JP2013171891A - Semiconductor device, semiconductor module, and semiconductor module manufacturing method - Google Patents

Semiconductor device, semiconductor module, and semiconductor module manufacturing method Download PDF

Info

Publication number
JP2013171891A
JP2013171891A JP2012033426A JP2012033426A JP2013171891A JP 2013171891 A JP2013171891 A JP 2013171891A JP 2012033426 A JP2012033426 A JP 2012033426A JP 2012033426 A JP2012033426 A JP 2012033426A JP 2013171891 A JP2013171891 A JP 2013171891A
Authority
JP
Japan
Prior art keywords
emitter
collector
plate
semiconductor chip
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012033426A
Other languages
Japanese (ja)
Inventor
Takashi Togasaki
隆 栂嵜
Takayuki Masunaga
孝幸 益永
Hideki Hisada
秀樹 久田
Masayuki Uchida
雅之 内田
Naoyuki Tajima
尚之 田嶋
Satoshi Sayama
聡 佐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012033426A priority Critical patent/JP2013171891A/en
Publication of JP2013171891A publication Critical patent/JP2013171891A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device which reduces thermal resistance in a section from a semiconductor chip to a radiator and also restrains a variation in the thickness of an insulation layer caused by a metal block assembly error, thereby making it possible to improve heat radiation performance.SOLUTION: A semiconductor device comprises: a semiconductor chip 40 having an emitter electrode and a collector electrode respectively on both faces and a control electrode on at least one of the faces; an emitter plate 50 made of metal, which is joined to the emitter electrode of the semiconductor chip; a collector plate 60 made of metal, which is joined to the collector electrode of the semiconductor chip; a connection terminal connected to the control electrode via thin metal wire; and a mold resin 80 which seals the semiconductor chip, the emitter plate, the collector plate and part of the connection terminal, leaving an emitter conductive face 52 perpendicular to the bonded surface of the emitter plate with the semiconductor chip and a collector conductive face 62 perpendicular to the bonded surface of the collector plate with the semiconductor chip exposed.

Description

本発明の実施形態は、半導体装置、半導体モジュール、及び半導体モジュールの製造方法に関する。   Embodiments described herein relate generally to a semiconductor device, a semiconductor module, and a method for manufacturing a semiconductor module.

電気自動車等には、電力用の半導体装置を用いたインバータ装置が用いられている。電力用の半導体装置は、冷却器を兼ねた基板上にパワー半導体モジュールが搭載され、樹脂等で封止されている。   In an electric vehicle or the like, an inverter device using a power semiconductor device is used. In a power semiconductor device, a power semiconductor module is mounted on a substrate that also serves as a cooler, and is sealed with a resin or the like.

パワー半導体モジュールは、大電流のスイッチングを行う際に半導体チップで発生する損失熱を除去して、チップ温度を動作可能温度以下に保つ必要がある。このため、半導体チップから冷却器までの熱抵抗の低減が必要となる。また、動作電圧が数百ボルトから数千ボルトと高電圧であるため、高絶縁耐圧の絶縁層が必要となる。絶縁層には高熱伝導の材料が用いられるが金属材料よりは熱抵抗が高いため放熱性能の障害となる。   The power semiconductor module needs to remove the heat loss generated in the semiconductor chip when switching a large current and keep the chip temperature below the operable temperature. For this reason, it is necessary to reduce the thermal resistance from the semiconductor chip to the cooler. In addition, since the operating voltage is as high as several hundred volts to several thousand volts, an insulating layer having a high withstand voltage is required. A material having high thermal conductivity is used for the insulating layer. However, since the thermal resistance is higher than that of a metal material, it becomes an obstacle to heat dissipation performance.

このような問題を解決するため、半導体チップの両面に配置された金属ブロックを介して、冷却器に熱伝達することで高効率に冷却する構造が知られている。   In order to solve such a problem, a structure is known in which heat is transferred to a cooler through metal blocks arranged on both sides of a semiconductor chip, thereby cooling with high efficiency.

特開2010−161131号公報JP 2010-161131 A 特許第4575034号公報Japanese Patent No. 4575034

上述した冷却構造を有する半導体装置では、次のような問題があった。すなわち、金属ブロックが複雑な形状となり、冷却器までの距離が長くなって放熱性能が低下する問題と、隣接する金属ブロック間の組立て誤差により、金属ブロックの樹脂絶縁シートとの接着面の高さばらつきが生ずるため、絶縁樹脂シート層の厚さがばらつき、放熱性能が低下する課題があった。   The semiconductor device having the above-described cooling structure has the following problems. That is, the metal block has a complicated shape, the distance to the cooler becomes long, and the heat dissipation performance decreases, and the height of the adhesion surface of the metal block to the resin insulation sheet due to the assembly error between adjacent metal blocks Since the variation occurs, there is a problem that the thickness of the insulating resin sheet layer varies and the heat dissipation performance is deteriorated.

そこで、半導体チップから冷却器までの熱抵抗を軽減すると共に、金属ブロックの組み立て誤差を原因とする絶縁樹脂シートの厚さばらつきを抑えることで放熱性能を高めることができる半導体装置を提供することを目的としている。   Accordingly, to provide a semiconductor device capable of reducing the thermal resistance from the semiconductor chip to the cooler and suppressing the thickness variation of the insulating resin sheet due to the assembly error of the metal block, thereby improving the heat dissipation performance. It is aimed.

両面にそれぞれエミッタ電極・コレクタ電極、及び、少なくとも一方の面に制御電極を有する半導体チップと、この半導体チップの上記エミッタ電極に接合された金属材製のエミッタ板と、上記半導体チップの上記コレクタ電極に接合された金属材製のコレクタ板と、上記制御電極に金属細線を介して接続された接続端子と、上記半導体チップ、上記エミッタ板、上記コレクタ板、及び、上記接続端子の一部を、上記エミッタ板の上記半導体チップとの接合面に対し垂直なエミッタ導電面及び上記コレクタ板の上記半導体チップとの接合面に対し垂直なコレクタ導電面を露出させて封止するモールド樹脂を具備し、上記エミッタ導通面の面積が上記半導体チップのエミッタ電極の面積より大きく、上記コレクタ導通面の面積が上記半導体チップのコレクタ電極の面積より大きく、上記コレクタ導通面の面積が上記エミッタ導通面の面積より大きいことを特徴とする。   A semiconductor chip having an emitter electrode and a collector electrode on both sides and a control electrode on at least one side, a metal emitter plate joined to the emitter electrode of the semiconductor chip, and the collector electrode of the semiconductor chip A metal-made collector plate joined to the control electrode, a connection terminal connected to the control electrode via a thin metal wire, the semiconductor chip, the emitter plate, the collector plate, and a part of the connection terminal, A mold resin for exposing and sealing the emitter conductive surface perpendicular to the bonding surface of the emitter plate with the semiconductor chip and the collector conductive surface of the collector plate perpendicular to the bonding surface with the semiconductor chip; The area of the emitter conduction surface is larger than the area of the emitter electrode of the semiconductor chip, and the area of the collector conduction surface is the semiconductor chip. Larger than the area of the collector electrode, the area of the collector conduction surface being greater than the area of the emitter conductive surface.

第1の実施の形態に係る半導体モジュールを示す斜視図。The perspective view which shows the semiconductor module which concerns on 1st Embodiment. 同半導体モジュールを示す縦断面図。The longitudinal cross-sectional view which shows the semiconductor module. 同半導体装置を示す縦断面図。The longitudinal cross-sectional view which shows the semiconductor device. 同半導体装置における各部の位置関係を示す説明図。Explanatory drawing which shows the positional relationship of each part in the semiconductor device. 同半導体モジュールを構成する冷却板を示す平面図。The top view which shows the cooling plate which comprises the semiconductor module. 同半導体装置の製造工程を示す説明図。Explanatory drawing which shows the manufacturing process of the same semiconductor device. 同半導体装置の製造工程を示す説明図。Explanatory drawing which shows the manufacturing process of the same semiconductor device. 同半導体モジュールの製造工程を示す説明図。Explanatory drawing which shows the manufacturing process of the same semiconductor module. 同半導体装置におけるエミッタ厚/コレクタ厚とチップ動作温度との関係を示す説明図。FIG. 3 is an explanatory diagram showing a relationship between emitter thickness / collector thickness and chip operating temperature in the semiconductor device. 同半導体装置におけるコレクタ導通面の面積/スイッチング素子面積とチップ動作温度との関係を示す説明。The description which shows the relationship between the area | region of the collector conduction surface / switching element area and chip | tip operating temperature in the semiconductor device. 同半導体モジュールの機能を示す縦断面図。The longitudinal cross-sectional view which shows the function of the semiconductor module. 同半導体装置が組み込まれたインバータ装置を示す平面図。The top view which shows the inverter apparatus with which the semiconductor device was integrated. 本発明の第2の実施の形態に係る半導体モジュールを示す縦断面図。The longitudinal cross-sectional view which shows the semiconductor module which concerns on the 2nd Embodiment of this invention. 同半導体装置を示す底面図。The bottom view which shows the same semiconductor device. 本発明の第3の実施の形態に係る半導体モジュールを構成する半導体パッケージを示す縦断面図。The longitudinal cross-sectional view which shows the semiconductor package which comprises the semiconductor module which concerns on the 3rd Embodiment of this invention. 同半導体装置を示す底面図。The bottom view which shows the same semiconductor device. 同半導体装置の製造工程を示す説明図。Explanatory drawing which shows the manufacturing process of the same semiconductor device. 同半導体モジュールの製造工程を示す説明図。Explanatory drawing which shows the manufacturing process of the same semiconductor module. 本発明の第4の実施の形態に係る半導体モジュールの要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of the semiconductor module which concerns on the 4th Embodiment of this invention.

(第1の実施の形態)
図1は第1の実施の形態に係る半導体モジュール10を示す斜視図、図2は半導体モジュール10を示す縦断面図、図3は半導体モジュール10を構成する半導体装置30を示す縦断面図、図4は半導体装置30における各部の位置関係を示す説明図、図5は半導体モジュール10を構成する冷却板20を示す平面図、図6は半導体モジュール10の製造工程を示す説明図、図7は半導体モジュール10の製造工程を示す説明図、図8は半導体モジュール10の製造工程を示す説明図、図9は半導体モジュール10の機能を示す縦断面図、図10は半導体モジュール10が組み込まれたインバータ装置200を示す平面図である。
(First embodiment)
FIG. 1 is a perspective view showing a semiconductor module 10 according to the first embodiment, FIG. 2 is a longitudinal sectional view showing the semiconductor module 10, and FIG. 3 is a longitudinal sectional view showing a semiconductor device 30 constituting the semiconductor module 10. 4 is an explanatory view showing the positional relationship of each part in the semiconductor device 30, FIG. 5 is a plan view showing a cooling plate 20 constituting the semiconductor module 10, FIG. 6 is an explanatory view showing a manufacturing process of the semiconductor module 10, and FIG. FIG. 8 is an explanatory view showing the manufacturing process of the semiconductor module 10, FIG. 9 is a longitudinal sectional view showing the function of the semiconductor module 10, and FIG. 10 is an inverter device in which the semiconductor module 10 is incorporated. FIG.

図1及び図2に示すように、半導体モジュール10は、冷却板20と、この冷却板20上に設けられた2台の半導体装置30と、半導体装置30を冷却板20に実装するためのはんだ材製の接合部100とを備えている。   As shown in FIGS. 1 and 2, the semiconductor module 10 includes a cooling plate 20, two semiconductor devices 30 provided on the cooling plate 20, and solder for mounting the semiconductor device 30 on the cooling plate 20. And a joining portion 100 made of a material.

図2及び図3に示すように、冷却板20は、アルミニウム材製の金属板21と、この金属板21上に形成された絶縁層22と、絶縁層22上に形成された銅箔製の金属配線23とを備えている。なお、金属配線23は、後述するように絶縁材22とエミッタ導電面52及びコレクタ導電面62の一方と挟まれて接合されている。なお、厚さの一例としては、金属板21は3mm、絶縁層22は0.1mm、金属配線23は0.2mmである。   As shown in FIGS. 2 and 3, the cooling plate 20 includes an aluminum metal plate 21, an insulating layer 22 formed on the metal plate 21, and a copper foil formed on the insulating layer 22. Metal wiring 23 is provided. As will be described later, the metal wiring 23 is sandwiched and joined with one of the insulating material 22 and one of the emitter conductive surface 52 and the collector conductive surface 62. As an example of the thickness, the metal plate 21 is 3 mm, the insulating layer 22 is 0.1 mm, and the metal wiring 23 is 0.2 mm.

半導体装置30は、図3に示すように、主面を垂直方向に置かれた半導体チップ40と、銅材製のエミッタ板50と、銅材製のコレクタ板60と、接続端子73と、これら半導体チップ40、エミッタ板50、コレクタ板60、接続端子73の一部を樹脂封止するモールド樹脂80とを備えている。なお、エミッタ板50の後述するエミッタ導電面52と、コレクタ板60のコレクタ導電面62はモールド樹脂80から外部に露出している。   As shown in FIG. 3, the semiconductor device 30 includes a semiconductor chip 40 having a principal surface placed in a vertical direction, a copper emitter plate 50, a copper collector plate 60, connection terminals 73, and the like. The semiconductor chip 40, the emitter plate 50, the collector plate 60, and a mold resin 80 for sealing a part of the connection terminals 73 are provided. Note that an emitter conductive surface 52 described later of the emitter plate 50 and a collector conductive surface 62 of the collector plate 60 are exposed from the mold resin 80 to the outside.

図3及び図4に示すように、半導体チップ40は一組のスイッチング素子40aと還流ダイオード45であり、スイッチング素子40aは、第1主面41と、第2主面42とを備えている。第1主面41には、エミッタ電極41a及び制御電極41bが設けられ、第2主面42には、コレクタ電極42aが設けられている。   As shown in FIGS. 3 and 4, the semiconductor chip 40 is a set of switching elements 40 a and freewheeling diodes 45, and the switching elements 40 a include a first main surface 41 and a second main surface 42. The first main surface 41 is provided with an emitter electrode 41a and a control electrode 41b, and the second main surface 42 is provided with a collector electrode 42a.

エミッタ電極41aには、エミッタ電極41a側から、はんだ等の導電性の接合材43a、銅材製のスペーサ43b、接合材43cの順でエミッタ板50が接続されている。制御電極41bには、アルミ材製のワイヤ(金属細線)41cを介して接続端子73の後述する接続部72が接続されている。なお、適宜、接合材43a、導電性のスペーサ43b、接合材43cをまとめて符号43で示している。   An emitter plate 50 is connected to the emitter electrode 41a from the emitter electrode 41a side in the order of a conductive bonding material 43a such as solder, a spacer 43b made of copper, and a bonding material 43c. A connection portion 72 (to be described later) of the connection terminal 73 is connected to the control electrode 41b through an aluminum wire (metal thin wire) 41c. In addition, the bonding material 43a, the conductive spacer 43b, and the bonding material 43c are collectively indicated by reference numeral 43 as appropriate.

銅材製のスペーサ43bはエミッタ板50とスイッチング素子40aのエミッタ電極41a以外の絶縁部分が接触することを防ぐ機能がある。エミッタ板50とスペーサ43bを別部品で形成することにより、エミッタ板の形状を加工が容易な直方体とすることができるため加工精度が向上して製造歩留りを向上することができる。   The copper spacer 43b has a function of preventing contact between the emitter plate 50 and the insulating portion other than the emitter electrode 41a of the switching element 40a. By forming the emitter plate 50 and the spacer 43b as separate parts, the shape of the emitter plate can be a rectangular parallelepiped that can be easily processed, so that the processing accuracy can be improved and the manufacturing yield can be improved.

コレクタ電極42aには、コレクタ電極42a側から、接合材44を介してコレクタ板60が接続されている。エミッタ板50は、直方体状に形成され、半導体チップ40に対向する電極面(接合面)51と、この電極面51に対し垂直で、かつ、冷却板20に対向するエミッタ導電面(導通面)52とを備えている。電極面(接合面)51もエミッタ導電面(導通面)52もいずれも対向する部材に当接することにより導通可能に形成されている。   A collector plate 60 is connected to the collector electrode 42a from the collector electrode 42a side through a bonding material 44. The emitter plate 50 is formed in a rectangular parallelepiped shape, and has an electrode surface (bonding surface) 51 facing the semiconductor chip 40 and an emitter conductive surface (conduction surface) perpendicular to the electrode surface 51 and facing the cooling plate 20. 52. Both the electrode surface (joint surface) 51 and the emitter conductive surface (conduction surface) 52 are formed so as to be conductive by abutting against opposing members.

また、還流ダイオード45はスイッチング時の誘導電流を流すための素子であり、第1主面46に正電極、第2主面に負電極46bが形成され、正電極がエミッタ板50に接続され、負電極46bがコレクタ板60に接続される。   The free-wheeling diode 45 is an element for flowing an induced current during switching. A positive electrode is formed on the first main surface 46, a negative electrode 46b is formed on the second main surface, and the positive electrode is connected to the emitter plate 50. Negative electrode 46 b is connected to collector plate 60.

スイッチング素子40aと還流ダイオード45のうち、スイッチング素子の発熱量が大きくチップ動作温度に注意が必要であるため、半導体チップ40の放熱については、主にスイッチング素子40aについて説明する。   Of the switching element 40a and the freewheeling diode 45, the amount of heat generated by the switching element is large, and attention must be paid to the chip operating temperature. Therefore, the heat dissipation of the semiconductor chip 40 will be mainly described with respect to the switching element 40a.

コレクタ板60は、直方体状に形成され、半導体チップ40に対向する電極面61と、この電極面(接合面)61に対し垂直で、かつ、冷却板20に対向するエミッタ導電面62とを備えている。電極面(接合面)61もエミッタ導電面(導通面)62もいずれも対向する部材に当接することにより導通可能に形成されている。   The collector plate 60 is formed in a rectangular parallelepiped shape, and includes an electrode surface 61 that faces the semiconductor chip 40, and an emitter conductive surface 62 that is perpendicular to the electrode surface (joint surface) 61 and faces the cooling plate 20. ing. Both the electrode surface (joint surface) 61 and the emitter conductive surface (conduction surface) 62 are formed so as to be conductive by abutting against opposing members.

接続端子73は、リードフレーム70の一部である。リードフレーム70は、エミッタ板50に支持される支持部71と、上述した制御電極41bに接続される接続部72と、モールド樹脂80から突出し、外部端子等との接続に供される接続端子(リード)73と、これらを一体に結合する結合部74を備えている(図4参照)。なお、結合部74は製品完成時に切除される。   The connection terminal 73 is a part of the lead frame 70. The lead frame 70 protrudes from the support portion 71 supported by the emitter plate 50, the connection portion 72 connected to the control electrode 41b described above, and the molding resin 80, and a connection terminal (used for connection to an external terminal or the like). (Lead) 73 and a connecting portion 74 for connecting them together (see FIG. 4). The connecting portion 74 is cut off when the product is completed.

次に、半導体モジュール10の製造工程について、図4〜図8を用いて説明する。図4及び図5は半導体装置30及び冷却板20の各部の位置関係を示している。図5中二点鎖線で示す部位23aは、電力端子Eを取り付けるための部位を示している。   Next, the manufacturing process of the semiconductor module 10 will be described with reference to FIGS. 4 and 5 show the positional relationship between the respective parts of the semiconductor device 30 and the cooling plate 20. A portion 23 a indicated by a two-dot chain line in FIG. 5 indicates a portion for attaching the power terminal E.

図6に示すように、エミッタ板50に、リードフレーム70の支持部71を超音波接合で接合する。一方、コレクタ板60に、半導体チップ40を接合材44を介してコレクタ電極42aを搭載する(接合は行わない)。次に、接合材43aを介してスペーサ43bを搭載する(接合は行わない)。次に、支持部71が取り付けられたエミッタ板50を、スペーサ43bに接合材43cを介して搭載する(接合は行わない)。次のリフロー装置を用いて半導体チップ40、スペーサ43b、エミッタ板50、コレクタ板60を不活性雰囲気叉は還元性雰囲気中で一括過熱することにより、接合材43a,44を溶融凝固させてこれらを接合する。そして、ワイヤ41cで制御電極41bと接続部72とをワイヤボンディグにより接続する。   As shown in FIG. 6, the support portion 71 of the lead frame 70 is joined to the emitter plate 50 by ultrasonic joining. On the other hand, the collector electrode 42a is mounted on the collector plate 60 via the bonding material 44 (no bonding is performed). Next, the spacer 43b is mounted via the bonding material 43a (no bonding is performed). Next, the emitter plate 50 to which the support portion 71 is attached is mounted on the spacer 43b via the bonding material 43c (no bonding is performed). By using the following reflow apparatus, the semiconductor chip 40, the spacer 43b, the emitter plate 50, and the collector plate 60 are collectively heated in an inert atmosphere or a reducing atmosphere to melt and solidify the bonding materials 43a and 44. Join. And the control electrode 41b and the connection part 72 are connected with the wire 41c by the wire 41c.

図7に示すように、半導体チップ40、エミッタ板50、コレクタ板60、リードフレーム70の一部をトランスファモールド法により樹脂封止し、モールド樹脂80を形成する。なお、図7では便宜上、半導体チップ40、エミッタ板50、コレクタ板60、リードフレーム70等は実線で示している。なおこのとき、エミッタ板50のエミッタ導電面52と、コレクタ板60のコレクタ導電面62は外部に露出させる。次に、モールド樹脂80を研削し、エミッタ導電面52及びコレクタ導電面62を同一平面内とする。そして、リードフレーム70の結合部74を切断して接続端子73を形成する。   As shown in FIG. 7, a part of the semiconductor chip 40, the emitter plate 50, the collector plate 60, and the lead frame 70 is resin-sealed by a transfer molding method to form a mold resin 80. In FIG. 7, for the sake of convenience, the semiconductor chip 40, the emitter plate 50, the collector plate 60, the lead frame 70, and the like are indicated by solid lines. At this time, the emitter conductive surface 52 of the emitter plate 50 and the collector conductive surface 62 of the collector plate 60 are exposed to the outside. Next, the mold resin 80 is ground so that the emitter conductive surface 52 and the collector conductive surface 62 are in the same plane. Then, the connecting portion 74 of the lead frame 70 is cut to form the connection terminal 73.

図8に示すように、冷却板20の金属配線23上にはんだペーストPを塗布し、半導体装置30を位置決めし、リフロー炉に投入する。はんだペーストPを溶融・凝固し、接合部100となり、冷却板20と半導体装置30とは一体となる。   As shown in FIG. 8, the solder paste P is applied on the metal wiring 23 of the cooling plate 20, the semiconductor device 30 is positioned, and put into a reflow furnace. The solder paste P is melted and solidified to form the joint 100, and the cooling plate 20 and the semiconductor device 30 are integrated.

このように構成された半導体モジュール10によれば、半導体チップ40によって発生した熱が、エミッタ板50及びコレクタ板60に伝達し、さらにエミッタ導電面52及びコレクタ導電面62を介して接合部100、金属配線23、絶縁層22、金属板21に伝達されて放熱が可能となる。このため、半導体チップ40の両面から高効率で冷却することが可能である。また、金属配線23の熱放散効果により絶縁層22の熱伝達に寄与する面積が増加するため、半導体チップ40と金属板21との間の熱抵抗を低減できる。   According to the semiconductor module 10 configured as described above, the heat generated by the semiconductor chip 40 is transmitted to the emitter plate 50 and the collector plate 60, and the junction 100, via the emitter conductive surface 52 and the collector conductive surface 62. It is transmitted to the metal wiring 23, the insulating layer 22, and the metal plate 21 to enable heat dissipation. For this reason, it is possible to cool from both surfaces of the semiconductor chip 40 with high efficiency. In addition, since the area contributing to heat transfer of the insulating layer 22 increases due to the heat dissipation effect of the metal wiring 23, the thermal resistance between the semiconductor chip 40 and the metal plate 21 can be reduced.

本構造においては、図9Aに示すように、エミッタ導通面の面積/コレクタ導通面の面積比を0.25から0.75の間に設計することにより放熱効率を向上することができる。これは、スイッチング素子のエミッタ電極は周囲に絶縁耐圧確保のための絶縁領域が必要であるのに対して、コレクタ電極42aはチップ面積と等しいため、エミッタ電極の面積がコレクタ電極よりも狭くなり、エミッタ電極側の放熱量がコレクタ電極側より小さくなるためである。従って、コレクタ板の導通面の比率を大きくすることにより、コレクタ板側とエミッタ板側の熱流速が均一化され放熱効率が向上する。   In this structure, as shown in FIG. 9A, the heat radiation efficiency can be improved by designing the emitter conductive surface area / collector conductive surface area ratio between 0.25 and 0.75. This is because the emitter electrode of the switching element requires an insulating region around the periphery to ensure a withstand voltage, whereas the collector electrode 42a is equal to the chip area, so the area of the emitter electrode is smaller than the collector electrode, This is because the amount of heat radiation on the emitter electrode side is smaller than that on the collector electrode side. Therefore, by increasing the ratio of the conductive surfaces of the collector plate, the heat flow rates on the collector plate side and the emitter plate side are made uniform, and the heat radiation efficiency is improved.

本実施の形態ではスイッチング素子のエミッタ電極面積/チップ面積は0.5である。この設計値をもとにエミッタ板とコレクタ板の板厚比、すなわち露出面の面積比を変化させた場合の半導体チップ動作温度のシミュレーションを実施した。スイッチング素子のエミッタ電極面積/チップ面積0.5に対してエミッタ板厚さ/コレクタ板厚さ比が、エミッタ電極面積/チップ面積比の±50%の範囲になるように設計することで良好な放熱性能が得られることが分かる。特にエミッタ板厚/コレクタ板厚が0.6でチップ動作温度が最小となっており、最大の放熱性能が得られる。本実施の形態ではこの値を設計値として用いた。なお、図中Gは現状の設計値を示している。ここで、エミッタ電極面積の半導体チップ面積に対する比率をQAとし、エミッタ板の板厚のコレクタの板厚に対する比率をQBとしたとき、
QA×0.5≦QB≦2×QAとなる関係にある。
In the present embodiment, the emitter electrode area / chip area of the switching element is 0.5. Based on this design value, a simulation of the operating temperature of the semiconductor chip was performed when the thickness ratio of the emitter plate to the collector plate, that is, the area ratio of the exposed surface was changed. It is preferable that the emitter electrode area / chip area ratio of the switching element is designed so that the emitter plate thickness / collector plate thickness ratio is within a range of ± 50% of the emitter electrode area / chip area ratio. It can be seen that heat dissipation performance can be obtained. In particular, the emitter plate thickness / collector plate thickness is 0.6, the chip operating temperature is minimum, and the maximum heat dissipation performance is obtained. In the present embodiment, this value is used as a design value. In the figure, G indicates the current design value. Here, when the ratio of the emitter electrode area to the semiconductor chip area is QA, and the ratio of the emitter plate thickness to the collector plate thickness is QB,
The relationship is QA × 0.5 ≦ QB ≦ 2 × QA.

また、図9Bに、コレクタ板厚とチップ動作温度との関係をシミュレーションした結果を示す。ここでは、コレクタ板幅を40mmに固定してコレクタ板を増加させることによりコレクタ導通面の面積/スイッチング素子の面積の比を変化させた。コレクタ導通面の面積すなわちコレクタ板厚さの増加に伴い放熱性能が向上して、半導体チップの動作温度が低下することが分かる。また、コレクタ導通面の面積/スイッチング素子面積が2.6から4.6に増加すると、動作温度低下の傾きが30%以下に低減することが分かる。これは、コレクタ板の板厚増加が放熱性能向上に大きく寄与するが、コレクタ導通面の面積/スイッチング素子面積を4.6まで増加させると放熱性向上の効果が小さくなり、装置寸法増加による大型化、重量増加の短所が現れてくることを示す。このような知見に基づき、本構造においては、コレクタ導通面の面積/スイッチング素子面積の比を2.0から4.0の間に設定することにより、高放熱性能と装置の小型軽量化を両立させている。   FIG. 9B shows the result of simulating the relationship between the collector plate thickness and the chip operating temperature. Here, the collector plate width was fixed to 40 mm and the collector plate was increased to change the ratio of the collector conductive surface area / switching element area. It can be seen that as the area of the collector conducting surface, that is, the collector plate thickness increases, the heat dissipation performance improves and the operating temperature of the semiconductor chip decreases. It can also be seen that when the collector conductive surface area / switching element area is increased from 2.6 to 4.6, the slope of the operating temperature drop is reduced to 30% or less. This is because the increase in the collector plate thickness greatly contributes to the improvement of the heat dissipation performance. However, if the collector conduction surface area / switching element area is increased to 4.6, the effect of improving the heat dissipation performance is reduced, and the large size due to the increase in the size of the device. It shows that the shortcomings of increasing the weight and weight appear. Based on this knowledge, in this structure, by setting the ratio of the collector conductive surface area / switching element area between 2.0 and 4.0, it is possible to achieve both high heat dissipation performance and reduction in size and weight of the device. I am letting.

また、本構造は、図9Cに示すように、エミッタ板50とコレクタ板60の組立誤差による高さばらつきをはんだ材の接合部100が吸収するため、絶縁層22の厚さは半導体装置の外形精度に依存することなく薄く一定に保つことが容易である。このように、放熱経路の中で最も熱抵抗の高い材料である絶縁層の膜厚を必要最低限の膜厚に設定することができるため高い放熱性能が実現できる。   Further, as shown in FIG. 9C, in this structure, since the solder material joint 100 absorbs the height variation due to the assembly error between the emitter plate 50 and the collector plate 60, the thickness of the insulating layer 22 is the outer shape of the semiconductor device. It is easy to keep thin and constant without depending on accuracy. Thus, since the film thickness of the insulating layer, which is the material having the highest thermal resistance in the heat radiation path, can be set to the minimum necessary film thickness, high heat radiation performance can be realized.

本発明の半導体モジュールを用いたインバータ装置を図10に示す。冷却板210と、この冷却板210上に平面状に2列で複数配置された半導体装置30とを備えている。これら半導体装置30は、外部の発電モータに接続される半導体装置アレイ220と、外部の駆動モータに接続される半導体装置アレイ230と、外部の昇圧装置に接続される半導体装置アレイ240とを備えている。なお、各半導体装置アレイ220〜240における半導体装置30アレイの数や接続形態は、流れる電流量に応じて適宜決められている。   An inverter device using the semiconductor module of the present invention is shown in FIG. A cooling plate 210 and a plurality of semiconductor devices 30 arranged in two rows in a plane on the cooling plate 210 are provided. These semiconductor devices 30 include a semiconductor device array 220 connected to an external power generation motor, a semiconductor device array 230 connected to an external drive motor, and a semiconductor device array 240 connected to an external booster. Yes. Note that the number and connection form of the semiconductor device 30 arrays in each of the semiconductor device arrays 220 to 240 are appropriately determined according to the amount of current flowing.

ここでは、発電モータ部は正極側、負極側をそれぞれ1つの半導体装置で形成して、これを3並列して3相交流の回路を形成している。駆動モータ部と昇圧部は電流量が大きいため、正極側、負極側をそれぞれ2つの半導体装置を並列接続して、駆動モータ部は、これを3並列して3相交流の回路を形成している。   Here, the positive motor side and the negative electrode side are each formed of one semiconductor device, and the generator motor unit is formed in parallel to form a three-phase AC circuit. Since the drive motor unit and the booster unit have a large amount of current, two semiconductor devices are connected in parallel on the positive electrode side and the negative electrode side, respectively, and the drive motor unit forms a three-phase AC circuit by connecting these three in parallel. Yes.

冷却板上の金属配線23のパターンは、発電部の正極、負極、U相、V相、W相の金属配線を半導体装置アレイの整列方向に対して斜めに形成することにより、W相とV相の負極を共用することと、V相とU相の正極を共用することが可能となり、平面配線のみで回路を構成できる。さらに発電部U相と駆動部W相の負極、駆動部のW相とV相の正極、駆動部V相とU相の負極、駆動部U相と昇圧部の正極を共用することで、インバータの小型化が可能であるとともに、簡素な構造の平面配線のみで形成できるため信頼性の向上を図ることができる。   The pattern of the metal wiring 23 on the cooling plate is formed by forming the positive, negative, U-phase, V-phase, and W-phase metal wirings of the power generation unit obliquely with respect to the alignment direction of the semiconductor device array. It is possible to share the negative electrode of the phase and the positive electrode of the V phase and the U phase, and the circuit can be configured with only planar wiring. Furthermore, the inverter by sharing the negative electrode of the power generation unit U phase and the drive unit W phase, the positive electrode of the W phase and the V phase of the drive unit, the negative electrode of the drive unit V and U phases, the positive electrode of the drive unit U phase and the boost unit Therefore, it is possible to improve the reliability.

また、このように複数の半導体装置と冷却板を組み合わせてインバータ装置を形成することにより、冷却板上の金属配線パターンの変更のみで出力容量や出力端子数の変更に対応可能であり、インバータの設計が容易になる。   In addition, by forming an inverter device by combining a plurality of semiconductor devices and cooling plates in this way, it is possible to respond to changes in the output capacity and the number of output terminals only by changing the metal wiring pattern on the cooling plate. Design becomes easy.

(第2の実施の形態)
図11は本発明の第2の実施の形態に係る半導体モジュール10Aを構成する半導体装置30を示す縦断面図、図12は半導体装置30を示す底面図である。これらの図において、上述した図2と同一機能部分には同一符号を付し、その詳細な説明は省略する。
(Second Embodiment)
FIG. 11 is a longitudinal sectional view showing a semiconductor device 30 constituting a semiconductor module 10A according to the second embodiment of the present invention, and FIG. 12 is a bottom view showing the semiconductor device 30. In these drawings, the same functional parts as those in FIG. 2 described above are denoted by the same reference numerals, and detailed description thereof is omitted.

図12に示すように、モールド樹脂80の冷却板20側の四隅に突起部81が設けられている。一方、絶縁層22の上面には金属配線23に隣接して、係合部24が形成されている。なお、係合部24の他、絶縁層22上面に凹部22aを設けるようにしてもよい。   As shown in FIG. 12, protrusions 81 are provided at the four corners of the mold resin 80 on the cooling plate 20 side. On the other hand, an engaging portion 24 is formed adjacent to the metal wiring 23 on the upper surface of the insulating layer 22. In addition to the engaging portion 24, a concave portion 22a may be provided on the upper surface of the insulating layer 22.

このように半導体モジュール10Aでは、上述した半導体モジュール10と同様の効果が得られる。また、突起部81が設けられていることにより、接合部100の厚さを制御することが可能となる。また、係合部24は上述した突起部81に係合し、冷却板20の面に沿った方向の移動を規制する。このため、冷却板20と半導体装置30とを組み立てる際に、位置ズレを防止することができ、歩留まり向上・信頼性向上が可能となる。   Thus, in the semiconductor module 10A, the same effects as those of the semiconductor module 10 described above can be obtained. In addition, since the protrusion 81 is provided, the thickness of the joint portion 100 can be controlled. Further, the engaging portion 24 engages with the above-described protrusion 81 and restricts movement in the direction along the surface of the cooling plate 20. For this reason, when the cooling plate 20 and the semiconductor device 30 are assembled, it is possible to prevent positional deviation, and it is possible to improve yield and reliability.

(第3の実施の形態)
図13は本発明の第3の実施の形態に係る半導体モジュール10Bを構成する半導体装置30を示す縦断面図、図14は半導体装置30を示す底面図、図15は半導体モジュール10Bの製造工程を示す説明図、図16は半導体モジュール10Bの製造工程を示す説明図である。これらの図において、上述した図6〜図8及び図11,12と同一機能部分には同一符号を付し、その詳細な説明は省略する。
(Third embodiment)
FIG. 13 is a longitudinal sectional view showing a semiconductor device 30 constituting a semiconductor module 10B according to a third embodiment of the present invention, FIG. 14 is a bottom view showing the semiconductor device 30, and FIG. 15 shows a manufacturing process of the semiconductor module 10B. FIG. 16 is an explanatory view showing a manufacturing process of the semiconductor module 10B. In these drawings, the same functional parts as those in FIGS. 6 to 8 and FIGS. 11 and 12 are denoted by the same reference numerals, and detailed description thereof is omitted.

図13,14に示すように、半導体モジュール10Cでは、突起部81が設けられていると共に、エミッタ導電面52とコレクタ導電面62との間を仕切る壁状突起部82とを備えている。また、冷却板20の金属配線23間には接着剤25が塗布されており、壁状突起部82と接着剤25が接合されている。   As shown in FIGS. 13 and 14, the semiconductor module 10 </ b> C includes a protrusion 81 and a wall-like protrusion 82 that partitions the emitter conductive surface 52 and the collector conductive surface 62. In addition, an adhesive 25 is applied between the metal wirings 23 of the cooling plate 20, and the wall-shaped protrusion 82 and the adhesive 25 are joined.

次に、半導体モジュール10の製造工程について、図15,16を用いて説明する。なお、半導体チップ40、エミッタ板50、コレクタ板60、リードフレーム70の接合は、図6と同様であるので省略する。   Next, the manufacturing process of the semiconductor module 10 will be described with reference to FIGS. The joining of the semiconductor chip 40, the emitter plate 50, the collector plate 60, and the lead frame 70 is the same as in FIG.

次に、図15に示すように、半導体チップ40、エミッタ板50、コレクタ板60、リードフレーム70の一部を樹脂封止し、モールド樹脂80を形成する。このとき、エミッタ板50のエミッタ導電面52と、コレクタ板60のコレクタ導電面62は外部に露出させる。そして、リードフレーム70の結合部74を切断し、接続端子73を形成する。   Next, as shown in FIG. 15, a part of the semiconductor chip 40, the emitter plate 50, the collector plate 60, and the lead frame 70 is resin-sealed to form a mold resin 80. At this time, the emitter conductive surface 52 of the emitter plate 50 and the collector conductive surface 62 of the collector plate 60 are exposed to the outside. Then, the connecting portion 74 of the lead frame 70 is cut to form the connection terminal 73.

図16に示すように、冷却板20の金属配線23上にはんだペーストPを塗布すると共に、金属配線23間に接着剤25を塗布する。サブモジュール30を位置決めし、リフロー炉に投入する。はんだペーストPを溶融・凝固し、接合部100となり、冷却板20とサブモジュール30とは一体となると同時に接着剤25を加熱硬化する。   As shown in FIG. 16, a solder paste P is applied on the metal wiring 23 of the cooling plate 20, and an adhesive 25 is applied between the metal wirings 23. The submodule 30 is positioned and put into a reflow furnace. The solder paste P is melted and solidified to form the joint portion 100, and the cooling plate 20 and the submodule 30 are integrated, and at the same time, the adhesive 25 is heated and cured.

このように構成された半導体モジュール10Bによれば、半導体モジュール10,10Aと同様の効果を得ることができると共に、金属配線23間とエミッタ導電面52、コレクタ導電面62間の沿面放電を抑制することが可能となり、絶縁耐圧が向上する。   According to the semiconductor module 10B configured as described above, the same effects as those of the semiconductor modules 10 and 10A can be obtained, and creeping discharge between the metal wiring 23 and between the emitter conductive surface 52 and the collector conductive surface 62 can be suppressed. And the withstand voltage is improved.

(第4の実施の形態)
図17は本発明の第4の実施の形態に係る半導体モジュール10Cの要部を示す縦断面図である。この図において、上述した図2と同一機能部分には同一符号を付し、その詳細な説明は省略する。
(Fourth embodiment)
FIG. 17 is a longitudinal sectional view showing a main part of a semiconductor module 10C according to the fourth embodiment of the present invention. In this figure, the same functional parts as those in FIG. 2 described above are denoted by the same reference numerals, and detailed description thereof is omitted.

半導体モジュール10Cでは、サブモジュール30の底面と冷却板20の間隙をエポキシとシリカ粉末を混合した樹脂300で封止している。このように構成されていると、上述した半導体モジュール10と同様の効果があると共に、金属配線23間とエミッタ導電面52、コレクタ導電面62間の沿面放電を抑制する効果があり、絶縁耐圧が向上する。   In the semiconductor module 10C, the gap between the bottom surface of the submodule 30 and the cooling plate 20 is sealed with a resin 300 in which epoxy and silica powder are mixed. Such a configuration has the same effect as that of the semiconductor module 10 described above, and also has an effect of suppressing creeping discharge between the metal wirings 23 and between the emitter conductive surface 52 and the collector conductive surface 62, and withstand voltage is reduced. improves.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10,10A,10B,10C…半導体モジュール、20…冷却板、21…金属板、22…絶縁層、23…金属配線、30…半導体装置、40…半導体チップ、50…エミッタ板、52…エミッタ導電面、60…コレクタ板、62…コレクタ導電面、70…リードフレーム、71…支持部、72…接続部、73…接続端子、74…結合部、80…モールド樹脂、100…接合部、200…インバータ装置、300…樹脂。   DESCRIPTION OF SYMBOLS 10, 10A, 10B, 10C ... Semiconductor module, 20 ... Cooling plate, 21 ... Metal plate, 22 ... Insulating layer, 23 ... Metal wiring, 30 ... Semiconductor device, 40 ... Semiconductor chip, 50 ... Emitter plate, 52 ... Emitter conduction Surface, 60 ... Collector plate, 62 ... Collector conductive surface, 70 ... Lead frame, 71 ... Support portion, 72 ... Connection portion, 73 ... Connection terminal, 74 ... Connection portion, 80 ... Mold resin, 100 ... Joint portion, 200 ... Inverter device, 300 ... resin.

Claims (9)

両面にそれぞれエミッタ電極・コレクタ電極、及び、少なくとも一方の面に制御電極を有する半導体チップと、
この半導体チップの上記エミッタ電極に接合された金属材製のエミッタ板と、
上記半導体チップの上記コレクタ電極に接合された金属材製のコレクタ板と、
上記制御電極に金属細線を介して接続された接続端子と、
上記半導体チップ、上記エミッタ板、上記コレクタ板、及び、上記接続端子の一部を、上記エミッタ板の上記半導体チップとの接合面に対し垂直なエミッタ導電面及び上記コレクタ板の上記半導体チップとの接合面に対し垂直なコレクタ導電面を露出させて封止するモールド樹脂を具備し、
上記エミッタ導通面の面積が上記半導体チップのエミッタ電極の面積より大きく、上記コレクタ導通面の面積が上記半導体チップのコレクタ電極の面積より大きく、上記コレクタ導通面の面積が上記エミッタ導通面の面積より大きいことを特徴とする半導体装置。
A semiconductor chip having an emitter electrode and a collector electrode on each side, and a control electrode on at least one side;
A metal-made emitter plate joined to the emitter electrode of the semiconductor chip;
A collector plate made of a metal material joined to the collector electrode of the semiconductor chip;
A connection terminal connected to the control electrode via a thin metal wire;
The semiconductor chip, the emitter plate, the collector plate, and a part of the connection terminal are connected to the emitter conductive surface perpendicular to the junction surface of the emitter plate with the semiconductor chip and the semiconductor chip of the collector plate. A mold resin that seals by exposing the collector conductive surface perpendicular to the bonding surface,
The area of the emitter conduction surface is larger than the area of the emitter electrode of the semiconductor chip, the area of the collector conduction surface is larger than the area of the collector electrode of the semiconductor chip, and the area of the collector conduction surface is larger than the area of the emitter conduction surface. A semiconductor device characterized by being large.
両面にそれぞれエミッタ電極・コレクタ電極、及び、少なくとも一方の面に制御電極を有する半導体チップと、
この半導体チップの上記エミッタ電極に接合された金属材製のエミッタ板と、
上記半導体チップの上記コレクタ電極に接合された金属材製のコレクタ板と、
上記制御電極に金属細線を介して接続された接続端子と、
上記半導体チップ、上記エミッタ板、上記コレクタ板、及び、上記接続端子の一部を、上記エミッタ板の上記半導体チップとの接合面に対し垂直なエミッタ導電面及び上記コレクタ板の上記半導体チップとの接合面に対し垂直なコレクタ導電面を露出させて封止するモールド樹脂を具備し、
上記エミッタ導通面の面積が上記半導体チップのエミッタ電極の面積より大きく、上記コレクタ導通面の面積が上記半導体チップのコレクタ電極の面積より大きく、
上記エミッタ電極面積の上記半導体チップ面積に対する比率をQAとし、上記エミッタ板の板厚の上記コレクタの板厚に対する比率をQBとしたとき、
QA×0.5≦QB≦2×QAとなることを特徴とする半導体装置。
A semiconductor chip having an emitter electrode and a collector electrode on each side, and a control electrode on at least one side;
A metal-made emitter plate joined to the emitter electrode of the semiconductor chip;
A collector plate made of a metal material joined to the collector electrode of the semiconductor chip;
A connection terminal connected to the control electrode via a thin metal wire;
The semiconductor chip, the emitter plate, the collector plate, and a part of the connection terminal are connected to the emitter conductive surface perpendicular to the junction surface of the emitter plate with the semiconductor chip and the semiconductor chip of the collector plate. A mold resin that seals by exposing the collector conductive surface perpendicular to the bonding surface,
The area of the emitter conduction surface is larger than the area of the emitter electrode of the semiconductor chip, the area of the collector conduction surface is larger than the area of the collector electrode of the semiconductor chip,
When the ratio of the emitter electrode area to the semiconductor chip area is QA, and the ratio of the emitter plate thickness to the collector plate thickness is QB,
A semiconductor device characterized in that QA × 0.5 ≦ QB ≦ 2 × QA.
両面にそれぞれエミッタ電極・コレクタ電極、及び、少なくとも一方の面に制御電極を有する半導体チップと、
この半導体チップの上記エミッタ電極に接合された金属材製のエミッタ板と、
上記半導体チップの上記コレクタ電極に接合された金属材製のコレクタ板と、
上記制御電極に金属細線を介して接続された接続端子と、
上記半導体チップ、上記エミッタ板、上記コレクタ板、及び、上記接続端子の一部を、上記エミッタ板の上記半導体チップとの接合面に対し垂直なエミッタ導電面及び上記コレクタ板の上記半導体チップとの接合面に対し垂直なコレクタ導電面を露出させて封止するモールド樹脂とを具備し、上記エミッタ導通面の面積が上記半導体チップのエミッタ電極の面積より大きく、上記コレクタ導通面の面積が上記半導体チップのコレクタ電極の面積より大きく、上記コレクタ導通面の面積が上記エミッタ導通面の面積より大きいことを特徴とする半導体装置と、
この半導体装置を複数個搭載し、金属材製の冷却板と、上記冷却板上に設けられた絶縁材と、上記絶縁材上に設けられた金属配線を有する冷却器と、
上記半導体装置のエミッタ導通面と上記冷却器の金属配線とが金属製接合材で接合されたことを特徴とする半導体モジュール。
A semiconductor chip having an emitter electrode and a collector electrode on each side, and a control electrode on at least one side;
A metal-made emitter plate joined to the emitter electrode of the semiconductor chip;
A collector plate made of a metal material joined to the collector electrode of the semiconductor chip;
A connection terminal connected to the control electrode via a thin metal wire;
The semiconductor chip, the emitter plate, the collector plate, and a part of the connection terminal are connected to the emitter conductive surface perpendicular to the junction surface of the emitter plate with the semiconductor chip and the semiconductor chip of the collector plate. A mold resin that exposes and seals the collector conductive surface perpendicular to the bonding surface, and the area of the emitter conductive surface is larger than the area of the emitter electrode of the semiconductor chip, and the area of the collector conductive surface is the semiconductor A semiconductor device characterized in that it is larger than the area of the collector electrode of the chip, and the area of the collector conduction surface is larger than the area of the emitter conduction surface;
A plurality of the semiconductor devices are mounted, a cooling plate made of a metal material, an insulating material provided on the cooling plate, a cooler having metal wiring provided on the insulating material,
A semiconductor module, wherein the emitter conduction surface of the semiconductor device and the metal wiring of the cooler are joined by a metal joining material.
上記半導体装置は、上記冷却板側に向けて上記樹脂封止部と上記絶縁材との間の距離を規制する突起部を備えていることを特徴とする請求項3に記載の半導体モジュール。   4. The semiconductor module according to claim 3, wherein the semiconductor device includes a protrusion that restricts a distance between the resin sealing portion and the insulating material toward the cooling plate. 上記絶縁材には、上記突起部が挿入される凹部が形成されていることを特徴とする請求項3に記載の半導体モジュール。   The semiconductor module according to claim 3, wherein the insulating material has a recess into which the protrusion is inserted. 上記モールド樹脂は、上記冷却板側に向けて形成され、上記エミッタ導電面と上記コレクタ導電面との間を仕切る壁状突起部を備えていることを特徴とする請求項3に記載の半導体モジュール。   4. The semiconductor module according to claim 3, wherein the mold resin is formed toward the cooling plate side, and includes a wall-like protrusion that partitions the emitter conductive surface and the collector conductive surface. . 上記モールド樹脂と上記冷却板との間に形成され、少なくとも上記エミッタ板の上記エミッタ導電面及び上記コレクタ板の上記コレクタ導電面と、上記金属配線との接合部を封止する封止樹脂を備えていることを特徴とする請求項3に記載の半導体モジュール。   A sealing resin which is formed between the mold resin and the cooling plate and seals at least a junction between the emitter conductive surface of the emitter plate and the collector conductive surface of the collector plate and the metal wiring; The semiconductor module according to claim 3. 両面にそれぞれエミッタ電極・コレクタ電極、及び、少なくとも一方の面に制御電極を有する半導体チップと、この半導体チップの上記エミッタ電極に接合された金属材製のエミッタ板と、上記半導体チップの上記コレクタ電極に接合された金属材製のコレクタ板と、上記制御電極に金属細線を介して接続された接続端子と、上記半導体チップ、上記エミッタ板、上記コレクタ板、及び、上記接続端子の一部を、上記エミッタ板の上記半導体チップとの接合面に対し垂直なエミッタ導電面及び上記コレクタ板の上記半導体チップとの接合面に対し垂直なコレクタ導電面を露出させて封止するモールド樹脂を具備する半導体装置と、この半導体装置を複数個搭載し、金属材製の冷却板と、上記冷却板上に設けられた絶縁材と、上記絶縁材上に設けられた金属配線を有する冷却器とを有する半導体モジュールの製造方法であって、
上記エミッタ板とリードフレームを溶接もしくは超音波接合で接合し、
上記コレクタ板上に上記半導体チップを位置合せして、接合材を介してマウントし、
上記半導体チップ上にと上記エミッタ板を位置合せして、接合材を介してマウントし、
不活性雰囲気もしくは還元雰囲気で加熱して前記接合材を溶融させた後に冷却して、上記コレクタ板、上記半導体チップ、上記エミッタ板を接合し、
超音波接合法を用いて、上記半導体チップの制御電極と上記リードフレームを上記金属細線で接続し、
トランスファーモールド法により、上記モールド樹脂を用いて、上記コレクタ板、上記半導体チップ、上記リードフレーム、上記エミッタ板を封止し、
上記リードフレームの不要部分を打ち抜きにより切断除去して上記接続端子とすることを特徴とする半導体モジュールの製造方法。
A semiconductor chip having an emitter electrode and a collector electrode on both sides and a control electrode on at least one side, a metal emitter plate joined to the emitter electrode of the semiconductor chip, and the collector electrode of the semiconductor chip A metal-made collector plate joined to the control electrode, a connection terminal connected to the control electrode via a thin metal wire, the semiconductor chip, the emitter plate, the collector plate, and a part of the connection terminal, A semiconductor comprising a mold resin for exposing and sealing an emitter conductive surface perpendicular to a bonding surface of the emitter plate with the semiconductor chip and a collector conductive surface of the collector plate perpendicular to the bonding surface with the semiconductor chip. A plurality of semiconductor devices, a metal cooling plate, an insulating material provided on the cooling plate, and an insulating material provided on the insulating material. It was a method for manufacturing a semiconductor module and a condenser with a metal wire,
Join the emitter plate and lead frame by welding or ultrasonic bonding,
The semiconductor chip is aligned on the collector plate, mounted via a bonding material,
Position the emitter plate on the semiconductor chip, mount it via a bonding material,
Cooling after melting the bonding material by heating in an inert atmosphere or a reducing atmosphere, bonding the collector plate, the semiconductor chip, the emitter plate,
Using an ultrasonic bonding method, the control electrode of the semiconductor chip and the lead frame are connected by the metal thin wire,
The transfer plate method is used to seal the collector plate, the semiconductor chip, the lead frame, and the emitter plate using the mold resin.
A method of manufacturing a semiconductor module, wherein unnecessary portions of the lead frame are cut and removed by punching to form the connection terminals.
上記冷却器の金属配線上に金属製接合材を介して上記半導体装置を複数個マウントし、
不活性雰囲気もしくは還元雰囲気で加熱して接合材を溶融させた後に冷却して、上記半導体装置と上記冷却器を接合することを特徴とする請求項8に記載の半導体モジュールの製造方法。
A plurality of the semiconductor devices are mounted on the metal wiring of the cooler via a metal bonding material,
9. The method of manufacturing a semiconductor module according to claim 8, wherein the semiconductor device and the cooler are joined by heating in an inert atmosphere or a reducing atmosphere to melt the joining material and then cooling.
JP2012033426A 2012-02-17 2012-02-17 Semiconductor device, semiconductor module, and semiconductor module manufacturing method Pending JP2013171891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012033426A JP2013171891A (en) 2012-02-17 2012-02-17 Semiconductor device, semiconductor module, and semiconductor module manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012033426A JP2013171891A (en) 2012-02-17 2012-02-17 Semiconductor device, semiconductor module, and semiconductor module manufacturing method

Publications (1)

Publication Number Publication Date
JP2013171891A true JP2013171891A (en) 2013-09-02

Family

ID=49265681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012033426A Pending JP2013171891A (en) 2012-02-17 2012-02-17 Semiconductor device, semiconductor module, and semiconductor module manufacturing method

Country Status (1)

Country Link
JP (1) JP2013171891A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093411A (en) * 2012-11-02 2014-05-19 Toshiba Corp Semiconductor device
JP2014113025A (en) * 2012-10-31 2014-06-19 Toshiba Corp Semiconductor power converter and manufacturing method of the same
JP2015053346A (en) * 2013-09-05 2015-03-19 株式会社東芝 Semiconductor device
JP2016066672A (en) * 2014-09-24 2016-04-28 株式会社東芝 Semiconductor module and semiconductor module manufacturing method
US9780684B2 (en) 2015-02-26 2017-10-03 Denso Corporation Power converter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226422A (en) * 1994-02-14 1995-08-22 Sumitomo Electric Ind Ltd Package of electronic component
JP2002270736A (en) * 2001-03-14 2002-09-20 Mitsubishi Electric Corp Semiconductor device
JP2003258166A (en) * 2001-12-27 2003-09-12 Denso Corp Semiconductor device
JP2004303900A (en) * 2003-03-31 2004-10-28 Denso Corp Semiconductor device
JP2009283656A (en) * 2008-05-22 2009-12-03 Denso Corp Semiconductor device and manufacturing method thereof
JP2010161188A (en) * 2009-01-08 2010-07-22 Mitsubishi Electric Corp Power module and power semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226422A (en) * 1994-02-14 1995-08-22 Sumitomo Electric Ind Ltd Package of electronic component
JP2002270736A (en) * 2001-03-14 2002-09-20 Mitsubishi Electric Corp Semiconductor device
JP2003258166A (en) * 2001-12-27 2003-09-12 Denso Corp Semiconductor device
JP2004303900A (en) * 2003-03-31 2004-10-28 Denso Corp Semiconductor device
JP2009283656A (en) * 2008-05-22 2009-12-03 Denso Corp Semiconductor device and manufacturing method thereof
JP2010161188A (en) * 2009-01-08 2010-07-22 Mitsubishi Electric Corp Power module and power semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014113025A (en) * 2012-10-31 2014-06-19 Toshiba Corp Semiconductor power converter and manufacturing method of the same
JP2014093411A (en) * 2012-11-02 2014-05-19 Toshiba Corp Semiconductor device
JP2015053346A (en) * 2013-09-05 2015-03-19 株式会社東芝 Semiconductor device
JP2016066672A (en) * 2014-09-24 2016-04-28 株式会社東芝 Semiconductor module and semiconductor module manufacturing method
US9780684B2 (en) 2015-02-26 2017-10-03 Denso Corporation Power converter

Similar Documents

Publication Publication Date Title
JP5591396B2 (en) Semiconductor module and method for manufacturing semiconductor module
JP4438489B2 (en) Semiconductor device
JP5279632B2 (en) Semiconductor module
US20140367736A1 (en) Semiconductor device and method for manufacturing semiconductor device
WO2013021647A1 (en) Semiconductor module, semiconductor device provided with semiconductor module, and method for manufacturing semiconductor module
JP5659938B2 (en) Semiconductor unit and semiconductor device using the same
JP5213884B2 (en) Semiconductor device module
JP2019102561A (en) Power semiconductor device and manufacturing method thereof
JP7187992B2 (en) Semiconductor modules and vehicles
JP4984730B2 (en) Semiconductor device
JP2013171891A (en) Semiconductor device, semiconductor module, and semiconductor module manufacturing method
JP5668707B2 (en) Semiconductor module
JP2015099846A (en) Semiconductor device, and method of manufacturing the same
WO2020184053A1 (en) Semiconductor device
JP5409889B2 (en) Inverter
JP2013183023A (en) Electric power conversion apparatus
JP4403166B2 (en) Power module and power converter
KR101482839B1 (en) Semiconductor device and method for manufacturing semiconductor device
JP6276721B2 (en) Power module
JP5188602B2 (en) Inverter
JP2014183213A (en) Semiconductor module and method of manufacturing semiconductor module
JP2014096412A (en) Semiconductor module
JP2011211018A (en) Semiconductor module
JP2010178523A (en) Inverter apparatus
CN113557603B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150310