WO2012017954A1 - Non-woven fabric comprising cellulose fibers and process for production thereof, and separator - Google Patents

Non-woven fabric comprising cellulose fibers and process for production thereof, and separator Download PDF

Info

Publication number
WO2012017954A1
WO2012017954A1 PCT/JP2011/067487 JP2011067487W WO2012017954A1 WO 2012017954 A1 WO2012017954 A1 WO 2012017954A1 JP 2011067487 W JP2011067487 W JP 2011067487W WO 2012017954 A1 WO2012017954 A1 WO 2012017954A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
nonwoven fabric
fibers
polyolefin
cellulose
Prior art date
Application number
PCT/JP2011/067487
Other languages
French (fr)
Japanese (ja)
Inventor
大村 雅也
Original Assignee
ダイセル化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセル化学工業株式会社 filed Critical ダイセル化学工業株式会社
Publication of WO2012017954A1 publication Critical patent/WO2012017954A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/12Organic non-cellulose fibres from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/14Polyalkenes, e.g. polystyrene polyethylene
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nonwoven fabric formed from cellulose fibers and polyolefin fibers, a method for producing the same, and a separator (such as a separator for a storage element) formed from the nonwoven fabric.
  • non-woven fabrics made of cellulose fibers have been used as printing paper or books as paper by adding sizing agents, paper strength enhancers, etc., but using permeability to gases and liquids, It is also used for filters and separators for energy storage devices.
  • cellulose fibers have excellent heat resistance and are electrochemically stable, they are actively used as separators for power storage elements such as batteries, capacitors, and capacitors.
  • advanced performance has been demanded for battery and capacitor separators due to miniaturization and long life of electric and electronic devices, and the strength can be maintained even if the internal resistance is reduced even if the thickness is reduced. A separator is needed.
  • lithium secondary battery separators hold electrolytes (ethylene carbonate, propylene carbonate, butyrolactone, dimethyl carbonate, etc.), insulate the electrodes, and melt at a high temperature to form fine particles.
  • electrolytes ethylene carbonate, propylene carbonate, butyrolactone, dimethyl carbonate, etc.
  • a function (shutdown) or the like that closes the hole and blocks ionic conductivity is also required.
  • Patent Document 1 discloses a separator having a maximum fiber thickness of 1000 nm or less and having an air permeability of 5 to 700 seconds / 100 ml.
  • An electrical storage device having an electrical resistance value at 20 ° C. of 1.0 ⁇ cm 2 or less calculated by the AC two-terminal method of a membrane impregnated with 0.8 mol / liter of tetraethylammonium ⁇ BF 4 salt / propylene carbonate solution A separator for use is disclosed.
  • the thickness of the separator is described as 5 to 50 ⁇ m, preferably 10 to 30 ⁇ m.
  • this separator is composed of cellulose fibers alone, it has low strength and does not have a shutdown function.
  • Patent Document 2 JP-A-8-171893 discloses a lithium battery composed of a positive electrode, a negative electrode made of lithium or a lithium alloy, a separator, and an electrolyte solution, wherein the separator includes natural pulp 20 to A lithium battery separator is disclosed, which is a sheet made by mixing papermaking at a blending ratio of 70% by weight and fine synthetic fibers of 80 to 30% by weight, and the fine synthetic fibers have a fiber diameter of 5 ⁇ m or less.
  • polyethylene, polypropylene, and aramid fibers are exemplified as fine synthetic fibers, and it is described that the fiber diameter is preferably 2 ⁇ m or less. In the examples, polyethylene fine fibers having an average fiber diameter of 2 ⁇ m are used.
  • the separator makes paper with a basis weight in the range of 15 to 30 g / m 2 , and in the examples, a separator with a basis weight of about 30 g / m 2 is manufactured. Furthermore, it is described that about 20% of vinylon fiber may be blended as the binder fiber. In the examples, a separator having a thickness of about 50 ⁇ m is manufactured by blending 10% vinylon fiber having a heat melting temperature of 70 ° C. and processing at 80 ° C. in addition to natural pulp and fine synthetic fiber.
  • this separator is small in microfibrillation of natural pulp, the fiber diameter of the synthetic fiber is large, and it is thick, the internal resistance is large. Furthermore, since it contains a hydrophilic binder fiber having a low melting point, it has low heat resistance and is electrochemically unstable.
  • JP 2006-49797 A (claims, paragraph [0042], examples) JP-A-8-171893 (Claim 1, paragraphs [0007] [0009] [0010], Examples)
  • an object of the present invention is to provide a non-woven fabric that can achieve both air permeability and mechanical strength, a manufacturing method thereof, and a storage element separator formed of the non-woven fabric even if it is thin.
  • Another object of the present invention is to provide a non-woven fabric having low internal resistance and electrochemical stability, a method for producing the same, and a separator for a storage element formed from the non-woven fabric.
  • Still another object of the present invention is to provide a nonwoven fabric having high heat resistance and also having a shutdown function, a method for producing the same, and a storage element separator formed from the nonwoven fabric.
  • the present inventor made a nonwoven fabric having a thickness of 20 ⁇ m or less by combining cellulose fibers having an average fiber diameter of 0.1 to 50 ⁇ m and polyolefin fibers having an average fiber diameter of 1.5 ⁇ m or less. Even if it exists, it discovered that air permeability and mechanical strength were compatible, and completed this invention.
  • the nonwoven fabric (or papermaking body) of the present invention may contain cellulose fibers having an average fiber diameter of 0.1 to 50 ⁇ m and polyolefin fibers having an average fiber diameter of 1.5 ⁇ m or less, and may have a thickness of 20 ⁇ m or less.
  • the polyolefin fiber may have an average fiber diameter of 10 to 1000 nm.
  • the polyolefin fiber may have an average fiber length of 1 to 1000 ⁇ m.
  • the polyolefin fiber may be a polyethylene fiber.
  • the polyolefin fiber is obtained by a production method including a dispersion preparation step of preparing a dispersion by dispersing raw polyolefin fibers in a solvent, and a homogenization step of homogenizing the dispersion with a homogenizer equipped with a crushing type homovalve sheet. It may be a fiber.
  • the average fiber diameter of the cellulose fibers may be 0.2 to 1 ⁇ m.
  • the nonwoven fabric of this invention does not contain the synthetic resin below melting
  • the nonwoven fabric of the present invention can achieve both strength and air permeability, the tensile strength at a basis weight of 10 g / m 2 is 12 N / 15 mm or more, and the air permeability at a basis weight of 10 g / m 2 is 50 to 100 seconds / 100 ml. is there.
  • the nonwoven fabric of the present invention may have a thickness of 10 to 18 ⁇ m.
  • the present invention also includes a storage element separator formed of the nonwoven fabric.
  • the separator of the present invention may be a battery or capacitor separator.
  • the present invention also includes a method for producing the nonwoven fabric described above, in which cellulose fibers and polyolefin fibers are made.
  • a cellulose fiber having an average fiber diameter of 0.1 to 50 ⁇ m and a polyolefin fiber having an average fiber diameter of 1.5 ⁇ m or less even a non-woven fabric (or papermaking body) having a thickness of 20 ⁇ m or less has air permeability. Both mechanical strength can be achieved.
  • it since it is thin, it has low internal resistance and does not contain a hydrophilic binder fiber or a low-melting synthetic resin, so that it is electrochemically stable.
  • the heat resistance is high, and a shutdown function in the battery separator can be imparted.
  • FIG. 1 is a schematic cross-sectional view showing a process of homogenizing a dispersion containing fibers using a homogenizer.
  • FIG. 2 is an enlarged cross-sectional view of a facing portion between the crushing type homovalve seat and the homovalve.
  • FIG. 3 is a perspective view of a crushing type homo valve seat.
  • FIG. 4 is a perspective view of a non-crushing homo valve seat.
  • the nonwoven fabric of the present invention contains cellulose fibers having an average fiber diameter of 0.1 to 50 ⁇ m and polyolefin fibers having an average fiber diameter of 1.5 ⁇ m or less.
  • Cellulose fibers are not particularly limited as long as they are polysaccharides having a ⁇ -1,4-glucan structure, and cellulose fibers derived from higher plants [eg, wood fibers (wood pulp of conifers, hardwoods, etc.), bamboo fibers, etc.
  • Natural cellulose fibers such as sugarcane fibers, seed hair fibers (cotton linters, Bombax cotton, kapok, etc.), gin leather fibers (eg, hemp, mulberry, mitsumata, etc.), leaf fibers (eg, Manila hemp, New Zealand hemp) Pulp fibers) etc.], animal-derived cellulose fibers (eg, squirt cellulose), bacteria-derived cellulose fibers, chemically synthesized cellulose fibers [cellulose acetate (cellulose acetate), cellulose propionate, cellulose butyrate, cellulose acetate Propionate, cellulose acetate Organic acid esters such as rate; inorganic acid esters such as cellulose nitrate, cellulose sulfate, and cellulose phosphate; mixed acid esters such as cellulose nitrate acetate; hydroxyalkyl cellulose (eg, hydroxyethyl cellulose (HEC), hydroxypropyl cellulose, etc.); carboxyalkyl Cellulose (
  • the cellulose fiber is a high-purity cellulose having a high ⁇ -cellulose content, for example, an ⁇ -cellulose content of 70 to 100% by weight (eg, 95 to 100% by weight), preferably 98 to 100% by weight, depending on the application. % May be sufficient.
  • cellulose fibers having a uniform fiber diameter can be prepared by using high-purity cellulose having a low lignin or hemicellulose content, even if wood fibers or seed hair fibers are used.
  • Cellulose having a low lignin or hemicellulose content is particularly a cellulose having a kappa number ( ⁇ value) of 30 or less (eg, 0 to 30), preferably 0 to 20, more preferably 0 to 10 (particularly 0 to 5). There may be.
  • the kappa number can be measured by a method based on “Pulp-Kappa number test method” of JIS P8211.
  • cellulose fibers it is easy to adjust to an appropriate fiber diameter by microfibrillation, so plant-derived cellulose, such as wood fibers (wood pulp such as conifers and hardwoods) and seed hair fibers (such as cotton linter pulp) Pulp-derived cellulose such as is preferred.
  • pulp pulp obtained by the same method as the cellulose fiber can be used, but as the cellulose fiber, the entanglement of the raw material fibers is suppressed, and efficient microfibrillation is realized by beating treatment and homogenization treatment. From the viewpoint of obtaining fibers having a uniform fiber diameter, never dry pulp, that is, pulp having no drying history (pulp that has been kept wet without being dried) is particularly preferable.
  • a pulp is obtained by a mechanical method (pulverized wood pulp, refiner ground pulp, thermomechanical pulp, semichemical pulp, chemiground pulp, etc.), or a chemical method. Or the like (craft pulp, sulfite pulp, etc.) obtained in the above, or beating fibers (beating pulp, etc.) subjected to beating (preliminary beating) as described later, if necessary.
  • the cellulose fiber may be a fiber subjected to a conventional purification treatment such as degreasing treatment (for example, absorbent cotton).
  • the cellulose fiber may be a fiber derived from never dry pulp which is formed of wood fiber and / or seed hair fiber and has a kappa number of 30 or less (particularly about 0 to 10).
  • pulp may be prepared by bleaching wood fibers and / or seed hair fibers with chlorine.
  • the average fiber diameter of cellulose fibers is less than a micron order. That is, the average fiber diameter is 0.1 to 50 ⁇ m, for example, 0.15 to 30 ⁇ m, preferably 0.2 to 10 ⁇ m, and more preferably 0.25 to 5 ⁇ m (particularly 0.25 to 1 ⁇ m).
  • the cellulose fiber since the cellulose fiber has such a fiber diameter, it is easy to make paper and has excellent productivity, and a non-woven fabric suitable for power storage elements such as batteries and capacitors and filters can be prepared.
  • the standard deviation of the fiber diameter distribution is, for example, 1 ⁇ m or less (for example, 5 to 1000 nm), preferably 8 to 500 nm, and more preferably about 10 to 100 nm.
  • the fiber diameter of the cellulose fiber which comprises a nonwoven fabric is uniform, the hole diameter of a nonwoven fabric can be equalized.
  • the average fiber length of the cellulose fibers is not particularly limited, but is preferably 0.01 mm or more, for example, 0.05 to 10 mm, preferably from the viewpoint that the fibers can be appropriately entangled to ensure the strength of the nonwoven fabric.
  • the thickness is about 0.1 to 5 mm, more preferably about 0.2 to 3 mm (particularly 0.3 to 1 mm).
  • the average fiber length (average aspect ratio) with respect to the average fiber diameter of the cellulose fibers may be, for example, about 100 to 10,000, preferably about 200 to 5,000, more preferably about 300 to 3,000 (particularly 400 to 2,000).
  • the dehydration time of the cellulose fiber is, for example, 1000 seconds or more, preferably 1200 to 10000 seconds, when measured using a fiber slurry having a concentration of 0.5% by weight in accordance with a test method for dewatering amount of API standard. More preferably, it is about 1500 to 8000 seconds (especially 1800 to 7000 seconds). The longer the dehydration time, the higher the average fiber length / average fiber diameter ratio, and the higher the water retention, the better the mechanical properties.
  • Cellulose fibers are highly dispersible in water and can form a stable dispersion (or suspension).
  • the viscosity of a suspension in which cellulose nanofibers are suspended in water to a concentration of 2% by weight is 2000 mPa ⁇ s or more, preferably 3000 to 15000 mPa ⁇ s, more preferably about 5000 to 10000 mPa ⁇ s. It is.
  • the viscosity was measured using a B-type viscometer using a rotor No. 4 is a value measured as an apparent viscosity at 25 ° C. at a rotation speed of 60 rpm. If the degree of fibrillation is small or the fiber diameter is large, the dispersibility in water decreases, a uniform suspension cannot be obtained, and the viscosity cannot be measured.
  • Cellulose fibers may be natural pulp or the like, but are usually obtained by microfibrillation of raw material cellulose fibers, and more specifically, dispersion in which raw material cellulose fibers are dispersed in a solvent to prepare a dispersion. You may manufacture through the liquid preparation process and the refiner process which beats a raw material cellulose fiber and makes it microfibril.
  • the average fiber length of the raw fiber is, for example, 0.01 to 20 mm, preferably 0.05 to 10 mm, more preferably about 0.06 to 8 mm, and usually about 0.1 to 5 mm.
  • the average fiber diameter of the raw fiber is about 0.01 to 500 ⁇ m, preferably about 0.05 to 400 ⁇ m, more preferably about 0.1 to 300 ⁇ m (particularly about 0.2 to 250 ⁇ m).
  • the solvent is not particularly limited as long as it does not cause chemical or physical damage to the raw fiber.
  • water organic solvents [alcohols (C 1-4 alkanols such as methanol, ethanol, 2-propanol, isopropanol etc.), Ethers (diC 1-4 alkyl ethers such as diethyl ether and diisopropyl ether, cyclic ethers such as tetrahydrofuran (cyclic C 4-6 ethers and the like)), esters (alkanoic esters such as ethyl acetate), ketones (acetone, DiC 1-5 alkyl ketones such as methyl ethyl ketone and methyl butyl ketone, C 4-10 cycloalkanones such as cyclohexanone), aromatic hydrocarbons (toluene, xylene, etc.), halogenated hydrocarbons (methyl chloride, fluorine, etc.) Etc.) That.
  • solvents may be used alone or in combination of two or more.
  • water is preferable from the viewpoint of productivity and cost.
  • a mixed solvent of water and an aqueous organic solvent (C 1-4 alkanol, acetone, etc.) may be used.
  • the raw fiber to be subjected to the refiner treatment may be in a state of coexisting at least in the solvent, and the raw fiber may be dispersed (or suspended) in the solvent prior to the refiner treatment.
  • Dispersion may be performed using, for example, a conventional disperser (such as an ultrasonic disperser, a homodisper, or a three-one motor).
  • the disperser may include mechanical stirring means (such as a stirring bar and a stirring bar).
  • the concentration of the raw fiber in the solvent is, for example, about 0.01 to 20% by weight, preferably about 0.05 to 10% by weight, more preferably about 0.1 to 5% by weight (particularly about 0.5 to 3% by weight). It may be.
  • a disk refiner (single disk refiner, double disk refiner, etc.) can be used.
  • the disc refiner has a disc clearance of about 0.1 to 0.3 mm, preferably about 0.12 to 0.28 mm, more preferably about 0.13 to 0.25 mm (eg, 0.14 to 0.23 mm). May be.
  • the rotational speed of the disk is not particularly limited, and can be selected from a wide range of 1,000 to 10,000 rpm. For example, 1,000 to 8,000 rpm, preferably 1,300 to 6,000 rpm, more preferably 1,000 rpm. It may be about 600 to 4,000 rpm.
  • the number of processing (passing) may be about 1 to 20 times, preferably about 2 to 15 times, more preferably about 3 to 10 times (for example, 4 to 9 times).
  • the degree of the beating process of the raw fiber may be, for example, such that the Canadian freeness value (CSF) falls within the above range.
  • CSF Canadian freeness value
  • the degree of the beating process can be adjusted by the disc clearance and the number of refiner processes. If the disk clearance is too narrow or the number of treatments is too high, the raw fiber will receive a large shearing force, fibrillation will proceed, twisting and roughening of the surface will occur, and the fibers will tend to get entangled. The dispersibility of the fibrillated fibers is reduced. On the other hand, if the disk clearance is too wide, the shearing force applied to the raw fiber becomes small, and an undivided portion remains.
  • the cellulose fiber when it is a nanometer-sized fiber, it may be further subjected to a homogenization step using a non-crushing type homovalve sheet after the refiner step, like the polyolefin fiber described later.
  • the polyolefin fiber has a role as a binder fiber (or paper strength enhancer) and also has a role of providing a shutdown function to the nonwoven fabric by increasing the blending ratio.
  • the polyolefin constituting the polyolefin fiber may be a polymer containing C 2-6 olefin units such as ethylene and propylene.
  • polyolefins include C 2-6 olefin homopolymers or copolymers (polyethylene resins such as polyethylene and ethylene-propylene copolymers, polypropylene such as polypropylene, propylene-ethylene copolymers, and propylene-butene copolymers).
  • poly (methylpentene-1), propylene-methylpentene copolymer, etc.), copolymer of C2-6 olefin and copolymerizable monomer ethylene-vinyl acetate copolymer, ethylene-vinyl) Copolymers such as alcohol copolymers, ethylene- (meth) acrylic acid copolymers, ethylene- (meth) acrylic acid copolymers or salts thereof (for example, ionomer resins), ethylene- (meth) acrylic acid ester copolymers, etc.
  • These polyolefins may be used alone or in combination of two or more. You can use.
  • polyethylene resins are preferable because they have appropriate heat resistance and can provide a shutdown function when used as a battery or capacitor separator.
  • polyethylene resins include low, medium or high density polyethylene, linear polyethylene (for example, linear low density polyethylene), branched polyethylene, low molecular weight polyethylene, ionomer, chlorinated polyethylene, ethylene-propylene.
  • Copolymer ethylene-butene-1 copolymer, ethylene-propylene-butene-1 copolymer, ethylene- (4-methylpentene-1) copolymer, ethylene-vinyl acetate copolymer, ethylene- (meta ) Acrylic acid copolymer or its ionomer, ethylene- (meth) acrylate copolymer such as ethylene-ethyl acrylate copolymer, and the like.
  • polyethylene resins can be used alone or in combination of two or more.
  • the ethylene content (ratio of ethylene units in all units of the polymer) is, for example, 85 to 100 mol%, preferably 90 to 100 mol%, more preferably 95 to 100 mol% (particularly 98 to 100 mol%). About 100 mol%).
  • low, medium or high density polyethylene, linear low density polyethylene and the like are preferable, and medium or high density polyethylene (particularly high density polyethylene) is particularly preferable.
  • the melting point or softening point of polyolefin may be 100 ° C. or more from the viewpoint of heat resistance, for example, 100 to 150 ° C., preferably 110 to 145 ° C., more preferably 120 to 140 ° C. ( In particular, it is about 130 to 138 ° C.
  • the melting point or softening point of the polyolefin is within this range, it has moderate heat resistance, is electrochemically stable when used as a battery or capacitor separator, and can exhibit a shutdown function.
  • the average fiber diameter of the polyolefin fiber is 1.5 ⁇ m or less (for example, 10 to 1500 nm), for example, about 10 to 1000 nm, preferably about 100 to 900 nm, more preferably about 300 to 800 nm (particularly 500 to 700 nm).
  • the standard deviation of the fiber diameter distribution is, for example, 1 ⁇ m or less (for example, 10 to 1000 nm), preferably 50 to 800 nm, and more preferably about 100 to 500 nm.
  • the hole diameter of a nonwoven fabric can be equalize
  • the average fiber length of the polyolefin fibers can be selected from a range of about 1 to 1000 ⁇ m. However, from the viewpoint of improving the mechanical properties of the nonwoven fabric, for example, 10 to 500 ⁇ m, preferably 50 to 400 ⁇ m, more preferably 100 to 300 ⁇ m (particularly 150 to 150 ⁇ m). About 200 ⁇ m). Further, the ratio of the average fiber length to the average fiber diameter (average fiber length / average fiber diameter) (average aspect ratio) is 10 or more, for example, 10 to 10,000, preferably 50 to 5000, more preferably 100 to 3000 ( In particular, it is about 200 to 1000). In this invention, since it has such fiber length and aspect ratio, since the cellulose fiber and polyolefin fiber or polyolefin fiber are intertwined moderately, the intensity
  • the cross-sectional shape (cross-sectional shape perpendicular to the longitudinal direction of the fiber) of the polyolefin fiber may be an isotropic shape (for example, a substantially circular shape such as a perfect circle shape or a regular polygon shape), or an anisotropic shape (flat shape) Shape, oval shape, etc.).
  • the ratio of the major axis to the minor axis is, for example, 1 to 2, preferably 1 to 1.5, more preferably 1 to 1.3 (particularly 1 to 1.2). It may be a degree.
  • the Canadian standard freeness (CSF) of the polyolefin fiber may be, for example, about 100 to 600 ml, preferably 150 to 500 ml, and more preferably about 200 to 400 ml.
  • the polyolefin fiber is usually obtained by microfibrillation of a raw material polyolefin fiber.
  • the average fiber length of the raw material polyolefin fiber is 0.01 to 5 mm, preferably 0.03 to 4 mm, more preferably 0.05 to 3 mm (particularly 0.1 to 2 mm), and usually 0.1 to 5 mm. Degree.
  • the average fiber diameter of the raw polyolefin fibers is about 0.01 to 50 ⁇ m, preferably 0.05 to 40 ⁇ m, more preferably about 0.1 to 30 ⁇ m (for example, 0.2 to 25 ⁇ m).
  • the microfibrillation method includes a dispersion preparation step in which a raw material fiber is dispersed in a solvent to prepare a dispersion, and a homogenization step in which the dispersion is homogenized with a homogenizer equipped with a crushing type homovalve sheet. Obtained by the manufacturing method.
  • polyolefin fibers having an average fiber diameter of 1.5 ⁇ m or less can be prepared by microfibrillation of raw material fibers by the production method shown below.
  • a dispersion can be prepared by the same method as the cellulose fiber.
  • FIG. 1 is a schematic view showing a process of homogenizing the dispersion with a homogenizer equipped with a crushing type homo-valve sheet
  • FIG. 2 is an enlarged cross-sectional view of a facing portion between the crushing type homo-valve sheet and the homo-valve
  • FIG. 3 is a perspective view of a crushing type homo-valve seat.
  • FIG. 4 is a perspective view of a non-crushing homo valve seat.
  • the homogenizer includes a hollow cylindrical impact ring 6, a hollow cylindrical convex portion 2 b of the homovalve seat 2 that is inserted and disposed on the upstream side of the impact ring 6, and a hollow cylinder on the downstream side of the impact ring 6.
  • a cylindrical homobulb 5 inserted opposite to the cylindrical convex portion 2b is provided, and the hollow cylindrical convex portion 2b and the columnar homobulb 5 have the same outer diameter.
  • the inner wall on the downstream side of the hollow cylindrical convex portion 2b has a tapered portion (inclined surface) 2d that expands in the downstream direction, and the downstream end of the hollow cylindrical convex portion 2b has an inner diameter d and a thickness t of the end surface.
  • a thin ring-shaped end face 2c having the shape is formed. Further, the ring-shaped end face 2c, the homo valve 5 and the impact ring 6 form a small diameter orifice (gap) 4.
  • the crushing type homo-valve seat 2 is a hollow member having a cylindrical flow path 3 therein, and extends in a downstream direction from a hollow disc-shaped main body portion 2a having an inflow port 3a and an inner wall of the disc-shaped main body portion 2a. And it is comprised with the hollow cylindrical convex part 2b which has the outflow port 3b. Furthermore, as described above, the crushing type homovalve seat 2 is formed with the tapered portion 2d having an enlarged inner diameter, so that compared to the general (normal) noncrushing type homovalve seat 12 shown in FIG. The ring-shaped end surface 2c that forms the outlet 3b is formed thin.
  • the dispersion liquid containing the raw fiber 1 flows into the flow path 3 in the homo valve seat from the inlet 3a of the crushing homo valve seat 2, and the flow path After passing through 3, it passes through the small-diameter orifice 4 and becomes a dispersion containing polyolefin fibers 7.
  • the raw material fiber 1 that is pumped through the homogenizer at high pressure collides with the wall surface of the small diameter orifice 4 (particularly the wall surface of the impact ring 6) when passing through the small diameter orifice 4 that is a narrow gap.
  • the polyolefin fiber 7 is divided by receiving a shearing stress or a cutting action and has a uniform fiber diameter.
  • the flow speed of the dispersion liquid increases rapidly.
  • the pumping pressure of the dispersion rapidly decreases in inverse proportion to the increase in. Therefore, the pressure difference of the dispersion liquid can be increased, the cavitation of the dispersion liquid that has passed through the gap becomes intense, and the uniform microfibril of the raw fiber 1 is increased due to the increase of the collision force with the wall surface in the small diameter orifice 4 and the collapse of the bubbles. It can be inferred that this has been realized.
  • the thickness of the end surface of the wall portion forming the outlet of the crushing type homovalve seat (the ring-shaped end surface at the downstream end of the hollow cylindrical convex portion).
  • the thickness of the end face of the wall portion forming the outlet can be selected according to the diameter of the outlet, but is usually 0.01 to 2 mm, preferably 0.05 to 1.5 mm, more preferably 0.1 to 1 mm. (Especially 0.2 to 0.8 mm).
  • the interval or clearance of the small diameter orifice (especially the interval between the end face of the convex portion of the homovalve seat and the homovalve) is, for example, about 5 to 50 ⁇ m, preferably 10 to 40 ⁇ m, more preferably 15 to 35 ⁇ m (particularly 20 to 30 ⁇ m). is there.
  • the pressure for passing through the small-diameter orifice can be selected from the range of about 30 to 200 MPa, preferably 35 to 150 MPa, More preferably, it may be about 40 to 140 MPa.
  • it can divide
  • the number of treatments (or the number of passes) that pass through the small-diameter orifice can be selected from a range of, for example, about 5 to 100 times, preferably 10 to 80 times, and more preferably about 12 to 60 times.
  • the treatment pressure may be selected according to the number of treatments.
  • the treatment pressure is a high-pressure treatment (eg, about 60 to 200 MPa, preferably about 80 to 150 MPa, more preferably about 100 to 130 MPa)
  • the number of times is, for example, about 3 to 50 times, preferably about 5 to 20 times, and more preferably about 7 to 15 times.
  • the treatment pressure is low-pressure treatment (for example, about 20 to 80 MPa, preferably about 30 to 70 MPa, more preferably about 40 to 60 MPa)
  • the number of treatments is, for example, 5 to 100 times, preferably 10 to 50 times, Preferably about 15 to 30 times.
  • a homogenization process using a homogenizer equipped with a non-crushing type homo valve seat may be combined.
  • a homogenization process may be performed using a homogenizer provided with a non-crushing type homogenizer.
  • pretreatment with a homogenizer provided with a non-crushing type homovalve sheet can improve the processing efficiency in the homogenizer provided with a crushing type homovalve sheet.
  • a tapered portion is usually formed on the inner wall of the hollow cylindrical convex portion 12 b extending from the hollow disc-shaped main body portion 12 a of the homo-valve seat 12.
  • the pressure for passing through the small-diameter orifice is, for example, 30 to 100 MPa, preferably 35 to 80 MPa, More preferably, it may be about 40 to 70 MPa.
  • the number of passes may be, for example, about 10 to 40 times, preferably about 12 to 30 times, and more preferably about 15 to 25 times.
  • the dispersion may be refined as a pre-process (preliminary process) of the homogenization process.
  • a refiner process you may perform the refiner process similar to the manufacturing method of the said cellulose fiber.
  • the microfibrillation of both fibers may be either a method of separately processing or a method of simultaneously processing.
  • the shutdown function is manifested by the polyolefin fibers melted at a high temperature closing the pores of the separator.
  • the former / the latter 99.9 / 0.1 to 50/50, preferably 99.5 / 0.5 to 70/30, more preferably It is about 99/1 to 80/20 (particularly 97/3 to 10/90).
  • the non-woven fabric of the present invention is a conventional additive such as a sizing agent, wax, inorganic filler, colorant, stabilizer (antioxidant, heat stabilizer, ultraviolet absorber, etc.), plasticizer depending on the application. Further, it may contain an antistatic agent, a flame retardant and the like.
  • a sizing agent such as wax, inorganic filler, colorant, stabilizer (antioxidant, heat stabilizer, ultraviolet absorber, etc.), plasticizer depending on the application. Further, it may contain an antistatic agent, a flame retardant and the like.
  • the nonwoven fabric of the present invention includes polyolefin fibers that also function as binder fibers as described above, other synthetic resins, binder fibers such as vinylon fibers, paper strength enhancers such as polyacrylamide, starch, and natural rubber. May not be included.
  • the nonwoven fabric of the present invention does not contain binder fibers having a low melting point such as vinylon fibers, the nonwoven fabric has high heat resistance and is electrochemically stable. That is, it is preferable that the nonwoven fabric of this invention does not contain a hydrophilic binder fiber substantially. Moreover, it is preferable that the nonwoven fabric of this invention does not contain the synthetic resin below melting
  • the nonwoven fabric of the present invention is excellent in mechanical properties, has high strength even when thin, and has a tensile strength of 12 N / 15 mm or more at a basis weight of 10 g / m 2 , for example, 12 to 30 N / 15 mm, preferably 13 to It is about 25 N / 15 mm, more preferably 14 to 20 N / 15 mm (especially 15 to 18 N / 15 mm).
  • the nonwoven fabric of the present invention is excellent in air permeability despite having the above tensile strength, and the air permeability at a basis weight of 10 g / m 2 is 10 to 500 seconds / 100 ml. It is about 300 seconds / 100 ml, preferably 30 to 200 seconds / 100 ml, more preferably about 50 to 100 seconds / 100 ml (especially 60 to 80 seconds / 100 ml).
  • the non-woven fabric of the present invention has a thickness of 20 ⁇ m or less, for example, 1 to 20 ⁇ m, preferably 5 to 19 ⁇ m (eg 10 to 18 ⁇ m), more preferably 12 to 17 ⁇ m (especially 13 to 16 ⁇ m). Good.
  • a nonwoven fabric may laminate
  • the average pore diameter of the nonwoven fabric of the present invention is 0.1 to 50 ⁇ m, for example, 0.15 to 30 ⁇ m, preferably 0.2 to 10 ⁇ m, more preferably 0.25 to 5 ⁇ m (especially 0.25 to 1 ⁇ m). is there.
  • the basis weight of the nonwoven fabric may be, for example, about 0.1 to 50 g / m 2 , preferably 1 to 30 g / m 2 , more preferably 3 to 20 g / m 2 (particularly 5 to 15 g / m 2 ).
  • the porosity of the nonwoven fabric may be 50% or more, preferably 50 to 90%, more preferably about 60 to 80%.
  • the method for producing the nonwoven fabric of the present invention is not particularly limited, and can be produced by a conventional method, for example, by mixing cellulose fibers and polyolefin fibers and making paper such as wet papermaking or dry papermaking. Further, when cellulose fibers and polyolefin fibers are collectively microfibrillated, they may be produced by papermaking the mixed cotton fibers of both.
  • the wet papermaking can be performed by a conventional method, and for example, the papermaking may be performed using a wet papermaking machine equipped with a manual papermaking machine or a perforated plate. Dry papermaking can also be made using conventional methods such as airlaid and card manufacturing.
  • the temperature of the press working is not particularly limited, and can be selected, for example, from a range of about 60 to 250 ° C., for example, 80 to 200 ° C., preferably about 100 to 180 ° C. In the case of a separator, the temperature is lower than the melting point (or softening point) of the polyolefin fiber, for example, about 80 to 150 ° C., preferably 90 to 140 ° C., more preferably 100 to 130 ° C. (especially 110 to 130 ° C.). May be.
  • cellulose fibers having a moderately large fiber diameter of 100 nm or more include polyolefin fibers having a moderate fiber diameter, paper can be easily made and productivity is high.
  • the average fiber diameter (n 20 or more) was calculated by counting all fiber diameters intersecting the line.
  • the method of drawing a line is not particularly limited as long as the number of fibers crossing the line is 20 or more.
  • the standard deviation of the fiber diameter distribution and the maximum fiber diameter were determined from the measured values of the fiber diameter.
  • the calculation was performed using a 5000 times SEM photograph.
  • Fiber length was measured using a fiber length measuring device (“FS-200” manufactured by Kajaani).
  • Example 1 100 liters of slurry containing 1% by weight of raw material polyolefin fiber is prepared using polyolefin fiber ("SWP E400" manufactured by Mitsui Chemicals, average fiber length 0.9 mm, CSF 580 ml) as raw material polyolefin fiber did.
  • the average fiber diameter of the obtained polyolefin fiber was 0.6 ⁇ m, the standard deviation of the fiber diameter distribution was 253 nm, the average fiber length was 182 ⁇ m, and the aspect ratio (average fiber length / average fiber diameter) was 303.
  • 0.2 weight of slurry obtained by mixing 5 parts by weight of the polyolefin fiber and 95 parts by weight of cellulose fiber (“Cerish KY100G” manufactured by Daicel Chemical Industries, average fiber diameter 0.3 ⁇ m, average fiber length 420 ⁇ m) is mixed.
  • the paper machine with a decompression device (“Standard Square Machine” manufactured by Toyo Seiki Seisakusho Co., Ltd.) was used. Papermaking was performed using 5C filter paper as a filter cloth. As a blotting paper, no. Stacked 5C filter paper. Next, the paper body was immersed in isopropyl alcohol for 10 minutes with ultrasonic treatment to replace the solvent. Furthermore, the new No.
  • Example 2 In Example 1, a mixed slurry in which the ratio of polyolefin fiber to cellulose fiber was changed to 50 parts by weight of polyolefin fiber and 50 parts by weight of cellulose was diluted to 0.2% by weight, and a paper machine with a decompression device (Toyo Incorporated) Using a “standard square machine” manufactured by Seiki Seisakusho, Papermaking was performed using 5C filter paper as a filter cloth. As a blotting paper, no. Stacked 5C filter paper. Next, the paper body was immersed in isopropyl alcohol for 10 minutes with ultrasonic treatment to replace the solvent. Furthermore, the new No. Both surfaces were sandwiched between 5C filter papers and pressed at 120 ° C.
  • a paper machine with a decompression device Toyo Incorporated
  • Table 1 shows the basis weight, thickness, average pore diameter, air permeability, and tensile strength of the obtained nonwoven fabric.
  • the obtained non-woven fabric was sandwiched between stainless steel plates having a thickness of 1 mm, placed in a dryer at 140 ° C., and left for 1 hour.
  • the air permeability of the nonwoven fabric after standing was not measurable (infinite). That is, it was found that this nonwoven fabric is a cellulose-based nonwoven fabric having a shutdown function.
  • the nonwoven fabric was obtained in the same manner as in Example 2 except that a polyolefin fiber having an average fiber diameter of 0.9 ⁇ m, a standard deviation of the fiber diameter distribution of 488 nm, an average fiber length of 537 ⁇ m, and an aspect ratio of 597 was obtained.
  • Table 1 shows the basis weight, thickness, average pore diameter, air permeability, and tensile strength of the obtained nonwoven fabric.
  • SWP E400 manufactured by Mitsui Chemicals, average fiber length
  • a nonwoven fabric was obtained in the same manner as in Example 1 using a slurry in which 5 parts by weight of the obtained polyolefin fiber and 95 parts by weight of cellulose fiber (Cerish KY100G) were mixed.
  • Table 1 shows the basis weight, thickness, average pore diameter, air permeability, and tensile strength of the obtained nonwoven fabric.
  • Comparative Example 2 A nonwoven fabric was obtained in the same manner as in Comparative Example 1 except that the mixed slurry was used in which the ratio of the polyolefin fiber to the cellulose fiber was changed to 70 parts by weight of the polyolefin fiber and 30 parts by weight of the cellulose. Table 1 shows the basis weight, thickness, average pore diameter, air permeability, and tensile strength of the obtained nonwoven fabric.
  • the nonwoven fabrics of the examples have high air permeability and tensile strength.
  • the nonwoven fabric of the comparative example has low tensile strength.
  • the nonwoven fabric of the present invention can be used for various separators and filters, but because of its high electrochemical stability, the battery (lithium battery, lithium secondary battery, fuel cell, alkaline secondary battery, nickel metal hydride secondary battery, (Nickel-cadmium battery, lead storage battery, etc.), capacitors, capacitors and other storage element separators are useful.
  • the shutdown function can be imparted by constituting the nonwoven fabric with a predetermined amount of polyolefin fiber, it is useful for battery and capacitor separators.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Nonwoven Fabrics (AREA)
  • Paper (AREA)
  • Cell Separators (AREA)

Abstract

A non-woven fabric is prepared, which comprises cellulose fibers having an average fiber diameter of 0.1-50 μm and polyolefin fibers having an average fiber diameter of 1.5 μm or less and has a thickness of 20 μm or less. The polyolefin fibers may be polyethylene fibers having an average fiber diameter of 10-1000 nm and an average fiber length of 1-1000 μm. The ratio of the content of the cellulose fibers to that of the polyolefin fibers (the former/the latter) may be 99.9/0.1 to 10/90 (particularly 70/30 to 20/80) (by weight). This non-woven fabric can exhibit both gas permeability and mechanical strength at the same time even when the non-woven fabric has a small thickness, and may be used as a separator for an electrical storage element.

Description

セルロース繊維を含む不織布及びその製造方法並びにセパレータNonwoven fabric containing cellulose fiber, method for producing the same, and separator
 本発明は、セルロース繊維及びポリオレフィン繊維で形成された不織布及びその製造方法並びにこの不織布で形成されたセパレータ(蓄電素子用セパレータなど)に関する。 The present invention relates to a nonwoven fabric formed from cellulose fibers and polyolefin fibers, a method for producing the same, and a separator (such as a separator for a storage element) formed from the nonwoven fabric.
 従来から、セルロース繊維で形成された不織布は、サイズ剤や紙力増強剤などを添加し、紙として印刷用紙や書籍などに利用されてきたが、気体や液体などに対する透過性を利用して、フィルターや蓄電素子のセパレータなどにも利用されている。特に、セルロース繊維が耐熱性に優れ、電気化学的に安定であるため、電池、コンデンサ、キャパシタなどの蓄電素子のセパレータとしての利用も活発化している。さらに、近年では、電気・電子機器の小型化や長寿命化などにより、電池やキャパシタのセパレータにも高度な性能が要求されており、薄肉化しても内部抵抗を小さくしても強度を保持できるセパレータが必要とされている。さらに、電池セパレータのうち、例えば、リチウム二次電池のセパレータには、電解液(エチレンカーボネート、プロピレンカーボネート、ブチロラクトン、ジメチルカーボネートなど)を保持し、電極間を絶縁するとともに、高温で融解して微細孔を閉塞し、イオン導電性を遮断する機能(シャットダウン)なども要求される。 Traditionally, non-woven fabrics made of cellulose fibers have been used as printing paper or books as paper by adding sizing agents, paper strength enhancers, etc., but using permeability to gases and liquids, It is also used for filters and separators for energy storage devices. In particular, since cellulose fibers have excellent heat resistance and are electrochemically stable, they are actively used as separators for power storage elements such as batteries, capacitors, and capacitors. Furthermore, in recent years, advanced performance has been demanded for battery and capacitor separators due to miniaturization and long life of electric and electronic devices, and the strength can be maintained even if the internal resistance is reduced even if the thickness is reduced. A separator is needed. Furthermore, among battery separators, for example, lithium secondary battery separators hold electrolytes (ethylene carbonate, propylene carbonate, butyrolactone, dimethyl carbonate, etc.), insulate the electrodes, and melt at a high temperature to form fine particles. A function (shutdown) or the like that closes the hole and blocks ionic conductivity is also required.
 例えば、特開2006-49797号公報(特許文献1)には、最大繊維太さが1000nm以下であるセルロース繊維からなり、通気度が5~700秒/100mlであるセパレータであって、このセパレータに0.8モル/リットルのテトラエチルアンモニウム・BF塩/プロピレンカーボネート溶液を含浸させた状態での膜の交流2端子法によって算出される20℃における電気抵抗値が1.0Ωcm以下である蓄電デバイス用セパレータが開示されている。この文献には、セパレータの厚みは5~50μm、好ましくは10~30μmと記載されている。 For example, Japanese Patent Laid-Open No. 2006-49797 (Patent Document 1) discloses a separator having a maximum fiber thickness of 1000 nm or less and having an air permeability of 5 to 700 seconds / 100 ml. An electrical storage device having an electrical resistance value at 20 ° C. of 1.0 Ωcm 2 or less calculated by the AC two-terminal method of a membrane impregnated with 0.8 mol / liter of tetraethylammonium · BF 4 salt / propylene carbonate solution A separator for use is disclosed. In this document, the thickness of the separator is described as 5 to 50 μm, preferably 10 to 30 μm.
 しかし、このセパレータは、セルロース繊維単独で構成されているため、強度が低く、シャットダウン機能も有していない。 However, since this separator is composed of cellulose fibers alone, it has low strength and does not have a shutdown function.
 また、特開平8-171893号公報(特許文献2)には、正極と、リチウム又はリチウム合金からなる負極と、セパレータと、電解液とで構成されたリチウム電池において、前記セパレータが天然パルプ20~70重量%と微細合成繊維80~30重量%の配合割合で混合抄紙したシートであり、かつ前記微細合成繊維の繊維径が5μm以下であるリチウム電池用セパレータが開示されている。この文献では、微細合成繊維としてはポリエチレン、ポリプロピレン、アラミド繊維が例示されており、繊維径は2μm以下が好ましいと記載され、実施例では平均繊維径2μmのポリエチレン微細繊維が使用されている。また、セパレータは、坪量15~30g/mの範囲に抄紙することが記載され、実施例では坪量約30g/mのセパレータが製造されている。さらに、バインダー繊維として、ビニロン繊維を20%程度配合してもよいことが記載されている。実施例では、天然パルプ及び微細合成繊維に加えて、熱溶融温度70℃のビニロン繊維を10%配合して80℃で処理することにより、厚み50μm程度のセパレータを製造している。 JP-A-8-171893 (Patent Document 2) discloses a lithium battery composed of a positive electrode, a negative electrode made of lithium or a lithium alloy, a separator, and an electrolyte solution, wherein the separator includes natural pulp 20 to A lithium battery separator is disclosed, which is a sheet made by mixing papermaking at a blending ratio of 70% by weight and fine synthetic fibers of 80 to 30% by weight, and the fine synthetic fibers have a fiber diameter of 5 μm or less. In this document, polyethylene, polypropylene, and aramid fibers are exemplified as fine synthetic fibers, and it is described that the fiber diameter is preferably 2 μm or less. In the examples, polyethylene fine fibers having an average fiber diameter of 2 μm are used. In addition, it is described that the separator makes paper with a basis weight in the range of 15 to 30 g / m 2 , and in the examples, a separator with a basis weight of about 30 g / m 2 is manufactured. Furthermore, it is described that about 20% of vinylon fiber may be blended as the binder fiber. In the examples, a separator having a thickness of about 50 μm is manufactured by blending 10% vinylon fiber having a heat melting temperature of 70 ° C. and processing at 80 ° C. in addition to natural pulp and fine synthetic fiber.
 しかし、このセパレータは、天然パルプのミクロフィブリル化が小さく、合成繊維の繊維径も大きく、肉厚であるため、内部抵抗が大きい。さらに、融点が低い親水性バインダー繊維を含むため、耐熱性が低く、電気化学的に不安定である。 However, since this separator is small in microfibrillation of natural pulp, the fiber diameter of the synthetic fiber is large, and it is thick, the internal resistance is large. Furthermore, since it contains a hydrophilic binder fiber having a low melting point, it has low heat resistance and is electrochemically unstable.
特開2006-49797号公報(特許請求の範囲、段落[0042]、実施例)JP 2006-49797 A (claims, paragraph [0042], examples) 特開平8-171893号公報(請求項1、段落[0007][0009][0010]、実施例)JP-A-8-171893 (Claim 1, paragraphs [0007] [0009] [0010], Examples)
 従って、本発明の目的は、薄肉であっても、透気性と機械的強度とを両立できる不織布及びその製造方法並びに前記不織布で形成された蓄電素子用セパレータを提供することにある。 Accordingly, an object of the present invention is to provide a non-woven fabric that can achieve both air permeability and mechanical strength, a manufacturing method thereof, and a storage element separator formed of the non-woven fabric even if it is thin.
 本発明の他の目的は、内部抵抗が小さく、かつ電気化学的に安定な不織布及びその製造方法並びに前記不織布で形成された蓄電素子用セパレータを提供することにある。 Another object of the present invention is to provide a non-woven fabric having low internal resistance and electrochemical stability, a method for producing the same, and a separator for a storage element formed from the non-woven fabric.
 本発明のさらに他の目的は、耐熱性が高く、かつシャットダウン機能も有している不織布及びその製造方法並びに前記不織布で形成された蓄電素子用セパレータを提供することにある。 Still another object of the present invention is to provide a nonwoven fabric having high heat resistance and also having a shutdown function, a method for producing the same, and a storage element separator formed from the nonwoven fabric.
 本発明者は、前記課題を達成するため鋭意検討した結果、平均繊維径0.1~50μmのセルロース繊維と平均繊維径1.5μm以下のポリオレフィン繊維とを組み合わせることにより、厚み20μm以下の不織布であっても、透気性と機械的強度とを両立できることを見いだし、本発明を完成した。 As a result of diligent studies to achieve the above-mentioned problems, the present inventor made a nonwoven fabric having a thickness of 20 μm or less by combining cellulose fibers having an average fiber diameter of 0.1 to 50 μm and polyolefin fibers having an average fiber diameter of 1.5 μm or less. Even if it exists, it discovered that air permeability and mechanical strength were compatible, and completed this invention.
 すなわち、本発明の不織布(又は抄紙体)は、平均繊維径0.1~50μmのセルロース繊維と平均繊維径1.5μm以下のポリオレフィン繊維とを含み、かつ厚みが20μm以下であってもよい。前記ポリオレフィン繊維の平均繊維径は10~1000nmであってもよい。前記ポリオレフィン繊維の平均繊維長は1~1000μmであってもよい。前記ポリオレフィン繊維はポリエチレン繊維であってもよい。前記ポリオレフィン繊維は、原料ポリオレフィン繊維を溶媒に分散させて分散液を調製する分散液調製工程、破砕型ホモバルブシートを備えたホモジナイザーで前記分散液をホモジナイズ処理するホモジナイズ工程を含む製造方法で得られる繊維であってもよい。前記セルロース繊維の平均繊維径は0.2~1μmであってもよい。前記セルロース繊維とポリオレフィン繊維との割合(重量比)は、前者/後者=99.9/0.1~10/90程度である。本発明の不織布は、親水性バインダー繊維を実質的に含まないのが好ましい。また、本発明の不織布は、融点100℃未満の合成樹脂を実質的に含まないのが好ましい。本発明の不織布は、強度と透気性とを両立でき、坪量10g/mにおける引張強度が12N/15mm以上であり、坪量10g/mにおける透気度が50~100秒/100mlである。本発明の不織布は、厚みが10~18μmであってもよい。 That is, the nonwoven fabric (or papermaking body) of the present invention may contain cellulose fibers having an average fiber diameter of 0.1 to 50 μm and polyolefin fibers having an average fiber diameter of 1.5 μm or less, and may have a thickness of 20 μm or less. The polyolefin fiber may have an average fiber diameter of 10 to 1000 nm. The polyolefin fiber may have an average fiber length of 1 to 1000 μm. The polyolefin fiber may be a polyethylene fiber. The polyolefin fiber is obtained by a production method including a dispersion preparation step of preparing a dispersion by dispersing raw polyolefin fibers in a solvent, and a homogenization step of homogenizing the dispersion with a homogenizer equipped with a crushing type homovalve sheet. It may be a fiber. The average fiber diameter of the cellulose fibers may be 0.2 to 1 μm. The ratio (weight ratio) between the cellulose fibers and the polyolefin fibers is about the former / the latter = 99.9 / 0.1 to 10/90. It is preferable that the nonwoven fabric of this invention does not contain a hydrophilic binder fiber substantially. Moreover, it is preferable that the nonwoven fabric of this invention does not contain the synthetic resin below melting | fusing point less than 100 degreeC substantially. The nonwoven fabric of the present invention can achieve both strength and air permeability, the tensile strength at a basis weight of 10 g / m 2 is 12 N / 15 mm or more, and the air permeability at a basis weight of 10 g / m 2 is 50 to 100 seconds / 100 ml. is there. The nonwoven fabric of the present invention may have a thickness of 10 to 18 μm.
 本発明には、前記不織布で形成された蓄電素子用セパレータも含まれる。このセパレータにおいて、セルロース繊維とポリオレフィン繊維との割合(重量比)が、前者/後者=70/30~20/80であってもよい。本発明のセパレータは、電池又はコンデンサのセパレータであってもよい。 The present invention also includes a storage element separator formed of the nonwoven fabric. In this separator, the ratio (weight ratio) between cellulose fibers and polyolefin fibers may be the former / the latter = 70/30 to 20/80. The separator of the present invention may be a battery or capacitor separator.
 本発明には、セルロース繊維とポリオレフィン繊維とを抄紙する前記の不織布の製造方法も含まれる。この方法において、セルロース繊維とポリオレフィン繊維との割合(重量比)が、前者/後者=70/30~20/80であり、かつポリオレフィン繊維の融点又は軟化点よりも低い温度で処理してもよい。 The present invention also includes a method for producing the nonwoven fabric described above, in which cellulose fibers and polyolefin fibers are made. In this method, the ratio (weight ratio) of cellulose fiber to polyolefin fiber is the former / the latter = 70/30 to 20/80, and the treatment may be performed at a temperature lower than the melting point or softening point of the polyolefin fiber. .
 本発明では、平均繊維径0.1~50μmのセルロース繊維と平均繊維径1.5μm以下のポリオレフィン繊維とを組み合わせることにより、厚み20μm以下の不織布(又は抄紙体)であっても、透気性と機械的強度とを両立できる。また、薄肉であるため、内部抵抗が小さい上に、親水性バインダー繊維や低融点の合成樹脂を含んでいないため、電気化学的にも安定である。さらに、ポリオレフィン繊維の割合を大きくすることにより、耐熱性が高く、かつ電池セパレータにおけるシャットダウン機能も付与できる。 In the present invention, by combining a cellulose fiber having an average fiber diameter of 0.1 to 50 μm and a polyolefin fiber having an average fiber diameter of 1.5 μm or less, even a non-woven fabric (or papermaking body) having a thickness of 20 μm or less has air permeability. Both mechanical strength can be achieved. In addition, since it is thin, it has low internal resistance and does not contain a hydrophilic binder fiber or a low-melting synthetic resin, so that it is electrochemically stable. Furthermore, by increasing the proportion of the polyolefin fiber, the heat resistance is high, and a shutdown function in the battery separator can be imparted.
図1は、ホモジナイザーを用いて繊維を含む分散液をホモジナイズ処理する工程を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing a process of homogenizing a dispersion containing fibers using a homogenizer. 図2は、破砕型ホモバルブシートとホモバルブとの対向部分の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a facing portion between the crushing type homovalve seat and the homovalve. 図3は、破砕型ホモバルブシートの斜視図である。FIG. 3 is a perspective view of a crushing type homo valve seat. 図4は、非破砕型ホモバルブシートの斜視図である。FIG. 4 is a perspective view of a non-crushing homo valve seat.
 本発明の不織布は、平均繊維径0.1~50μmのセルロース繊維と平均繊維径1.5μm以下のポリオレフィン繊維とを含む。 The nonwoven fabric of the present invention contains cellulose fibers having an average fiber diameter of 0.1 to 50 μm and polyolefin fibers having an average fiber diameter of 1.5 μm or less.
 [セルロース繊維]
 セルロース繊維としては、β-1,4-グルカン構造を有する多糖類である限り、特に制限されず、高等植物由来のセルロース繊維[例えば、木材繊維(針葉樹、広葉樹などの木材パルプなど)、竹繊維、サトウキビ繊維、種子毛繊維(コットンリンター、ボンバックス綿、カポックなど)、ジン皮繊維(例えば、麻、コウゾ、ミツマタなど)、葉繊維(例えば、マニラ麻、ニュージーランド麻など)などの天然セルロース繊維(パルプ繊維)など]、動物由来のセルロース繊維(ホヤセルロースなど)、バクテリア由来のセルロース繊維、化学的に合成されたセルロース繊維[セルロースアセテート(酢酸セルロース)、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどの有機酸エステル;硝酸セルロース、硫酸セルロース、リン酸セルロースなどの無機酸エステル;硝酸酢酸セルロースなどの混酸エステル;ヒドロキシアルキルセルロース(例えば、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロースなど);カルボキシアルキルセルロース(カルボキシメチルセルロース(CMC)、カルボキシエチルセルロースなど);アルキルセルロース(メチルセルロース、エチルセルロースなど);再生セルロース(レーヨン、セロファンなど)などのセルロース誘導体など]などが挙げられる。これらのセルロース繊維は、単独で又は二種以上組み合わせて使用してもよい。
[Cellulose fiber]
Cellulose fibers are not particularly limited as long as they are polysaccharides having a β-1,4-glucan structure, and cellulose fibers derived from higher plants [eg, wood fibers (wood pulp of conifers, hardwoods, etc.), bamboo fibers, etc. , Natural cellulose fibers such as sugarcane fibers, seed hair fibers (cotton linters, Bombax cotton, kapok, etc.), gin leather fibers (eg, hemp, mulberry, mitsumata, etc.), leaf fibers (eg, Manila hemp, New Zealand hemp) Pulp fibers) etc.], animal-derived cellulose fibers (eg, squirt cellulose), bacteria-derived cellulose fibers, chemically synthesized cellulose fibers [cellulose acetate (cellulose acetate), cellulose propionate, cellulose butyrate, cellulose acetate Propionate, cellulose acetate Organic acid esters such as rate; inorganic acid esters such as cellulose nitrate, cellulose sulfate, and cellulose phosphate; mixed acid esters such as cellulose nitrate acetate; hydroxyalkyl cellulose (eg, hydroxyethyl cellulose (HEC), hydroxypropyl cellulose, etc.); carboxyalkyl Cellulose (carboxymethyl cellulose (CMC), carboxyethyl cellulose, etc.); alkyl cellulose (methyl cellulose, ethyl cellulose, etc.); and cellulose derivatives such as regenerated cellulose (rayon, cellophane, etc.). These cellulose fibers may be used alone or in combination of two or more.
 さらに、セルロース繊維は、用途に応じて、α-セルロース含有量の高い高純度セルロース、例えば、α-セルロース含有量70~100重量%(例えば、95~100重量%)、好ましくは98~100重量%程度であってもよい。さらに、本発明では、リグニンやヘミセルロース含量の少ない高純度セルロースを使用することにより、木材繊維や種子毛繊維を使用しても、均一な繊維径を有するセルロース繊維を調製できる。リグニンやヘミセルロース含量の少ないセルロースは、特に、カッパー価(κ価)が30以下(例えば、0~30)、好ましくは0~20、さらに好ましくは0~10(特に0~5)程度のセルロースであってもよい。なお、カッパー価は、JIS P8211の「パルプ-カッパー価試験方法」に準拠した方法で測定できる。 Further, the cellulose fiber is a high-purity cellulose having a high α-cellulose content, for example, an α-cellulose content of 70 to 100% by weight (eg, 95 to 100% by weight), preferably 98 to 100% by weight, depending on the application. % May be sufficient. Furthermore, in the present invention, cellulose fibers having a uniform fiber diameter can be prepared by using high-purity cellulose having a low lignin or hemicellulose content, even if wood fibers or seed hair fibers are used. Cellulose having a low lignin or hemicellulose content is particularly a cellulose having a kappa number (κ value) of 30 or less (eg, 0 to 30), preferably 0 to 20, more preferably 0 to 10 (particularly 0 to 5). There may be. The kappa number can be measured by a method based on “Pulp-Kappa number test method” of JIS P8211.
 これらのセルロース繊維のうち、ミクロフィブリル化により適度な繊維径に調整し易いため、植物由来のセルロース、例えば、木材繊維(針葉樹、広葉樹などの木材パルプなど)や種子毛繊維(コットンリンターパルプなど)などのパルプ由来のセルロースが好ましい。パルプとしては、前記セルロース繊維と同様の方法で得られたパルプを使用できるが、セルロース繊維としては、原料繊維同士の絡まりを抑制し、叩解処理やホモジナイズ処理による効率的なミクロフィブリル化を実現し、均一な繊維径を有する繊維を得る観点から、ネバードライパルプ、すなわち乾燥履歴のないパルプ(乾燥することなく、湿潤状態を保持したパルプ)が特に好ましい。 Among these cellulose fibers, it is easy to adjust to an appropriate fiber diameter by microfibrillation, so plant-derived cellulose, such as wood fibers (wood pulp such as conifers and hardwoods) and seed hair fibers (such as cotton linter pulp) Pulp-derived cellulose such as is preferred. As the pulp, pulp obtained by the same method as the cellulose fiber can be used, but as the cellulose fiber, the entanglement of the raw material fibers is suppressed, and efficient microfibrillation is realized by beating treatment and homogenization treatment. From the viewpoint of obtaining fibers having a uniform fiber diameter, never dry pulp, that is, pulp having no drying history (pulp that has been kept wet without being dried) is particularly preferable.
 なお、セルロース繊維として、パルプを用いる場合、パルプは、機械的方法で得られたパルプ(砕木パルプ、リファイナ・グランド・パルプ、サーモメカニカルパルプ、セミケミカルパルプ、ケミグランドパルプなど)、又は化学的方法で得られたパルプ(クラフトパルプ、亜硫酸パルプなど)などであってもよく、必要に応じて、後述するような叩解(予備叩解)処理された叩解繊維(叩解パルプなど)であってもよい。また、セルロース繊維は、慣用の精製処理、例えば、脱脂処理などが施された繊維(例えば、脱脂綿など)であってもよい。 In addition, when using a pulp as a cellulose fiber, a pulp is obtained by a mechanical method (pulverized wood pulp, refiner ground pulp, thermomechanical pulp, semichemical pulp, chemiground pulp, etc.), or a chemical method. Or the like (craft pulp, sulfite pulp, etc.) obtained in the above, or beating fibers (beating pulp, etc.) subjected to beating (preliminary beating) as described later, if necessary. Further, the cellulose fiber may be a fiber subjected to a conventional purification treatment such as degreasing treatment (for example, absorbent cotton).
 特に、セルロース繊維は、木材繊維及び/又は種子毛繊維で形成され、かつカッパー価が30以下(特に0~10程度)のネバードライパルプ由来の繊維であってもよい。このようなパルプは、木材繊維及び/又は種子毛繊維を塩素で漂白処理することにより調製してもよい。 In particular, the cellulose fiber may be a fiber derived from never dry pulp which is formed of wood fiber and / or seed hair fiber and has a kappa number of 30 or less (particularly about 0 to 10). Such pulp may be prepared by bleaching wood fibers and / or seed hair fibers with chlorine.
 本発明では、セルロース繊維の平均繊維径はミクロンオーダー以下である。すなわち、平均繊維径は0.1~50μmであり、例えば、0.15~30μm、好ましくは0.2~10μm、さらに好ましくは0.25~5μm(特に0.25~1μm)程度である。本発明では、セルロース繊維がこのような繊維径を有するため、抄紙し易く生産性に優れるとともに、電池やコンデンサなどの蓄電素子やフィルターに適した不織布を調製できる。 In the present invention, the average fiber diameter of cellulose fibers is less than a micron order. That is, the average fiber diameter is 0.1 to 50 μm, for example, 0.15 to 30 μm, preferably 0.2 to 10 μm, and more preferably 0.25 to 5 μm (particularly 0.25 to 1 μm). In the present invention, since the cellulose fiber has such a fiber diameter, it is easy to make paper and has excellent productivity, and a non-woven fabric suitable for power storage elements such as batteries and capacitors and filters can be prepared.
 さらに、繊維径分布の標準偏差は、例えば、1μm以下(例えば、5~1000nm)、好ましくは8~500nm、さらに好ましくは10~100nm程度である。本発明では、不織布を構成するセルロース繊維の繊維径が均一であるため、不織布の孔径を均一化できる。 Furthermore, the standard deviation of the fiber diameter distribution is, for example, 1 μm or less (for example, 5 to 1000 nm), preferably 8 to 500 nm, and more preferably about 10 to 100 nm. In this invention, since the fiber diameter of the cellulose fiber which comprises a nonwoven fabric is uniform, the hole diameter of a nonwoven fabric can be equalized.
 セルロース繊維の平均繊維長は、特に限定されないが、繊維同士が適度に交絡して不織布の強度を確保できる点から、0.01mm以上であるのが好ましく、例えば、0.05~10mm、好ましくは0.1~5mm、さらに好ましくは0.2~3mm(特に0.3~1mm)程度である。セルロース繊維の平均繊維径に対する平均繊維長(平均アスペクト比)は、例えば、100~10000、好ましくは200~5000、さらに好ましくは300~3000(特に、400~2000)程度であってもよい。 The average fiber length of the cellulose fibers is not particularly limited, but is preferably 0.01 mm or more, for example, 0.05 to 10 mm, preferably from the viewpoint that the fibers can be appropriately entangled to ensure the strength of the nonwoven fabric. The thickness is about 0.1 to 5 mm, more preferably about 0.2 to 3 mm (particularly 0.3 to 1 mm). The average fiber length (average aspect ratio) with respect to the average fiber diameter of the cellulose fibers may be, for example, about 100 to 10,000, preferably about 200 to 5,000, more preferably about 300 to 3,000 (particularly 400 to 2,000).
 なお、本発明において、前記平均繊維径、繊維径分布の標準偏差は、電子顕微鏡写真に基づいて測定した繊維径(n=20程度)から算出した値である。 In the present invention, the average fiber diameter and the standard deviation of the fiber diameter distribution are values calculated from the fiber diameter (about n = 20) measured based on an electron micrograph.
 セルロース繊維の脱水時間は、API規格の脱水量に関する試験方法に準拠して、0.5重量%濃度の繊維スラリーを用いて測定したとき、例えば、1000秒以上であり、好ましくは1200~10000秒、さらに好ましくは1500~8000秒(特に1800~7000秒)程度である。脱水時間が大きいほど、平均繊維長/平均繊維径比の高い繊維形状となり、保水力が高く、少量で機械的特性を向上できる。 The dehydration time of the cellulose fiber is, for example, 1000 seconds or more, preferably 1200 to 10000 seconds, when measured using a fiber slurry having a concentration of 0.5% by weight in accordance with a test method for dewatering amount of API standard. More preferably, it is about 1500 to 8000 seconds (especially 1800 to 7000 seconds). The longer the dehydration time, the higher the average fiber length / average fiber diameter ratio, and the higher the water retention, the better the mechanical properties.
 セルロース繊維は、水に対する分散性が高く、安定な分散液(又は懸濁液)を形成することができる。例えば、セルロースナノファイバーを水に懸濁させて、2重量%濃度にした懸濁液の粘度は、2000mPa・s以上であり、好ましくは3000~15000mPa・s、さらに好ましくは5000~10000mPa・s程度である。粘度は、B型粘度計を用いて、ロータNo.4を使用し、60rpmの回転数で、25℃における見かけ粘度として測定される値である。なお、フィブリル化の程度が小さかったり、繊維径が大きいと、水への分散性が低下し、均一な懸濁液が得られず、粘度を測定することができない。 Cellulose fibers are highly dispersible in water and can form a stable dispersion (or suspension). For example, the viscosity of a suspension in which cellulose nanofibers are suspended in water to a concentration of 2% by weight is 2000 mPa · s or more, preferably 3000 to 15000 mPa · s, more preferably about 5000 to 10000 mPa · s. It is. The viscosity was measured using a B-type viscometer using a rotor No. 4 is a value measured as an apparent viscosity at 25 ° C. at a rotation speed of 60 rpm. If the degree of fibrillation is small or the fiber diameter is large, the dispersibility in water decreases, a uniform suspension cannot be obtained, and the viscosity cannot be measured.
 [セルロース繊維の製造方法]
 セルロース繊維は、天然パルプなどをそのまま使用してもよいが、通常、原料セルロース繊維をミクロフィブリル化することにより得られ、詳細には、原料セルロース繊維を溶媒に分散させて分散液を調製する分散液調製工程、原料セルロース繊維を叩解してミクロフィブリル化するリファイナー工程を経て製造してもよい。
[Method for producing cellulose fiber]
Cellulose fibers may be natural pulp or the like, but are usually obtained by microfibrillation of raw material cellulose fibers, and more specifically, dispersion in which raw material cellulose fibers are dispersed in a solvent to prepare a dispersion. You may manufacture through the liquid preparation process and the refiner process which beats a raw material cellulose fiber and makes it microfibril.
 (分散液調製工程)
 原料繊維の平均繊維長は、例えば、0.01~20mm、好ましくは0.05~10mm、さらに好ましくは0.06~8mm程度であり、通常0.1~5mm程度である。また、原料繊維の平均繊維径は、0.01~500μm、好ましくは0.05~400μm、さらに好ましくは0.1~300μm(特に0.2~250μm)程度である。
(Dispersion preparation process)
The average fiber length of the raw fiber is, for example, 0.01 to 20 mm, preferably 0.05 to 10 mm, more preferably about 0.06 to 8 mm, and usually about 0.1 to 5 mm. The average fiber diameter of the raw fiber is about 0.01 to 500 μm, preferably about 0.05 to 400 μm, more preferably about 0.1 to 300 μm (particularly about 0.2 to 250 μm).
 溶媒としては、原料繊維に化学的又は物理的損傷を与えない限り特に制限されず、例えば、水、有機溶媒[アルコール類(メタノール、エタノール、2-プロパノール、イソプロパノールなどC1-4アルカノールなど)、エーテル類(ジエチルエーテル、ジイソプロピルエーテルなどのジC1-4アルキルエーテル、テトラヒドロフランなどの環状エーテル(環状C4-6エーテルなど))、エステル類(酢酸エチルなどアルカン酸エステル)、ケトン類(アセトン、メチルエチルケトン、メチルブチルケトンなどのジC1-5アルキルケトン、シクロヘキサノンなどのC4-10シクロアルカノンなど)、芳香族炭化水素類(トルエン、キシレンなど)、ハロゲン系炭化水素類(塩化メチル、フッ化メチルなど)など]などが挙げられる。 The solvent is not particularly limited as long as it does not cause chemical or physical damage to the raw fiber. For example, water, organic solvents [alcohols (C 1-4 alkanols such as methanol, ethanol, 2-propanol, isopropanol etc.), Ethers (diC 1-4 alkyl ethers such as diethyl ether and diisopropyl ether, cyclic ethers such as tetrahydrofuran (cyclic C 4-6 ethers and the like)), esters (alkanoic esters such as ethyl acetate), ketones (acetone, DiC 1-5 alkyl ketones such as methyl ethyl ketone and methyl butyl ketone, C 4-10 cycloalkanones such as cyclohexanone), aromatic hydrocarbons (toluene, xylene, etc.), halogenated hydrocarbons (methyl chloride, fluorine, etc.) Etc.) That.
 これらの溶媒は、単独で又は二種以上組み合わせて使用してもよい。また、これらの溶媒のうち、生産性、コストの点から、水が好適であり、必要により、水と水性有機溶媒(C1-4アルカノール、アセトンなど)との混合溶媒を用いてもよい。 These solvents may be used alone or in combination of two or more. Of these solvents, water is preferable from the viewpoint of productivity and cost. If necessary, a mixed solvent of water and an aqueous organic solvent (C 1-4 alkanol, acetone, etc.) may be used.
 リファイナー処理に供する原料繊維は、溶媒中に少なくとも共存した状態であればよく、リファイナー処理に先だって、原料繊維を溶媒中に分散(又は懸濁)させてもよい。分散は、例えば、慣用の分散機(超音波分散機、ホモディスパー、スリーワンモーターなど)などを用いて行ってもよい。なお、前記分散機は、機械的撹拌手段(撹拌棒、撹拌子など)を備えていてもよい。 The raw fiber to be subjected to the refiner treatment may be in a state of coexisting at least in the solvent, and the raw fiber may be dispersed (or suspended) in the solvent prior to the refiner treatment. Dispersion may be performed using, for example, a conventional disperser (such as an ultrasonic disperser, a homodisper, or a three-one motor). The disperser may include mechanical stirring means (such as a stirring bar and a stirring bar).
 原料繊維の溶媒中における濃度は、例えば、0.01~20重量%、好ましくは0.05~10重量%、さらに好ましくは0.1~5重量%(特に0.5~3重量%)程度であってもよい。 The concentration of the raw fiber in the solvent is, for example, about 0.01 to 20% by weight, preferably about 0.05 to 10% by weight, more preferably about 0.1 to 5% by weight (particularly about 0.5 to 3% by weight). It may be.
 (リファイナー工程)
 リファイナー処理では、ディスクリファイナー(シングルディスクリファイナー、ダブルディスクリファイナーなど)を使用することができる。前記ディスクリファイナーのディスククリアランスは、0.1~0.3mm、好ましくは0.12~0.28mm、さらに好ましくは0.13~0.25mm(例えば、0.14~0.23mm)程度であってもよい。
(Refiner process)
In the refiner process, a disk refiner (single disk refiner, double disk refiner, etc.) can be used. The disc refiner has a disc clearance of about 0.1 to 0.3 mm, preferably about 0.12 to 0.28 mm, more preferably about 0.13 to 0.25 mm (eg, 0.14 to 0.23 mm). May be.
 ディスクの回転数は、特に制限されず、1,000~10,000rpmの広い範囲から選択でき、例えば、1,000~8,000rpm、好ましくは1,300~6,000rpm、さらに好ましくは1,600~4,000rpm程度であってもよい。 The rotational speed of the disk is not particularly limited, and can be selected from a wide range of 1,000 to 10,000 rpm. For example, 1,000 to 8,000 rpm, preferably 1,300 to 6,000 rpm, more preferably 1,000 rpm. It may be about 600 to 4,000 rpm.
 前記リファイナー処理では、処理回数(パス回数)は、1~20回、好ましくは2~15回、さらに好ましくは3~10回(例えば、4~9回)程度であってもよい。 In the refiner processing, the number of processing (passing) may be about 1 to 20 times, preferably about 2 to 15 times, more preferably about 3 to 10 times (for example, 4 to 9 times).
 原料繊維の叩解処理の度合いは、例えば、カナディアンフリーネス値(CSF)が前記範囲となるような度合いであってもよい。なお、叩解処理の度合いは、ディスククリアランス及びリファイナー処理回数で調節することができる。ディスククリアランスが狭すぎたり、処理回数が多すぎると、原料繊維が大きな剪断力を受け、フィブリル化が進行し、ねじれや表面の荒れが生じ、繊維同士が絡まりやすくなり、リファイナー処理して得られたフィブリル化繊維の分散性が低下する。また、ディスククリアランスが広すぎると、原料繊維に加わる剪断力が小さくなり、未分割部分が残存する。 The degree of the beating process of the raw fiber may be, for example, such that the Canadian freeness value (CSF) falls within the above range. Note that the degree of the beating process can be adjusted by the disc clearance and the number of refiner processes. If the disk clearance is too narrow or the number of treatments is too high, the raw fiber will receive a large shearing force, fibrillation will proceed, twisting and roughening of the surface will occur, and the fibers will tend to get entangled. The dispersibility of the fibrillated fibers is reduced. On the other hand, if the disk clearance is too wide, the shearing force applied to the raw fiber becomes small, and an undivided portion remains.
 さらに、セルロース繊維は、ナノメータサイズの繊維とする場合には、後述するポリオレフィン繊維と同様に、リファイナー工程の後に、さらに非破砕型ホモバルブシートを用いたホモジナイズ工程を経てもよい。 Further, when the cellulose fiber is a nanometer-sized fiber, it may be further subjected to a homogenization step using a non-crushing type homovalve sheet after the refiner step, like the polyolefin fiber described later.
 [ポリオレフィン繊維]
 本発明では、ポリオレフィン繊維は、バインダー繊維(又は紙力増強剤)としての役割を有するとともに、配合割合を増加することにより、不織布に対してシャットダウン機能も付与する役割も有する。
[Polyolefin fiber]
In the present invention, the polyolefin fiber has a role as a binder fiber (or paper strength enhancer) and also has a role of providing a shutdown function to the nonwoven fabric by increasing the blending ratio.
 ポリオレフィン繊維を構成するポリオレフィンは、エチレンやプロピレンなどのC2-6オレフィン単位を含む重合体であればよい。ポリオレフィンとしては、例えば、C2-6オレフィンの単独又は共重合体(ポリエチレン、エチレン-プロピレン共重合体などのポリエチレン系樹脂、ポリプロピレン、プロピレン-エチレン共重合体、プロピレン-ブテン共重合体などのポリプロピレン系樹脂、ポリ(メチルペンテン-1)、プロピレン-メチルペンテン共重合体など)、C2-6オレフィンと共重合性単量体との共重合体(エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸共重合体又はその塩(例えば、アイオノマー樹脂)、エチレン-(メタ)アクリル酸エステル共重合体などの共重合体が挙げられる。これらのポリオレフィンは、単独で又は二種以上組み合わせて使用できる。 The polyolefin constituting the polyolefin fiber may be a polymer containing C 2-6 olefin units such as ethylene and propylene. Examples of polyolefins include C 2-6 olefin homopolymers or copolymers (polyethylene resins such as polyethylene and ethylene-propylene copolymers, polypropylene such as polypropylene, propylene-ethylene copolymers, and propylene-butene copolymers). Resin, poly (methylpentene-1), propylene-methylpentene copolymer, etc.), copolymer of C2-6 olefin and copolymerizable monomer (ethylene-vinyl acetate copolymer, ethylene-vinyl) Copolymers such as alcohol copolymers, ethylene- (meth) acrylic acid copolymers, ethylene- (meth) acrylic acid copolymers or salts thereof (for example, ionomer resins), ethylene- (meth) acrylic acid ester copolymers, etc. These polyolefins may be used alone or in combination of two or more. You can use.
 これらのポリオレフィンのうち、適度な耐熱性を有するとともに、電池やコンデンサのセパレータとして利用した場合にシャットダウン機能を付与できる点から、ポリエチレン系樹脂が好ましい。 Of these polyolefins, polyethylene resins are preferable because they have appropriate heat resistance and can provide a shutdown function when used as a battery or capacitor separator.
 ポリエチレン系樹脂としては、例えば、低、中又は高密度ポリエチレン、直鎖状ポリエチレン(例えば、直鎖状低密度ポリエチレンなど)、分岐鎖状ポリエチレン、低分子量ポリエチレン、アイオノマー、塩素化ポリエチレン、エチレン-プロピレン共重合体、エチレン-ブテン-1共重合体、エチレン-プロピレン-ブテン-1共重合体、エチレン-(4-メチルペンテン-1)共重合体、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体又はそのアイオノマー、エチレン-アクリル酸エチル共重合体などのエチレン-(メタ)アクリレート共重合体などが挙げられる。これらのポリエチレン系樹脂は、単独で又は二種以上組み合わせて使用できる。これらのポリエチレン系樹脂において、エチレン含量(重合体の全単位におけるエチレン単位の割合)は、例えば、85~100モル%、好ましくは90~100モル%、さらに好ましくは95~100モル%(特に98~100モル%)程度であってもよい。特に、これらのポリエチレン系樹脂のうち、低、中又は高密度ポリエチレン、直鎖状低密度ポリエチレンなどが好ましく、中又は高密度ポリエチレン(特に、高密度ポリエチレン)が特に好ましい。 Examples of polyethylene resins include low, medium or high density polyethylene, linear polyethylene (for example, linear low density polyethylene), branched polyethylene, low molecular weight polyethylene, ionomer, chlorinated polyethylene, ethylene-propylene. Copolymer, ethylene-butene-1 copolymer, ethylene-propylene-butene-1 copolymer, ethylene- (4-methylpentene-1) copolymer, ethylene-vinyl acetate copolymer, ethylene- (meta ) Acrylic acid copolymer or its ionomer, ethylene- (meth) acrylate copolymer such as ethylene-ethyl acrylate copolymer, and the like. These polyethylene resins can be used alone or in combination of two or more. In these polyethylene resins, the ethylene content (ratio of ethylene units in all units of the polymer) is, for example, 85 to 100 mol%, preferably 90 to 100 mol%, more preferably 95 to 100 mol% (particularly 98 to 100 mol%). About 100 mol%). In particular, among these polyethylene resins, low, medium or high density polyethylene, linear low density polyethylene and the like are preferable, and medium or high density polyethylene (particularly high density polyethylene) is particularly preferable.
 ポリオレフィン(特にポリエチレン系樹脂)の融点又は軟化点は、耐熱性の点から、100℃以上であればよく、例えば、100~150℃、好ましくは110~145℃、さらに好ましくは120~140℃(特に130~138℃)程度である。ポリオレフィンの融点又は軟化点がこの範囲にあると、適度な耐熱性を有し、電池やコンデンサのセパレータとして利用した場合、電気化学的に安定であり、かつシャットダウン機能を発現できる。 The melting point or softening point of polyolefin (especially polyethylene resin) may be 100 ° C. or more from the viewpoint of heat resistance, for example, 100 to 150 ° C., preferably 110 to 145 ° C., more preferably 120 to 140 ° C. ( In particular, it is about 130 to 138 ° C. When the melting point or softening point of the polyolefin is within this range, it has moderate heat resistance, is electrochemically stable when used as a battery or capacitor separator, and can exhibit a shutdown function.
 ポリオレフィン繊維の平均繊維径は1.5μm以下(例えば、10~1500nm)であり、例えば、10~1000nm、好ましくは100~900nm、さらに好ましくは300~800nm(特に500~700nm)程度である。繊維径分布の標準偏差は、例えば、1μm以下(例えば、10~1000nm)、好ましくは50~800nm、さらに好ましくは100~500nm程度である。本発明では、不織布を構成するポリオレフィン繊維の繊維径が均一であるため、不織布の孔径を均一化できる。 The average fiber diameter of the polyolefin fiber is 1.5 μm or less (for example, 10 to 1500 nm), for example, about 10 to 1000 nm, preferably about 100 to 900 nm, more preferably about 300 to 800 nm (particularly 500 to 700 nm). The standard deviation of the fiber diameter distribution is, for example, 1 μm or less (for example, 10 to 1000 nm), preferably 50 to 800 nm, and more preferably about 100 to 500 nm. In this invention, since the fiber diameter of the polyolefin fiber which comprises a nonwoven fabric is uniform, the hole diameter of a nonwoven fabric can be equalize | homogenized.
 セルロース繊維の平均繊維径とポリオレフィン繊維の平均繊維径との比は、前者/後者=1000/1~1/1000程度の範囲から選択でき、例えば、100/1~1/100、好ましくは10/1~1/10、さらに好ましくは5/1~1/5(特に1/1~1/3)程度であってもよい。両者の繊維径比がこの範囲にあると、両繊維を混抄し易く、均一な孔径を形成し易い。 The ratio of the average fiber diameter of the cellulose fibers to the average fiber diameter of the polyolefin fibers can be selected from the range of the former / the latter = 1000/1 to 1/1000, for example, 100/1 to 1/100, preferably 10 / It may be about 1 to 1/10, more preferably about 5/1 to 1/5 (particularly 1/1 to 1/3). When both fiber diameter ratios are within this range, both fibers are easily mixed and a uniform pore diameter is easily formed.
 ポリオレフィン繊維の平均繊維長は1~1000μm程度の範囲から選択できるが、不織布の機械的特性を向上できる点から、例えば、10~500μm、好ましくは50~400μm、さらに好ましくは100~300μm(特に150~200μm)程度であってもよい。さらに、平均繊維径に対する平均繊維長の比(平均繊維長/平均繊維径)(平均アスペクト比)は10以上であり、例えば、10~10000、好ましくは50~5000、さらに好ましくは100~3000(特に200~1000)程度である。本発明では、このよう繊維長及びアスペクト比を有するため、セルロース繊維とポリオレフィン繊維又はポリオレフィン繊維同士が適度に絡み合うためか、不織布の強度を向上できる。 The average fiber length of the polyolefin fibers can be selected from a range of about 1 to 1000 μm. However, from the viewpoint of improving the mechanical properties of the nonwoven fabric, for example, 10 to 500 μm, preferably 50 to 400 μm, more preferably 100 to 300 μm (particularly 150 to 150 μm). About 200 μm). Further, the ratio of the average fiber length to the average fiber diameter (average fiber length / average fiber diameter) (average aspect ratio) is 10 or more, for example, 10 to 10,000, preferably 50 to 5000, more preferably 100 to 3000 ( In particular, it is about 200 to 1000). In this invention, since it has such fiber length and aspect ratio, since the cellulose fiber and polyolefin fiber or polyolefin fiber are intertwined moderately, the intensity | strength of a nonwoven fabric can be improved.
 なお、本発明において、前記平均繊維径、繊維径分布の標準偏差、最大繊維径は、電子顕微鏡写真に基づいて測定した繊維径(n=20程度)から算出した値である。 In the present invention, the average fiber diameter, the standard deviation of the fiber diameter distribution, and the maximum fiber diameter are values calculated from the fiber diameter (about n = 20) measured based on an electron micrograph.
 ポリオレフィン繊維の横断面形状(繊維の長手方向に垂直な断面形状)は、等方形状(例えば、真円形状などの略円形状、正多角形状など)であってもよく、異方形状(扁平形状、楕円形状など)であってもよい。略等方形状の場合、短径に対する長径の比(平均アスペクト比)は、例えば、1~2、好ましくは1~1.5、さらに好ましくは1~1.3(特に1~1.2)程度であってもよい。 The cross-sectional shape (cross-sectional shape perpendicular to the longitudinal direction of the fiber) of the polyolefin fiber may be an isotropic shape (for example, a substantially circular shape such as a perfect circle shape or a regular polygon shape), or an anisotropic shape (flat shape) Shape, oval shape, etc.). In the case of a substantially isotropic shape, the ratio of the major axis to the minor axis (average aspect ratio) is, for example, 1 to 2, preferably 1 to 1.5, more preferably 1 to 1.3 (particularly 1 to 1.2). It may be a degree.
 ポリオレフィン繊維のカナダ標準濾水度(CSF)は、例えば、100~600ml、好ましくは150~500ml、さらに好ましくは200~400ml程度であってもよい。 The Canadian standard freeness (CSF) of the polyolefin fiber may be, for example, about 100 to 600 ml, preferably 150 to 500 ml, and more preferably about 200 to 400 ml.
 [ポリオレフィン繊維の製造方法]
 ポリオレフィン繊維としては、通常、原料ポリオレフィン繊維をミクロフィブリル化することにより得られる。原料ポリオレフィン繊維の平均繊維長は、0.01~5mm、好ましくは0.03~4mm、さらに好ましくは0.05~3mm(特に、0.1~2mm)程度であり、通常0.1~5mm程度である。また、原料ポリオレフィン繊維の平均繊維径は、0.01~50μm、好ましくは0.05~40μm、さらに好ましくは0.1~30μm(例えば、0.2~25μm)程度である。
[Production method of polyolefin fiber]
The polyolefin fiber is usually obtained by microfibrillation of a raw material polyolefin fiber. The average fiber length of the raw material polyolefin fiber is 0.01 to 5 mm, preferably 0.03 to 4 mm, more preferably 0.05 to 3 mm (particularly 0.1 to 2 mm), and usually 0.1 to 5 mm. Degree. The average fiber diameter of the raw polyolefin fibers is about 0.01 to 50 μm, preferably 0.05 to 40 μm, more preferably about 0.1 to 30 μm (for example, 0.2 to 25 μm).
 ミクロフィブリル化の方法は、詳細には、原料繊維を溶媒に分散させて分散液を調製する分散液調製工程、破砕型ホモバルブシートを備えたホモジナイザーで前記分散液をホモジナイズ処理するホモジナイズ工程を含む製造方法により得られる。本発明では、特に、以下に示す製造方法により原料繊維をミクロフィブリル化することにより、平均繊維径1.5μm以下のポリオレフィン繊維を調製できる。 Specifically, the microfibrillation method includes a dispersion preparation step in which a raw material fiber is dispersed in a solvent to prepare a dispersion, and a homogenization step in which the dispersion is homogenized with a homogenizer equipped with a crushing type homovalve sheet. Obtained by the manufacturing method. In the present invention, in particular, polyolefin fibers having an average fiber diameter of 1.5 μm or less can be prepared by microfibrillation of raw material fibers by the production method shown below.
 分散液調製工程は、前記セルロース繊維と同様の方法で分散液を調製できる。 In the dispersion preparation step, a dispersion can be prepared by the same method as the cellulose fiber.
 ホモジナイズ工程について、図面を参照して説明する。図1は、破砕型ホモバルブシートを備えたホモジナイザーで前記分散液をホモジナイズ処理する工程を示す概略図であり、図2は、破砕型ホモバルブシートとホモバルブとの対向部分の拡大断面図であり、図3は、破砕型ホモバルブシートの斜視図である。一方、図4は、非破砕型ホモバルブシートの斜視図である。 The homogenization process will be described with reference to the drawings. FIG. 1 is a schematic view showing a process of homogenizing the dispersion with a homogenizer equipped with a crushing type homo-valve sheet, and FIG. 2 is an enlarged cross-sectional view of a facing portion between the crushing type homo-valve sheet and the homo-valve. FIG. 3 is a perspective view of a crushing type homo-valve seat. On the other hand, FIG. 4 is a perspective view of a non-crushing homo valve seat.
 ホモジナイザーは、中空円筒状インパクトリング6と、このインパクトリング6の上流側に挿入して配設されたホモバルブシート2の中空円筒状凸部2bと、前記インパクトリング6の下流側に、前記中空円筒状凸部2bと対向して挿入された円柱状ホモバルブ5とを備えており、前記中空円筒状凸部2bと前記円柱状ホモバルブ5とは同じ外径を有している。また、中空円筒状凸部2bの下流側の内壁は、下流方向に向かって拡がるテーパー部(傾斜面)2dを有し、中空円筒状凸部2bの下流端は、内径d及び端面の厚みtを有する薄肉のリング状端面2cを形成している。さらに、このリング状端面2cと前記ホモバルブ5と前記インパクトリング6とで小径オリフィス(間隙)4を形成している。 The homogenizer includes a hollow cylindrical impact ring 6, a hollow cylindrical convex portion 2 b of the homovalve seat 2 that is inserted and disposed on the upstream side of the impact ring 6, and a hollow cylinder on the downstream side of the impact ring 6. A cylindrical homobulb 5 inserted opposite to the cylindrical convex portion 2b is provided, and the hollow cylindrical convex portion 2b and the columnar homobulb 5 have the same outer diameter. In addition, the inner wall on the downstream side of the hollow cylindrical convex portion 2b has a tapered portion (inclined surface) 2d that expands in the downstream direction, and the downstream end of the hollow cylindrical convex portion 2b has an inner diameter d and a thickness t of the end surface. A thin ring-shaped end face 2c having the shape is formed. Further, the ring-shaped end face 2c, the homo valve 5 and the impact ring 6 form a small diameter orifice (gap) 4.
 本発明では、破砕型ホモバルブシート2を使用することが大きな特徴である。破砕型ホモバルブシート2は、内部に円筒状流路3を有する中空部材であり、流入口3aを有する中空円盤状本体部2aと、この円盤状本体部2aの内壁から下流方向に延出し、かつ流出口3bを有する中空円筒状凸部2bとで構成されている。さらに、破砕型ホモバルブシート2は、前述のように、内径が拡大するテーパー部2dを形成することにより、図4に示す一般的な(通常の)非破砕型ホモバルブシート12と比べて、流出口3bを形成するリング状端面2cの厚みを薄く形成している。 In the present invention, the use of the crushing type homo-valve seat 2 is a great feature. The crushing type homo-valve seat 2 is a hollow member having a cylindrical flow path 3 therein, and extends in a downstream direction from a hollow disc-shaped main body portion 2a having an inflow port 3a and an inner wall of the disc-shaped main body portion 2a. And it is comprised with the hollow cylindrical convex part 2b which has the outflow port 3b. Furthermore, as described above, the crushing type homovalve seat 2 is formed with the tapered portion 2d having an enlarged inner diameter, so that compared to the general (normal) noncrushing type homovalve seat 12 shown in FIG. The ring-shaped end surface 2c that forms the outlet 3b is formed thin.
 このようなホモジナイザーによるホモジナイズ処理では、図1に示すように、原料繊維1を含む分散液は、破砕型ホモバルブシート2の流入口3aからホモバルブシート内の流路3に流入し、流路3を通過した後、小径オリフィス4を通過して、ポリオレフィン繊維7を含む分散液となる。詳しくは、ホモジナイザーによる処理では、高圧でホモジナイザー内を圧送される原料繊維1が、狭い間隙である小径オリフィス4を通過する際に、小径オリフィス4の壁面(特にインパクトリング6の壁面)と衝突することにより、剪断応力又は切断作用を受けて分割され、均一な繊維径を有するポリオレフィン繊維7となる。特に、ホモバルブシート内の流路3を通過した分散液がホモバルブシート2とホモバルブ5とで形成された間隙を通過する際に、分散液の流速が急激に上昇するのに伴って、流速の上昇に反比例して分散液の圧送圧力が急激に低下する。そのため、分散液の圧力差を大きくでき、前記間隙を通過した分散液のキャビテーションが激しくなり、小径オリフィス4内での壁面との衝突力の上昇や気泡の崩壊により原料繊維1の均一なミクロフィブリル化を実現していると推測できる。 In such a homogenization process using a homogenizer, as shown in FIG. 1, the dispersion liquid containing the raw fiber 1 flows into the flow path 3 in the homo valve seat from the inlet 3a of the crushing homo valve seat 2, and the flow path After passing through 3, it passes through the small-diameter orifice 4 and becomes a dispersion containing polyolefin fibers 7. Specifically, in the processing by the homogenizer, the raw material fiber 1 that is pumped through the homogenizer at high pressure collides with the wall surface of the small diameter orifice 4 (particularly the wall surface of the impact ring 6) when passing through the small diameter orifice 4 that is a narrow gap. Thus, the polyolefin fiber 7 is divided by receiving a shearing stress or a cutting action and has a uniform fiber diameter. In particular, when the dispersion liquid that has passed through the flow path 3 in the homo valve seat passes through the gap formed by the homo valve seat 2 and the homo valve 5, the flow speed of the dispersion liquid increases rapidly. The pumping pressure of the dispersion rapidly decreases in inverse proportion to the increase in. Therefore, the pressure difference of the dispersion liquid can be increased, the cavitation of the dispersion liquid that has passed through the gap becomes intense, and the uniform microfibril of the raw fiber 1 is increased due to the increase of the collision force with the wall surface in the small diameter orifice 4 and the collapse of the bubbles. It can be inferred that this has been realized.
 このようなミクロフィブリル化を効果的に行うために、破砕型ホモバルブシートの流出口を形成する壁部の端面の厚み(中空円筒状凸部の下流端のリング状端面)を薄くすることが重要であるが、具体的には、破砕型ホモバルブシートにおける中空円筒状凸部の下流端の内径dと、下流端のリング状端面の厚みtとの比を、前者/後者=100/1~5/1、好ましくは80/1~6/1(例えば、50/1~8/1)、さらに好ましくは30/1~10/1(特に20/1~12/1)程度に調整する。両者の比率がこの範囲にあると、ホモバルブシートとホモバルブとの間隙を通過する分散液の圧力の急激な低下を実現でき、原料繊維をナノメータサイズで均一な繊維径に分割できる。流出口を形成する壁部の端面の厚みは、流出口の口径に応じて選択できるが、通常、0.01~2mm、好ましくは0.05~1.5mm、さらに好ましくは0.1~1mm(特に0.2~0.8mm)程度である。 In order to effectively perform such microfibrillation, it is possible to reduce the thickness of the end surface of the wall portion forming the outlet of the crushing type homovalve seat (the ring-shaped end surface at the downstream end of the hollow cylindrical convex portion). Although it is important, specifically, the ratio between the inner diameter d of the downstream end of the hollow cylindrical convex portion and the thickness t of the ring-shaped end surface of the downstream end in the crush-type homovalve seat is expressed by the former / the latter = 100/1. Adjusted to about 5/1, preferably about 80/1 to 6/1 (for example, 50/1 to 8/1), more preferably about 30/1 to 10/1 (especially 20/1 to 12/1). . When the ratio between the two is within this range, a rapid decrease in the pressure of the dispersion liquid passing through the gap between the homovalve seat and the homovalve can be realized, and the raw fibers can be divided into nanometer-sized uniform fiber diameters. The thickness of the end face of the wall portion forming the outlet can be selected according to the diameter of the outlet, but is usually 0.01 to 2 mm, preferably 0.05 to 1.5 mm, more preferably 0.1 to 1 mm. (Especially 0.2 to 0.8 mm).
 小径オリフィスの間隔又はクリアランス(特に、ホモバルブシート凸部の端面とホモバルブとの間隔)は、例えば、5~50μm、好ましくは10~40μm、さらに好ましくは15~35μm(特に20~30μm)程度である。 The interval or clearance of the small diameter orifice (especially the interval between the end face of the convex portion of the homovalve seat and the homovalve) is, for example, about 5 to 50 μm, preferably 10 to 40 μm, more preferably 15 to 35 μm (particularly 20 to 30 μm). is there.
 このようなホモジナイザーにおいて、小径オリフィスを通過させるための圧力(又はホモジナイザーへ分散液を圧送する圧力(又は処理圧力))は、例えば、30~200MPa程度の範囲から選択でき、好ましくは35~150MPa、さらに好ましくは40~140MPa程度であってもよい。本発明では、破砕型ホモバルブシートを備えたホモジナイザーに対して、このような高い圧力で分散液を圧送することにより、極細で均一な繊維径に分割できる。 In such a homogenizer, the pressure for passing through the small-diameter orifice (or the pressure for feeding the dispersion liquid to the homogenizer (or treatment pressure)) can be selected from the range of about 30 to 200 MPa, preferably 35 to 150 MPa, More preferably, it may be about 40 to 140 MPa. In this invention, it can divide | segment into an ultrafine and uniform fiber diameter by pumping a dispersion liquid with such a high pressure with respect to the homogenizer provided with the crushing-type homovalve seat.
 また、小径オリフィスへの通過と壁面への衝突とを繰り返して行うことにより、前記原料繊維のミクロフィブリル化の程度を適宜調整することができる。小径オリフィスを通過させる処理回数(又はパス回数)は、例えば、5~100回程度の範囲から選択でき、好ましくは10~80回、さらに好ましくは12~60回程度であってもよい。 Further, by repeatedly passing through the small-diameter orifice and colliding with the wall surface, the degree of microfibrillation of the raw fiber can be appropriately adjusted. The number of treatments (or the number of passes) that pass through the small-diameter orifice can be selected from a range of, for example, about 5 to 100 times, preferably 10 to 80 times, and more preferably about 12 to 60 times.
 さらに、前記処理圧力は、処理回数に応じて選択してもよく、例えば、処理圧力が高圧処理(例えば、60~200MPa、好ましくは80~150MPa、さらに好ましくは100~130MPa程度)の場合、処理回数は、例えば、3~50回、好ましくは5~20回、さらに好ましくは7~15回程度である。一方、処理圧力が低圧処理(例えば、20~80MPa、好ましくは30~70MPa、さらに好ましくは40~60MPa程度)の場合、処理回数は、例えば、5~100回、好ましくは10~50回、さらに好ましくは15~30回程度である。 Further, the treatment pressure may be selected according to the number of treatments. For example, when the treatment pressure is a high-pressure treatment (eg, about 60 to 200 MPa, preferably about 80 to 150 MPa, more preferably about 100 to 130 MPa), The number of times is, for example, about 3 to 50 times, preferably about 5 to 20 times, and more preferably about 7 to 15 times. On the other hand, when the treatment pressure is low-pressure treatment (for example, about 20 to 80 MPa, preferably about 30 to 70 MPa, more preferably about 40 to 60 MPa), the number of treatments is, for example, 5 to 100 times, preferably 10 to 50 times, Preferably about 15 to 30 times.
 一般的にホモジナイズ処理において、処理圧力が高すぎたり、処理回数が多すぎると、繊維が大きな剪断力を受け、繊維の切断、ねじれなどが生じ、繊維の特性が失われたり、フィブリル化が進行し、繊維同士の強固な絡み合いが生じるため、繊維の分散性が低下し易い。これに対して、本発明では、破砕型ホモバルブシートを用いることにより、これらの問題を解消できる。 Generally, in the homogenization treatment, if the treatment pressure is too high or the number of treatments is too high, the fiber is subjected to a large shearing force, causing the fiber to be cut or twisted, resulting in loss of fiber properties or fibrillation. In addition, since strong entanglement between the fibers occurs, the dispersibility of the fibers tends to decrease. On the other hand, in this invention, these problems can be eliminated by using a crushing type homo valve seat.
 ホモジナイズ工程では、非破砕型ホモバルブシートを備えたホモジナイザーを用いたホモジナイズ処理を組み合わせてもよい。特に、前記破砕型ホモバルブシートを備えたホモジナイザーによるホモジナイズ処理(特に60MPa以上の高圧処理)の前工程(予備工程)として、非破砕型ホモジナイザーを備えたホモジナイザーを用いてホモジナイズ処理してもよい。ホモジナイズ工程において、非破砕型ホモバルブシートを備えたホモジナイザーで前処理することにより、破砕型ホモバルブシートを備えたホモジナイザーでの処理効率を向上できる。 In the homogenization step, a homogenization process using a homogenizer equipped with a non-crushing type homo valve seat may be combined. In particular, as a pre-process (preliminary process) of a homogenization process (particularly, a high-pressure process of 60 MPa or more) using a homogenizer provided with the crushing type homovalve seat, a homogenization process may be performed using a homogenizer provided with a non-crushing type homogenizer. In the homogenization step, pretreatment with a homogenizer provided with a non-crushing type homovalve sheet can improve the processing efficiency in the homogenizer provided with a crushing type homovalve sheet.
 非破砕型ホモバルブシートでは、図4に示されるように、通常、ホモバルブシート12の中空円盤状本体部12aから延出する中空円筒状凸部12bの内壁にはテーパ部が形成されておらず、ホモバルブシートにおける中空円筒状凸部の下流端の内径と、下流端のリング状端面の厚みとの比は、通常、前者/後者=3/1~1/1(特に2.5/1~1.5/1)程度である。 In the non-crushing type homo-valve seat, as shown in FIG. 4, a tapered portion is usually formed on the inner wall of the hollow cylindrical convex portion 12 b extending from the hollow disc-shaped main body portion 12 a of the homo-valve seat 12. First, the ratio of the inner diameter of the downstream end of the hollow cylindrical convex portion of the homovalve seat to the thickness of the ring-shaped end surface of the downstream end is usually the former / the latter = 3/1 to 1/1 (especially 2.5 / 1 to 1.5 / 1).
 非破砕型ホモバルブシートを備えたホモジナイザーにおいて、小径オリフィスを通過させるための圧力(又はホモジナイザーへ分散液を圧送する圧力(又は処理圧力))は、例えば、30~100MPa、好ましくは35~80MPa、さらに好ましくは40~70MPa程度であってもよい。パス回数は、例えば、10~40回、好ましくは12~30回、さらに好ましくは15~25回程度であってもよい。 In the homogenizer provided with the non-crushing type homovalve seat, the pressure for passing through the small-diameter orifice (or the pressure for feeding the dispersion liquid to the homogenizer (or processing pressure)) is, for example, 30 to 100 MPa, preferably 35 to 80 MPa, More preferably, it may be about 40 to 70 MPa. The number of passes may be, for example, about 10 to 40 times, preferably about 12 to 30 times, and more preferably about 15 to 25 times.
 ポリオレフィン繊維の製造方法においても、前記ホモジナイズ工程の前工程(予備工程)として、分散液をリファイナー処理してもよい。リファイナー処理としては、前記セルロース繊維の製造方法と同様のリファイナー処理を行ってもよい。 Also in the polyolefin fiber manufacturing method, the dispersion may be refined as a pre-process (preliminary process) of the homogenization process. As a refiner process, you may perform the refiner process similar to the manufacturing method of the said cellulose fiber.
 なお、セルロース繊維及びポリオレフィン繊維のいずれもミクロフィブリル化を行う場合、両繊維のミクロフィブリル化はそれぞれ別個に処理する方法、同時に処理する方法のいずれの方法であってもよい。 When both the cellulose fiber and the polyolefin fiber are microfibrillated, the microfibrillation of both fibers may be either a method of separately processing or a method of simultaneously processing.
 [不織布及びその製造方法]
 本発明の不織布(抄紙体)において、セルロース繊維とポリオレフィン繊維との割合(重量比)は、前者/後者=99.9/0.1~10/90程度の範囲から選択でき、例えば、99/1~20/80、好ましくは98/2~30/70、さらに好ましくは97/3~40/60程度である。
[Nonwoven fabric and production method thereof]
In the nonwoven fabric (paper body) of the present invention, the ratio (weight ratio) between cellulose fibers and polyolefin fibers can be selected from the range of the former / the latter = about 99.9 / 0.1 to 10/90. It is about 1-20 / 80, preferably 98 / 2-30 / 70, and more preferably about 97 / 3-40 / 60.
 さらに、両者の割合は用途に応じて適宜選択でき、シャットダウン機能が必要な蓄電素子用セパレータ(特に、電池、コンデンサのセパレータ)では、セルロース繊維とポリオレフィン繊維との割合(重量比)が、前者/後者=70/30~20/80、好ましくは65/35~25/75、さらに好ましくは60/40~30/70(特に55/45~40/60)程度である。このような割合では、高温で溶融したポリオレフィン繊維がセパレータの孔を塞ぐことによりシャットダウン機能が発現する。 Furthermore, the ratio of the two can be appropriately selected depending on the application, and in the separator for an electricity storage element (especially a battery or capacitor separator) that requires a shutdown function, the ratio (weight ratio) of cellulose fiber to polyolefin fiber is The latter = 70/30 to 20/80, preferably 65/35 to 25/75, more preferably about 60/40 to 30/70 (particularly 55/45 to 40/60). In such a ratio, the shutdown function is manifested by the polyolefin fibers melted at a high temperature closing the pores of the separator.
 一方、親水性が必要な用途(例えば、水系フィルターなど)では、前者/後者=99.9/0.1~50/50、好ましくは99.5/0.5~70/30、さらに好ましくは99/1~80/20(特に97/3~10/90)程度である。 On the other hand, in applications that require hydrophilicity (for example, aqueous filters), the former / the latter = 99.9 / 0.1 to 50/50, preferably 99.5 / 0.5 to 70/30, more preferably It is about 99/1 to 80/20 (particularly 97/3 to 10/90).
 本発明の不織布は、用途に応じて、慣用の添加剤、例えば、サイズ剤、ワックス、無機充填剤、着色剤、安定化剤(酸化防止剤、熱安定剤、紫外線吸収剤など)、可塑剤、帯電防止剤、難燃剤などを含有していてもよい。なお、本発明の不織布は、前述のように、バインダー繊維としても機能するポリオレフィン繊維を含むため、他の合成樹脂、ビニロン繊維などのバインダー繊維、ポリアクリルアミド、デンプン、天然ゴムなどの紙力増強剤を含んでいなくてもよい。特に、本発明の不織布は、ビニロン繊維など、親水性でかつ融点の低いバインダー繊維を含まないため、耐熱性が高く、電気化学的にも安定である。すなわち、本発明の不織布は、親水性バインダー繊維を実質的に含まないのが好ましい。また、本発明の不織布は、融点100℃未満の合成樹脂を実質的に含まないのが好ましい。なお、本発明の不織布は、紙力増強剤として、発ガン性の虞があるポリアクリルアミドを実質的に含まないため、安全性も高い。 The non-woven fabric of the present invention is a conventional additive such as a sizing agent, wax, inorganic filler, colorant, stabilizer (antioxidant, heat stabilizer, ultraviolet absorber, etc.), plasticizer depending on the application. Further, it may contain an antistatic agent, a flame retardant and the like. In addition, since the nonwoven fabric of the present invention includes polyolefin fibers that also function as binder fibers as described above, other synthetic resins, binder fibers such as vinylon fibers, paper strength enhancers such as polyacrylamide, starch, and natural rubber. May not be included. In particular, since the nonwoven fabric of the present invention does not contain binder fibers having a low melting point such as vinylon fibers, the nonwoven fabric has high heat resistance and is electrochemically stable. That is, it is preferable that the nonwoven fabric of this invention does not contain a hydrophilic binder fiber substantially. Moreover, it is preferable that the nonwoven fabric of this invention does not contain the synthetic resin below melting | fusing point less than 100 degreeC substantially. In addition, since the nonwoven fabric of this invention does not contain polyacrylamide with a possibility of carcinogenicity as a paper strength enhancer, it is also highly safe.
 本発明の不織布は、機械的特性に優れ、薄肉であっても強度が高く、坪量10g/mにおける引張強度が12N/15mm以上であり、例えば、12~30N/15mm、好ましくは13~25N/15mm、さらに好ましくは14~20N/15mm(特に15~18N/15mm)程度である。 The nonwoven fabric of the present invention is excellent in mechanical properties, has high strength even when thin, and has a tensile strength of 12 N / 15 mm or more at a basis weight of 10 g / m 2 , for example, 12 to 30 N / 15 mm, preferably 13 to It is about 25 N / 15 mm, more preferably 14 to 20 N / 15 mm (especially 15 to 18 N / 15 mm).
 本発明の不織布は、前記引張強度を有しているにも拘わらず、透気性にも優れており、坪量10g/mにおける透気が10~500秒/100mlであり、例えば、10~300秒/100ml、好ましくは30~200秒/100ml、さらに好ましくは50~100秒/100ml(特に60~80秒/100ml)程度である。 The nonwoven fabric of the present invention is excellent in air permeability despite having the above tensile strength, and the air permeability at a basis weight of 10 g / m 2 is 10 to 500 seconds / 100 ml. It is about 300 seconds / 100 ml, preferably 30 to 200 seconds / 100 ml, more preferably about 50 to 100 seconds / 100 ml (especially 60 to 80 seconds / 100 ml).
 本発明の不織布の厚みは20μm以下の薄肉であり、例えば、1~20μm、好ましくは5~19μm(例えば、10~18μm)、さらに好ましくは12~17μm(特に13~16μm)程度であってもよい。不織布は、目的に応じて複数の不織布を積層してもよい。 The non-woven fabric of the present invention has a thickness of 20 μm or less, for example, 1 to 20 μm, preferably 5 to 19 μm (eg 10 to 18 μm), more preferably 12 to 17 μm (especially 13 to 16 μm). Good. A nonwoven fabric may laminate | stack a some nonwoven fabric according to the objective.
 本発明の不織布の平均孔径は0.1~50μmであり、例えば、0.15~30μm、好ましくは0.2~10μm、さらに好ましくは0.25~5μm(特に0.25~1μm)程度である。 The average pore diameter of the nonwoven fabric of the present invention is 0.1 to 50 μm, for example, 0.15 to 30 μm, preferably 0.2 to 10 μm, more preferably 0.25 to 5 μm (especially 0.25 to 1 μm). is there.
 不織布の坪量は、例えば、0.1~50g/m、好ましくは1~30g/m、さらに好ましくは3~20g/m(特に5~15g/m)程度であってもよい。不織布の空隙率は50%以上であってもよく、好ましくは50~90%、さらに好ましくは60~80%程度であってもよい。 The basis weight of the nonwoven fabric may be, for example, about 0.1 to 50 g / m 2 , preferably 1 to 30 g / m 2 , more preferably 3 to 20 g / m 2 (particularly 5 to 15 g / m 2 ). . The porosity of the nonwoven fabric may be 50% or more, preferably 50 to 90%, more preferably about 60 to 80%.
 本発明の不織布の製造方法は、特に限定されず、慣用の方法、例えば、セルロース繊維とポリオレフィン繊維とを混合し、湿式抄紙又は乾式抄紙などの抄紙により製造できる。また、セルロース繊維とポリオレフィン繊維とを一括してミクロフィブリル化した場合には、両者の混綿繊維を抄紙することにより製造してもよい。湿式抄紙は、慣用の方法で行うことができ、例えば、手抄き抄紙器や多孔板などを備えた湿式抄紙機などを用いて抄紙してもよい。乾式抄紙も、慣用の方法、例えば、エアレイド製法、カード製法などを用いて抄紙することができる。さらに、電池などの蓄電デバイスにおけるセパレータとして利用される場合、例えば、0.1~100MPa、好ましくは0.3~50MPa、さらに好ましくは0.5~30MPa(特に1~10MPa)程度の圧力でプレス加工してもよい。プレス加工の温度は、特に限定されず、例えば、60~250℃程度の範囲から選択でき、例えば、80~200℃、好ましくは100~180℃程度であるが、シャットダウン機能を有する電池又はコンデンサのセパレータとする場合、ポリオレフィン繊維の融点(又は軟化点)よりも低い温度、例えば、80~150℃、好ましくは90~140℃、さらに好ましくは100~130℃(特に110~130℃)程度であってもよい。 The method for producing the nonwoven fabric of the present invention is not particularly limited, and can be produced by a conventional method, for example, by mixing cellulose fibers and polyolefin fibers and making paper such as wet papermaking or dry papermaking. Further, when cellulose fibers and polyolefin fibers are collectively microfibrillated, they may be produced by papermaking the mixed cotton fibers of both. The wet papermaking can be performed by a conventional method, and for example, the papermaking may be performed using a wet papermaking machine equipped with a manual papermaking machine or a perforated plate. Dry papermaking can also be made using conventional methods such as airlaid and card manufacturing. Further, when used as a separator in an electricity storage device such as a battery, for example, press at a pressure of about 0.1 to 100 MPa, preferably 0.3 to 50 MPa, more preferably 0.5 to 30 MPa (particularly 1 to 10 MPa). It may be processed. The temperature of the press working is not particularly limited, and can be selected, for example, from a range of about 60 to 250 ° C., for example, 80 to 200 ° C., preferably about 100 to 180 ° C. In the case of a separator, the temperature is lower than the melting point (or softening point) of the polyolefin fiber, for example, about 80 to 150 ° C., preferably 90 to 140 ° C., more preferably 100 to 130 ° C. (especially 110 to 130 ° C.). May be.
 本発明では、100nm以上の適度に大きな繊維径を有するセルロース繊維に対して、適度な繊維径を有するポリオレフィン繊維を含むため、簡便に抄紙でき、生産性も高い。 In the present invention, since cellulose fibers having a moderately large fiber diameter of 100 nm or more include polyolefin fibers having a moderate fiber diameter, paper can be easily made and productivity is high.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。実施例及び比較例で得られた不織布の評価は以下の方法で測定した。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. Evaluation of the nonwoven fabric obtained by the Example and the comparative example was measured with the following method.
 [繊維径]
 実施例及び比較例で得られたセルロース繊維又はセルロースナノファイバーについて50000倍の走査型電子顕微鏡(SEM)写真を撮影し、撮影した写真上において、写真を横切る任意の位置に2本の線を引き、線と交差する全ての繊維径をカウントして平均繊維径(n=20以上)を算出した。線の引き方は、線と交差する繊維の数が20以上となれば、特に限定されない。さらに、繊維径の測定値から、繊維径分布の標準偏差及び最大繊維径を求めた。なお、最大繊維径が1μmを超えるセルロース繊維の場合には、5000倍のSEM写真を用いて算出した。
[Fiber diameter]
About the cellulose fiber or cellulose nanofiber obtained by the Example and the comparative example, the 50000 times scanning electron microscope (SEM) photograph was image | photographed, and two lines are drawn in the arbitrary positions which cross a photograph on the photographed photograph. The average fiber diameter (n = 20 or more) was calculated by counting all fiber diameters intersecting the line. The method of drawing a line is not particularly limited as long as the number of fibers crossing the line is 20 or more. Furthermore, the standard deviation of the fiber diameter distribution and the maximum fiber diameter were determined from the measured values of the fiber diameter. In addition, in the case of the cellulose fiber whose maximum fiber diameter exceeds 1 μm, the calculation was performed using a 5000 times SEM photograph.
 [繊維長]
 繊維長は、繊維長測定器(カヤーニ社製「FS-200」)を用いて測定した。
[Fiber length]
The fiber length was measured using a fiber length measuring device (“FS-200” manufactured by Kajaani).
 [平均孔径]
 実施例及び比較例で得られた不織布を5000倍の走査型電子顕微鏡(SEM)写真を撮影し、最表面の孔径のみを50点抽出し、平均孔径を求めた。
[Average pore size]
The nonwoven fabrics obtained in the examples and comparative examples were photographed with a scanning electron microscope (SEM) at a magnification of 5000 times, and only 50 pore diameters on the outermost surface were extracted to obtain an average pore diameter.
 [透気度]
 JIS P8117に準拠して、ガーレー法で空気100mlが透気する時間を測定した。
[Air permeability]
In accordance with JIS P8117, the time required for 100 ml of air to pass through was measured by the Gurley method.
 [引張強度]
 JIS P8113に準じて、得られた不織布を幅15mm、長さ250mmの短冊状に裁断してサンプルとし、可変速引張試験機((株)東洋精機製作所製)により、チャック間隔100mm、引張速度20mm/分で、引張強度を測定した。引張強度の測定は、長さ方向(又は縦方向)について行った。
[Tensile strength]
According to JIS P8113, the obtained non-woven fabric was cut into a strip shape having a width of 15 mm and a length of 250 mm to obtain a sample. The tensile strength was measured at / min. The tensile strength was measured in the length direction (or longitudinal direction).
 実施例1
 原料ポリオレフィン繊維として、ポリオレフィン繊維(三井化学(株)製「SWP E400」、平均繊維長0.9mm、CSF580ml)を用いて、原料ポリオレフィン繊維を1重量%の割合で含有するスラリー液を100リットル調製した。このスラリー液を、破砕型ホモバルブシート(中空円筒状凸部の下流端の内径/リング状端面の厚み=16.8/1)を備えたホモジナイザー(ゴーリン社製、15M8AT)を用いて、処理圧50MPaで20回処理した。得られたポリオレフィン繊維の平均繊維径は0.6μm、繊維径分布の標準偏差は253nm、平均繊維長は182μm、アスペクト比(平均繊維長/平均繊維径)は303であった。
Example 1
100 liters of slurry containing 1% by weight of raw material polyolefin fiber is prepared using polyolefin fiber ("SWP E400" manufactured by Mitsui Chemicals, average fiber length 0.9 mm, CSF 580 ml) as raw material polyolefin fiber did. This slurry liquid was processed using a homogenizer (manufactured by Gorin, 15M8AT) equipped with a crushing type homovalve sheet (inner diameter of the downstream end of the hollow cylindrical convex portion / thickness of the ring-shaped end face = 16.8 / 1). The treatment was performed 20 times at a pressure of 50 MPa. The average fiber diameter of the obtained polyolefin fiber was 0.6 μm, the standard deviation of the fiber diameter distribution was 253 nm, the average fiber length was 182 μm, and the aspect ratio (average fiber length / average fiber diameter) was 303.
 さらに、得られたポリオレフィン繊維5重量部及びセルロース繊維(ダイセル化学工業(株)製「セリッシュKY100G」、平均繊維径0.3μm、平均繊維長420μm)95重量部を混合したスラリーを0.2重量%に希釈し、減圧装置付き抄紙マシーン((株)東洋精機製作所製「標準角型マシン」)を用いて、No.5C濾紙を濾布として抄紙を行った。得られた湿潤状態の湿紙の両面に、吸い取り紙としてNo.5C濾紙を重ねた。次いで、抄紙体を超音波処理しながらイソプロピルアルコールに10分間浸漬して溶媒置換した。さらに、新しいNo.5C濾紙で両面を挟み、180℃、5MPaの圧力で5分間プレスした。その後、表面温度が100℃に設定されたドラムドライヤ(熊谷理機工業(株)製)に貼り付けて120秒間乾燥した。得られた不織布の坪量、厚み、平均孔径、透気度、引張強度を表1に示す。 Further, 0.2 weight of slurry obtained by mixing 5 parts by weight of the polyolefin fiber and 95 parts by weight of cellulose fiber (“Cerish KY100G” manufactured by Daicel Chemical Industries, average fiber diameter 0.3 μm, average fiber length 420 μm) is mixed. The paper machine with a decompression device (“Standard Square Machine” manufactured by Toyo Seiki Seisakusho Co., Ltd.) was used. Papermaking was performed using 5C filter paper as a filter cloth. As a blotting paper, no. Stacked 5C filter paper. Next, the paper body was immersed in isopropyl alcohol for 10 minutes with ultrasonic treatment to replace the solvent. Furthermore, the new No. Both surfaces were sandwiched between 5C filter papers and pressed at 180 ° C. and a pressure of 5 MPa for 5 minutes. Then, it was attached to a drum dryer (manufactured by Kumagai Riki Kogyo Co., Ltd.) whose surface temperature was set to 100 ° C. and dried for 120 seconds. Table 1 shows the basis weight, thickness, average pore diameter, air permeability, and tensile strength of the obtained nonwoven fabric.
 実施例2
 実施例1において、ポリオレフィン繊維とセルロース繊維との割合を、ポリオレフィン繊維50重量部及びセルロース50重量部に変更した混合スラリーを0.2重量%に希釈し、減圧装置付き抄紙マシーン((株)東洋精機製作所製「標準角型マシン」)を用いて、No.5C濾紙を濾布として抄紙を行った。得られた湿潤状態の湿紙の両面に、吸い取り紙としてNo.5C濾紙を重ねた。次いで、抄紙体を超音波処理しながらイソプロピルアルコールに10分間浸漬して溶媒置換した。さらに、新しいNo.5C濾紙で両面を挟み、120℃、1MPaの圧力で1分間プレスした。その後、表面温度が100℃に設定されたドラムドライヤ(熊谷理機工業(株)製)に貼り付けて120秒間乾燥した。得られた不織布の坪量、厚み、平均孔径、透気度、引張強度を表1に示す。
Example 2
In Example 1, a mixed slurry in which the ratio of polyolefin fiber to cellulose fiber was changed to 50 parts by weight of polyolefin fiber and 50 parts by weight of cellulose was diluted to 0.2% by weight, and a paper machine with a decompression device (Toyo Incorporated) Using a “standard square machine” manufactured by Seiki Seisakusho, Papermaking was performed using 5C filter paper as a filter cloth. As a blotting paper, no. Stacked 5C filter paper. Next, the paper body was immersed in isopropyl alcohol for 10 minutes with ultrasonic treatment to replace the solvent. Furthermore, the new No. Both surfaces were sandwiched between 5C filter papers and pressed at 120 ° C. and a pressure of 1 MPa for 1 minute. Then, it was attached to a drum dryer (manufactured by Kumagai Riki Kogyo Co., Ltd.) whose surface temperature was set to 100 ° C. and dried for 120 seconds. Table 1 shows the basis weight, thickness, average pore diameter, air permeability, and tensile strength of the obtained nonwoven fabric.
 さらに、得られた不織布を厚み1mmのステンレス製板に挟み、140℃の乾燥機に入れ、1時間放置した。放置後の不織布の透気度は測定不能(無限大)であった。すなわち、この不織布はシャットダウン機能を有するセルロース系不織布であることが判明した。 Further, the obtained non-woven fabric was sandwiched between stainless steel plates having a thickness of 1 mm, placed in a dryer at 140 ° C., and left for 1 hour. The air permeability of the nonwoven fabric after standing was not measurable (infinite). That is, it was found that this nonwoven fabric is a cellulose-based nonwoven fabric having a shutdown function.
 実施例3
 通常の非破砕型ホモバルブシート(中空円筒状凸部の下流端の内径/リング状端面の厚み=1.9/1)を備えたホモジナイザー(ゴーリン社製、15M8AT)を用いて、処理圧50MPaで20回処理し、平均繊維径0.9μm、繊維径分布の標準偏差488nm、平均繊維長537μm、アスペクト比597のポリオレフィン繊維を得る以外は実施例2と同様にして不織布を得た。得られた不織布の坪量、厚み、平均孔径、透気度、引張強度を表1に示す。
Example 3
Using a normal non-crushing type homo valve seat (inner diameter of the downstream end of the hollow cylindrical convex portion / ring end face thickness = 1.9 / 1) using a homogenizer (manufactured by Gorin, 15M8AT), a processing pressure of 50 MPa The nonwoven fabric was obtained in the same manner as in Example 2 except that a polyolefin fiber having an average fiber diameter of 0.9 μm, a standard deviation of the fiber diameter distribution of 488 nm, an average fiber length of 537 μm, and an aspect ratio of 597 was obtained. Table 1 shows the basis weight, thickness, average pore diameter, air permeability, and tensile strength of the obtained nonwoven fabric.
 比較例1
 原料ポリオレフィン繊維として、ポリオレフィン繊維(三井化学(株)製「SWP E400」、平均繊維長0.9mm、CSF580ml)を用いて、原料ポリオレフィン繊維を1重量%の割合で含有するスラリー液を100リットル調製した。このスラリー液を、通常の非破砕型ホモバルブシート(中空円筒状凸部の下流端の内径/リング状端面の厚み=1.9/1)を備えたホモジナイザー(ゴーリン社製、15M8AT)を用いて、処理圧50MPaで3回処理した。得られたポリオレフィン繊維の平均繊維径は2.1μm、繊維径分布の標準偏差は2.5μm、平均繊維長は1.2mm、アスペクト比(平均繊維長/平均繊維径)は571であった。
Comparative Example 1
100 liters of slurry containing 1% by weight of raw material polyolefin fiber is prepared using polyolefin fiber ("SWP E400" manufactured by Mitsui Chemicals, average fiber length 0.9 mm, CSF 580 ml) as raw material polyolefin fiber did. Using this slurry liquid, a homogenizer (manufactured by Gorin, 15M8AT) equipped with a normal non-crushing type homovalve sheet (inner diameter at the downstream end of the hollow cylindrical convex portion / thickness of the ring-shaped end face = 1.9 / 1). Then, it was processed three times at a processing pressure of 50 MPa. The polyolefin fiber obtained had an average fiber diameter of 2.1 μm, a standard deviation of the fiber diameter distribution of 2.5 μm, an average fiber length of 1.2 mm, and an aspect ratio (average fiber length / average fiber diameter) of 571.
 さらに、得られたポリオレフィン繊維5重量部及びセルロース繊維(セリッシュKY100G)95重量部を混合したスラリーを用いて、実施例1と同様にして不織布を得た。得られた不織布の坪量、厚み、平均孔径、透気度、引張強度を表1に示す。 Furthermore, a nonwoven fabric was obtained in the same manner as in Example 1 using a slurry in which 5 parts by weight of the obtained polyolefin fiber and 95 parts by weight of cellulose fiber (Cerish KY100G) were mixed. Table 1 shows the basis weight, thickness, average pore diameter, air permeability, and tensile strength of the obtained nonwoven fabric.
 比較例2
 ポリオレフィン繊維とセルロース繊維との割合を、ポリオレフィン繊維70重量部及びセルロース30重量部に変更した混合スラリーを用いる以外は、比較例1と同様にして不織布を得た。得られた不織布の坪量、厚み、平均孔径、透気度、引張強度を表1に示す。
Comparative Example 2
A nonwoven fabric was obtained in the same manner as in Comparative Example 1 except that the mixed slurry was used in which the ratio of the polyolefin fiber to the cellulose fiber was changed to 70 parts by weight of the polyolefin fiber and 30 parts by weight of the cellulose. Table 1 shows the basis weight, thickness, average pore diameter, air permeability, and tensile strength of the obtained nonwoven fabric.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、実施例の不織布は、透気度及び引張強度が高い。一方、比較例の不織布は、引張強度が低い。 As is clear from the results in Table 1, the nonwoven fabrics of the examples have high air permeability and tensile strength. On the other hand, the nonwoven fabric of the comparative example has low tensile strength.
 本発明の不織布は、各種のセパレータやフィルターに利用できるが、電気化学的に安定性が高いため、電池(リチウム電池、リチウム二次電池、燃料電池、アルカリ二次電池、ニッケル水素二次電池、ニッケル-カドミウム電池、鉛蓄電池など)、コンデンサ、キャパシタなどの蓄電素子のセパレータに有用である。特に、所定量のポリオレフィン繊維で不織布を構成することにより、シャットダウン機能を付与できるため、電池やコンデンサのセパレータに有用である。 The nonwoven fabric of the present invention can be used for various separators and filters, but because of its high electrochemical stability, the battery (lithium battery, lithium secondary battery, fuel cell, alkaline secondary battery, nickel metal hydride secondary battery, (Nickel-cadmium battery, lead storage battery, etc.), capacitors, capacitors and other storage element separators are useful. In particular, since the shutdown function can be imparted by constituting the nonwoven fabric with a predetermined amount of polyolefin fiber, it is useful for battery and capacitor separators.
 1…原料繊維
 2…破砕型ホモバルブシート
 3…破砕型ホモバルブシートの流路
 4…小径オリフィス
 5…ホモバルブ
 6…インパクトリング
 7…ポリオレフィン繊維
 12…非破砕型ホモバルブシート
DESCRIPTION OF SYMBOLS 1 ... Raw fiber 2 ... Crushing type | mold homo valve seat 3 ... Flow path of crushing type | mold homo valve seat 4 ... Small diameter orifice 5 ... Homo valve 6 ... Impact ring 7 ... Polyolefin fiber 12 ... Non-crushing type homo valve seat

Claims (17)

  1.  平均繊維径0.1~50μmのセルロース繊維と平均繊維径1.5μm以下のポリオレフィン繊維とを含み、かつ厚みが20μm以下である不織布。 A nonwoven fabric comprising cellulose fibers having an average fiber diameter of 0.1 to 50 μm and polyolefin fibers having an average fiber diameter of 1.5 μm or less and having a thickness of 20 μm or less.
  2.  ポリオレフィン繊維の平均繊維径が10~1000nmである請求項1記載の不織布。 The nonwoven fabric according to claim 1, wherein the polyolefin fiber has an average fiber diameter of 10 to 1000 nm.
  3.  ポリオレフィン繊維の平均繊維長が1~1000μmである請求項1又は2記載の不織布。 The nonwoven fabric according to claim 1 or 2, wherein the polyolefin fibers have an average fiber length of 1 to 1000 µm.
  4.  ポリオレフィン繊維がポリエチレン繊維である請求項1~3のいずれかに記載の不織布。 The nonwoven fabric according to any one of claims 1 to 3, wherein the polyolefin fiber is a polyethylene fiber.
  5.  ポリオレフィン繊維が、原料ポリオレフィン繊維を溶媒に分散させて分散液を調製する分散液調製工程、破砕型ホモバルブシートを備えたホモジナイザーで前記分散液をホモジナイズ処理するホモジナイズ工程を含む製造方法で得られる請求項1~4のいずれかに記載の不織布。 Claims wherein the polyolefin fiber is obtained by a production method including a dispersion preparation step of preparing a dispersion by dispersing raw polyolefin fibers in a solvent, and a homogenization step of homogenizing the dispersion with a homogenizer equipped with a crushing type homovalve sheet. Item 5. The nonwoven fabric according to any one of Items 1 to 4.
  6.  セルロース繊維の平均繊維径が0.2~1μmである請求項1~5のいずれかに記載の不織布。 The nonwoven fabric according to any one of claims 1 to 5, wherein the average fiber diameter of the cellulose fibers is 0.2 to 1 µm.
  7.  セルロース繊維とポリオレフィン繊維との割合(重量比)が、前者/後者=99.9/0.1~10/90である請求項1~6のいずれかに記載の不織布。 The nonwoven fabric according to any one of claims 1 to 6, wherein the ratio (weight ratio) of cellulose fiber to polyolefin fiber is the former / the latter = 99.9 / 0.1 to 10/90.
  8.  親水性バインダー繊維を実質的に含まない請求項1~7のいずれかに記載の不織布。 The nonwoven fabric according to any one of claims 1 to 7, which is substantially free of hydrophilic binder fibers.
  9.  融点100℃未満の合成樹脂を実質的に含まない請求項1~8のいずれかに記載の不織布。 The nonwoven fabric according to any one of claims 1 to 8, which is substantially free of a synthetic resin having a melting point of less than 100 ° C.
  10.  坪量10g/mにおける引張強度が12N/15mm以上である請求項1~9のいずれかに記載の不織布。 The nonwoven fabric according to any one of claims 1 to 9, having a tensile strength of 12 N / 15 mm or more at a basis weight of 10 g / m 2 .
  11.  坪量10g/mにおける透気度が50~100秒/100mlである請求項1~10のいずれかに記載の不織布。 The nonwoven fabric according to any one of claims 1 to 10, wherein the air permeability at a basis weight of 10 g / m 2 is 50 to 100 seconds / 100 ml.
  12.  厚みが10~18μmである請求項1~11のいずれかに記載の不織布。 The nonwoven fabric according to any one of claims 1 to 11, having a thickness of 10 to 18 µm.
  13.  請求項1~12のいずれかに記載の不織布で形成された蓄電素子用セパレータ。 A separator for a storage element formed of the nonwoven fabric according to any one of claims 1 to 12.
  14.  セルロース繊維とポリオレフィン繊維との割合(重量比)が、前者/後者=70/30~20/80である請求項13記載のセパレータ。 The separator according to claim 13, wherein the ratio (weight ratio) of cellulose fiber to polyolefin fiber is the former / the latter = 70/30 to 20/80.
  15.  電池又はコンデンサのセパレータである請求項13又は14記載のセパレータ。 The separator according to claim 13 or 14, which is a battery or capacitor separator.
  16.  セルロース繊維とポリオレフィン繊維とを抄紙する請求項1記載の不織布の製造方法。 The method for producing a nonwoven fabric according to claim 1, wherein the cellulose fiber and the polyolefin fiber are made.
  17.  セルロース繊維とポリオレフィン繊維との割合(重量比)が、前者/後者=70/30~20/80であり、かつポリオレフィン繊維の融点又は軟化点よりも低い温度で処理する請求項16記載の不織布の製造方法。 The nonwoven fabric according to claim 16, wherein the ratio (weight ratio) of cellulose fiber to polyolefin fiber is the former / the latter = 70/30 to 20/80, and the nonwoven fabric is treated at a temperature lower than the melting point or softening point of the polyolefin fiber. Production method.
PCT/JP2011/067487 2010-08-04 2011-07-29 Non-woven fabric comprising cellulose fibers and process for production thereof, and separator WO2012017954A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010175658A JP2012036518A (en) 2010-08-04 2010-08-04 Nonwoven fabric including cellulose fiber, method for manufacturing the same, and separator
JP2010-175658 2010-08-04

Publications (1)

Publication Number Publication Date
WO2012017954A1 true WO2012017954A1 (en) 2012-02-09

Family

ID=45559454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067487 WO2012017954A1 (en) 2010-08-04 2011-07-29 Non-woven fabric comprising cellulose fibers and process for production thereof, and separator

Country Status (3)

Country Link
JP (1) JP2012036518A (en)
TW (1) TW201211331A (en)
WO (1) WO2012017954A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035786A1 (en) * 2011-09-07 2013-03-14 株式会社日本製鋼所 Microporous stretched cellulose nanofiber-containing polyolefin film, method for producing microporous stretched cellulose nanofiber-containing polyolefin film, and separator for nonaqueous secondary batteries
JP2013171965A (en) * 2012-02-21 2013-09-02 Nissin Electric Co Ltd Electrochemical element
JP2013196879A (en) * 2012-03-19 2013-09-30 Japan Vilene Co Ltd Separator for electrochemical element and electrochemical element
JP2016072309A (en) * 2014-09-26 2016-05-09 旭化成株式会社 Lithium ion capacitor
CN110392953A (en) * 2017-03-28 2019-10-29 株式会社东芝 Electrode assembly and secondary cell
US10892456B2 (en) 2016-06-27 2021-01-12 Nippon Kodoshi Corporation Separator for electrochemical element, electrochemical element, automobile, and electronic device
EP3686342A4 (en) * 2017-09-22 2021-06-02 Tomoegawa Co., Ltd. Thermoplastic fiber sheet
CN114032703A (en) * 2021-11-08 2022-02-11 江苏厚生新能源科技有限公司 High-wettability non-woven fabric lithium battery diaphragm and preparation method thereof
CN114497885A (en) * 2022-01-24 2022-05-13 重庆文理学院 Production process of superfine glass fiber battery diaphragm
WO2024013645A1 (en) * 2022-07-11 2024-01-18 Kruger Inc. Nonwoven fabric and method of fabrication thereof

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140062690A (en) * 2012-11-14 2014-05-26 류수선 Method of manufacturing polyolefin microporous membrane
JP6046505B2 (en) 2013-01-29 2016-12-14 株式会社ダイセル Sheet mold, method for producing the same, and use thereof
ES2592413T3 (en) * 2013-03-14 2016-11-30 Ahlstrom Corporation Method of manufacturing a fine filtration medium
US20140263037A1 (en) 2013-03-14 2014-09-18 Ahistrom Corporation Filtration media
US9492775B2 (en) 2013-03-15 2016-11-15 Donaldson Company, Inc. Air filtration media, media constructions and methods
JP6326730B2 (en) * 2013-06-20 2018-05-23 王子ホールディングス株式会社 Nonwoven fabric and method for producing the same
JP5712322B1 (en) 2013-12-25 2015-05-07 中越パルプ工業株式会社 Nano refined product manufacturing apparatus, nano refined product manufacturing method
TWI616015B (en) * 2015-12-22 2018-02-21 Nippon Kodoshi Corp Separator for electrochemical components and electrochemical components, automobiles, electronic devices
JP6640606B2 (en) * 2016-03-01 2020-02-05 日本製紙株式会社 Non-woven
JP6854135B2 (en) 2017-01-17 2021-04-07 株式会社ダイセル Slurry for electrodes, electrodes and their manufacturing methods, and secondary batteries
US11621422B2 (en) 2017-01-17 2023-04-04 Daicel Corporation Electrode slurry, electrode and process for producing the same, and secondary battery
JP6290500B1 (en) 2017-07-18 2018-03-07 宇部エクシモ株式会社 Nonwoven fabric and battery separator
EP3968417A4 (en) 2019-05-08 2023-01-25 ENEOS Materials Corporation Binder composition for electricity storage devices, slurry for electricity storage device electrodes, electricity storage device electrode, and electricity storage device
JPWO2021039503A1 (en) 2019-08-29 2021-03-04
EP4144772A4 (en) 2020-04-28 2023-09-27 ENEOS Materials Corporation Binder composition for power storage device, slurry for power storage device electrode, power storage device electrode, and power storage device
CN116075952A (en) 2020-08-20 2023-05-05 株式会社引能仕材料 Adhesive composition for power storage device, slurry for power storage device electrode, and power storage device
WO2022195167A1 (en) * 2021-03-15 2022-09-22 Ahlstrom-Munksjö Oyj Coated non-woven lithium ion battery separators with high temperature resistance
CN117178389A (en) 2021-04-15 2023-12-05 株式会社引能仕材料 Binder composition for electricity storage device, paste for electricity storage device electrode, and electricity storage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259189A (en) * 1989-03-31 1990-10-19 Mitsubishi Rayon Co Ltd Sheet-like formed product with high alkali resistance
JPH06240595A (en) * 1993-02-16 1994-08-30 Daicel Chem Ind Ltd Fine fibrous polyolefin composition and its production
JP2007231438A (en) * 2006-02-28 2007-09-13 Daicel Chem Ind Ltd Microfibrous cellulose and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259189A (en) * 1989-03-31 1990-10-19 Mitsubishi Rayon Co Ltd Sheet-like formed product with high alkali resistance
JPH06240595A (en) * 1993-02-16 1994-08-30 Daicel Chem Ind Ltd Fine fibrous polyolefin composition and its production
JP2007231438A (en) * 2006-02-28 2007-09-13 Daicel Chem Ind Ltd Microfibrous cellulose and method for producing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013056958A (en) * 2011-09-07 2013-03-28 Japan Steel Works Ltd:The Method for producing microporous stretched film of cellulose nanofiber-containing polyolefin, microporous stretched film of cellulose nanofiber-containing polyolefin, and separator for nonaqueous secondary battery
US9293751B2 (en) 2011-09-07 2016-03-22 The Japan Steel Works, Ltd. Microporous stretched cellulose nanofiber-containing polyolefin film, method for producing microporous stretched cellulose nanofiber-containing polyolefin film, and separator for nonaqueous secondary batteries
WO2013035786A1 (en) * 2011-09-07 2013-03-14 株式会社日本製鋼所 Microporous stretched cellulose nanofiber-containing polyolefin film, method for producing microporous stretched cellulose nanofiber-containing polyolefin film, and separator for nonaqueous secondary batteries
JP2013171965A (en) * 2012-02-21 2013-09-02 Nissin Electric Co Ltd Electrochemical element
JP2013196879A (en) * 2012-03-19 2013-09-30 Japan Vilene Co Ltd Separator for electrochemical element and electrochemical element
JP2016072309A (en) * 2014-09-26 2016-05-09 旭化成株式会社 Lithium ion capacitor
US10892456B2 (en) 2016-06-27 2021-01-12 Nippon Kodoshi Corporation Separator for electrochemical element, electrochemical element, automobile, and electronic device
CN110392953A (en) * 2017-03-28 2019-10-29 株式会社东芝 Electrode assembly and secondary cell
CN110392953B (en) * 2017-03-28 2023-02-21 株式会社东芝 Electrode structure and secondary battery
EP3686342A4 (en) * 2017-09-22 2021-06-02 Tomoegawa Co., Ltd. Thermoplastic fiber sheet
US11408125B2 (en) 2017-09-22 2022-08-09 Tomoegawa Co., Ltd. Thermoplastic fiber sheet
CN114032703A (en) * 2021-11-08 2022-02-11 江苏厚生新能源科技有限公司 High-wettability non-woven fabric lithium battery diaphragm and preparation method thereof
CN114032703B (en) * 2021-11-08 2022-08-16 江苏厚生新能源科技有限公司 High-wettability non-woven fabric lithium battery diaphragm and preparation method thereof
CN114497885A (en) * 2022-01-24 2022-05-13 重庆文理学院 Production process of superfine glass fiber battery diaphragm
WO2024013645A1 (en) * 2022-07-11 2024-01-18 Kruger Inc. Nonwoven fabric and method of fabrication thereof

Also Published As

Publication number Publication date
TW201211331A (en) 2012-03-16
JP2012036518A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
WO2012017954A1 (en) Non-woven fabric comprising cellulose fibers and process for production thereof, and separator
WO2012017953A1 (en) Non-woven fabric comprising cellulose fibers, and separator for electrical storage element
JP5612922B2 (en) Microfiber, method for producing the same, and non-woven fabric
JP5844067B2 (en) Non-woven fiber laminate, method for producing the same, and separator
JP2013104142A (en) Cellulosic nonwoven fabric and method for manufacturing the same, and separator
JP5846449B2 (en) Battery separator manufacturing method and battery separator
WO2006090790A1 (en) Alkaline battery separator and alkaline primery battery
JP2014051767A (en) Separator for electricity storage device and production method of the same
JP2013206591A (en) Separator for power storage element and manufacturing method thereof
JPH04312763A (en) Battery separator
JP6129209B2 (en) Electric double layer capacitor separator and electric double layer capacitor
JP2014143006A (en) Composite sheet containing cellulose and solid electrolyte film
JP2014139903A (en) Method for manufacturing laminate for storage element and lithium ion battery
JP5594844B2 (en) Electrochemical element separator
JP2023086729A (en) Alkaline battery separator with controlled pore size
KR101915941B1 (en) Separator for alkaline batteries
EP3480836A1 (en) Separator for capacitor
JP2016129094A (en) Lithium primary battery separator and lithium primary battery arranged by use thereof
JP7079267B2 (en) Separator and separator for alkaline manganese dry cell consisting of the separator
US20170331093A1 (en) Method of producing cellulose nonwoven fabric, cellulose nonwoven fabric produced thereby, and secondary ion battery including the same
JP5594845B2 (en) Electrochemical element separator
JP7309650B2 (en) Separator for electrochemical device
JPH06126112A (en) Filter medium for filtration of liquid
JP2017054602A (en) Battery separator
JP2015060769A (en) Separator for lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814580

Country of ref document: EP

Kind code of ref document: A1