はこの態様のみに限定されず、1個または3個以上としてもよい。   In the first embodiment, two power storage elements are accommodated in the case, but the number of power storage elements is not limited to this aspect, and may be one or three or more.

第2実施形態(隣接型)
図9は、本発明の第2実施形態に係る単電池における蓄電素子を示す断面図である。中空部30を有する2つの蓄電素子24は、互いの間に、隣接型の面圧発生部材44を有する。蓄電素子24および面圧発生部材44は、面圧発生部材44によって蓄電素子24の中空部30が潰された状態で、ケース10に収められる。
Second embodiment (adjacent type)
FIG. 9 is a cross-sectional view showing a power storage element in a cell according to the second embodiment of the present invention. The two power storage elements 24 having the hollow portion 30 have the adjacent surface pressure generating member 44 between them. The power storage element 24 and the surface pressure generating member 44 are accommodated in the case 10 in a state where the hollow portion 30 of the power storage element 24 is crushed by the surface pressure generating member 44.

上記構成の第2実施形態の単電池によれば、2個の蓄電素子の間の面圧発生部材が、隣接する蓄電素子を潰して固定するので、蓄電素子は押圧され、蓄電素子において撓みの発生し易い長手領域の中央部分と電池ケースが接し、放熱性および耐久性が向上する。また、蓄電素子のコーナー領域の潰れを抑制して曲率を大きいまま維持することができるので、活物質の脱落を防止することができ、さらに、電池ケースと蓄電素子との接触面積が増えて蓄電素子に拘束力を均等に付与し、電極間の距離が一定となるので、内部抵抗の上昇を防止することができる。   According to the unit cell of the second embodiment configured as described above, the surface pressure generating member between the two power storage elements crushes and fixes the adjacent power storage element, so that the power storage element is pressed and the power storage element is bent. The central portion of the longitudinal region that is likely to be in contact with the battery case improves heat dissipation and durability. In addition, since the curvature of the corner area of the power storage element can be suppressed and maintained with a large curvature, the active material can be prevented from falling off, and the contact area between the battery case and the power storage element can be increased. Since the restraining force is evenly applied to the elements and the distance between the electrodes is constant, an increase in internal resistance can be prevented.

面圧発生部材44は、図9に示すような扁平形状の部材であれば、剛性の高い材料または弾性材料等、材料は限定されないが、面圧発生部材44が正極シート、セパレータおよび負極シートを巻回あるいは積層した第2蓄電素子44から構成されることが好ましい。   As long as the surface pressure generating member 44 is a flat member as shown in FIG. 9, the material is not limited, such as a highly rigid material or an elastic material, but the surface pressure generating member 44 includes a positive electrode sheet, a separator, and a negative electrode sheet. It is preferable that the second power storage element 44 is wound or stacked.

上記構成の単電池によれば、面圧発生部材が第2蓄電素子を兼ねているので、蓄電素子量すなわち総活物質量が増加して、二次電池の容量を向上させることができる。   According to the unit cell configured as described above, since the surface pressure generating member also serves as the second power storage element, the amount of the power storage element, that is, the total amount of the active material is increased, and the capacity of the secondary battery can be improved.

ここで、第2実施形態においても、第2蓄電素子44が巻回型であり、第2蓄電素子44の活物質層が第1蓄電素子24の活物質層よりも薄いことが好ましい。第2蓄電素子44の活物質層が薄いと、集電箔の割合が相対的に多くなって熱が伝わり易く、蓄電素子中心部の熱が集電箔を通じて外部に放熱され易くなる。また、第1蓄電素子24に較べて薄いためクラックが入りにくいので、曲率が小さくなるよう素子を潰して密に充填することができる。   Here, also in the second embodiment, it is preferable that the second power storage element 44 is a winding type, and the active material layer of the second power storage element 44 is thinner than the active material layer of the first power storage element 24. When the active material layer of the second power storage element 44 is thin, the ratio of the current collector foil is relatively increased and heat is easily transmitted, and the heat at the center of the power storage element is easily radiated to the outside through the current collector foil. Moreover, since it is thin compared with the 1st electrical storage element 24, it is hard to produce a crack, Therefore An element can be crushed and filled densely so that a curvature may become small.

第2実施形態においても、図9では2個の蓄電素子24をケースに収容しているが、蓄電素子の個数はこの態様のみに限定されず、3個以上として、それぞれの間に隣接するように第2蓄電素子44を設けてもよい。その際、ケース側面に接する両端に位置する第1蓄電素子と比較して内部に位置する第1蓄電素子は、両側から第2蓄電素子によって挟まれてより潰される。そのため、第2蓄電素子の厚みは、このことを考慮して、両端の第2蓄電素子では厚く、それ以外の第2蓄電素子では薄く、適宜調整してもよい。   Also in the second embodiment, two power storage elements 24 are accommodated in the case in FIG. 9, but the number of power storage elements is not limited to this mode, and is assumed to be three or more and adjacent to each other. A second power storage element 44 may be provided. In that case, the 1st electrical storage element located inside compared with the 1st electrical storage element located in the both ends which contact | connects a case side surface is pinched by the 2nd electrical storage element from both sides, and is crushed more. Therefore, in consideration of this, the thickness of the second power storage element is thick in the second power storage elements at both ends and thin in the other second power storage elements, and may be appropriately adjusted.

第1実施形態および第2実施形態の両形態においては、第2蓄電素子は、巻回された扁平形状であって、長手領域およびコーナー領域を構成し、コーナー領域の活物質層の厚みは、長手領域の活物質層の厚みよりも薄く形成されることが好ましい。図13は、そのようなコーナー領域の厚みが相対的に薄く形成された第2蓄電素子を示す模式図であって、図13(a)は巻回する前の正極シート(正極箔50の両面に正極材料51を塗布してなる)または負極シート(負極箔54の両面に負極材料53を塗布してなる)を示し、図13(b)は、正極シート、セパレータ52、負極シートが重ねられて巻回された際の第2蓄電素子のコーナー領域を示す。   In both forms of the first embodiment and the second embodiment, the second power storage element is a wound flat shape, constituting a longitudinal region and a corner region, and the thickness of the active material layer in the corner region is It is preferably formed thinner than the thickness of the active material layer in the longitudinal region. FIG. 13 is a schematic diagram showing the second power storage element in which the corner region has a relatively small thickness. FIG. 13A shows a positive electrode sheet (both surfaces of the positive foil 50 before winding). Fig. 13 (b) shows a case where the positive electrode material 51 is applied) or a negative electrode sheet (which is formed by applying the negative electrode material 53 on both sides of the negative electrode foil 54). The corner area | region of the 2nd electrical storage element at the time of being wound is shown.

図13(a)に示すように、正極(負極)シートは、所定の間隔C〜Cにて、正極材料51(負極材料53)が薄くなるように形成されている。このように正極(負極)シートを形成し、当該薄く形成された部分がコーナー領域に来るように巻回を行うと、図13(b)に示すような第2蓄電素子を作製することができる。 As shown in FIG. 13 (a), the positive electrode (negative electrode) sheets at a predetermined interval C 1 -C 4, it is formed so as cathode material 51 (negative electrode material 53) is thinned. When the positive electrode (negative electrode) sheet is formed in this manner and wound so that the thinly formed portion comes to the corner region, a second power storage element as shown in FIG. 13B can be manufactured. .

上記構成の第2蓄電素子にあっては、活物質層にクラックの発生し易いコーナー領域において、活物質層が薄く電極箔の占める割合が大きいから、クラックの発生を抑制することができ、曲率が小さくなるように潰すことができるため、より密に蓄電素子をケースに充填することができる。なお、巻回工程においては、中心部から外周部へ向かうほど電極シート周長が長くなるため、コーナー領域に該当する部分すなわち薄く形成する部分の出現間隔が延びていく。そのため、電極シートの塗布工程においては、薄く形成する部分が周長の変化に適合するように間隔C<C<C<Cとして電極材料の塗布を行えば良い。 In the second energy storage device having the above-described configuration, since the active material layer is thin and the proportion of the electrode foil is large in the corner region where the active material layer is likely to generate cracks, the generation of cracks can be suppressed, and the curvature can be reduced. Can be crushed so as to be smaller, so that the case can be filled with the power storage element more densely. In the winding process, since the electrode sheet circumferential length increases from the center to the outer periphery, the appearance interval of the portion corresponding to the corner region, that is, the portion to be thinly formed, increases. Therefore, in the electrode sheet application step, the electrode material may be applied at intervals C 1 <C 2 <C 3 <C 4 so that the thinly formed portion is adapted to the change in circumference.

二次電池の製造方法
本発明の二次電池の製造方法は、二つの方法がある。第1の方法は、第2蓄電素子を構成する正極シート、セパレータおよび負極シートを重ねて巻回して作成し、第2蓄電素子を次工程の別の巻回装置にセットして、第2蓄電素子を巻き軸として、第1蓄電素子の電極体とセパレータを巻き込む方法である。具体的には、第2蓄電素子を構成する正極シート、セパレータおよび負極シートを重ねて巻回し、第2蓄電素子の外周上に、第1蓄電素子を構成するセパレータを巻回し、第1蓄電素子を構成する正極シート、負極シートをセパレータ間に挿入して前記第2蓄電素子の外周に巻回することを特徴としている。この際、第2蓄電素子と第1蓄電素子のセパレータは厚み、ポロシティーなど異なるものを用いても良い。
2. Manufacturing Method of Secondary Battery There are two methods for manufacturing the secondary battery of the present invention. In the first method, a positive electrode sheet, a separator, and a negative electrode sheet constituting the second power storage element are overlapped and wound, and the second power storage element is set in another winding device in the next process, so that the second power storage In this method, the electrode body of the first power storage element and the separator are wound around the element as a winding axis. Specifically, the positive electrode sheet, the separator, and the negative electrode sheet that constitute the second electricity storage element are overlapped and wound, the separator that constitutes the first electricity storage element is wound on the outer periphery of the second electricity storage element, and the first electricity storage element A positive electrode sheet and a negative electrode sheet constituting the battery are inserted between separators and wound around the outer periphery of the second power storage element. At this time, different separators such as thickness and porosity may be used for the separators of the second power storage element and the first power storage element.

上記構成の製造方法によれば、既存の巻回設備を用いることにより高い生産性および低コストを実現しつつ第2蓄電素子の巻回工程に続いて第1蓄電素子の巻回工程を連続的に実施して、本発明の素子充填率が向上した二次電池を好適に製造することができる。   According to the manufacturing method having the above configuration, the winding process of the first power storage element is continuously performed following the winding process of the second power storage element while realizing high productivity and low cost by using the existing winding equipment. The secondary battery with improved element filling rate of the present invention can be suitably manufactured.

さらに、第2の方法は、後述する図14、図15に示す方法である。この二次電池の製造方法では、第2蓄電素子を構成する正極シート、セパレータおよび負極シートを巻回した後、同一の装置を用いてこれら各シートの後端部に、第1蓄電素子を構成する正極シート、および負極シートの前端部をそれぞれ連続的に形成するか、または接続して、第1蓄電素子を巻回することを好ましい態様としている。   Further, the second method is a method shown in FIGS. 14 and 15 described later. In this method of manufacturing a secondary battery, after winding a positive electrode sheet, a separator, and a negative electrode sheet constituting the second electricity storage element, the first electricity storage element is constituted at the rear end portion of each sheet using the same device. It is preferable that the positive electrode sheet and the front end of the negative electrode sheet are continuously formed or connected, and the first power storage element is wound.

上記構成の製造方法によれば、第2蓄電素子と第1蓄電素子のセパレータは連続した同一のセパレータであり、第2蓄電素子を構成する各シートの後端部と第1蓄電素子を構成する各シートの前端部が、続いて配置されることで連続的に形成された1枚のシートとして巻回を行うことができるので、一台の装置で作成することができ生産性を向上することが可能である。さらに、第2蓄電素子と第1蓄電素子を形成するための活物質層が連続したシート上に形成される場合は、電気的に接続されているので、電極シートの切り替えが無く、生産性を向上できる。   According to the manufacturing method having the above-described configuration, the separators of the second power storage element and the first power storage element are the same continuous separator, and the rear end portion of each sheet constituting the second power storage element and the first power storage element are configured. Since the front end portion of each sheet can be wound continuously as a single sheet formed continuously, it can be created with a single device and productivity can be improved. Is possible. Further, when the active material layer for forming the second power storage element and the first power storage element is formed on a continuous sheet, since the electrodes are electrically connected, there is no switching of the electrode sheet, and productivity is increased. It can be improved.

本発明の第2実施形態においては、第1蓄電素子と第2蓄電素子を公知の方法によって独立に作製し、これらを重ね合わせて電池ケースに収容すれば良いため、説明は省略し、以下、第1実施形態における蓄電素子の製造方法を説明する。図14および15は、そのような製造方法に係る製造装置を示す模式図である。   In the second embodiment of the present invention, the first power storage element and the second power storage element can be independently produced by a known method, and these can be stacked and accommodated in the battery case. The manufacturing method of the electrical storage element in 1st Embodiment is demonstrated. 14 and 15 are schematic views showing a manufacturing apparatus according to such a manufacturing method.

まず、図示しない公知の方法により、正極箔の両面に正極材料が塗布され、正極シートが作製される。このとき、塗布する正極材料の厚さを変化させた2種類の正極シート、すなわち薄膜正極シート80および厚膜正極シート81が作製される。同様にして、薄膜負極シート84および厚膜負極シート83が作製される。これら各シートは、電極ロール70、71、73、および74がセットされ、セパレータシートロール72および75が図14に示す状態にセットされる。   First, a positive electrode material is applied to both surfaces of the positive electrode foil by a known method (not shown) to produce a positive electrode sheet. At this time, two types of positive electrode sheets in which the thickness of the applied positive electrode material is changed, that is, a thin film positive electrode sheet 80 and a thick film positive electrode sheet 81 are produced. Similarly, a thin film negative electrode sheet 84 and a thick film negative electrode sheet 83 are produced. In each of these sheets, electrode rolls 70, 71, 73, and 74 are set, and separator sheet rolls 72 and 75 are set in the state shown in FIG.

薄膜正極シート80、セパレータシート82、薄膜負極シート84、セパレータシート85は、図14に白丸で示した複数のガイドロールを経てこの順に重ねられ、図示しない巻き芯にシートの前端部を固定され、巻き芯の周囲に巻回される。このようにして、第2蓄電素子60が作製され、第2蓄電素子60が所定の厚さになった段階で、上記各シートは切断され、シートの後端部は第2蓄電素子60の表面の所定の切り替え位置で固定される。シートの後端部と前端部の境界において段差が発生することを防止するために後端部と前端部の切り替え位置は、ケースとクリアランスが大きい単電池の上方に形成される。   The thin film positive electrode sheet 80, the separator sheet 82, the thin film negative electrode sheet 84, and the separator sheet 85 are stacked in this order through a plurality of guide rolls indicated by white circles in FIG. 14, and the front end of the sheet is fixed to a winding core (not shown). It is wound around the core. Thus, when the second power storage element 60 is manufactured and the second power storage element 60 reaches a predetermined thickness, each of the sheets is cut, and the rear end of the sheet is the surface of the second power storage element 60. It is fixed at a predetermined switching position. In order to prevent the occurrence of a step at the boundary between the rear end portion and the front end portion of the sheet, the switching position between the rear end portion and the front end portion is formed above the case and the unit cell having a large clearance.

続いて、図15に示すように、厚膜正極シート81、セパレータシート82、厚膜負極シート83、セパレータシート85は、複数のガイドロールを経てこの順に重ねられ、第2蓄電素子60の表面の所定の位置にシートの前端部を固定され、第2蓄電素子60の周囲に巻回される。このようにして、第1蓄電素子61が作製され、第1蓄電素子61が所定の厚さになった段階で、上記各シートは切断され、シートの後端部は第1蓄電素子61の表面の所定の位置で固定される。   Subsequently, as shown in FIG. 15, the thick film positive electrode sheet 81, the separator sheet 82, the thick film negative electrode sheet 83, and the separator sheet 85 are stacked in this order through a plurality of guide rolls. The front end portion of the sheet is fixed at a predetermined position and wound around the second power storage element 60. Thus, when the first power storage element 61 is manufactured and the first power storage element 61 reaches a predetermined thickness, each of the sheets is cut, and the rear end portion of the sheet is the surface of the first power storage element 61. It is fixed at a predetermined position.

上記構成の製造方法によれば、第2蓄電素子と第1蓄電素子のセパレータは連続した同一のセパレータであり、第2蓄電素子を構成する各シートの後端部と第1蓄電素子を構成する各シートの前端部が、続いて配置されることで連続的に形成された1枚のシートとして巻回を行うことができるので、一台の装置で作成することができ生産性を向上することが可能である。さらに、第2蓄電素子と第1蓄電素子を形成するための活物質層が連続したシート上に形成される場合は、電気的に接続されているので、電極シートの切り替えが無く、生産性を向上できる。   According to the manufacturing method having the above-described configuration, the separators of the second power storage element and the first power storage element are the same continuous separator, and the rear end portion of each sheet constituting the second power storage element and the first power storage element are configured. Since the front end portion of each sheet can be wound continuously as a single sheet formed continuously, it can be created with a single device and productivity can be improved. Is possible. Further, when the active material layer for forming the second power storage element and the first power storage element is formed on a continuous sheet, since the electrodes are electrically connected, there is no switching of the electrode sheet, and productivity is increased. It can be improved.

上記構成の製造方法によれば、既存の巻回設備を用いることにより高い生産性および低コストを実現しつつ第2蓄電素子の巻回工程に続いて第1蓄電素子の巻回工程を連続的に実施して、本発明の素子充填率が向上した二次電池を好適に製造することができる。   According to the manufacturing method having the above configuration, the winding process of the first power storage element is continuously performed following the winding process of the second power storage element while realizing high productivity and low cost by using the existing winding equipment. The secondary battery with improved element filling rate of the present invention can be suitably manufactured.

以下、本発明の各構成要素について詳細に説明する。
正極シート
蓄電素子を構成する正極シートは、アルミニウムからなる正極集電体の両面に正極材料が結着した構造を有する。本実施例の正極材料としては、Li酸化物粉末を用い、導電フィラーとして、アセチレンブラック、ケッチエンブラック、VGCF等が挙げられる。中心部の蓄電素子と外周部の蓄電素子の正極、および負極の活物質は、同一でも、異なっていても良い。
Hereinafter, each component of the present invention will be described in detail.
The positive electrode sheet constituting the positive electrode sheet power storage element has a structure in which a positive electrode material is bound on both surfaces of a positive electrode current collector made of aluminum. As the positive electrode material of this example, Li oxide powder is used, and as the conductive filler, acetylene black, ketjen black, VGCF, and the like can be given. The positive electrode and negative electrode active materials of the central storage element and the outer peripheral storage element may be the same or different.

負極シート
蓄電素子を構成する負極シートは、銅などからなる負極集電体の両面に負極材料が結着した構造を有する。本実施例の負極材料としては、リチウムイオンを吸蔵放出する炭素材料やSn、Si、Pb、Coを含む合金や酸化物を用いることができる。炭素材料としては、天然黒鉛、人造黒鉛、活性炭、600〜1200℃で焼成した低温炭素体(例えば、易黒鉛性炭素前駆体として、ピッチ、メソフェーズピッチ、または難黒鉛化性炭素前駆体として、フェノール樹脂、キシレン樹脂、PPS、セルロース等)を不活性雰囲気中で熱処理して合成した炭素などが挙げられる。中心部の素子と外周部の素子の電極活物質は、同一でも、異なっても良い。例えば、中心部の素子は、温度が高くなるので劣化が起こりやすいので、劣化タフネスが高く、膨張の小さい、ハードカーボンを中心部の負極に用い、外側の電極はソフトカーボン、黒鉛材料を用いることもできる。
The negative electrode sheet constituting the negative electrode sheet storage element has a structure in which a negative electrode material is bound on both surfaces of a negative electrode current collector made of copper or the like. As the negative electrode material of this embodiment, a carbon material that occludes and releases lithium ions, and an alloy or oxide containing Sn, Si, Pb, and Co can be used. Examples of the carbon material include natural graphite, artificial graphite, activated carbon, a low-temperature carbon body calcined at 600 to 1200 ° C. (for example, pitch, mesophase pitch as an easily graphitizable carbon precursor, or phenol as a non-graphitizable carbon precursor). Resin, xylene resin, PPS, cellulose, etc.) synthesized by heat treatment in an inert atmosphere. The electrode active materials of the central element and the peripheral element may be the same or different. For example, the element in the central part is likely to deteriorate because the temperature is high, so that hard carbon with high deterioration toughness and small expansion is used for the negative electrode in the central part, and soft carbon and graphite materials are used for the outer electrode. You can also.

セパレータシート
蓄電素子を構成するセパレータシートは、ポリオレフィン系微多孔質セパレータ、例えば、ポリエチレン、ポリプロピレンや不織布セパレータ、例えば、ポリエステル繊維、アラミド繊維を用いることができる。
As the separator sheet constituting the separator sheet power storage element, a polyolefin microporous separator such as polyethylene, polypropylene or a nonwoven fabric separator such as polyester fiber or aramid fiber can be used.

電解液
溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ−ブチロラクトン(γ−BL)、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン等を挙げることができる。溶媒は、単独で使用しても、2種以上混合して使用しても良い。電解質としては、例えば過塩素酸リチウム(LiClO)、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ素リチウム(LiBF)、六フッ化砒素リチウム(LiAsF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CFSO]等のリチウム塩を挙げることができる。電解質は、単独で使用しても、2種以上混合して使用しても良い。電解質の溶媒に対する溶解量は、通常は0.2mol/L〜2mol/L程度である。種々のイオン性液体を混合してもよい。加えて、電解液の保持する、ゲル電解質としてもよくその保持材料としては、ポリエチレンオキサイド、ポリプロピレンオキサイド、ビニリデンフロライド(VdF)やヘキサフルオロプロピレン(HFP)またはその誘導体、または共重合体を用いることができる。
Examples of the electrolyte solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), γ-butyrolactone (γ- BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like. A solvent may be used independently or may be used in mixture of 2 or more types. Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium boron tetrafluoride (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and lithium trifluoromethanesulfonate. Examples include lithium salts such as (LiCF 3 SO 3 ) and bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 3 ) 2 ]. The electrolyte may be used alone or in combination of two or more. The amount of electrolyte dissolved in the solvent is usually about 0.2 mol / L to 2 mol / L. Various ionic liquids may be mixed. In addition, it may be a gel electrolyte retained by the electrolytic solution, and the retaining material may be polyethylene oxide, polypropylene oxide, vinylidene fluoride (VdF), hexafluoropropylene (HFP) or a derivative thereof, or a copolymer. Can do.

蓄電素子作製
中心部の素子は、巻回型でも積層形でも可能である。しかしながら、外周部の素子は、巻回型が好ましい。特に、扁平形状の巻回型に好適である。最終的には中心部と外周部の各素子の集電箔を並列に接続し、一体の素子とするため、蓄電素子を作製する際には各素子を形成する電極ロールは異なる厚みが連続的に形成されていてもよいし、中心部と外周部が別々の電極ロールから形成してもよい。また、複数の扁平巻回型素子をケース内に装填することで、素子の外側のR部の割合が少なくなるので、角型ケースへの体積充填効率が向上できる。
The element at the center of the storage element production can be either a wound type or a laminated type. However, the outer peripheral element is preferably a wound type. In particular, it is suitable for a flat wound type. Eventually, the current collector foil of each element in the central part and the outer peripheral part is connected in parallel to form an integrated element. Therefore, when producing an electricity storage element, the electrode rolls forming each element have different thicknesses continuously. The center part and the outer peripheral part may be formed from separate electrode rolls. Further, by loading a plurality of flat wound elements into the case, the ratio of the R portion outside the elements is reduced, so that the volume filling efficiency of the rectangular case can be improved.

電極端子
正極端子および負極端子の電極端子には、銅、ニッケル、アルミニウム、ステンレスといった金属またはこれらを含む合金やこれら金属を母材にしてニッケルメッキを施したものが使用可能である。
As the electrode terminal of the electrode terminal positive electrode terminal and the negative electrode terminal, a metal such as copper, nickel, aluminum, stainless steel, an alloy containing these, or a metal plated with these metals as a base material can be used.

電池ケース
底面部の形状を加工するには、アルミ、ステンレス合金、樹脂を用いることができるが、インパクト成型、トランスファープレス加工によって作製したアルミニウム合金が好ましい。ケースは、蓄電素子と密着する構造が好ましく、これによりケースと蓄電素子との間の空間が少なくなり、電解液を注液した際の、液面が上昇するので蓄電素子吸収が改善され含浸時間を短くできる効果がある。
To process the shape of the battery case bottom surface, aluminum, stainless alloy, or resin can be used, but an aluminum alloy produced by impact molding or transfer press processing is preferable. The case preferably has a structure that is in close contact with the power storage element. This reduces the space between the case and the power storage element, and the liquid level rises when the electrolyte is injected. There is an effect that can be shortened.

以上説明したように、本発明は、高エネルギー密度型の電池の構造において、セルの寿命を向上させて、かつエネルギー密度を向上させる手法である。本発明は、二次電池の他にも、キャパシタ、ハイブリッドキャパシタなど、粒子状や繊維状の微小粒子の集合体からなる電極体を用いた蓄電素子に有効であり、特に、膨張収縮があるSi、Snや黒鉛を含むリチウムイオン電池用電極からなる蓄電素子に有効である。   As described above, the present invention is a technique for improving the cell life and energy density in the structure of a high energy density battery. INDUSTRIAL APPLICABILITY The present invention is effective not only for secondary batteries but also for power storage devices using electrode bodies composed of aggregates of particulate or fibrous microparticles such as capacitors and hybrid capacitors, and in particular, Si that has expansion and contraction. It is effective for a power storage device comprising a lithium ion battery electrode containing Sn or graphite.

以下、本発明の具体的な作製例について説明する。
[実施例1]
中心部と外周部の2層構造を有する巻回型の蓄電素子を作製した。中心部の電極は、正極塗工幅120mm、負極塗工幅122mmであり、未塗工部が7mmの電極体を用いた。セパレータ厚みは25μmのものを用いた。負極の集電箔としてCu箔は厚み10μmの箔を用い、正極の集電箔としてAl箔は20μmの箔を用いた。正極活物質として粒径D50=12μmのLiNi0.33Mn0.33Co0.33を用い、負極活物質は、粒径22μmの人造黒鉛粒子を用いた。PVDFをバインダをとして用いて電極を作製し、電極体プレス後の活物質層の厚みはそれぞれ40μmとした。負極の電極密度は1.5g/cm、正極の電極密度は3.85g/cmであった。
Hereinafter, specific production examples of the present invention will be described.
[Example 1]
A wound type power storage element having a two-layer structure of a central portion and an outer peripheral portion was produced. An electrode body having a positive electrode coating width of 120 mm, a negative electrode coating width of 122 mm, and an uncoated portion of 7 mm was used as the central electrode. A separator having a thickness of 25 μm was used. As the negative electrode current collector foil, a Cu foil was used with a thickness of 10 μm, and as the positive electrode current collector foil, an Al foil was used with a 20 μm foil. LiNi 0.33 Mn 0.33 Co 0.33 O 2 having a particle diameter D 50 = 12 μm was used as the positive electrode active material, and artificial graphite particles having a particle diameter of 22 μm were used as the negative electrode active material. An electrode was prepared using PVDF as a binder, and the thickness of the active material layer after pressing the electrode body was 40 μm. The electrode density of the negative electrode was 1.5 g / cm 2 , and the electrode density of the positive electrode was 3.85 g / cm 3 .

外周部の電極は、正極塗工幅120mm、負極塗工幅122mm、未塗工部が9mmの電極体を用いた。セパレータ厚みは25μmのものを用いた。負極の集電箔としてCu箔は厚み10μmの箔を用い、正極の集電箔としてAl箔は15μmの箔を用いた。正極活物質として粒径D50=12μmのLiNi0.33Mn0.33Co0.33を用い、負極活物質は、粒径22μmの人造黒鉛粒子を用いた。PVDFをバインダとして用いて電極を作製し、電極体プレス後の活物質層の厚みはそれぞれ100μmとした。負極の電極密度は1.5g/cm、正極の電極密度は3.85g/cmであった。 As the outer peripheral electrode, an electrode body having a positive electrode coating width of 120 mm, a negative electrode coating width of 122 mm, and an uncoated portion of 9 mm was used. A separator having a thickness of 25 μm was used. As the negative electrode current collector foil, a Cu foil was used with a thickness of 10 μm, and as the positive electrode current collector foil, an Al foil was used with a 15 μm foil. LiNi 0.33 Mn 0.33 Co 0.33 O 2 having a particle diameter D 50 = 12 μm was used as the positive electrode active material, and artificial graphite particles having a particle diameter of 22 μm were used as the negative electrode active material. An electrode was produced using PVDF as a binder, and the thickness of the active material layer after pressing the electrode body was 100 μm. The electrode density of the negative electrode was 1.5 g / cm 2 , and the electrode density of the positive electrode was 3.85 g / cm 3 .

1)蓄電素子の作製
セパレータをΦ2mmの2軸の巻き芯で巻き取り、中心部の電極については、セパレータ間に正、負極を挿入して巻回し、素子厚みが8mmの扁平の蓄電素子を作製した。さらに、この素子をセットし、この素子の外側から外周部の電極を同様に巻回し、素子厚みが19mmの扁平の蓄電素子を作製した。正極、負極の未塗工部を左右に出して集電部を形成した。この蓄電素子を2個用意した。
1) Production of electricity storage element A separator is wound up by a biaxial winding core of Φ2 mm, and the center electrode is wound by inserting a positive electrode and a negative electrode between the separators to produce a flat electricity storage element having an element thickness of 8 mm. did. Further, this element was set, and the electrodes on the outer peripheral portion were wound in the same manner from the outside of the element, and a flat electricity storage element having an element thickness of 19 mm was produced. The uncoated portions of the positive electrode and the negative electrode were left and right to form a current collecting portion. Two power storage elements were prepared.

2)蓄電素子の溶接
2個の蓄電素子を並列に接続されるように、並べて、両端部に形成された集電箔に幅4mm、厚み0.3mmのCu板で作製されたリードタブを当てて上から超音波溶接を行い、これを、表、裏二箇所で行った。正極も同様に4mm、厚み0.5mmのAl板で溶着を行った。ケースと蓄電素子の絶縁をおこなうために端子の溶着部を含めた蓄電素子全体をポリエステル製の樹脂シートで覆った。
2) Welding of electricity storage elements Two electricity storage elements are arranged side by side so that they are connected in parallel, and a lead tab made of a Cu plate having a width of 4 mm and a thickness of 0.3 mm is applied to the current collector foil formed at both ends. Ultrasonic welding was performed from above, and this was performed at two locations on the front and back. Similarly, the positive electrode was welded with an Al plate having a thickness of 4 mm and a thickness of 0.5 mm. In order to insulate the case from the power storage element, the entire power storage element including the welded portion of the terminal was covered with a polyester resin sheet.

3)リードと蓋の接続
蓋部は正、負極の端子を備えた厚さ2mmの板である。蓋部には、電解液注液口の穴を開けている。蓄電素子から出ている正、負極のリード板をケースの蓋部の端子部に溶接し接合した。
3) The connecting lid portion of the lead and lid is a 2 mm thick plate having positive and negative terminals. A hole for an electrolyte injection hole is formed in the lid. The positive and negative lead plates coming out of the power storage element were welded and joined to the terminal portion of the case lid.

4)ケースの作製
A3003のアルミニウム合金を用いてインパクト成型によりケースを作製した。ケース肉厚は0.5mm、ケース外形寸法を厚さ40mm、高さ120mm、幅150mmとした。
4) Production of Case A case was produced by impact molding using the aluminum alloy of A3003. The case thickness was 0.5 mm, the case outer dimensions were 40 mm thickness, 120 mm height, and 150 mm width.

5)弾性部材および蓄電素子の封止
3)で作製した蓄電素子と蓋が一体化された構造体をケースに挿入した。蓋とケースをYAG溶接で封口後、80℃で24hr真空乾燥した。このようにして、図7に示す実施例1の単電池が作製された。
5) Sealing of elastic member and power storage element The structure in which the power storage element and the lid produced in 3) were integrated was inserted into the case. The lid and case were sealed by YAG welding and then vacuum-dried at 80 ° C. for 24 hours. In this way, the single cell of Example 1 shown in FIG. 7 was produced.

6)含浸
真空乾燥後、グローブボックス内で単電池内部を減圧し、その後、電解液1.0MのLiPF/(EC+DMC+EMC)を注入して、減圧、常圧、減圧を2回繰り返し含浸を行った。充放電装置で、4.2Vまで0.2Cの電流でCCCV充電を8時間行った。その後、充放電装置で、2.7Vまで1Cで放電を行い、この充放電サイクルを5回行った後、減圧して脱泡して、注液口にゴム栓をした。SOC50まで充電を行った。以上のようにして、初期電池容量と初期抵抗の測定を行った。下記表1に、初期電池容量と初期抵抗の測定結果を示す。
6) After the impregnation vacuum drying, the inside of the unit cell is depressurized in the glove box, and then the electrolyte solution 1.0M LiPF 6 / (EC + DMC + EMC) is injected, and the depressurization, normal pressure, and depressurization are repeated twice. It was. CCCV charging was performed for 8 hours at a current of 0.2 C up to 4.2 V with a charging / discharging device. Thereafter, the battery was discharged at 1C up to 2.7 V with a charge / discharge device, and this charge / discharge cycle was performed 5 times. Charging was performed up to SOC50. As described above, the initial battery capacity and the initial resistance were measured. Table 1 below shows the measurement results of the initial battery capacity and the initial resistance.

[実施例2]
φ8mmの2軸の巻き芯で、実施例1における外周部の電極のみを用い、セパレータ間に正、負極を挿入し、素子厚みが21mmとなるように蓄電素子を作製した。これを2個用意した。次に、図9に示す中心部の蓄電素子44を、実施例1の第1蓄電素子と同じ方法で作成した。但し、素子厚みを6mmとした。この蓄電素子44を2個の蓄電素子間に挟み、蓄電素子44の集電箔を超音波溶接して、重ねて38mmとしてケースへ装填した。このようにして、図9に示す実施例2の単電池を作製し、初期電池容量と初期抵抗の測定を行った。
[Example 2]
Using a biaxial winding core of φ8 mm, using only the electrodes on the outer periphery in Example 1, positive and negative electrodes were inserted between the separators, and an electricity storage device was produced so that the device thickness was 21 mm. Two of these were prepared. Next, the central storage element 44 shown in FIG. 9 was prepared in the same manner as the first storage element of Example 1. However, the element thickness was 6 mm. The power storage element 44 was sandwiched between two power storage elements, and the current collector foil of the power storage element 44 was ultrasonically welded to 38 mm and loaded into the case. In this way, the unit cell of Example 2 shown in FIG. 9 was produced, and the initial battery capacity and the initial resistance were measured.

[比較例]
φ8mmの2軸の巻き芯で、実施例1における外周部の電極のみを用い、セパレータ間に正、負極を挿入し、素子厚みが21mmとなるように蓄電素子を作製し、2mmつぶして19mmとした。これを2個用意し、並列に接続ケースへ装填した以外は実施例と同様にして、図10に示す比較例の単電池を作製し、初期電池容量と初期抵抗の測定を行った。
[Comparative example]
Using a biaxial winding core of φ8 mm, using only the electrodes on the outer periphery in Example 1, inserting positive and negative electrodes between separators, producing a storage element so that the element thickness is 21 mm, crushing 2 mm, and 19 mm did. A single cell of the comparative example shown in FIG. 10 was prepared and the initial battery capacity and the initial resistance were measured in the same manner as in the example except that two were prepared and loaded in the connection case in parallel.

Figure 0005623073
Figure 0005623073

続いて、実施例1と比較例の単電池について、試験温度55℃、電圧範囲上限4.2V〜下限3.0V、充放電電流2Cにて、4000回の充放電を繰り返した。この充放電サイクル試験において、容量低下率を図16に、抵抗上昇率を図17に示す。なお、抵抗は、10、20、30、40Aの電流値において4点法で内部抵抗を25℃で算出した。   Then, about the cell of Example 1 and the comparative example, 4000 times charge / discharge was repeated by test temperature 55 degreeC, voltage range upper limit 4.2V-lower limit 3.0V, and charging / discharging electric current 2C. In this charge / discharge cycle test, the capacity decrease rate is shown in FIG. 16, and the resistance increase rate is shown in FIG. In addition, resistance calculated the internal resistance at 25 degreeC by the 4-point method in the electric current value of 10, 20, 30, 40A.

このように、本発明により、角型素子への蓄電素子の充填率が向上するので、電極長が長くできる。よって初期容量は向上し、内部抵抗は抑制された。さらに、充放電サイクル試験の結果、図16および17に示すように、比較例では、充放電に伴って容量が低下し、抵抗が上昇している。   As described above, according to the present invention, the filling rate of the electricity storage elements into the square elements is improved, and thus the electrode length can be increased. Therefore, the initial capacity was improved and the internal resistance was suppressed. Furthermore, as a result of the charge / discharge cycle test, as shown in FIGS. 16 and 17, in the comparative example, the capacity decreases and the resistance increases with charge / discharge.

この原因としては、比較例では、内部抵抗が高く、かつ角型セル内部での熱ばらつきが起こりやすいため、素子内で抵抗の低い領域と抵抗が高い領域が存在するので、素子内部での活物質層の充放電回数に差が生じるため、容量低下が起こりやすいと考えられる。また、比較例では、内部抵抗の上昇が初期から大きい。これは、素子の拘束力が低下するので、充放電による黒鉛粒子の膨張収縮により電極面内で導電性が低下して、かつ集電箔への密着性が低下したために、抵抗が増加したと考えられる。   The reason for this is that, in the comparative example, the internal resistance is high and thermal variation easily occurs inside the rectangular cell, so that there are a low resistance region and a high resistance region in the device. It is thought that capacity reduction is likely to occur because of the difference in the number of times of charge / discharge of the material layer. In the comparative example, the increase in internal resistance is large from the beginning. This is because the constraining force of the element is reduced, so that the conductivity is reduced in the electrode surface due to the expansion and contraction of the graphite particles due to charge and discharge, and the adhesion to the current collector foil is reduced, so that the resistance is increased. Conceivable.

本発明によれば、エネルギー密度を向上させることができ、また、蓄電素子の耐久性および放熱性を向上させることにより電池の寿命を向上させるから、車載用リチウムイオン二次電池システムに適用して極めて有望である。   According to the present invention, the energy density can be improved, and the life of the battery is improved by improving the durability and heat dissipation of the storage element. Therefore, the present invention is applied to an in-vehicle lithium ion secondary battery system. Very promising.

A…コーナー領域、
B…長手領域、
10…電池ケース、
11…電池蓋、
12…電解液注入口、
20…正極端子、
21…正極リード板、
22…負極端子、
23…負極リード板、
24、25…第1蓄電素子、
30、31…中空部、
40、41、42…第2蓄電素子(同軸型の面圧発生部材)、
43…第3蓄電素子(同軸型の面圧発生部材)、
44…第2蓄電素子(隣接型の面圧発生部材)、
50…正極箔、
51…正極材料、
52…セパレータ、
53…負極材料、
54…負極箔、
60…第2蓄電素子(同軸型の面圧発生部材)、
61…第1蓄電素子、
70…薄膜正極シート巻取ローラ、
71…厚膜正極シート巻取ローラ、
72…セパレータシート巻取ローラ、
73…厚膜負極シート巻取ローラ、
74…薄膜負極シート巻取ローラ、
75…セパレータシート巻取ローラ、
80…薄膜正極、
81…厚膜正極、
82、85…セパレータ、
83…厚膜負極、
84…薄膜負極。
A ... Corner area,
B ... Longitudinal region,
10 ... Battery case,
11 ... Battery cover,
12 ... electrolyte inlet,
20: Positive terminal,
21 ... Positive electrode lead plate,
22: negative terminal,
23 ... negative electrode lead plate,
24, 25 ... 1st electrical storage element,
30, 31 ... hollow part,
40, 41, 42 ... 2nd electrical storage element (coaxial surface pressure generating member),
43 ... 3rd electrical storage element (coaxial type surface pressure generating member),
44 ... 2nd electrical storage element (adjacent type surface pressure generating member),
50 ... positive foil,
51 ... Positive electrode material,
52 ... separator,
53. Negative electrode material,
54 ... negative electrode foil,
60 ... 2nd electrical storage element (coaxial type surface pressure generating member),
61 ... 1st electrical storage element,
70: Thin film positive electrode sheet take-up roller,
71 ... Thick film positive electrode sheet take-up roller,
72 ... Separator sheet take-up roller,
73 ... Thick film negative electrode sheet take-up roller,
74: Thin film negative electrode sheet take-up roller,
75 ... Separator sheet take-up roller,
80 ... thin film positive electrode,
81 ... thick film positive electrode,
82, 85 ... separator,
83 ... thick film negative electrode,
84: Thin film negative electrode.

Claims (6)

正極シート、セパレータおよび負極シートが重ねられて巻回された電解液を有する第1蓄電素子と、
前記第1蓄電素子を収容する電池ケースとを備えた二次電池であって、
前記第1蓄電素子は扁平形状であって、長手領域およびコーナー領域を構成し、
前記長手領域の中央部分は、面圧発生部材によって前記電池ケースに押圧され
前記第1蓄電素子は、前記面圧発生部材に巻回され、
前記面圧発生部材は、正極シート、セパレータおよび負極シートを巻回した第2蓄電素子から構成され、
前記第2蓄電素子の活物質層は、前記第1蓄電素子の活物質層よりも薄く形成されることを特徴とする二次電池。
A first power storage element having an electrolyte solution in which a positive electrode sheet, a separator, and a negative electrode sheet are stacked and wound;
A secondary battery including a battery case that houses the first power storage element,
The first power storage element has a flat shape and constitutes a longitudinal region and a corner region,
The central portion of the longitudinal region is pressed against the battery case by a surface pressure generating member ,
The first power storage element is wound around the surface pressure generating member,
The surface pressure generating member is composed of a second power storage element in which a positive electrode sheet, a separator, and a negative electrode sheet are wound,
The active material layer of the second power storage element is formed thinner than the active material layer of the first power storage element.
正極シート、セパレータおよび負極シートが重ねられて巻回された電解液を有する第1蓄電素子と、A first power storage element having an electrolyte solution in which a positive electrode sheet, a separator, and a negative electrode sheet are stacked and wound;
前記第1蓄電素子を収容する電池ケースとを備えた二次電池であって、A secondary battery including a battery case that houses the first power storage element,
前記第1蓄電素子は扁平形状であって、長手領域およびコーナー領域を構成し、The first power storage element has a flat shape and constitutes a longitudinal region and a corner region,
前記長手領域の中央部分は、面圧発生部材によって前記電池ケースに押圧され、The central portion of the longitudinal region is pressed against the battery case by a surface pressure generating member,
前記第1蓄電素子は、前記面圧発生部材に巻回され、The first power storage element is wound around the surface pressure generating member,
前記面圧発生部材は、正極シート、セパレータおよび負極シートを巻回あるいは積層した第2蓄電素子から構成され、The surface pressure generating member is composed of a second power storage element in which a positive electrode sheet, a separator, and a negative electrode sheet are wound or laminated,
前記正極シートは、正極活物質及び前記正極活物質が形成される正極集電箔からなり、The positive electrode sheet comprises a positive electrode active material and a positive electrode current collector foil on which the positive electrode active material is formed,
前記負極シートは、負極活物質及び前記負極活物質が形成される負極集電箔からなり、The negative electrode sheet comprises a negative electrode active material and a negative electrode current collector foil on which the negative electrode active material is formed,
前記第2蓄電素子における正極または負極活物質に対する正極または負極集電箔の厚みの割合は、前記第1蓄電素子における正極または負極活物質に対する正極または負極集電箔の厚みの割合よりも、大きいことを特徴とする二次電池。The ratio of the thickness of the positive electrode or negative electrode current collector foil to the positive electrode or negative electrode active material in the second power storage element is larger than the ratio of the thickness of the positive electrode or negative electrode current collector foil to the positive electrode or negative electrode active material in the first power storage element. A secondary battery characterized by that.
正極シート、セパレータおよび負極シートが重ねられて巻回された電解液を有する第1蓄電素子と、A first power storage element having an electrolyte solution in which a positive electrode sheet, a separator, and a negative electrode sheet are stacked and wound;
前記第1蓄電素子を収容する電池ケースとを備えた二次電池であって、A secondary battery including a battery case that houses the first power storage element,
前記第1蓄電素子は扁平形状であって、長手領域およびコーナー領域を構成し、The first power storage element has a flat shape and constitutes a longitudinal region and a corner region,
前記長手領域の中央部分は、面圧発生部材によって前記電池ケースに押圧され、The central portion of the longitudinal region is pressed against the battery case by a surface pressure generating member, 前記第1蓄電素子は複数設けられ、A plurality of the first power storage elements are provided,
前記複数の第1蓄電素子の間に前記面圧発生部材が設けられ、The surface pressure generating member is provided between the plurality of first power storage elements,
前記面圧発生部材は、正極シート、セパレータおよび負極シートを巻回した第2蓄電素子から構成され、The surface pressure generating member is composed of a second power storage element in which a positive electrode sheet, a separator, and a negative electrode sheet are wound,
前記第2蓄電素子の活物質層は、前記第1蓄電素子の活物質層よりも薄く形成されることを特徴とする二次電池。The active material layer of the second power storage element is formed thinner than the active material layer of the first power storage element.
前記第2蓄電素子は、巻回された扁平形状であって、長手領域およびコーナー領域を構成し、
前記コーナー領域の活物質層の厚みは、前記長手領域の活物質層の厚みよりも薄く形成されることを特徴とする請求項1〜3のいずれかに記載の二次電池。
The second power storage element is a wound flat shape, and constitutes a longitudinal region and a corner region,
The secondary battery according to claim 1 , wherein a thickness of the active material layer in the corner region is formed thinner than a thickness of the active material layer in the longitudinal region.
請求項1または2に記載の二次電池の製造方法であって、
前記第2蓄電素子を構成する正極シート、セパレータおよび負極シートを重ねて巻回し、
前記第2蓄電素子の外周上に、前記第1蓄電素子を構成する正極シート、セパレータおよび負極シートの端部を固定し、
前記第1蓄電素子を構成する正極シート、セパレータおよび負極シートを重ねて前記第2蓄電素子の外周に巻回することを特徴とする二次電池の製造方法。
A method of manufacturing a secondary battery according to claim 1 or 2 ,
Winding the positive electrode sheet, the separator and the negative electrode sheet constituting the second power storage element,
Fixing the ends of the positive electrode sheet, the separator and the negative electrode sheet constituting the first energy storage element on the outer periphery of the second energy storage element;
A method for manufacturing a secondary battery, wherein a positive electrode sheet, a separator, and a negative electrode sheet constituting the first power storage element are overlapped and wound around an outer periphery of the second power storage element.
前記第2蓄電素子を構成する正極シート、セパレータおよび負極シートを巻回した後、これら各シートの後端部に、前記第1蓄電素子を構成する正極シート、セパレータおよび負極シートの前端部をそれぞれ接続して、前記第1蓄電素子を巻回することを特徴とする請求項5に記載の二次電池の製造方法。
After winding the positive electrode sheet, the separator, and the negative electrode sheet constituting the second power storage element, the positive end sheet, the separator, and the negative electrode sheet constituting the first power storage element are respectively attached to the rear end portions of the respective sheets. The method for manufacturing a secondary battery according to claim 5 , wherein the first power storage element is connected and wound.
JP2009295596A 2009-12-25 2009-12-25 Secondary battery Expired - Fee Related JP5623073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009295596A JP5623073B2 (en) 2009-12-25 2009-12-25 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009295596A JP5623073B2 (en) 2009-12-25 2009-12-25 Secondary battery

Publications (2)

Publication Number Publication Date
JP2011134685A JP2011134685A (en) 2011-07-07
JP5623073B2 true JP5623073B2 (en) 2014-11-12

Family

ID=44347170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009295596A Expired - Fee Related JP5623073B2 (en) 2009-12-25 2009-12-25 Secondary battery

Country Status (1)

Country Link
JP (1) JP5623073B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748732A (en) * 2011-08-30 2014-04-23 丰田自动车株式会社 Lithium-ion secondary battery, battery stack, and lithium-ion secondary battery manufacturing method
JP5699909B2 (en) * 2011-11-11 2015-04-15 株式会社豊田自動織機 Secondary battery electrode body, secondary battery and vehicle
JP2017126400A (en) * 2014-06-05 2017-07-20 株式会社東芝 Secondary battery
JP6748401B2 (en) 2014-08-18 2020-09-02 株式会社Gsユアサ Storage element
JP7343537B2 (en) * 2021-03-12 2023-09-12 プライムプラネットエナジー&ソリューションズ株式会社 secondary battery

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3301798B2 (en) * 1992-12-28 2002-07-15 三洋電機株式会社 Battery
JPH0785885A (en) * 1993-09-14 1995-03-31 Japan Storage Battery Co Ltd Rectangular battery
JPH07153490A (en) * 1993-11-26 1995-06-16 Haibaru:Kk Battery
JPH11224689A (en) * 1998-02-04 1999-08-17 Fujitsu Ltd Wound lithium secondary battery and its electrode wound body
JP4496445B2 (en) * 1999-05-26 2010-07-07 株式会社デンソー Method for forming flat wound electrode body and flat wound electrode body
JP2001068166A (en) * 1999-08-30 2001-03-16 Japan Storage Battery Co Ltd Battery
JP4826686B2 (en) * 2001-01-29 2011-11-30 株式会社Gsユアサ Assembled battery
JP2003092142A (en) * 2001-09-18 2003-03-28 Sony Corp Nonaqueous electrolyte battery and its manufacturing method
JP4723803B2 (en) * 2003-10-02 2011-07-13 株式会社東芝 Nonaqueous electrolyte secondary battery
JP2006310033A (en) * 2005-04-27 2006-11-09 Sumitomo Electric Ind Ltd Storage battery
JP4412304B2 (en) * 2006-05-17 2010-02-10 ソニー株式会社 Secondary battery
JP4835956B2 (en) * 2008-07-02 2011-12-14 トヨタ自動車株式会社 battery

Also Published As

Publication number Publication date
JP2011134685A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP4726896B2 (en) Cathode material for non-aqueous electrolyte lithium ion battery and battery using the same
JP2010160984A (en) Anode for lithium-ion secondary battery and lithium-ion secondary battery
JP6399380B2 (en) Power storage element, power storage system, and manufacturing method thereof
JP2008066040A (en) Battery and its manufacturing method
JP2011108507A (en) Secondary battery
JP2010160983A (en) Nonaqueous electrolyte secondary battery and its electrode
JP2011060520A (en) Lithium ion secondary battery and its manufacturing method
JP2013201077A (en) Nonaqueous electrolytic secondary battery
JP2006202680A (en) Polymer battery
JP2009211949A (en) Nonaqueous electrolyte secondary battery
JP2010161249A (en) Lithium ion capacitor
JP2011103249A (en) Secondary battery
JP5623073B2 (en) Secondary battery
JP5376036B2 (en) Nonaqueous electrolyte secondary battery
JP6070691B2 (en) Nonaqueous electrolyte secondary battery
JP2019016494A (en) Method for manufacturing multilayer electrode body and method for manufacturing power storage element
JP7003775B2 (en) Lithium ion secondary battery
JP2011096485A (en) Secondary battery
JP5459048B2 (en) Nonaqueous electrolyte secondary battery
JP2009009858A (en) Electrode for lithium ion secondary battery
JP5637199B2 (en) Electrode for lithium ion secondary battery
JP2016122635A (en) Nonaqueous electrolyte secondary battery
JP7430665B2 (en) Secondary battery current collector and its manufacturing method, and secondary battery
US11769899B2 (en) Press jig and method of manufacturing secondary battery using same
JP7476936B2 (en) Film-covered battery, battery pack, and method for manufacturing said film-covered battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140924

R150 Certificate of patent or registration of utility model

Ref document number: 5623073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees