WO2016067851A1 - Electricity storage device and method for manufacturing electricity storage device - Google Patents

Electricity storage device and method for manufacturing electricity storage device Download PDF

Info

Publication number
WO2016067851A1
WO2016067851A1 PCT/JP2015/078312 JP2015078312W WO2016067851A1 WO 2016067851 A1 WO2016067851 A1 WO 2016067851A1 JP 2015078312 W JP2015078312 W JP 2015078312W WO 2016067851 A1 WO2016067851 A1 WO 2016067851A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
electrolyte
electricity storage
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2015/078312
Other languages
French (fr)
Japanese (ja)
Inventor
秋草 順
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2016067851A1 publication Critical patent/WO2016067851A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • H01G11/76Terminals, e.g. extensions of current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a power storage device and a method for manufacturing the power storage device, and more particularly to a small lithium ion secondary battery (LiB) and an electric double layer capacitor (EDLC).
  • LiB lithium ion secondary battery
  • EDLC electric double layer capacitor
  • coin cells and laminate cells are known as small lithium ion secondary batteries and electric double layer capacitors.
  • a positive electrode and a negative electrode arranged via a separator are housed in a case together with an electrolytic solution, and a spacer and a spring are arranged on the negative electrode, and a lid is placed on the spring, and the lid is attached to the case. It is sealed by caulking (for example, Patent Document 1).
  • a laminate cell is formed by inserting a plate-like positive electrode and a negative electrode into a rectangular outer container made of a metal sheet material and filling a liquid electrolyte (for example, Patent Document 2). ).
  • a liquid electrolyte for example, Patent Document 2.
  • JP 2014-96213 A (paragraph 0012) JP 2005-135599 A (paragraph 0003, paragraph 0004)
  • the lithium ion secondary battery and the electric double layer capacitor according to the above patent document have a problem that it is difficult to make the size smaller than a certain size.
  • the thickness of the coin cell needs to be 1 mm or more including the thickness of the lid and the case.
  • the laminate cell according to Patent Document 2 it is necessary to provide seal margins for heat sealing the four end faces of the outer container.
  • the margin for sealing needs to be at least about 3 mm per end face.
  • the laminate cell requires a minimum length of 6 mm on one side with respect to the end faces at two locations on both sides. Therefore, the laminate cell can reduce the total thickness by reducing the number of positive electrodes and negative electrodes inserted into the outer container, but there is a problem that it is difficult to reduce the area.
  • a terminal for connecting the coin cell and the laminate cell to the circuit board is required, and the thickness of the coin cell and the laminate cell is increased by joining the terminal by welding.
  • a battery having a diameter of 4.8 mm and a height of 1.2 mm is sold by Seiko Instruments Inc.
  • an object of the present invention is to provide an electricity storage device and a method for manufacturing the electricity storage device that can be made smaller than before.
  • the first aspect of the present invention is characterized in that a laminate having a positive electrode, a negative electrode, and a gel electrolyte is included in a resin mold portion.
  • a second aspect of the present invention is the invention based on the first aspect, wherein the gel electrolyte is formed by adding a gelling agent to an electrolytic solution containing an electrolyte and a solvent, and the solvent is It is an ionic liquid or an organic solvent having a boiling point of 150 ° C. or higher.
  • a third aspect of the present invention is the invention based on the second aspect, wherein the ionic liquid comprises EMI • FSI (1-ethyl-methylimidazolium bis (fluorosulfonyl) imide) and P1,3 • FSI ( It includes any one of 1-methyl-propylpyrrolidinium bis (fluorosulfonyl) imide.
  • EMI • FSI (1-ethyl-methylimidazolium bis (fluorosulfonyl) imide
  • P1,3 • FSI It includes any one of 1-methyl-propylpyrrolidinium bis (fluorosulfonyl) imide.
  • a fourth aspect of the present invention is an invention based on the second aspect, wherein the organic solvent contains one of ethylene carbonate (EC) and propylene carbonate (PC).
  • EC ethylene carbonate
  • PC propylene carbonate
  • a fifth aspect of the present invention is the invention based on the third aspect, wherein the electrolyte is one of LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) and LiFSI (lithium bis (trifluorosulfonyl) imide).
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • LiFSI lithium bis (trifluorosulfonyl) imide
  • a sixth aspect of the present invention is formed using the electricity storage device of the fourth aspect, and the electrolyte is LiPF 6 , LiClO 4 , LiAsF 6 , Li (CF 3 SO 2 ) 2 N, LiBF 4 and LiCF 3. It includes any one of SO 3 .
  • a seventh aspect of the present invention is characterized in that it is formed using the electricity storage device of the second aspect, and the electrolyte contained in the ionic liquid is an aliphatic quaternary ammonium salt.
  • An eighth aspect of the present invention is the invention based on the seventh aspect, wherein the electrolyte is tetraethylammonium tetrafluoroborate (Et 4 NBF 4 ) and tetraethylammonium bistrifluoromethylsulfonylimide (Et 4 N). Any one of (CF 3 SO 2 ) 2 N is included.
  • a ninth aspect of the present invention is the invention based on any one of the second to fifth aspects, wherein the gelling agent is polyvinyl pyridine (P4VP), polydimethylaminoethyl methacrylate (PDMEMA), polyvinylidene fluoride. (PVDF; [CH 2 —CF 2 ] n), polyethylene oxide (PEO; [CH 2 —CH 2 —O] n ), polyacrylonitrile (PAN; [CH 2 (CN) —CH 2 ] n ), and It includes any one of polymethyl methacrylate (PMMA; [C (CH 3 ) (COOCH 3 ) —CH 2 ] n ).
  • P4VP polyvinyl pyridine
  • PDMEMA polydimethylaminoethyl methacrylate
  • PVDF polyvinylidene fluoride.
  • a tenth aspect of the present invention is an invention based on any one of the first to fifth aspects, comprising an assembly having two or more of the laminates, wherein the assembly is a connection of one of the laminates.
  • the laminates are laminated in a state where a side positive electrode and a connection-side negative electrode of another laminate are electrically connected.
  • An eleventh aspect of the present invention is an invention based on any one of the first to fifth aspects, wherein the pair of electrodes are electrically connected to the positive electrode and the negative electrode, respectively, and exposed from the resin mold portion. A terminal is provided.
  • a thirteenth aspect of the present invention is the invention based on the twelfth aspect, wherein before the step of sealing with the resin mold, a pair of terminals are arranged on the laminate filled with the gel electrolyte, A step of coating the laminate and the pair of terminals with a resin is provided.
  • a fourteenth aspect of the present invention is the invention based on the twelfth or thirteenth aspect, wherein the power storage device is either a lithium ion secondary battery (LiB) or an electric double layer capacitor (EDLC).
  • the power storage device is either a lithium ion secondary battery (LiB) or an electric double layer capacitor (EDLC).
  • the laminate is included in the resin mold portion, it is not necessary to crimp like a conventional coin cell, and no heat sealing margin is required like a laminate cell. Therefore, it can be made smaller than before.
  • the solvent that forms the electrolyte does not change, so that the battery performance can be maintained.
  • the battery performance can be maintained by the thermally stable electrolyte.
  • the battery performance can be maintained by the thermally stable electrolyte. it can.
  • thermal stability is obtained by using ionic electrolytes of LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) and LiFSI (lithium bis (trifluorosulfonyl) imide). It is done.
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • LiFSI lithium bis (trifluorosulfonyl) imide
  • the electrolyte is any one of LiPF 6 , LiClO 4 , LiAsF 6 , Li (CF 3 SO 2 ) 2 N, LiBF 4 and LiCF 3 SO 3. It can be charged and discharged as a battery.
  • the electric double layer capacitor when the electrolyte contained in the ionic liquid is an aliphatic quaternary ammonium salt, the electric double layer capacitor can be effectively charged and discharged.
  • traethylammonium tetrafluoroborate (Et 4 NBF 4 ) and tetraethylammonium bistrifluoromethylsulfonylimide (Et 4 N (CF 3 SO 2 ) 2 N
  • Et 4 NBF 4 traethylammonium tetrafluoroborate
  • Et 4 N (CF 3 SO 2 ) 2 N tetraethylammonium bistrifluoromethylsulfonylimide
  • polyvinylpyridine P4VP
  • polydimethylaminoethyl methacrylate PMEMA
  • poly (vinylidene fluoride) PVDF
  • PVDF poly (vinylidene fluoride)
  • PAN polyethylene oxide
  • PAN polyacrylonitrile
  • PMMA polymethyl methacrylate
  • the electrolytic solution can be gelled, and the positive electrode and the negative electrode can be laminated without shifting during production, and an electricity storage device with stable performance can be manufactured.
  • the assembly can be enclosed in one resin mold part. , It can be made smaller.
  • the electricity storage device includes a terminal, it is not necessary to join the terminal to a coin cell or a laminate cell by welding as in the prior art, so that the thickness can be reduced accordingly. .
  • the laminate can be included in the resin mold part by gelling the electrolytic solution, the lithium ion secondary battery or the electric battery that is smaller than the conventional one can be used.
  • a double layer capacitor can be manufactured.
  • the laminate and the pair of terminals can be integrated by covering the laminate filled with the gel electrolyte with a resin.
  • An ion secondary battery or an electric double layer capacitor can be manufactured.
  • a lithium ion secondary battery or an electric double layer capacitor can be produced.
  • FIG. 5A is a perspective view showing stepwise a method of manufacturing a lithium ion secondary battery according to the first embodiment, FIG. 5A is a stage in which a positive electrode, a separator, and a negative electrode are laminated, and FIG. FIG.
  • FIG. 5C is a diagram showing a stage in which a terminal is provided on the laminate
  • FIG. 5D is a diagram showing a stage in which the laminate is resin-molded.
  • FIGS. 8A and 8B are perspective views illustrating a method of manufacturing a lithium ion secondary battery according to a second embodiment in stages, in which FIG. 8A is a stage in which the assembly is cut into a predetermined size, and FIG. 8B is a stage in which terminals are provided in the assembly.
  • FIG. 8C is a diagram showing a stage where a resin mold portion is formed. It is a perspective view which shows the structure of the lithium ion secondary battery which concerns on a modification.
  • a lithium ion secondary battery 10A shown in FIG. 1 includes a resin mold portion 12A and a pair of terminals 14 and 16 exposed from the resin mold portion 12A.
  • the resin mold portion 12A is formed of a resin mold by injection molding.
  • phenol resin, glass phenol resin, diallyl phthalate resin, or the like can be used as a molding material for forming the resin mold portion 12A.
  • the resin mold portion 12A is formed in a cubic shape, and the terminals 14 and 16 are exposed from one surface of the resin mold portion 12A.
  • the terminals 14 and 16 are not particularly limited, but can be formed of a metal, for example, a plate-like member such as aluminum or copper.
  • a laminate 23 having a three-layer structure including a separator 18 and a pair of electrodes 20 and 22 is accommodated as shown in FIG.
  • the pair of electrodes 20 and 22 includes a positive electrode 20 disposed on one side of the separator 18 and a negative electrode 22 disposed on the other side of the separator 18.
  • the separator 18 is formed of a synthetic resin nonwoven fabric, a polyethylene porous film, a polypropylene porous film, a cellulose nonwoven fabric, or the like. The separator 18 can be omitted as will be described later.
  • the positive electrode 20 includes a current collector 24 and a composite electrode 26 formed on the current collector 24.
  • the current collector 24 an aluminum foil can be mainly used.
  • the composite electrode 26 includes a positive electrode active material, a positive electrode conductive additive, and a binder.
  • a positive electrode active material LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiFePO 4, or the like can be used.
  • the conductive aid carbon black such as acetylene black and ketjen black, VGCF, graphite, and the like can be used.
  • the binder polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), or the like can be used.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • EPDM ethylene-propylene-diene copolymer
  • SBR styrene-butadiene rubber
  • the negative electrode 22 has a current collector 28 and a composite electrode 30 formed on the current collector 28.
  • a copper foil, a stainless steel foil, a nickel foil, or the like can be used as the current collector 28 .
  • the composite electrode 30 includes a negative electrode active material and a binder.
  • the negative electrode active material include silicon (Si), silicon oxide (SiO), tin (Sn), tin-cobalt compound (Sn—Co), stannic oxide (SnO 2 ), natural graphite, artificial graphite, and lithium titanate. (Li 4 Ti 5 O 12 ) or the like can be used.
  • the binder polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), or the like can be used.
  • the laminated body 23 is filled with a gel electrolyte formed by gelling an electrolytic solution (not shown). That is, the gel electrolyte is filled in holes and gaps formed in the composite electrodes 26 and 30 of the separator 18, the positive electrode 20, and the negative electrode 22, respectively.
  • LCO and acetylene black (AB) having an average particle diameter of 10 ⁇ m are mixed in a slurry in which PVDF (polyvinylidene fluoride) is dissolved by NMP (N-methyl-2-pyrrolidone) to prepare a positive electrode slurry.
  • This is coated on one side of a 15 ⁇ m thick aluminum foil with a comma roll coater and dried at 120 ° C. for 10 minutes to produce a positive electrode mixture with a thickness of 100 ⁇ m. Thereafter, the thickness is reduced to 80 ⁇ m by a roll press to produce a positive electrode plate having a capacity of 3.0 mAh / cm 2 .
  • an aqueous solution containing 1 wt% of CMC (carboxymethylcellulose) is prepared, and natural graphite having a particle size of 15 ⁇ m and SBR (styrene butadiene rubber) are added and mixed to prepare a negative electrode slurry.
  • This is applied to one side of a 10 ⁇ m thick copper foil with a comma roll coater and dried at 120 ° C. for 10 minutes to produce a negative electrode composite electrode having a thickness of 100 ⁇ m. Thereafter, the thickness is reduced to 80 ⁇ m by a roll press to produce a negative electrode plate having a capacity of 3.6 mAh / cm 2 .
  • a polyethylene microporous 20 ⁇ m thick separator 18 is sandwiched, a positive electrode 20 is placed on one side, and a negative electrode 22 is placed on the other, stacked, pressed on both ends with a flat plate, and sandwiched with clips.
  • the positive electrode 20 and the negative electrode 22 are disposed in a state where the composite electrodes 26 and 30 are in contact with the separator 18 (FIG. 5A).
  • the positive electrode 20 and the negative electrode 22 can be physically separated without using the separator 18.
  • the irregularities are formed by applying PVDF dissolved in NMP by screen printing with cylindrical projections (ribs) having a diameter of 200 ⁇ m and a height of 20 ⁇ m at intervals of 1 mm and vacuum drying at 120 ° C. for 1 hour. be able to.
  • corrugation can make a space
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • P1,3 ⁇ FSI 1-methyl-propylpyrrolidinium bis (fluorosulfonyl) imide
  • ionic liquid electrolyte 3 wt% of polyvinyl pyridine (P4VP) manufactured by Kanto Chemical Co., Inc. is added to the electrolyte and mixed.
  • polydimethylaminoethyl methacrylate manufactured by Kanto Chemical Co., Inc.
  • PDMEMA polydimethylaminoethyl methacrylate
  • ionic liquids in addition to P1,3 • FSI (1-methyl-propylpyrrolidinium bis (fluorosulfonyl) imide) from Mitsubishi Materials Electronic Chemicals, EMI • FSI (1-ethyl-methylimidazolium bis ( Fluorosulfonyl) imide) can be used.
  • the laminated separator 18, positive electrode 20, and negative electrode 22 are placed in a chamber (not shown), and the inside of the chamber is evacuated.
  • the electrolytic solution mixed with the gelling agent is put into a chamber maintained in a vacuum state, and the laminated separator 18, positive electrode 20 and negative electrode 22 are impregnated. Thereafter, the electrolyte is gelled by leaving it for about 1 hour in a state where the pressure is returned to atmospheric pressure.
  • a pair of terminals 14 and 16 are electrically connected to the obtained laminate 23 (FIG. 5C).
  • One of the pair of terminals 14 and 16 is joined to the current collector 24 of the positive electrode 20 and the other 16 is joined to the current collector 28 of the negative electrode 22 by, for example, ultrasonic welding.
  • the pair of terminals 14 and 16 and the current collectors 24 and 28 may be joined using a conductive paste such as silver paste.
  • the laminate 23 may be coated with polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polyethylene terephthalate (PET), polyethylene (PE), methacrylic resin (PMMA), or polyvinylpyrrolidone (PVP).
  • PVDF polyvinylidene fluoride
  • PVA polyvinyl alcohol
  • PET polyethylene terephthalate
  • PE polyethylene
  • PMMA methacrylic resin
  • PVP polyvinylpyrrolidone
  • the laminated body 23 to which the pair of terminals 14 and 16 are bonded is placed in a mold (not shown, mold size (vertical 4.4 mm ⁇ horizontal 4.4 mm ⁇ thickness 1.0 mm)).
  • a mold As the molding material, phenol resin, glass phenol resin, or diallyl phthalate resin can be used.
  • the mold is heated to 160 to 200 ° C., and then the mold material heated to the same temperature and melted is poured into a mold by a press at a pressure of 50 to 70 kgf / cm 2 and filled. After maintaining this state for several seconds, the mold is cooled.
  • a resin mold portion 12A formed by a resin mold is formed (FIG. 5D).
  • the lithium ion secondary battery 10A in which the laminate 23 is sealed by the resin mold portion 12A can be manufactured. Thereafter, mold burrs (not shown) attached to the resin mold portion 12 are removed with a cutter.
  • a lithium ion secondary battery 10A according to the present embodiment includes a laminate 23 in a resin mold portion 12A.
  • the lithium ion secondary battery 10A does not need to be crimped as in the conventional coin cell, so that the thickness can be reduced to 1 mm or less, and it is not necessary to perform heat sealing as in the laminate cell, so seal it. By omitting, the area can be reduced. Therefore, the lithium ion secondary battery 10A can be made smaller than before.
  • the side surface of the laminate can be covered with resin. Therefore, in the case of this embodiment, it can be covered with a sealing margin of several mm in the case of a conventional laminate cell or a resin mold portion 12A thinner than the thickness of the outer peripheral portion of the coin battery of about 1 mm. Therefore, the volume ratio of the resin mold portion 12A can be reduced to increase the volume of the laminate 23, and the storage capacity per volume can be increased. It is possible to increase the volume of the laminate 23 to a maximum of 80% with respect to the entire volume of the outer dimensions of the resin mold portion 12A. Normally, considering the mechanical strength of the resin mold portion 12A that is made into a chip, About 30 to 70% is desirable. This ratio depends on the material of the resin mold portion 12A, the mold shape, and the mold dimensions.
  • the resin mold part 12A By encapsulating the laminate 23 with the resin mold part 12A, it is possible to make a battery with a vertical width of 1 mm square and a battery with a thickness of 1 mm or less at the same time. On the other hand, in order to increase the storage capacity, the horizontal and vertical width can be several centimeters and the thickness can be several centimeters. Since the resin mold portion 12A is made of a relatively hard plastic, it can sufficiently protect the internal laminate 23 from mechanical impact even when the size is increased.
  • the laminate in the outer container is crushed and the positive electrode and the negative electrode are short-circuited.
  • the resin mold portion 12A is formed of a hard resin, it is possible to prevent the laminated body 23 in the resin mold portion 12A from being damaged even when an external force is applied.
  • the lithium ion secondary battery 10A since the lithium ion secondary battery 10A includes the terminals 14 and 16, it can be mounted on the circuit board 32 as shown in FIG.
  • the circuit board 32 has a thin-film metal electrode 34 formed on the surface, and a solder 36 is provided on the metal electrode 34.
  • the terminals 14 and 16 and the metal electrode 34 are joined by heating to a temperature at which the solder 36 melts.
  • the lithium ion secondary battery 10 ⁇ / b> A can be mounted on the circuit board 32 by the terminals 14 and 16. Therefore, since the lithium ion secondary battery 10A does not need to be joined to the coin cell or the laminate cell by welding as in the conventional case, the thickness can be reduced accordingly.
  • the separator 18, the positive electrode 20, and the negative electrode 22 are filled with an electrolytic solution using an ionic liquid as a solvent, and the electrolytic solution is gelled to form a gel electrolyte.
  • the ionic liquid has a feature that the solvent does not volatilize even at a high temperature of 200 ° C. or higher, and the electrolytic solution can be solidified by gelling the ionic liquid.
  • the laminated body 23 obtained in this way is resin-molded, and the outer periphery of the laminated body 23 is solidified, whereby a lithium ion secondary battery 10A having a strong resin molded portion 12A can be formed. At the same time, it is possible to prevent plastic insulation and leakage of the gel electrolyte from the resin mold portion 12A.
  • EC has a high boiling point of 244 ° C., but since the viscosity of the liquid is high, the mobility of lithium ions is low. Therefore, when EC is used, DEC, DMC, and EMC are mixed to reduce the viscosity of the solvent of the electrolytic solution, thereby improving the mobility of lithium ions.
  • the ionic liquid used in the present embodiment is not decomposed until at least 300 ° C., and no gas is generated. Battery performance can be maintained.
  • the positive electrode 20 and the negative electrode 22 can be fixed to the separator 18, and the laminated battery can be prevented from collapsing during handling with the resin mold.
  • Ethylene carbonate (EC) and propylene carbonate (PC) as electrolyte solvents have high boiling points of 244 ° C. and 240 ° C., respectively, but also have high viscosity. Therefore, when EC and PC are used as a solvent for a lithium ion secondary battery without being mixed with DEC, DMC, and EMC, the internal resistance of the battery becomes high and rapid charge / discharge becomes difficult. In the case where rapid charge / discharge is not required, for example, a backup battery for a memory in an electronic circuit functions as a battery even if the internal resistance of the battery is high. When such rapid charge / discharge is not required, EC and PC can be used alone as a solvent. As an electrolyte when an organic solvent is used as the solvent, LiClO 4 , LiAsF 6 , Li (CFSO 2 ) 2 N, LiBF 4 , LiCF 3 SO 3 may be used in addition to LiPF 6 .
  • the lithium ion secondary battery as an electricity storage device differs from the first embodiment in that a plurality of stacked bodies are combined.
  • the lithium ion secondary battery includes an assembly 38 formed by combining two stacked bodies, that is, a first stacked body 23A and a second stacked body 23B.
  • the assembly 38 is overlaid in a state where the connection-side negative electrode 33 of the first stacked body 23A and the connection-side positive electrode 35 of the second stacked body 23B are in contact with each other.
  • the current collector of the connection-side negative electrode 33 of the first stacked body 23A and the current collector of the connection-side positive electrode 35 of the second stacked body 23B are in direct contact.
  • the first stacked body 23A and the second stacked body 23B are filled with a gel electrolyte (not shown).
  • the lithium ion secondary battery can be manufactured in the same manner as in the first embodiment. First, sandwiching the separator 18, the positive electrode 20 is disposed on one side, the connection-side negative electrode 33 is disposed on the other side, and the connection-side positive electrode 35, the separator 18, and the negative electrode 22 are disposed on the connection-side negative electrode 33.
  • the current collector of the connection-side negative electrode 33 and the current collector of the connection-side positive electrode 35 to be overlapped are bonded with a paste containing metal particles.
  • a paste containing Ag particles as metal particles can be used.
  • the separator 18, the positive electrode 20, the negative electrode 22, the connection-side negative electrode 33, and the connection-side positive electrode 35 are filled with an electrolyte solution containing an ionic liquid and an electrolyte, and the electrolyte solution is gelled to form a gel electrolyte. To do.
  • the two stacked bodies that are overlapped are cut into a predetermined size to obtain an assembly 38 having a desired size (FIG. 8A).
  • the gel electrolytes of the two stacked bodies are physically separated. That is, before cutting into a lattice shape, the gel electrolyte of the lower laminate is electrically connected to the gel electrolyte of the upper laminate at the outer edge of the laminate.
  • the electrical connection at the outer edge of the laminated body is cut by cutting in a lattice shape, the upper and lower laminated bodies are electrically independent. Therefore, in the case of this embodiment, it is possible to connect the two stacked bodies stacked in series.
  • a pair of terminals 14 and 16 are electrically connected to the obtained assembly 38 (FIG. 8B).
  • One of the pair of terminals 14 and 16 is joined to the current collector of the positive electrode 20 of the first laminated body 23A, and the other 16 is joined to the current collector of the negative electrode 22 of the second laminated body 23B.
  • the entire assembly 38 in which the pair of terminals 14 and 16 are joined is made of polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polyethylene terephthalate (PET), polyethylene (PE), methacrylic resin (PMMA), polyvinyl pyrrolidone. It is good also as coating with resin, such as (PVP).
  • the assembly 38 in which the pair of terminals 14 and 16 are arranged is sealed with a resin mold to form the resin mold portion 12B, thereby obtaining the lithium ion secondary battery 10B (FIG. 8C).
  • the electrolyte does not flow in the lithium ion secondary battery 10B because the gel electrolyte is used.
  • the electrolyte filled in the first laminate 23A and the electrolyte filled in the second laminate 23B do not contact each other, so that the current collector of the connection-side negative electrode 33 and the current collector of the connection-side positive electrode 35 are in direct contact with each other.
  • the first stacked body 23A and the second stacked body 23B can be stacked. Therefore, since the lithium ion secondary battery 10B can accommodate the assembly 38 combining the first stacked body 23A and the second stacked body 23B in one resin mold portion 12B, it can be further reduced in size. .
  • the lithium ion secondary battery 10B has a single laminated body (unit cell) and an electromotive force of 3 to 4V.
  • the lithium ion secondary battery 10B includes the first stacked body 23A and the second stacked body 23B. Therefore, two unit cells are connected in series, and a 6-8V power source is generated. Electric power can be obtained.
  • the assembly 38 is formed by the first stacked body 23A and the second stacked body 23B has been described.
  • the present invention is not limited to this, and the assembly 38 is formed by three or more stacked bodies.
  • the electric double layer capacitor (EDLC) as an electricity storage device according to the present embodiment is different from the first embodiment in the configuration of the positive electrode, the negative electrode, and the gel electrolyte.
  • the positive electrode and the negative electrode have the same configuration, and include a current collector and a composite electrode formed on the current collector.
  • As the current collector aluminum foil can be mainly used.
  • the composite electrode includes an active material, a conductive aid, and a binder.
  • active material activated carbon, carbon nanotube, graphene, or the like can be used.
  • conductive aid carbon black such as acetylene black and ketjen black, VGCF, graphite, and the like can be used.
  • binder polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), or the like can be used.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • EPDM ethylene-propylene-diene copolymer
  • SBR styrene-butadiene rubber
  • both the positive electrode and the negative electrode are made of the same material, and the same electrode is made.
  • a coconut husk activated carbon having a specific surface area of 1500 m 2 / g and acetylene black are put into a slurry in which PVDF (polyvinylidene fluoride) is dissolved with NMP (N-methyl-2-pyrrolidone) and kneaded with a mixer to prepare a slurry.
  • This slurry is applied to one side of an aluminum foil having a thickness of 15 ⁇ m with a comma roll coater and dried at 150 ° C. for 10 minutes to produce a positive electrode having a thickness of 130 ⁇ m. Thereafter, the thickness is reduced to 100 ⁇ m by a roll press to produce an electrode plate having a capacity of 0.2 mAh / cm 2 .
  • the above electrode is cut into two 10 cm squares, and the composite electrode is brought into contact with a separator made of cellulose felt having a thickness of 25 ⁇ m, and a positive electrode is disposed on one side of the separator and a negative electrode is disposed on the other side. , Hold both ends with a flat plate, and sandwich with clips. Incidentally, at this time, there is no distinction between positive and negative electrodes, and the capacitor is completed. The positive voltage is applied to the positive electrode and the negative voltage is applied to the negative electrode.
  • the stacked separator, positive electrode, and negative electrode are placed in a chamber (not shown), and the inside of the chamber is evacuated.
  • An electrolytic solution in which 1M tetraethylammonium tetrafluoroboric acid (Et 4 NBF 4 ) is dissolved in an organic solvent of propylene carbonate (PC) is prepared.
  • tetraethylammonium tetrafluoroborate (Et 4 NBF 4 ) tetraethylammonium bistrifluoromethylsulfonylimide (Et 4 N (CF 3 SO 2 ) 2 N can be used as the electrolyte.
  • PVDF poly (vinylidene fluoride)
  • PEO polyethylene oxide
  • PAN polyacrylonitrile
  • PMMA polymethylmethacrylate
  • PVDF dissolved in NMP is added to 3 wt% electrolyte. Dissolved and put into a vacuum chamber, and contained in the laminated separator, positive electrode and negative electrode. It is, in a state was returned to atmospheric pressure, at 0.99 ° C., dried for about 1 hour, evaporate the NMP, to gel.
  • the solvent is not limited to an organic solvent such as propylene carbonate (PC), and an ionic liquid can also be used.
  • an ionic liquid As the ionic liquid, 2 to 5 wt% of polyvinyl pyridine (P4VP) or polydimethylaminoethyl methacrylate (PDMEMA) manufactured by Kanto Chemical Co., Ltd. may be added.
  • the electrolyte is P1,3 ⁇ FSI (1-methyl-propylpyrrolidinium bis (fluorosulfonyl) imide) of Mitsubishi Materials Electronics Chemical Co., Ltd., and EMI ⁇ FSI (1-ethyl). -Methylimidazolium bis (fluorosulfonyl) imide) can be used.
  • the laminate is cut into 1 mm length x 1 mm width.
  • a conductive paste such as a silver paste is applied to the metal portion on the back surface of the current collector of the positive electrode and the negative electrode, and is placed on a terminal having a thickness of 20 ⁇ m and electrically joined to the terminal.
  • the EDLC according to the present embodiment includes a gel electrolyte and includes a laminate in the resin mold portion, the same effects as those of the first embodiment can be obtained.
  • a series circuit capacitor may be formed by enclosing an assembly formed by stacking stacked bodies in one resin mold part.
  • the electrolytic solution is charged and gelled, and the same resin mold is performed.
  • the same resin mold is performed.
  • An electric double layer capacitor is a single laminate and has an electromotive force of about 1 V in the case of an aqueous electrolyte, and an electromotive force of 2 to 3 V in an organic solvent and ionic liquid system.
  • an electric double layer capacitor formed of an organic solvent system or an ionic liquid system includes a first stacked body and a second stacked body, thereby connecting two capacitors in series. Therefore, an electromotive force of 2 to 4 V can be obtained.
  • E electrostatic energy (J)
  • C capacitance (F)
  • V voltage (V).
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention.
  • the present invention is not limited thereto.
  • the electricity storage device 10C has a large current collector 40, 42, a part of the current collector 40, 42 is exposed to the outside of the resin mold portion 12C, and a pair of terminals can be used. Good.
  • the laminate is cut into 3 mm length x 5 mm width. If a composite electrode is applied to a region of 3 mm length ⁇ 3 mm width among these, the 2 mm width portion becomes a terminal exposed to the outside of the resin mold portion.
  • the area where the composite electrode is applied becomes the effective area of the electrode, and the charge / discharge capacity changes according to the effective area.
  • the portion where the composite electrode is applied can be reduced to a minimum of 1 mm ⁇ 1 mm square.
  • the length of the terminal portion exposed to the outside of the resin mold portion needs to be 0.5 mm.
  • the thickness of the laminate that is, the positive electrode (the thickness of the composite electrode 80 ⁇ m + the thickness of the aluminum foil current collector 20 ⁇ m), the negative electrode (the thickness of the composite electrode 80 ⁇ m + the thickness of the copper foil current collector 20 ⁇ m), the separator (thickness 20 ⁇ m) ) Is 220 ⁇ m, and the thickness of the electricity storage device is 1.0 mm
  • the thickness of the upper and lower resin mold parts is 780 ⁇ m in total and 390 ⁇ m on one side.
  • the resin mold part since the resin mold part needs to be formed by pouring resin into the mold, it only needs to have a thickness of 200 ⁇ m on one side, so the thickness of the electricity storage device can be set to 620 ⁇ m at the minimum.
  • the thickness of the composite electrode of the positive electrode and the negative electrode containing the active material is not limited to 80 ⁇ m, and can be arbitrarily changed according to the required battery capacity. That is, the thickness of the composite electrode of the positive electrode and the negative electrode is proportional to the charge / discharge capacity. For example, when the charge / discharge capacity is desired to be 1 ⁇ 4, the thickness of the positive electrode / negative electrode composite electrode can be set to 20 ⁇ m. If the current collector thickness is 20 ⁇ m and the separator thickness is 20 ⁇ m, the thickness of one laminate is 100 ⁇ m. If a 200 ⁇ m mold resin layer is added to the top and bottom of this, a 500 ⁇ m battery can be manufactured with a total thickness. Substantial minimum thicknesses of the positive electrode and negative electrode composite electrodes are considered to be about 10 ⁇ m, though depending on the particle size of the active material.
  • the second embodiment it is possible to increase the voltage by stacking a single layer stack in series.
  • the thickness of the single layer stack is 100 ⁇ m, five layers are stacked. Even when the layers are stacked, the thickness is only 500 ⁇ m, and even if a resin layer of 200 ⁇ m is provided above and below, it is possible to make a battery having a total of 900 ⁇ m.
  • the electromotive force of a single-layer laminate is 3 to 4 V, it is possible to produce a thin and small power storage device that can be charged and discharged with an electromotive force of 15 to 20 V when 5 layers are stacked. It is.
  • the battery capacity can be increased by increasing the electrode area.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

Provided are: an electricity storage device which is characterized in that a laminate that comprises a positive electrode, a negative electrode and a gel electrolyte is contained in a resin mold part (12A), and which is able to be reduced in size in comparison to conventional electricity storage devices; and a method for manufacturing an electricity storage device.

Description

蓄電デバイス及び蓄電デバイスの製造方法Electric storage device and method for manufacturing electric storage device
 本発明は、蓄電デバイス及び蓄電デバイスの製造方法に関し、特に小型のリチウムイオン二次電池(LiB)、及び電気二重層キャパシタ(EDLC)に関する。 The present invention relates to a power storage device and a method for manufacturing the power storage device, and more particularly to a small lithium ion secondary battery (LiB) and an electric double layer capacitor (EDLC).
 小型のリチウムイオン二次電池、電気二重層キャパシタとして、例えば、コインセルや、ラミネートセルが知られている。コインセルは、セパレータを介して配置された正極と負極が、電解液と共にケース内に収納され、さらに負極の上にスペーサ及びスプリングが配置され、スプリングの上から蓋を被せて、当該蓋をケースにかしめることにより密閉されている(例えば、特許文献1)。 For example, coin cells and laminate cells are known as small lithium ion secondary batteries and electric double layer capacitors. In a coin cell, a positive electrode and a negative electrode arranged via a separator are housed in a case together with an electrolytic solution, and a spacer and a spring are arranged on the negative electrode, and a lid is placed on the spring, and the lid is attached to the case. It is sealed by caulking (for example, Patent Document 1).
 ラミネートセルは、金属製シート材料からなる四角形状の外容器内に、板状の正極及び負極を挿入し、液状の電解質を充填して形成されることが開示されている(例えば、特許文献2)。このラミネートセルの場合、外容器の4個の端面を熱シールすることにより密閉される。 It is disclosed that a laminate cell is formed by inserting a plate-like positive electrode and a negative electrode into a rectangular outer container made of a metal sheet material and filling a liquid electrolyte (for example, Patent Document 2). ). In the case of this laminate cell, the four end faces of the outer container are sealed by heat sealing.
特開2014-96213号公報(段落0012)JP 2014-96213 A (paragraph 0012) 特開2005-135599号公報(段落0003、段落0004)JP 2005-135599 A (paragraph 0003, paragraph 0004)
 しかしながら上記特許文献に係るリチウムイオン二次電池、電気二重層キャパシタは、一定の大きさより小さくすることが困難であるという問題があった。 However, the lithium ion secondary battery and the electric double layer capacitor according to the above patent document have a problem that it is difficult to make the size smaller than a certain size.
 すなわち特許文献1に係るコインセルの場合、蓋をケースにかしめるため、コインセルの厚さは、蓋及びケースの厚さを含めて1mm以上にする必要がある。 That is, in the case of the coin cell according to Patent Document 1, since the lid is caulked to the case, the thickness of the coin cell needs to be 1 mm or more including the thickness of the lid and the case.
 また特許文献2に係るラミネートセルの場合、外容器の4個の端面に対し熱シールを施すためのシールしろが必要である。シールしろは、1個の端面当たり、少なくとも3mm程度必要である。そうするとラミネートセルは、両側2か所の端面に対し、1辺の長さが最少で6mm必要になる。したがってラミネートセルは、外容器内に挿入する正極及び負極の数を減らすことにより、全体の厚さを薄くすることが可能であるが、面積を小さくすることが困難であるという問題があった。 Moreover, in the case of the laminate cell according to Patent Document 2, it is necessary to provide seal margins for heat sealing the four end faces of the outer container. The margin for sealing needs to be at least about 3 mm per end face. As a result, the laminate cell requires a minimum length of 6 mm on one side with respect to the end faces at two locations on both sides. Therefore, the laminate cell can reduce the total thickness by reducing the number of positive electrodes and negative electrodes inserted into the outer container, but there is a problem that it is difficult to reduce the area.
 さらにコインセル及びラミネートセルを回路基板に実装するには、コインセル及びラミネートセルと回路基板とをつなぐ端子が必要であり、端子を溶接により接合する分だけコインセル及びラミネートセルの厚さが厚くなってしまう。最小のコイン電池として、直径4.8mm、高さ1.2mmのものがセイコーインスツル(株)より、販売されている。 Further, in order to mount the coin cell and the laminate cell on the circuit board, a terminal for connecting the coin cell and the laminate cell to the circuit board is required, and the thickness of the coin cell and the laminate cell is increased by joining the terminal by welding. . As a minimum coin cell, a battery having a diameter of 4.8 mm and a height of 1.2 mm is sold by Seiko Instruments Inc.
 そこで本発明は、従来よりも小型化することができる蓄電デバイス及び蓄電デバイスの製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide an electricity storage device and a method for manufacturing the electricity storage device that can be made smaller than before.
 本発明の第1の観点は、正極及び負極と、ゲル電解質とを有する積層体が樹脂モールド部に内包されていることを特徴とする。 The first aspect of the present invention is characterized in that a laminate having a positive electrode, a negative electrode, and a gel electrolyte is included in a resin mold portion.
 本発明の第2の観点は、第1の観点に基づく発明であって、前記ゲル電解質が、電解質と溶媒とを含む電解液にゲル化剤を加えることにより形成されており、前記溶媒が、イオン液体又は沸点が150℃以上の有機溶媒であることを特徴とする。 A second aspect of the present invention is the invention based on the first aspect, wherein the gel electrolyte is formed by adding a gelling agent to an electrolytic solution containing an electrolyte and a solvent, and the solvent is It is an ionic liquid or an organic solvent having a boiling point of 150 ° C. or higher.
 本発明の第3の観点は、第2の観点に基づく発明であって、前記イオン液体が、EMI・FSI(1-エチル-メチルイミダゾリウムビス(フルオロスルホニル)イミド)及びP1,3・FSI(1-メチル-プロピルピロリジニウムビス(フルオロスルホニル)イミドのいずれか一方を含むことを特徴とする。 A third aspect of the present invention is the invention based on the second aspect, wherein the ionic liquid comprises EMI • FSI (1-ethyl-methylimidazolium bis (fluorosulfonyl) imide) and P1,3 • FSI ( It includes any one of 1-methyl-propylpyrrolidinium bis (fluorosulfonyl) imide.
 本発明の第4の観点は、第2の観点に基づく発明であって、前記有機溶媒が、エチレンカーボネート(EC)及びプロピレンカーボネート(PC)のいずれか一方を含むことを特徴とする。 A fourth aspect of the present invention is an invention based on the second aspect, wherein the organic solvent contains one of ethylene carbonate (EC) and propylene carbonate (PC).
 本発明の第5の観点は、第3の観点に基づく発明であって、前記電解質が、LiTFSI(リチウムビス(トリフルオロメタンスルホニル)イミド)及びLiFSI(リチウムビス(トリフルオロスルホニル)イミド)のいずれか一方を含むことを特徴とする。 A fifth aspect of the present invention is the invention based on the third aspect, wherein the electrolyte is one of LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) and LiFSI (lithium bis (trifluorosulfonyl) imide). One is included.
 本発明の第6の観点は、第4の観点の蓄電デバイスを用いて形成され、前記電解質が、LiPF、LiClO、LiAsF、Li(CFSON、LiBF及びLiCFSOのいずれか1つを含むことを特徴とする。 A sixth aspect of the present invention is formed using the electricity storage device of the fourth aspect, and the electrolyte is LiPF 6 , LiClO 4 , LiAsF 6 , Li (CF 3 SO 2 ) 2 N, LiBF 4 and LiCF 3. It includes any one of SO 3 .
 本発明の第7の観点は、第2の観点の蓄電デバイスを用いて形成され、前記イオン液体中に含まれる電解質が、脂肪族四級アンモニウム塩であることを特徴とする。 A seventh aspect of the present invention is characterized in that it is formed using the electricity storage device of the second aspect, and the electrolyte contained in the ionic liquid is an aliphatic quaternary ammonium salt.
 本発明の第8の観点は、第7の観点に基づく発明であって、前記電解質が、テトラエチルアンモニウム4フッ化ホウ酸(EtNBF)、及びテトラエチルアンモニウムビストリフルオロメチルスルホニルイミド(EtN(CFSONいずれか1つを含むことを特徴とする。 An eighth aspect of the present invention is the invention based on the seventh aspect, wherein the electrolyte is tetraethylammonium tetrafluoroborate (Et 4 NBF 4 ) and tetraethylammonium bistrifluoromethylsulfonylimide (Et 4 N). Any one of (CF 3 SO 2 ) 2 N is included.
 本発明の第9の観点は、第2~5のいずれか1つの観点に基づく発明であって、前記ゲル化剤が、ポリビニルピリジン(P4VP)、ポリジメチルアミノエチルメタクリレート(PDMEMA)、ポリフッ化ビリニデン(PVDF;[CH-CF]n)、ポリエチレンオキシド(PEO;[CH-CH-O])、ポリアクリルニトリル(PAN;[CH(CN)-CH)、及びポリメチルメタクリレート(PMMA;[C(CH)(COOCH)-CH)のいずれか1つを含むことを特徴とする。 A ninth aspect of the present invention is the invention based on any one of the second to fifth aspects, wherein the gelling agent is polyvinyl pyridine (P4VP), polydimethylaminoethyl methacrylate (PDMEMA), polyvinylidene fluoride. (PVDF; [CH 2 —CF 2 ] n), polyethylene oxide (PEO; [CH 2 —CH 2 —O] n ), polyacrylonitrile (PAN; [CH 2 (CN) —CH 2 ] n ), and It includes any one of polymethyl methacrylate (PMMA; [C (CH 3 ) (COOCH 3 ) —CH 2 ] n ).
 本発明の第10の観点は、第1~5のいずれか1つの観点に基づく発明であって、前記積層体を2以上有する組立体を備え、前記組立体は、一の前記積層体の接続側正極と、他の前記積層体の接続側負極が電気的に接続された状態で、前記積層体同士が積層されていることを特徴とする。 A tenth aspect of the present invention is an invention based on any one of the first to fifth aspects, comprising an assembly having two or more of the laminates, wherein the assembly is a connection of one of the laminates. The laminates are laminated in a state where a side positive electrode and a connection-side negative electrode of another laminate are electrically connected.
 本発明の第11の観点は、第1~5のいずれか1つの観点に基づく発明であって、前記正極及び前記負極にそれぞれ電気的に接続され、前記樹脂モールド部より露出している一対の端子を備えることを特徴とする。 An eleventh aspect of the present invention is an invention based on any one of the first to fifth aspects, wherein the pair of electrodes are electrically connected to the positive electrode and the negative electrode, respectively, and exposed from the resin mold portion. A terminal is provided.
 本発明の第12の観点は、積層された正極、及び負極に、電解液を含浸させ、前記電解液をゲル化したゲル電解質が充填された積層体を形成する工程と、前記積層体を樹脂モールドにより密閉する工程とを備えることを特徴とする。 According to a twelfth aspect of the present invention, there is provided a step of forming a laminated body in which a laminated positive electrode and a negative electrode are impregnated with an electrolytic solution and filled with a gel electrolyte obtained by gelling the electrolytic solution; And a step of sealing with a mold.
 本発明の第13の観点は、第12の観点に基づく発明であって、前記樹脂モールドにより密閉する工程の前に、前記ゲル電解質が充填された前記積層体に一対の端子を配置し、前記積層体と前記一対の端子を樹脂で被覆する工程を備えることを特徴とする。 A thirteenth aspect of the present invention is the invention based on the twelfth aspect, wherein before the step of sealing with the resin mold, a pair of terminals are arranged on the laminate filled with the gel electrolyte, A step of coating the laminate and the pair of terminals with a resin is provided.
 本発明の第14の観点は、第12又は13の観点に基づく発明であって、前記蓄電デバイスがリチウムイオン二次電池(LiB)又は電気二重層キャパシタ(EDLC)のいずれかであることを特徴とする。 A fourteenth aspect of the present invention is the invention based on the twelfth or thirteenth aspect, wherein the power storage device is either a lithium ion secondary battery (LiB) or an electric double layer capacitor (EDLC). And
 本発明の第1の観点の蓄電デバイスでは、樹脂モールド部内に積層体を内包したことにより、従来のコインセルのようにかしめる必要がなく、またラミネートセルのように熱シールしろを必要としないので、従来よりも小型化することができる。 In the electricity storage device according to the first aspect of the present invention, since the laminate is included in the resin mold portion, it is not necessary to crimp like a conventional coin cell, and no heat sealing margin is required like a laminate cell. Therefore, it can be made smaller than before.
 本発明の第2の観点の蓄電デバイスでは、樹脂モールド時に必要な150℃の熱を加えても、電解液を形成する溶媒が変質することがないので、電池性能を維持することができる。 In the electricity storage device according to the second aspect of the present invention, even when heat of 150 ° C. necessary for resin molding is applied, the solvent that forms the electrolyte does not change, so that the battery performance can be maintained.
 本発明の第3の観点の蓄電デバイスでは、イオン液体を用いているため、熱的に安定な電解液により、電池性能を維持することができる。 In the electricity storage device of the third aspect of the present invention, since the ionic liquid is used, the battery performance can be maintained by the thermally stable electrolyte.
 本発明の第4の観点の蓄電デバイスでは、エチレンカーボネート(EC)及びプロピレンカーボネート(PC)の高沸点有機溶媒を用いているため、熱的に安定な電解液により、電池性能を維持することができる。 In the electricity storage device of the fourth aspect of the present invention, since the high boiling point organic solvent of ethylene carbonate (EC) and propylene carbonate (PC) is used, the battery performance can be maintained by the thermally stable electrolyte. it can.
 本発明の第5の観点の蓄電デバイスでは、LiTFSI(リチウムビス(トリフルオロメタンスルホニル)イミド)及びLiFSI(リチウムビス(トリフルオロスルホニル)イミド)のイオン性電解質を用いることにより、熱的安定性が得られる。 In the electricity storage device according to the fifth aspect of the present invention, thermal stability is obtained by using ionic electrolytes of LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) and LiFSI (lithium bis (trifluorosulfonyl) imide). It is done.
 本発明の第6の観点では、電解質が、LiPF、LiClO、LiAsF、Li(CFSON、LiBF及びLiCFSOの何れかであることにより、リチウムイオン二次電池として充放電することが可能である。 In the sixth aspect of the present invention, the electrolyte is any one of LiPF 6 , LiClO 4 , LiAsF 6 , Li (CF 3 SO 2 ) 2 N, LiBF 4 and LiCF 3 SO 3. It can be charged and discharged as a battery.
 本発明の第7の観点では、イオン液体中に含まれるの電解質が、脂肪族四級アンモニウム塩であると、電気二重層キャパシタにおいて、有効に充放電できるようになる。 In the seventh aspect of the present invention, when the electrolyte contained in the ionic liquid is an aliphatic quaternary ammonium salt, the electric double layer capacitor can be effectively charged and discharged.
 本発明の第8の観点の電気二重層キャパシタでは、トラエチルアンモニウム4フッ化ホウ酸(EtNBF)、及びテトラエチルアンモニウムビストリフルオロメチルスルホニルイミド(EtN(CFSONのいずれかを用いることにより、カチオンとアニオンとが、電気二重層キャパシタの表面に効率よく吸着・脱離できるようになる。 In the electric double layer capacitor of the eighth aspect of the present invention, traethylammonium tetrafluoroborate (Et 4 NBF 4 ) and tetraethylammonium bistrifluoromethylsulfonylimide (Et 4 N (CF 3 SO 2 ) 2 N By using either one, the cation and the anion can be efficiently adsorbed and desorbed from the surface of the electric double layer capacitor.
 本発明の第9の観点では、ポリビニルピリジン(P4VP)、ポリジメチルアミノエチルメタクリレート(PDMEMA)、ポリフッ化ビリニデン(PVDF;[CH-CF]n)、ポリエチレンオキシド(PEO;[CH-CH-O])、ポリアクリルニトリル(PAN;[CH(CN)-CH)、及びポリメチルメタクリレート(PMMA;[C(CH)(COOCH)-CH)のいずれか1つを含むことにより、電解液をゲル化することができ、製造時に正極と負極とがずれることなく積層でき、安定した性能の蓄電デバイスを作製することができる。 In the ninth aspect of the present invention, polyvinylpyridine (P4VP), polydimethylaminoethyl methacrylate (PDMEMA), poly (vinylidene fluoride) (PVDF; [CH 2 -CF 2 ] n), polyethylene oxide (PEO; [CH 2 -CH 2 -O] n ), polyacrylonitrile (PAN; [CH 2 (CN) —CH 2 ] n ), and polymethyl methacrylate (PMMA; [C (CH 3 ) (COOCH 3 ) —CH 2 ] n ) By including any one of them, the electrolytic solution can be gelled, and the positive electrode and the negative electrode can be laminated without shifting during production, and an electricity storage device with stable performance can be manufactured.
 本発明の第10の観点の蓄電デバイスでは、ゲル電解質を用いたことにより、2以上の積層体に充填された電解質が互いに接触しないので、組立体を1つの樹脂モールド部に内包することができ、より小型化することができる。 In the electricity storage device according to the tenth aspect of the present invention, since the electrolyte filled in the two or more laminates does not contact each other by using the gel electrolyte, the assembly can be enclosed in one resin mold part. , It can be made smaller.
 本発明の第11の観点の蓄電デバイスでは、端子を備えているので、従来のように端子を溶接によりコインセルやラミネートセルに接合する必要がないので、その分だけ厚さを薄くすることができる。 Since the electricity storage device according to the eleventh aspect of the present invention includes a terminal, it is not necessary to join the terminal to a coin cell or a laminate cell by welding as in the prior art, so that the thickness can be reduced accordingly. .
 本発明の第12の観点の蓄電デバイスの製造方法では、電解液をゲル化することにより、樹脂モールド部で積層体を内包することができるので、従来よりも小型のリチウムイオン二次電池又は電気二重層キャパシタを製造することができる。 In the method for manufacturing an electricity storage device according to the twelfth aspect of the present invention, since the laminate can be included in the resin mold part by gelling the electrolytic solution, the lithium ion secondary battery or the electric battery that is smaller than the conventional one can be used. A double layer capacitor can be manufactured.
 本発明の第13の観点の蓄電デバイスの製造方法では、ゲル電解質が充填された積層体を樹脂で被覆することにより、積層体と一対の端子を一体化することができるので、より容易にリチウムイオン二次電池又は電気二重層キャパシタを製造することができる。 In the power storage device manufacturing method according to the thirteenth aspect of the present invention, the laminate and the pair of terminals can be integrated by covering the laminate filled with the gel electrolyte with a resin. An ion secondary battery or an electric double layer capacitor can be manufactured.
 本発明の第14の観点の蓄電デバイスの製造方法では、リチウムイオン二次電池又は電気二重層キャパシタを作製することができる。 In the method for manufacturing an electricity storage device according to the fourteenth aspect of the present invention, a lithium ion secondary battery or an electric double layer capacitor can be produced.
第1実施形態に係るリチウムイオン二次電池の構成を示す斜視図である。It is a perspective view which shows the structure of the lithium ion secondary battery which concerns on 1st Embodiment. 第1実施形態に係る積層体の構成を示す斜視図である。It is a perspective view which shows the structure of the laminated body which concerns on 1st Embodiment. 第1実施形態に係る正極の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the positive electrode which concerns on 1st Embodiment. 第1実施形態に係る負極の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the negative electrode which concerns on 1st Embodiment. 第1実施形態に係るリチウムイオン二次電池の製造方法を段階的に示す斜視図であり、図5Aは正極、セパレータ、及び負極を積層した段階、図5Bは積層体を所定の大きさに切断する段階、図5Cは積層体に端子を設けた段階、図5Dは積層体を樹脂モールドした段階を示す図である。FIG. 5A is a perspective view showing stepwise a method of manufacturing a lithium ion secondary battery according to the first embodiment, FIG. 5A is a stage in which a positive electrode, a separator, and a negative electrode are laminated, and FIG. FIG. 5C is a diagram showing a stage in which a terminal is provided on the laminate, and FIG. 5D is a diagram showing a stage in which the laminate is resin-molded. 第1実施形態に係るリチウムイオン二次電池を基板に実装する様子を示す斜視図である。It is a perspective view which shows a mode that the lithium ion secondary battery which concerns on 1st Embodiment is mounted in a board | substrate. 第2実施形態に係るリチウムイオン二次電池の組立体の構成を示す斜視図である。It is a perspective view which shows the structure of the assembly of the lithium ion secondary battery which concerns on 2nd Embodiment. 第2実施形態に係るリチウムイオン二次電池の製造方法を段階的に示す斜視図であり、図8Aは組立体を所定の大きさに切断する段階、図8Bは組立体に端子を設けた段階、図8Cは樹脂モールド部を形成した段階を示す図である。FIGS. 8A and 8B are perspective views illustrating a method of manufacturing a lithium ion secondary battery according to a second embodiment in stages, in which FIG. 8A is a stage in which the assembly is cut into a predetermined size, and FIG. 8B is a stage in which terminals are provided in the assembly. FIG. 8C is a diagram showing a stage where a resin mold portion is formed. 変形例に係るリチウムイオン二次電池の構成を示す斜視図である。It is a perspective view which shows the structure of the lithium ion secondary battery which concerns on a modification.
 以下、図面を参照して本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1.第1実施形態
(全体構成)
 蓄電デバイスとしてリチウムイオン二次電池を例に、本実施形態を説明する。図1に示すリチウムイオン二次電池10Aは、樹脂モールド部12Aと、当該樹脂モールド部12Aから露出した一対の端子14,16とを備える。樹脂モールド部12Aは、射出成型により樹脂モールドで形成される。樹脂モールド部12Aを形成するモールド材としては、フェノール樹脂、ガラスフェノール樹脂、ジアリルフタレート樹脂などを用いることができる。
1. First embodiment (overall configuration)
The present embodiment will be described by taking a lithium ion secondary battery as an example of an electricity storage device. A lithium ion secondary battery 10A shown in FIG. 1 includes a resin mold portion 12A and a pair of terminals 14 and 16 exposed from the resin mold portion 12A. The resin mold portion 12A is formed of a resin mold by injection molding. As a molding material for forming the resin mold portion 12A, phenol resin, glass phenol resin, diallyl phthalate resin, or the like can be used.
 本実施形態の場合、リチウムイオン二次電池10Aは、樹脂モールド部12Aが立方体形状に形成されており、当該樹脂モールド部12Aの一表面から端子14,16が露出している。端子14,16は、特に限定されないが、金属、例えばアルミニウムや銅などの板状部材で形成することができる。 In the case of the present embodiment, in the lithium ion secondary battery 10A, the resin mold portion 12A is formed in a cubic shape, and the terminals 14 and 16 are exposed from one surface of the resin mold portion 12A. The terminals 14 and 16 are not particularly limited, but can be formed of a metal, for example, a plate-like member such as aluminum or copper.
 樹脂モールド部12A内には、図2に示すように、セパレータ18と、一対の電極20,22とを有する3層構造の積層体23が収納されている。一対の電極20,22は、セパレータ18の一側に配置された正極20と、セパレータ18の他側に配置された負極22とからなる。セパレータ18は、合成樹脂製不織布、ポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルム、セルロース不織布等で形成される。なお、セパレータ18は、後述するように省略することができる。 In the resin mold portion 12A, a laminate 23 having a three-layer structure including a separator 18 and a pair of electrodes 20 and 22 is accommodated as shown in FIG. The pair of electrodes 20 and 22 includes a positive electrode 20 disposed on one side of the separator 18 and a negative electrode 22 disposed on the other side of the separator 18. The separator 18 is formed of a synthetic resin nonwoven fabric, a polyethylene porous film, a polypropylene porous film, a cellulose nonwoven fabric, or the like. The separator 18 can be omitted as will be described later.
 正極20は、図3に示すように、集電体24と、当該集電体24上に形成された合材電極26とを有する。集電体24は、主にアルミニウム箔を用いることができる。 As shown in FIG. 3, the positive electrode 20 includes a current collector 24 and a composite electrode 26 formed on the current collector 24. As the current collector 24, an aluminum foil can be mainly used.
 合材電極26は、正極活物質と、正極用導電助剤と、バインダーとを含む。正極活物質としては、LiCoO、LiNiO、LiMn、LiMnO、LiFePOなどを用いることができる。導電助剤としては、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、VGCF、黒鉛などを用いることができる。バインダーとしては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレン-プロピレン-ジエン共重合体(EPDM)、スチレン-ブタジエンゴム(SBR)などを用いることができる。 The composite electrode 26 includes a positive electrode active material, a positive electrode conductive additive, and a binder. As the positive electrode active material, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiFePO 4, or the like can be used. As the conductive aid, carbon black such as acetylene black and ketjen black, VGCF, graphite, and the like can be used. As the binder, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), or the like can be used.
 負極22は、図4に示すように、集電体28と、当該集電体28上に形成された合材電極30とを有する。集電体28は、銅箔、ステンレス箔、ニッケル箔などを用いることができる。 As shown in FIG. 4, the negative electrode 22 has a current collector 28 and a composite electrode 30 formed on the current collector 28. As the current collector 28, a copper foil, a stainless steel foil, a nickel foil, or the like can be used.
 合材電極30は、負極活物質と、バインダーとを含む。負極活物質としては、シリコン(Si)、酸化シリコン(SiO)、スズ(Sn)、スズ-コバルト化合物(Sn-Co)、酸化第二スズ(SnO)、天然黒鉛、人造黒鉛及びチタン酸リチウム(LiTi12)などを用いることができる。バインダーとしては、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム(SBR)及びカルボキシメチルセルロース(CMC)などを用いることができる。 The composite electrode 30 includes a negative electrode active material and a binder. Examples of the negative electrode active material include silicon (Si), silicon oxide (SiO), tin (Sn), tin-cobalt compound (Sn—Co), stannic oxide (SnO 2 ), natural graphite, artificial graphite, and lithium titanate. (Li 4 Ti 5 O 12 ) or the like can be used. As the binder, polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), or the like can be used.
 積層体23には、図示しないが電解液をゲル化して形成されたゲル電解質が充填されている。すなわち、ゲル電解質は、セパレータ18、正極20及び負極22の合材電極26,30にそれぞれ形成されている孔や隙間に充填されている。 The laminated body 23 is filled with a gel electrolyte formed by gelling an electrolytic solution (not shown). That is, the gel electrolyte is filled in holes and gaps formed in the composite electrodes 26 and 30 of the separator 18, the positive electrode 20, and the negative electrode 22, respectively.
(製造方法)
 次に上記のように構成されたリチウムイオン二次電池10Aの製造方法を、図5を参照して説明する。
(Production method)
Next, a manufacturing method of the lithium ion secondary battery 10A configured as described above will be described with reference to FIG.
 正極については、NMP(N-メチル-2-ピロリドン)によりPVDF(ポリフッ化ビニリデン)を溶かしたスラリー中に平均粒径10μmのLCO、アセチレンブラック(AB)を入れて混合し、正極スラリーを作製する。この正極スラリー中の固形分中の比率は、LCO:AB:PVDF=96:2:2である。これを厚さ15μmのアルミ箔の片面に、コンマロールコータで塗工し、120℃で10分間、乾燥させ、厚さ100μmの正極の合材電極を作製する。その後、ロールプレスにより、厚さを80μmまで潰して、3.0mAh/cmの容量をもつ正極板を作製する。 As for the positive electrode, LCO and acetylene black (AB) having an average particle diameter of 10 μm are mixed in a slurry in which PVDF (polyvinylidene fluoride) is dissolved by NMP (N-methyl-2-pyrrolidone) to prepare a positive electrode slurry. . The ratio of the solid content in the positive electrode slurry is LCO: AB: PVDF = 96: 2: 2. This is coated on one side of a 15 μm thick aluminum foil with a comma roll coater and dried at 120 ° C. for 10 minutes to produce a positive electrode mixture with a thickness of 100 μm. Thereafter, the thickness is reduced to 80 μm by a roll press to produce a positive electrode plate having a capacity of 3.0 mAh / cm 2 .
 負極については、CMC(カルボキシメチルセルロース)を1wt%含む水溶液を作製し、これに、粒径15μmの天然黒鉛とSBR(スチレンブタジエンゴム)を加え混合し、負極スラリーを作製する。この負極スラリー中の固形分中の比率は、天然黒鉛:CMC:SBR=98:1:1である。これを厚さ10μmの銅箔の片面に、コンマロールコータで塗工し、120℃で10分間、乾燥させ、厚さ100μmの負極の合材電極を作製する。その後、ロールプレスにより、厚さを80μmまで潰して、3.6mAh/cmの容量をもつ負極板を作製する。 For the negative electrode, an aqueous solution containing 1 wt% of CMC (carboxymethylcellulose) is prepared, and natural graphite having a particle size of 15 μm and SBR (styrene butadiene rubber) are added and mixed to prepare a negative electrode slurry. The ratio of the solid content in the negative electrode slurry is natural graphite: CMC: SBR = 98: 1: 1. This is applied to one side of a 10 μm thick copper foil with a comma roll coater and dried at 120 ° C. for 10 minutes to produce a negative electrode composite electrode having a thickness of 100 μm. Thereafter, the thickness is reduced to 80 μm by a roll press to produce a negative electrode plate having a capacity of 3.6 mAh / cm 2 .
 次に、ポリエチレン製の微多孔がある厚さ20μmのセパレータ18を挟んで、一側に正極20、他側に負極22を配置し、重ね合せ、両端を平らな板で押さえ、クリップで挟む。この際、正極20及び負極22は、それぞれ合材電極26,30をセパレータ18に接触させた状態で配置される(図5A)。 Next, a polyethylene microporous 20 μm thick separator 18 is sandwiched, a positive electrode 20 is placed on one side, and a negative electrode 22 is placed on the other, stacked, pressed on both ends with a flat plate, and sandwiched with clips. At this time, the positive electrode 20 and the negative electrode 22 are disposed in a state where the composite electrodes 26 and 30 are in contact with the separator 18 (FIG. 5A).
 本実施形態に係るリチウムイオン二次電池10Aは、ゲル電解質を用いるため、セパレータ18を用いずに、正極20と負極22を、物理的に離すことが可能である。例えば、正極板表面に凹凸を設けることにより、正極20と負極22を直接、接触させても短絡を防止することができる。凹凸は、直径200μmで、高さ20μmの円柱状の突起(リブ)を1mm間隔で、スクリーン印刷により、NMPに溶解したPVDFを塗布し、120℃で1時間、真空乾燥することにより、形成することができる。なお、凹凸の大きさは、使用するゲル電解質の固さにより、間隔を狭めたり、広めたりすることができる。したがって本実施形態の場合、ゲル電解質を用いることにより、上述の通りセパレータ18を省略することができる。 Since the lithium ion secondary battery 10A according to the present embodiment uses a gel electrolyte, the positive electrode 20 and the negative electrode 22 can be physically separated without using the separator 18. For example, by providing irregularities on the surface of the positive electrode plate, a short circuit can be prevented even if the positive electrode 20 and the negative electrode 22 are brought into direct contact. The irregularities are formed by applying PVDF dissolved in NMP by screen printing with cylindrical projections (ribs) having a diameter of 200 μm and a height of 20 μm at intervals of 1 mm and vacuum drying at 120 ° C. for 1 hour. be able to. In addition, the magnitude | size of an unevenness | corrugation can make a space | interval narrow or widen by the hardness of the gel electrolyte to be used. Therefore, in the case of this embodiment, the separator 18 can be omitted as described above by using a gel electrolyte.
 次いで、溶媒としてP1,3・FSI(1-メチル-プロピルピロリジニウムビス(フルオロスルホニル)イミド)のイオン液体に1MのLiTFSI(リチウムビス(トリフルオロメタンスルホニル)イミド)が溶解した電解液を用意する。イオン液体の電解質として、LiTFSIの他、LiFSI(リチウムビス(トリフルオロスルホニル)イミド)を用いることもできる。この電解液にゲル化剤として、関東化学株式会社製のポリビニルピリジン(P4VP)を3wt%添加し、混合する。ゲル化剤は、関東化学株式会社製のポリジメチルアミノエチルメタクリレート(PDMEMA)を用いてもよい。イオン液体としては、三菱マテリアル電子化成(株)のP1,3・FSI(1-メチル-プロピルピロリジニウムビス(フルオロスルホニル)イミド)の他、EMI・FSI(1-エチル-メチルイミダゾリウムビス(フルオロスルホニル)イミド)を用いることができる。 Next, an electrolyte solution in which 1M LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) is dissolved in an ionic liquid of P1,3 · FSI (1-methyl-propylpyrrolidinium bis (fluorosulfonyl) imide) as a solvent is prepared. . In addition to LiTFSI, LiFSI (lithium bis (trifluorosulfonyl) imide) can also be used as the ionic liquid electrolyte. As a gelling agent, 3 wt% of polyvinyl pyridine (P4VP) manufactured by Kanto Chemical Co., Inc. is added to the electrolyte and mixed. As the gelling agent, polydimethylaminoethyl methacrylate (PDMEMA) manufactured by Kanto Chemical Co., Inc. may be used. As ionic liquids, in addition to P1,3 • FSI (1-methyl-propylpyrrolidinium bis (fluorosulfonyl) imide) from Mitsubishi Materials Electronic Chemicals, EMI • FSI (1-ethyl-methylimidazolium bis ( Fluorosulfonyl) imide) can be used.
 積層したセパレータ18、正極20及び負極22を、チャンバー(図示しない)内に設置し、当該チャンバー内を真空引きする。ゲル化剤を混合した電解液を真空状態に保持されたチャンバー内に投入して、積層したセパレータ18、正極20及び負極22に含浸させる。その後、大気圧に戻した状態で、1時間程度、放置することにより、電解液がゲル化する。 The laminated separator 18, positive electrode 20, and negative electrode 22 are placed in a chamber (not shown), and the inside of the chamber is evacuated. The electrolytic solution mixed with the gelling agent is put into a chamber maintained in a vacuum state, and the laminated separator 18, positive electrode 20 and negative electrode 22 are impregnated. Thereafter, the electrolyte is gelled by leaving it for about 1 hour in a state where the pressure is returned to atmospheric pressure.
 次いで、所定の大きさに切断し、所望の大きさの積層体23を得る(図5B)。この際、セパレータ18と、正極20及び負極22とは、ゲル電解質によって、接着されているので、互いにずれることがなく、容易に切断され得る。 Next, it is cut into a predetermined size to obtain a laminate 23 having a desired size (FIG. 5B). At this time, the separator 18, the positive electrode 20, and the negative electrode 22 are bonded by the gel electrolyte, and thus can be easily cut without being displaced from each other.
 得られた積層体23に、一対の端子14,16を電気的に接続する(図5C)。一対の端子14,16のうち一方14は正極20の集電体24、他方16は負極22の集電体28に、例えば超音波溶接により接合される。また、銀ペースト等の導電性ペーストを用いて一対の端子14,16と、集電体24,28とを接合することとしてもよい。 A pair of terminals 14 and 16 are electrically connected to the obtained laminate 23 (FIG. 5C). One of the pair of terminals 14 and 16 is joined to the current collector 24 of the positive electrode 20 and the other 16 is joined to the current collector 28 of the negative electrode 22 by, for example, ultrasonic welding. Alternatively, the pair of terminals 14 and 16 and the current collectors 24 and 28 may be joined using a conductive paste such as silver paste.
 ここで積層体23を、ポリフッ化ビニリデン(PVDF)、ポリビニルアルコール(PVA)、ポリエチレンテレフタレート(PET),ポリエチレン(PE),メタクリル樹脂(PMMA),ポリビニルピロリドン(PVP)で被覆することとしてもよい。このように積層体23を被覆することにより、積層体23が樹脂モールド前のハンドリング中に崩れにくくなる。これにより一対の端子14,16と積層体23とを一体化することができる。 Here, the laminate 23 may be coated with polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polyethylene terephthalate (PET), polyethylene (PE), methacrylic resin (PMMA), or polyvinylpyrrolidone (PVP). By covering the laminated body 23 in this way, the laminated body 23 is less likely to collapse during handling before resin molding. Thereby, a pair of terminals 14 and 16 and the laminated body 23 can be integrated.
 次いで、一対の端子14,16が接合された積層体23を、金型内(図示しない、モールドサイズ(縦4.4mmx横4.4mmx厚さ1.0mm))に設置する。モールド材は、フェノール樹脂、ガラスフェノール樹脂、ジアリルフタレート樹脂を用いることができる。当該金型を160~200℃に加熱し、続いて、同温度に加熱され溶融したモールド材を50~70kgf/cmの圧力で、プレスによりの金型に流し込み、充填する。数秒間、この状態を保持した後、金型を冷却する。モールド材が冷却され固化することにより、樹脂モールドで形成した樹脂モールド部12Aが形成される(図5D)。以上のようにして、樹脂モールド部12Aによって積層体23が密閉されたリチウムイオン二次電池10Aを製造することができる。その後、樹脂モールド部12に付着したモールドのバリ(図示せず)をカッターで取り除く。 Next, the laminated body 23 to which the pair of terminals 14 and 16 are bonded is placed in a mold (not shown, mold size (vertical 4.4 mm × horizontal 4.4 mm × thickness 1.0 mm)). As the molding material, phenol resin, glass phenol resin, or diallyl phthalate resin can be used. The mold is heated to 160 to 200 ° C., and then the mold material heated to the same temperature and melted is poured into a mold by a press at a pressure of 50 to 70 kgf / cm 2 and filled. After maintaining this state for several seconds, the mold is cooled. When the mold material is cooled and solidified, a resin mold portion 12A formed by a resin mold is formed (FIG. 5D). As described above, the lithium ion secondary battery 10A in which the laminate 23 is sealed by the resin mold portion 12A can be manufactured. Thereafter, mold burrs (not shown) attached to the resin mold portion 12 are removed with a cutter.
(作用及び効果)
 本実施形態に係るリチウムイオン二次電池10Aは、樹脂モールド部12Aで積層体23を内包している。これにより、リチウムイオン二次電池10Aは、従来のコインセルのようにかしめる必要がないので厚さを1mm以下にすることができると共に、ラミネートセルのように熱シールをする必要がないのでシールしろを省略することにより面積を小さくすることができる。したがってリチウムイオン二次電池10Aは、従来よりも小型化することができる。
(Action and effect)
A lithium ion secondary battery 10A according to the present embodiment includes a laminate 23 in a resin mold portion 12A. As a result, the lithium ion secondary battery 10A does not need to be crimped as in the conventional coin cell, so that the thickness can be reduced to 1 mm or less, and it is not necessary to perform heat sealing as in the laminate cell, so seal it. By omitting, the area can be reduced. Therefore, the lithium ion secondary battery 10A can be made smaller than before.
 樹脂モールド部12Aの厚さは最低0.2mmあれば、積層体側面を樹脂により被覆することが可能である。したがって本実施形態の場合、従来のラミネートセルの場合の数mmのシールしろや、コイン電池の外周部の肉厚1mm程度の厚さよりも薄い樹脂モールド部12Aで被覆することができる。従って、樹脂モールド部12Aの体積比率を下げて、積層体23の体積を高めることができ、体積当たりの蓄電容量の増加が可能になる。樹脂モールド部12Aの外寸法の全体の体積に対して、積層体23の体積を最大80%まで高めることが可能であり、通常は、チップ化した樹脂モールド部12Aの機械的強度を考慮すると、30~70%程度が望ましい。この割合は樹脂モールド部12Aの材質、モールド形状、モールド寸法に依存する。 If the thickness of the resin mold portion 12A is at least 0.2 mm, the side surface of the laminate can be covered with resin. Therefore, in the case of this embodiment, it can be covered with a sealing margin of several mm in the case of a conventional laminate cell or a resin mold portion 12A thinner than the thickness of the outer peripheral portion of the coin battery of about 1 mm. Therefore, the volume ratio of the resin mold portion 12A can be reduced to increase the volume of the laminate 23, and the storage capacity per volume can be increased. It is possible to increase the volume of the laminate 23 to a maximum of 80% with respect to the entire volume of the outer dimensions of the resin mold portion 12A. Normally, considering the mechanical strength of the resin mold portion 12A that is made into a chip, About 30 to 70% is desirable. This ratio depends on the material of the resin mold portion 12A, the mold shape, and the mold dimensions.
 樹脂モールド部12Aで積層体23を内包することにより、縦幅-横幅1ミリ角の電池を作ることが可能であり、同時に厚さ1ミリ以内の電池を作ることが可能である。一方、蓄電容量を高めるために、横縦幅を数センチ、厚さを数センチにすることも可能である。樹脂モールド部12Aは、比較的、硬化プラスチックが使われるために、サイズを大きくしても十分に、内部の積層体23を機械的な衝撃から保護することが可能である。 By encapsulating the laminate 23 with the resin mold part 12A, it is possible to make a battery with a vertical width of 1 mm square and a battery with a thickness of 1 mm or less at the same time. On the other hand, in order to increase the storage capacity, the horizontal and vertical width can be several centimeters and the thickness can be several centimeters. Since the resin mold portion 12A is made of a relatively hard plastic, it can sufficiently protect the internal laminate 23 from mechanical impact even when the size is increased.
 因みに、従来のラミネートセルの場合は、ラミネート部分に弱い外力が掛かると外容器内の積層体が潰れ、正極と負極とが短絡してしまう不具合がある。これに対し本実施形態の場合、樹脂モールド部12Aが硬い樹脂で形成されるので、外力が掛かっても樹脂モールド部12A内の積層体23が破損することを防止できる。 Incidentally, in the case of the conventional laminate cell, when a weak external force is applied to the laminate portion, the laminate in the outer container is crushed and the positive electrode and the negative electrode are short-circuited. On the other hand, in the case of the present embodiment, since the resin mold portion 12A is formed of a hard resin, it is possible to prevent the laminated body 23 in the resin mold portion 12A from being damaged even when an external force is applied.
 リチウムイオン二次電池10Aは、端子14,16を備えているので、図6に示すように、回路基板32に実装することができる。本図の場合、回路基板32は、表面に薄膜で金属電極34が形成されており、当該金属電極34上に半田36が設けられている。半田36上にリチウムイオン二次電池10Aを載せた後、半田36が溶融する温度に加熱することにより、端子14,16と金属電極34とを接合する。このようにリチウムイオン二次電池10Aは、端子14,16によって回路基板32に実装することができる。したがってリチウムイオン二次電池10Aは、従来のように端子を溶接によりコインセルやラミネートセルに接合する必要がないので、その分だけ厚さを薄くすることができる。 Since the lithium ion secondary battery 10A includes the terminals 14 and 16, it can be mounted on the circuit board 32 as shown in FIG. In the case of this figure, the circuit board 32 has a thin-film metal electrode 34 formed on the surface, and a solder 36 is provided on the metal electrode 34. After the lithium ion secondary battery 10A is placed on the solder 36, the terminals 14 and 16 and the metal electrode 34 are joined by heating to a temperature at which the solder 36 melts. Thus, the lithium ion secondary battery 10 </ b> A can be mounted on the circuit board 32 by the terminals 14 and 16. Therefore, since the lithium ion secondary battery 10A does not need to be joined to the coin cell or the laminate cell by welding as in the conventional case, the thickness can be reduced accordingly.
 本実施形態の場合、セパレータ18、正極20、負極22に溶媒としてイオン液体を用いた電解液を充填し、さらに当該電解液をゲル化し、ゲル電解質を形成する。イオン液体は、200℃以上の高温においても溶媒が揮発しない特徴があり、これをゲル化することにより電解液を固形化することが可能である。こうして得られた積層体23を、樹脂モールドし、積層体23の外周を固形化することにより、強固な樹脂モールド部12Aを備えたリチウムイオン二次電池10Aを形成することができる。同時にプラスチックによる絶縁性と、樹脂モールド部12A内部からのゲル電解質の漏れを防ぐことが可能になる。 In the case of this embodiment, the separator 18, the positive electrode 20, and the negative electrode 22 are filled with an electrolytic solution using an ionic liquid as a solvent, and the electrolytic solution is gelled to form a gel electrolyte. The ionic liquid has a feature that the solvent does not volatilize even at a high temperature of 200 ° C. or higher, and the electrolytic solution can be solidified by gelling the ionic liquid. The laminated body 23 obtained in this way is resin-molded, and the outer periphery of the laminated body 23 is solidified, whereby a lithium ion secondary battery 10A having a strong resin molded portion 12A can be formed. At the same time, it is possible to prevent plastic insulation and leakage of the gel electrolyte from the resin mold portion 12A.
 樹脂モールドを実施する場合には、樹脂を熱で融かすために、最低でも150℃程度に加熱することが必要になる。通常のリチウムイオン二次電池で使用される有機電解液の溶媒であるジエチルカーボネート(DEC)の沸点は126℃~128℃であり、ジメチルカーボネート(DMC)は90℃、エチルメチルカーボネート(EMC)は109℃である。リチウムイオンと実際に配位結合するのは、エチレンカーボネート(EC)と考えられている。ECは、沸点が244℃と高いが、液体の粘度が高いので、リチウムイオンの移動度が低い。このためECを用いる場合は、DEC、DMC、EMCを混合して、電解液の溶媒の粘度を低下させて、リチウムイオンの移動度を向上させている。 When carrying out resin molding, it is necessary to heat at least about 150 ° C. in order to melt the resin with heat. The boiling point of diethyl carbonate (DEC), which is a solvent of an organic electrolyte used in a normal lithium ion secondary battery, is 126 ° C. to 128 ° C., dimethyl carbonate (DMC) is 90 ° C., and ethyl methyl carbonate (EMC) is 109 ° C. It is considered ethylene carbonate (EC) that actually coordinates with lithium ions. EC has a high boiling point of 244 ° C., but since the viscosity of the liquid is high, the mobility of lithium ions is low. Therefore, when EC is used, DEC, DMC, and EMC are mixed to reduce the viscosity of the solvent of the electrolytic solution, thereby improving the mobility of lithium ions.
 しかしながら、DEC、DMC、EMCの沸点は、最大でも128℃であるので、樹脂モールドを実施する温度に比べ低い。したがって樹脂モールド時の150℃の熱を加えることにより、DEC、DMC、EMCが気化し、電池内部でガスが発生し、当該ガスによって樹脂モールド部12Aが膨張する不具合が発生してしまう。 However, since the boiling point of DEC, DMC, and EMC is 128 ° C. at the maximum, it is lower than the temperature at which resin molding is performed. Therefore, by applying heat at 150 ° C. during resin molding, DEC, DMC, and EMC are vaporized, gas is generated inside the battery, and the resin mold part 12A expands due to the gas.
 これに対して、本実施形態で用いるイオン液体は、少なくとも300℃までは、分解することなく、ガスが発生しないため、モールド時に必要な150℃の熱を加えても、変質することはなく、電池性能を維持することができる。これに加えて、ゲル電解質は、固形化することにより、正極20と負極22をセパレータ18に固定することができ、樹脂モールドでのハンドリング中に積層した電池が崩れることを防止できる。 On the other hand, the ionic liquid used in the present embodiment is not decomposed until at least 300 ° C., and no gas is generated. Battery performance can be maintained. In addition, by solidifying the gel electrolyte, the positive electrode 20 and the negative electrode 22 can be fixed to the separator 18, and the laminated battery can be prevented from collapsing during handling with the resin mold.
 電解液の溶媒としてのエチレンカーボネート(EC)、プロピレンカーボーネート(PC)は、沸点がそれぞれ、244℃、240℃と高いが、粘度も高い。したがってEC、PCはDEC、DMC、EMCと混ぜずにリチウムイオン二次電池の溶媒として用いると、電池の内部抵抗が高くなり、急速な充放電が困難になる。なお、急速充放電を要しない場合、例えば、電子回路中でのメモリー用のバックアップの電池等であれば、電池の内部抵抗が高くても電池として機能する。このような急速充放電を要しない場合には、溶媒としてEC、PCを単独で用いることができる。また、溶媒として有機溶媒を用いた場合の電解質としては、LiPFの他、LiClO、LiAsF、Li(CFSON、LiBF、LiCFSOを用いてもよい。 Ethylene carbonate (EC) and propylene carbonate (PC) as electrolyte solvents have high boiling points of 244 ° C. and 240 ° C., respectively, but also have high viscosity. Therefore, when EC and PC are used as a solvent for a lithium ion secondary battery without being mixed with DEC, DMC, and EMC, the internal resistance of the battery becomes high and rapid charge / discharge becomes difficult. In the case where rapid charge / discharge is not required, for example, a backup battery for a memory in an electronic circuit functions as a battery even if the internal resistance of the battery is high. When such rapid charge / discharge is not required, EC and PC can be used alone as a solvent. As an electrolyte when an organic solvent is used as the solvent, LiClO 4 , LiAsF 6 , Li (CFSO 2 ) 2 N, LiBF 4 , LiCF 3 SO 3 may be used in addition to LiPF 6 .
2.第2実施形態
 本実施形態に係る蓄電デバイスとしてのリチウムイオン二次電池は、積層体を複数組み合わせた点が、上記第1実施形態と異なる。図7に示すように、リチウムイオン二次電池は、積層体を2個、すなわち第1積層体23Aと第2積層体23Bを組み合わせて形成された組立体38を備える。組立体38は、第1積層体23Aの接続側負極33と、第2積層体23Bの接続側正極35とを接触させた状態で重ね合わされている。第1積層体23Aの接続側負極33の集電体と、第2積層体23Bの接続側正極35の集電体とは直接接触している。第1積層体23A及び第2積層体23Bは、それぞれ図示しないがゲル電解質が充填されている。
2. Second Embodiment A lithium ion secondary battery as an electricity storage device according to the present embodiment differs from the first embodiment in that a plurality of stacked bodies are combined. As shown in FIG. 7, the lithium ion secondary battery includes an assembly 38 formed by combining two stacked bodies, that is, a first stacked body 23A and a second stacked body 23B. The assembly 38 is overlaid in a state where the connection-side negative electrode 33 of the first stacked body 23A and the connection-side positive electrode 35 of the second stacked body 23B are in contact with each other. The current collector of the connection-side negative electrode 33 of the first stacked body 23A and the current collector of the connection-side positive electrode 35 of the second stacked body 23B are in direct contact. The first stacked body 23A and the second stacked body 23B are filled with a gel electrolyte (not shown).
 リチウムイオン二次電池は、上記第1実施形態と同様に、製造することができる。まず、セパレータ18を挟んで、一側に正極20、他側に接続側負極33を配置し、さらに接続側負極33に接続側正極35、セパレータ18、負極22を配置し、重ね合せる。ここで、重ね合される接続側負極33の集電体と、接続側正極35の集電体とは、金属粒子を含むペーストにより接着されるのが好ましい。このようなペーストとしては、例えば金属粒子としてAg粒子を含むペーストを用いることができる。 The lithium ion secondary battery can be manufactured in the same manner as in the first embodiment. First, sandwiching the separator 18, the positive electrode 20 is disposed on one side, the connection-side negative electrode 33 is disposed on the other side, and the connection-side positive electrode 35, the separator 18, and the negative electrode 22 are disposed on the connection-side negative electrode 33. Here, it is preferable that the current collector of the connection-side negative electrode 33 and the current collector of the connection-side positive electrode 35 to be overlapped are bonded with a paste containing metal particles. As such a paste, for example, a paste containing Ag particles as metal particles can be used.
 次いで、重ね合せたセパレータ18、正極20、負極22、接続側負極33、接続側正極35に、イオン液体と電解質とを含む電解液を充填し、さらに当該電解液をゲル化し、ゲル電解質を形成する。 Subsequently, the separator 18, the positive electrode 20, the negative electrode 22, the connection-side negative electrode 33, and the connection-side positive electrode 35 are filled with an electrolyte solution containing an ionic liquid and an electrolyte, and the electrolyte solution is gelled to form a gel electrolyte. To do.
 次いで、重ね合わせた2つの積層体を所定の大きさに切断し、所望の大きさの組立体38を得る(図8A)。組立体38を格子状に切断することにより、重ね合せた2つの積層体のゲル電解質が物理的に切り離される。すなわち、格子状に切断する前は、下側の積層体のゲル電解質が積層体の外縁において上側の積層体のゲル電解質と電気的に接続されている。これに対し、格子状に切断することにより、積層体の外縁における電気的な接続が切断されるので、上側と下側の積層体が電気的に独立する。従って、本実施形態の場合、重ね合せた2つの積層体を直列に接続することができる。 Next, the two stacked bodies that are overlapped are cut into a predetermined size to obtain an assembly 38 having a desired size (FIG. 8A). By cutting the assembly 38 in a lattice shape, the gel electrolytes of the two stacked bodies are physically separated. That is, before cutting into a lattice shape, the gel electrolyte of the lower laminate is electrically connected to the gel electrolyte of the upper laminate at the outer edge of the laminate. On the other hand, since the electrical connection at the outer edge of the laminated body is cut by cutting in a lattice shape, the upper and lower laminated bodies are electrically independent. Therefore, in the case of this embodiment, it is possible to connect the two stacked bodies stacked in series.
 因みに、液体の電解液を用いる従来の場合、液体の電解液は、上側の積層体と下側の積層体の間を流通するので、直列に接続することができず、並列接続のみ可能だった。 By the way, in the conventional case of using a liquid electrolyte, since the liquid electrolyte circulates between the upper laminate and the lower laminate, it could not be connected in series but only in parallel. .
 得られた組立体38に、一対の端子14,16を電気的に接続する(図8B)。一対の端子14,16のうち一方14は第1積層体23Aの正極20の集電体と、他方16は第2積層体23Bの負極22の集電体に接合される。ここで、一対の端子14,16が接合された組立体38全体をポリフッ化ビニリデン(PVDF)、ポリビニルアルコール(PVA)、ポリエチレンテレフタレート(PET),ポリエチレン(PE),メタクリル樹脂(PMMA),ポリビニルピロリドン(PVP)等の樹脂で被覆することとしてもよい。 A pair of terminals 14 and 16 are electrically connected to the obtained assembly 38 (FIG. 8B). One of the pair of terminals 14 and 16 is joined to the current collector of the positive electrode 20 of the first laminated body 23A, and the other 16 is joined to the current collector of the negative electrode 22 of the second laminated body 23B. Here, the entire assembly 38 in which the pair of terminals 14 and 16 are joined is made of polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polyethylene terephthalate (PET), polyethylene (PE), methacrylic resin (PMMA), polyvinyl pyrrolidone. It is good also as coating with resin, such as (PVP).
 最後に一対の端子14,16が配置された組立体38を樹脂モールドで密閉し、樹脂モールド部12Bを形成することにより、リチウムイオン二次電池10Bを得る(図8C)。 Finally, the assembly 38 in which the pair of terminals 14 and 16 are arranged is sealed with a resin mold to form the resin mold portion 12B, thereby obtaining the lithium ion secondary battery 10B (FIG. 8C).
 本実施形態の場合、ゲル電解質を備え、樹脂モールド部12Bに組立体38を内包したので、上記第1実施形態と同様の効果を得ることができる。 In the case of the present embodiment, since the gel electrolyte is provided and the assembly 38 is included in the resin mold portion 12B, the same effect as in the first embodiment can be obtained.
 本実施形態の場合、リチウムイオン二次電池10Bは、ゲル電解質を用いたことにより電解質が流動しない。これにより第1積層体23Aに充填された電解質と第2積層体23Bに充填された電解質が互いに接触しないので、接続側負極33の集電体と接続側正極35の集電体とを直接接触した状態で第1積層体23Aと第2積層体23Bとを積層することができる。したがってリチウムイオン二次電池10Bは、第1積層体23Aと第2積層体23Bとを組み合わせた組立体38を1つの樹脂モールド部12B内に収納することができるので、より小型化することができる。 In the case of the present embodiment, the electrolyte does not flow in the lithium ion secondary battery 10B because the gel electrolyte is used. As a result, the electrolyte filled in the first laminate 23A and the electrolyte filled in the second laminate 23B do not contact each other, so that the current collector of the connection-side negative electrode 33 and the current collector of the connection-side positive electrode 35 are in direct contact with each other. In this state, the first stacked body 23A and the second stacked body 23B can be stacked. Therefore, since the lithium ion secondary battery 10B can accommodate the assembly 38 combining the first stacked body 23A and the second stacked body 23B in one resin mold portion 12B, it can be further reduced in size. .
 因みにリチウムイオン二次電池10Bは、1つの積層体(単電池)で起電力が3~4Vである。本実施形態の場合、リチウムイオン二次電池10Bは、第1積層体23Aと第2積層体23Bとを備えるので、2個の単電池を直列に接続していることとなり、6~8Vの起電力を得ることができる。 Incidentally, the lithium ion secondary battery 10B has a single laminated body (unit cell) and an electromotive force of 3 to 4V. In the case of the present embodiment, the lithium ion secondary battery 10B includes the first stacked body 23A and the second stacked body 23B. Therefore, two unit cells are connected in series, and a 6-8V power source is generated. Electric power can be obtained.
 また本実施形態の場合、組立体38を第1積層体23Aと第2積層体23Bで形成する場合について説明したが、本発明はこれに限らず、3個以上の積層体で組立体38を形成することにより、リチウムイオン二次電池10Bは、数V~数10Vの高電圧を得ることができる。リチウムイオン二次電池10Bは、容易に高電圧化することができるので、容易に高出力を得ることができる。 In the case of the present embodiment, the case where the assembly 38 is formed by the first stacked body 23A and the second stacked body 23B has been described. However, the present invention is not limited to this, and the assembly 38 is formed by three or more stacked bodies. By forming the lithium ion secondary battery 10B, a high voltage of several volts to several tens of volts can be obtained. Since the lithium ion secondary battery 10B can be easily increased in voltage, high output can be easily obtained.
3.第3実施形態
 次に、第3実施形態について説明する。本実施形態に係る蓄電デバイスとしての電気二重層キャパシタ(EDLC)は、正極、負極、ゲル電解質の構成が上記第1実施形態と異なる。正極及び負極は、同じ構成であり、集電体と、当該集電体上に形成された合材電極とを有する。集電体は、主にアルミニウム箔を用いることができる。
3. Third Embodiment Next, a third embodiment will be described. The electric double layer capacitor (EDLC) as an electricity storage device according to the present embodiment is different from the first embodiment in the configuration of the positive electrode, the negative electrode, and the gel electrolyte. The positive electrode and the negative electrode have the same configuration, and include a current collector and a composite electrode formed on the current collector. As the current collector, aluminum foil can be mainly used.
 合材電極は、活物質と、導電助剤と、バインダーとを含む。活物質としては、活性炭、カーボンナノチューブ、グラフェンなどを用いることができる。導電助剤としては、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、VGCF、黒鉛などを用いることができる。バインダーとしては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレン-プロピレン-ジエン共重合体(EPDM)、スチレン-ブタジエンゴム(SBR)などを用いることができる。 The composite electrode includes an active material, a conductive aid, and a binder. As the active material, activated carbon, carbon nanotube, graphene, or the like can be used. As the conductive aid, carbon black such as acetylene black and ketjen black, VGCF, graphite, and the like can be used. As the binder, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), or the like can be used.
 次に製造方法を説明する。EDLCにおいては、正極・負極がともに同じ材料で、同じ電極を作ることになる。NMP(N-メチル-2-ピロリドン)によりPVDF(ポリフッ化ビニリデン)を溶かしたスラリー中に比表面積1500m/gのヤシガラ活性炭とアセチレンブラックとを入れて、ミキサーで混練し、スラリーを作製する。このスラリー中の固形分中の比率は、活性炭:AB:PVDF=80:10:10である。このスラリーを厚さ15μmのアルミ箔の片面に、コンマロールコータで塗工し、150℃で10分間、乾燥させ、厚さ130μmの正極を作製する。その後、ロールプレスにより、厚さを100μmまで潰して、0.2mAh/cmの容量をもつ電極板を作製する。 Next, a manufacturing method will be described. In EDLC, both the positive electrode and the negative electrode are made of the same material, and the same electrode is made. A coconut husk activated carbon having a specific surface area of 1500 m 2 / g and acetylene black are put into a slurry in which PVDF (polyvinylidene fluoride) is dissolved with NMP (N-methyl-2-pyrrolidone) and kneaded with a mixer to prepare a slurry. The ratio in the solid content in this slurry is activated carbon: AB: PVDF = 80: 10: 10. This slurry is applied to one side of an aluminum foil having a thickness of 15 μm with a comma roll coater and dried at 150 ° C. for 10 minutes to produce a positive electrode having a thickness of 130 μm. Thereafter, the thickness is reduced to 100 μm by a roll press to produce an electrode plate having a capacity of 0.2 mAh / cm 2 .
 次に、上記の電極を10cm角に2つに切り、合材電極をセルロース製の厚さ25μmのフェルトで形成したセパレータに接触させて、セパレータの一側に正極、他側に負極を配置し、両端を平らな板で押さえ、クリップで挟む。因みにこの時点では、正極・負極の区別はなく、キャパシタが完成し、プラス電圧を印加した方が正極となり、マイナス電圧を印加した方が負極となる。 Next, the above electrode is cut into two 10 cm squares, and the composite electrode is brought into contact with a separator made of cellulose felt having a thickness of 25 μm, and a positive electrode is disposed on one side of the separator and a negative electrode is disposed on the other side. , Hold both ends with a flat plate, and sandwich with clips. Incidentally, at this time, there is no distinction between positive and negative electrodes, and the capacitor is completed. The positive voltage is applied to the positive electrode and the negative voltage is applied to the negative electrode.
 次いで、積層したセパレータ、正極及び負極を、チャンバー(図示しない)内に設置し、当該チャンバー内を真空引きする。プロピレンカーボネート(PC)の有機溶媒に1Mのテトラエチルアンモニウム4フッ化ホウ酸(EtNBF)が溶解した電解液を用意する。電解質として、テトラエチルアンモニウム4フッ化ホウ酸(EtNBF)の他、テトラエチルアンモニウムビストリフルオロメチルスルホニルイミド(EtN(CFSONを用いることができる。この電解液にゲル化剤として、ポリフッ化ビリニデン(PVDF;[CH-CF)、ポリエチレンオキシド(PEO;[CH-CH-O])、ポリアクリルニトリル(PAN;[CH(CN)-CH)、ポリメチルメタクリレート(PMMA;[C(CH)(COOCH)-CH)を使用することができる。この場合、NMPに溶解させたPVDFを3wt%電解液中に溶解させ、真空状態に保持されたチャンバー内に投入して、積層したセパレータ、正極及び負極に含浸させ、大気圧に戻した状態で、150℃で、1時間程度乾燥し、NMPを揮発させ、ゲル化させる。 Next, the stacked separator, positive electrode, and negative electrode are placed in a chamber (not shown), and the inside of the chamber is evacuated. An electrolytic solution in which 1M tetraethylammonium tetrafluoroboric acid (Et 4 NBF 4 ) is dissolved in an organic solvent of propylene carbonate (PC) is prepared. In addition to tetraethylammonium tetrafluoroborate (Et 4 NBF 4 ), tetraethylammonium bistrifluoromethylsulfonylimide (Et 4 N (CF 3 SO 2 ) 2 N can be used as the electrolyte. As agents, poly (vinylidene fluoride) (PVDF; [CH 2 —CF 2 ] n ), polyethylene oxide (PEO; [CH 2 —CH 2 —O] n ), polyacrylonitrile (PAN; [CH 2 (CN) —CH) 2 ] n ), polymethylmethacrylate (PMMA; [C (CH 3 ) (COOCH 3 ) —CH 2 ] n ) can be used, in which case PVDF dissolved in NMP is added to 3 wt% electrolyte. Dissolved and put into a vacuum chamber, and contained in the laminated separator, positive electrode and negative electrode. It is, in a state was returned to atmospheric pressure, at 0.99 ° C., dried for about 1 hour, evaporate the NMP, to gel.
 溶媒は、プロピレンカーボネート(PC)等の有機溶媒に限定されず、イオン液体を用いることもできる。イオン液体は、関東化学株式会社製のポリビニルピリジン(P4VP)、又はポリジメチルアミノエチルメタクリレート(PDMEMA)を2~5wt数%添加するとよい。 The solvent is not limited to an organic solvent such as propylene carbonate (PC), and an ionic liquid can also be used. As the ionic liquid, 2 to 5 wt% of polyvinyl pyridine (P4VP) or polydimethylaminoethyl methacrylate (PDMEMA) manufactured by Kanto Chemical Co., Ltd. may be added.
 溶媒としてイオン液体を用いる場合、電解質として、三菱マテリアル電子化成(株)のP1,3・FSI(1-メチル-プロピルピロリジニウムビス(フルオロスルホニル)イミド)の他、EMI・FSI(1-エチル-メチルイミダゾリウムビス(フルオロスルホニル)イミド)を使用することができる。 When an ionic liquid is used as the solvent, the electrolyte is P1,3 · FSI (1-methyl-propylpyrrolidinium bis (fluorosulfonyl) imide) of Mitsubishi Materials Electronics Chemical Co., Ltd., and EMI · FSI (1-ethyl). -Methylimidazolium bis (fluorosulfonyl) imide) can be used.
 次いで、積層体を縦1mmx横1mmに切りだす。正極負極の集電体の裏面の金属部分に銀ペースト等の導電性ペーストを塗り、厚さ20μmの端子上に設置して、端子と電気的に接合する。 Next, the laminate is cut into 1 mm length x 1 mm width. A conductive paste such as a silver paste is applied to the metal portion on the back surface of the current collector of the positive electrode and the negative electrode, and is placed on a terminal having a thickness of 20 μm and electrically joined to the terminal.
 端子上の積層体を、金型内(図示しない)に設置する。当該金型内に、溶融したモールド材を流し込み、充填する。数秒間、この状態を維持した後、金型を冷却し、モールド材が冷却によって固化することにより、樹脂モールドした積層体が形成される。以上のようにして、積層体が密閉された電気二重層キャパシタを製造することができる。その後、電気二重層キャパシタ本体に付着したモールドのバリ(図示せず)をカッターで取り除く。 ¡Install the laminate on the terminal in the mold (not shown). The molten mold material is poured into the mold and filled. After maintaining this state for several seconds, the mold is cooled, and the molding material is solidified by cooling, whereby a resin-molded laminate is formed. As described above, an electric double layer capacitor in which the multilayer body is sealed can be manufactured. Thereafter, mold burrs (not shown) attached to the electric double layer capacitor body are removed with a cutter.
 本実施形態に係るEDLCは、ゲル電解質を備え、樹脂モールド部で積層体を内包しているので、上記第1実施形態と同様の効果を得ることができる。 Since the EDLC according to the present embodiment includes a gel electrolyte and includes a laminate in the resin mold portion, the same effects as those of the first embodiment can be obtained.
 なお、本実施形態に係るEDLCは、積層体を重ねて形成した組立体を、1つの樹脂モールド部に内包し、直列回路のキャパシタを形成してもよい。この場合、正極集電体の裏面と負極集電体の裏面とを、銀ペースト等の導電性接着剤で、接合した上で、電解液を投入しゲル化して、同様の樹脂モールドを実施することにより、作製することが可能である。 In the EDLC according to the present embodiment, a series circuit capacitor may be formed by enclosing an assembly formed by stacking stacked bodies in one resin mold part. In this case, after joining the back surface of the positive electrode current collector and the back surface of the negative electrode current collector with a conductive adhesive such as silver paste, the electrolytic solution is charged and gelled, and the same resin mold is performed. Thus, it can be manufactured.
 電気二重層キャパシタは、1つの積層体で、水系の電解液の場合、1V程度の起電力があり、有機溶媒、及びイオン液体系で、起電力が2~3Vである。本実施形態の場合、有機溶媒系、或いはイオン液体系で形成された電気二重層キャパシタは、第1積層体と第2積層体とを備えることにより、2個のキャパシタを直列に接続していることとなり、2~4Vの起電力を得ることができる。電気二重層キャパシタの場合、静電エネルギー(E)はE=(1/2)CVで表すことができるから、高電圧化することにより、容易に静電エネルギーを向上することが可能になる。ここでE:静電エネルギー(J)、C:キャパシタンス(F)、V:電圧(V)である。 An electric double layer capacitor is a single laminate and has an electromotive force of about 1 V in the case of an aqueous electrolyte, and an electromotive force of 2 to 3 V in an organic solvent and ionic liquid system. In the case of this embodiment, an electric double layer capacitor formed of an organic solvent system or an ionic liquid system includes a first stacked body and a second stacked body, thereby connecting two capacitors in series. Therefore, an electromotive force of 2 to 4 V can be obtained. In the case of an electric double layer capacitor, the electrostatic energy (E) can be expressed by E = (1/2) CV 2 , so that the electrostatic energy can be easily improved by increasing the voltage. . Here, E: electrostatic energy (J), C: capacitance (F), and V: voltage (V).
4.変形例
 本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。
4). The present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention.
 上記第2実施形態では、積層体を複数重ねた組立体を備えることにより、直列に配置して高電圧化する場合について説明したが、本発明はこれに限らず、上記第1実施形態に係るリチウムイオン二次電池を並列に接続して高容量化してもよい。 In the said 2nd Embodiment, although the case where it arrange | positions in series and provided a high voltage by providing the assembly which laminated | stacked several laminated bodies was demonstrated, this invention is not limited to this but concerns on the said 1st Embodiment. The capacity may be increased by connecting lithium ion secondary batteries in parallel.
 また、上記実施形態の場合、集電体に端子を固定し、当該端子を樹脂モールド部から露出するように形成する場合について説明したが、本発明はこれに限らない。例えば、図9に示すように、蓄電デバイス10Cは、集電体40、42を大きく形成し、集電体40、42の一部を樹脂モールド部12Cの外部に露出させ、一対の端子としてもよい。 In the case of the above-described embodiment, the case where the terminal is fixed to the current collector and the terminal is formed so as to be exposed from the resin mold portion has been described, but the present invention is not limited thereto. For example, as shown in FIG. 9, the electricity storage device 10C has a large current collector 40, 42, a part of the current collector 40, 42 is exposed to the outside of the resin mold portion 12C, and a pair of terminals can be used. Good.
 例えば、積層体を縦3mmx横5mmに切りだす。このうち縦3mmx横3mmの領域に合材電極を塗布しておくと、横2mm部分は樹脂モールド部の外部に露出する端子となる。合材電極を塗布した面積が電極の有効面積となり、有効面積に応じて、充放電容量が変化する。合材電極を塗布する部分を最小1mmx1mm角まで小さくすることができる。また樹脂モールド部の外部に露出する端子部分の長さは、0.5mm必要である。 For example, the laminate is cut into 3 mm length x 5 mm width. If a composite electrode is applied to a region of 3 mm length × 3 mm width among these, the 2 mm width portion becomes a terminal exposed to the outside of the resin mold portion. The area where the composite electrode is applied becomes the effective area of the electrode, and the charge / discharge capacity changes according to the effective area. The portion where the composite electrode is applied can be reduced to a minimum of 1 mm × 1 mm square. The length of the terminal portion exposed to the outside of the resin mold portion needs to be 0.5 mm.
 積層体の厚さ、すなわち正極(合材電極の厚さ80μm+アルミ箔集電体厚さ20μm)、負極(合材電極の厚さ80μm+銅箔集電体厚さ20μm)、セパレータ(厚さ20μm)を含めた厚さを220μmとした場合、蓄電デバイスの厚さを1.0mmとすると、上下の樹脂モールド部の厚さは合計780μm、片側390μmとなる。因みに樹脂モールド部は、金型に樹脂を流し込で形成する必要上、片側200μmの厚さがあればよいので、蓄電デバイスの厚さは、最小で620μmとすることができる。 The thickness of the laminate, that is, the positive electrode (the thickness of the composite electrode 80 μm + the thickness of the aluminum foil current collector 20 μm), the negative electrode (the thickness of the composite electrode 80 μm + the thickness of the copper foil current collector 20 μm), the separator (thickness 20 μm) ) Is 220 μm, and the thickness of the electricity storage device is 1.0 mm, the thickness of the upper and lower resin mold parts is 780 μm in total and 390 μm on one side. Incidentally, since the resin mold part needs to be formed by pouring resin into the mold, it only needs to have a thickness of 200 μm on one side, so the thickness of the electricity storage device can be set to 620 μm at the minimum.
 活物質が含まれている正極と負極の合材電極の厚さは、80μmに限られず、必要な電池容量に応じて任意に変えることが可能である。すなわち、正極と負極の合材電極の厚さが充放電容量に比例する。例えば、充放電容量を1/4にしたい場合には、正極・負極の合材電極の厚さは、20μmとすることができる。集電体の厚さがそれぞれ20μmとして、セパレータ厚さを20μmとすると、1つの積層体の厚さは100μmになる。これに、上下に200μmのモールド樹脂層を加えると、合計の厚さで、500μmの電池を作製することが可能である。実質的な、正極、負極の合材電極の最低の厚さは活物質粒径にもよるが、それぞれ、10μm程度と考えられる。 The thickness of the composite electrode of the positive electrode and the negative electrode containing the active material is not limited to 80 μm, and can be arbitrarily changed according to the required battery capacity. That is, the thickness of the composite electrode of the positive electrode and the negative electrode is proportional to the charge / discharge capacity. For example, when the charge / discharge capacity is desired to be ¼, the thickness of the positive electrode / negative electrode composite electrode can be set to 20 μm. If the current collector thickness is 20 μm and the separator thickness is 20 μm, the thickness of one laminate is 100 μm. If a 200 μm mold resin layer is added to the top and bottom of this, a 500 μm battery can be manufactured with a total thickness. Substantial minimum thicknesses of the positive electrode and negative electrode composite electrodes are considered to be about 10 μm, though depending on the particle size of the active material.
 上記第2実施形態で説明した通り、単層の積層体を直列に積層して、高電圧化が可能になるが、単層の積層体の厚さを100μmとした場合、5個の積層体を積層した場合でも500μmの厚さにしかならず、これの上下に樹脂層200μmを設けても合計で900μmの電池を作ることが可能である。単層の積層体の起電力が3~4Vであるため、5個を積層した場合には、15~20Vの起電力を持つ充放電可能な、薄型かつ小型の蓄電デバイスを作製することが可能である。電池容量的には、電極面積を大きくすることにより、大きくすることが可能である。 As described in the second embodiment, it is possible to increase the voltage by stacking a single layer stack in series. However, when the thickness of the single layer stack is 100 μm, five layers are stacked. Even when the layers are stacked, the thickness is only 500 μm, and even if a resin layer of 200 μm is provided above and below, it is possible to make a battery having a total of 900 μm. Since the electromotive force of a single-layer laminate is 3 to 4 V, it is possible to produce a thin and small power storage device that can be charged and discharged with an electromotive force of 15 to 20 V when 5 layers are stacked. It is. The battery capacity can be increased by increasing the electrode area.
10A、10B、10C リチウムイオン二次電池(蓄電デバイス)
12A、12B、12C 樹脂モールド部
14,16 端子
18 セパレータ
20 正極
22 負極
23 積層体
38 組立体
40、42 端子(集電体)
10A, 10B, 10C Lithium ion secondary battery (power storage device)
12A, 12B, 12C Resin mold part 14, 16 Terminal 18 Separator 20 Positive electrode 22 Negative electrode 23 Laminate 38 Assembly 40, 42 Terminal (current collector)

Claims (14)

  1. 正極及び負極と、
    ゲル電解質と
    を有する積層体が樹脂モールド部に内包されている
    ことを特徴とする蓄電デバイス。
    A positive electrode and a negative electrode;
    A power storage device, wherein a laminate having a gel electrolyte is enclosed in a resin mold part.
  2. 前記ゲル電解質が、電解質と溶媒とを含む電解液にゲル化剤を加えることにより形成されており、
    前記溶媒が、イオン液体又は沸点が150℃以上の有機溶媒である
    ことを特徴とする請求項1記載の蓄電デバイス。
    The gel electrolyte is formed by adding a gelling agent to an electrolytic solution containing an electrolyte and a solvent,
    The power storage device according to claim 1, wherein the solvent is an ionic liquid or an organic solvent having a boiling point of 150 ° C. or higher.
  3. 前記イオン液体が、EMI・FSI(1-エチル-メチルイミダゾリウムビス(フルオロスルホニル)イミド)及びP1,3・FSI(1-メチル-プロピルピロリジニウムビス(フルオロスルホニル)イミドのいずれか一方を含むことを特徴とする請求項2記載の蓄電デバイス。 The ionic liquid contains any one of EMI • FSI (1-ethyl-methylimidazolium bis (fluorosulfonyl) imide) and P1,3 • FSI (1-methyl-propylpyrrolidinium bis (fluorosulfonyl) imide). The electrical storage device according to claim 2.
  4. 前記有機溶媒が、エチレンカーボネート(EC)及びプロピレンカーボネート(PC)のいずれか一方を含むことを特徴とする請求項2記載の蓄電デバイス。 The electrical storage device according to claim 2, wherein the organic solvent contains one of ethylene carbonate (EC) and propylene carbonate (PC).
  5. 前記電解質が、LiTFSI(リチウムビス(トリフルオロメタンスルホニル)イミド)及びLiFSI(リチウムビス(トリフルオロスルホニル)イミド)のいずれか一方を含むことを特徴とする請求項3記載の蓄電デバイス。 The electric storage device according to claim 3, wherein the electrolyte includes one of LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) and LiFSI (lithium bis (trifluorosulfonyl) imide).
  6. 請求項4記載の蓄電デバイスを用いて形成され、前記電解質が、LiPF、LiClO、LiAsF、Li(CFSON、LiBF及びLiCFSOのいずれか1つを含むことを特徴とするリチウムイオン二次電池。 It is formed by a power storage device according to claim 4, wherein the electrolyte comprises one of LiPF 6, LiClO 4, LiAsF 6 , Li (CF 3 SO 2) 2 N, LiBF 4 and LiCF 3 SO 3 The lithium ion secondary battery characterized by the above-mentioned.
  7. 請求項2記載の蓄電デバイスを用いて形成され、前記イオン液体中に含まれる電解質が、脂肪族四級アンモニウム塩であることを特徴とする電気二重層キャパシタ。 An electric double layer capacitor formed using the electricity storage device according to claim 2, wherein the electrolyte contained in the ionic liquid is an aliphatic quaternary ammonium salt.
  8. 前記電解質が、テトラエチルアンモニウム4フッ化ホウ酸(EtNBF)、及びテトラエチルアンモニウムビストリフルオロメチルスルホニルイミド(EtN(CFSONのいずれか1つを含むことを特徴とする請求項7記載の電気二重層キャパシタ。 The electrolyte includes any one of tetraethylammonium tetrafluoroborate (Et 4 NBF 4 ) and tetraethylammonium bistrifluoromethylsulfonylimide (Et 4 N (CF 3 SO 2 ) 2 N). The electric double layer capacitor according to claim 7.
  9. 前記ゲル化剤が、ポリビニルピリジン(P4VP)、ポリジメチルアミノエチルメタクリレート(PDMEMA)、ポリフッ化ビリニデン(PVDF;[CH-CF]n)、ポリエチレンオキシド(PEO;[CH-CH-O])、ポリアクリルニトリル(PAN;[CH(CN)-CH)、及びポリメチルメタクリレート(PMMA;[C(CH)(COOCH)-CH)のいずれか1つを含むことを特徴とする請求項2~5のいずれか1項記載の蓄電デバイス。 The gelling agent is polyvinyl pyridine (P4VP), polydimethylaminoethyl methacrylate (PDMEMA), poly (vinylidene fluoride) (PVDF; [CH 2 —CF 2 ] n), polyethylene oxide (PEO; [CH 2 —CH 2 —O). N ), polyacrylonitrile (PAN; [CH 2 (CN) —CH 2 ] n ), and polymethyl methacrylate (PMMA; [C (CH 3 ) (COOCH 3 ) —CH 2 ] n ) The electricity storage device according to any one of claims 2 to 5, wherein the electricity storage device includes two.
  10. 前記積層体を2以上有する組立体を備え、
    前記組立体は、一の前記積層体の接続側正極と、他の前記積層体の接続側負極が電気的に接続された状態で、前記積層体同士が積層されていることを特徴とする請求項1~5のいずれか1項記載の蓄電デバイス。
    An assembly having two or more of the laminates;
    The assembly is characterized in that the stacked bodies are stacked in a state where a connection-side positive electrode of one of the stacked bodies and a connection-side negative electrode of another of the stacked bodies are electrically connected. Item 6. The electricity storage device according to any one of Items 1 to 5.
  11. 前記正極及び前記負極にそれぞれ電気的に接続され、前記樹脂モールド部より露出している一対の端子を備えることを特徴とする請求項1~5のいずれか1項記載の蓄電デバイス。 The electricity storage device according to any one of claims 1 to 5, further comprising a pair of terminals electrically connected to the positive electrode and the negative electrode, respectively, and exposed from the resin mold portion.
  12. 積層された正極、及び負極に、電解液を含浸させ、前記電解液をゲル化したゲル電解質が充填された積層体を形成する工程と、
    前記積層体を樹脂モールドにより密閉する工程と
    を備えることを特徴とする蓄電デバイスの製造方法。
    Forming a laminated body filled with a gel electrolyte obtained by impregnating an electrolyte solution into a laminated positive electrode and a negative electrode and gelling the electrolyte solution;
    And a step of sealing the laminate with a resin mold.
  13. 前記樹脂モールドにより密閉する工程の前に、
    前記ゲル電解質が充填された前記積層体に一対の端子を配置し、前記積層体と前記一対の端子を樹脂で被覆する工程を備える
    ことを特徴とする請求項12記載の蓄電デバイスの製造方法。
    Before the step of sealing with the resin mold,
    The method for manufacturing an electricity storage device according to claim 12, comprising a step of arranging a pair of terminals on the laminated body filled with the gel electrolyte, and covering the laminated body and the pair of terminals with a resin.
  14. 前記蓄電デバイスがリチウムイオン二次電池(LiB)又は電気二重層キャパシタ(EDLC)のいずれかであることを特徴とする請求項12又は13記載の蓄電デバイスの製造方法。 The method of manufacturing an electricity storage device according to claim 12 or 13, wherein the electricity storage device is either a lithium ion secondary battery (LiB) or an electric double layer capacitor (EDLC).
PCT/JP2015/078312 2014-10-30 2015-10-06 Electricity storage device and method for manufacturing electricity storage device WO2016067851A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014221401A JP2016091634A (en) 2014-10-30 2014-10-30 Power storage device and manufacturing method thereof
JP2014-221401 2014-10-30

Publications (1)

Publication Number Publication Date
WO2016067851A1 true WO2016067851A1 (en) 2016-05-06

Family

ID=55857195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078312 WO2016067851A1 (en) 2014-10-30 2015-10-06 Electricity storage device and method for manufacturing electricity storage device

Country Status (2)

Country Link
JP (1) JP2016091634A (en)
WO (1) WO2016067851A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112913065A (en) * 2018-12-28 2021-06-04 松下知识产权经营株式会社 Battery with a battery cell
JP7417843B2 (en) * 2018-12-28 2024-01-19 パナソニックIpマネジメント株式会社 battery
US20210036363A1 (en) * 2019-07-29 2021-02-04 TeraWatt Technology Inc. Phase-change electrolyte separator for a solid-state battery
US11271253B2 (en) 2019-07-29 2022-03-08 TeraWatt Technology Inc. Cylindrical anode-free solid state battery having a pseudo-solid lithium gel layer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132348A (en) * 1984-07-23 1986-02-15 Toppan Printing Co Ltd Outer fitting of elementary cell
JPS63308863A (en) * 1987-05-21 1988-12-16 エスジーエス トムソン マイクロエレクトロニクス インク. Method of packaging batteries
JP2000294035A (en) * 1999-04-05 2000-10-20 Mitsubishi Rayon Co Ltd Heat resistant polymer gel electrolyte
JP2000306605A (en) * 1999-04-22 2000-11-02 Dainippon Ink & Chem Inc High polymer solid electrolyte for hardening active energy line and its manufacture
JP2005005163A (en) * 2003-06-12 2005-01-06 Nissan Motor Co Ltd Bipolar battery
JP2011187320A (en) * 2010-03-09 2011-09-22 Kansai Univ Electrolyte and electrochemical device equipped with this electrolyte
JP2014199824A (en) * 2008-11-06 2014-10-23 日産自動車株式会社 Bipolar secondary battery and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150071U (en) * 1980-04-11 1981-11-11
JPH10247480A (en) * 1997-02-28 1998-09-14 Yuasa Corp Molded battery and its manufacture
JP2004199994A (en) * 2002-12-18 2004-07-15 Toshiba Corp Battery
JP2009188195A (en) * 2008-02-06 2009-08-20 Taiyo Yuden Co Ltd Electrochemical device and its mounting structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132348A (en) * 1984-07-23 1986-02-15 Toppan Printing Co Ltd Outer fitting of elementary cell
JPS63308863A (en) * 1987-05-21 1988-12-16 エスジーエス トムソン マイクロエレクトロニクス インク. Method of packaging batteries
JP2000294035A (en) * 1999-04-05 2000-10-20 Mitsubishi Rayon Co Ltd Heat resistant polymer gel electrolyte
JP2000306605A (en) * 1999-04-22 2000-11-02 Dainippon Ink & Chem Inc High polymer solid electrolyte for hardening active energy line and its manufacture
JP2005005163A (en) * 2003-06-12 2005-01-06 Nissan Motor Co Ltd Bipolar battery
JP2014199824A (en) * 2008-11-06 2014-10-23 日産自動車株式会社 Bipolar secondary battery and method of manufacturing the same
JP2011187320A (en) * 2010-03-09 2011-09-22 Kansai Univ Electrolyte and electrochemical device equipped with this electrolyte

Also Published As

Publication number Publication date
JP2016091634A (en) 2016-05-23

Similar Documents

Publication Publication Date Title
US9837651B2 (en) Electric core for thin film battery
US6181545B1 (en) Supercapacitor structure
JP3822445B2 (en) Electrochemical devices
KR100367751B1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2006310033A (en) Storage battery
JP2008097991A (en) Electric storage device
JP2011108507A (en) Secondary battery
WO2016067851A1 (en) Electricity storage device and method for manufacturing electricity storage device
KR101933655B1 (en) Battery Cell Having Recess Portion Formed at Portion of Electrode Tab
JP2008305928A (en) Nonaqueous electrical storage device
US20060105244A1 (en) Lithium based electrochemical devices having a ceramic separator glued therein by an ion conductive adhesive
EP1512187A1 (en) Lithium based electrochemical devices having a ceramic separator glued therein by an ion conductive adhesive
JP2005243455A (en) Electrochemical device
US20160028048A1 (en) Lithium battery and method of manufacturing the same
JP2009076249A (en) Power storage device
JP4021592B2 (en) Electrochemical devices
US20200343560A1 (en) Secondary battery electrode, method for manufacturing same, and secondary battery
WO1999048162A1 (en) Lithium ion battery and method of manufacture thereof
JP2001273930A (en) Manufacturing method of polymer battery
JP2007180039A (en) Method of manufacturing solid electrolyte battery
JP2008282838A (en) Hybrid electric double layer capacitor
JP2004349156A (en) Secondary battery and stacked secondary battery
US20220165511A1 (en) Advanced lithium-ion energy storage device
JP4283518B2 (en) Electrochemical devices
KR20180003830A (en) Electrochemical energy device with high energy density and method of fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856054

Country of ref document: EP

Kind code of ref document: A1