JP2013159525A - Method for manufacturing silicon single crystal and device for manufacturing silicon single crystal - Google Patents

Method for manufacturing silicon single crystal and device for manufacturing silicon single crystal Download PDF

Info

Publication number
JP2013159525A
JP2013159525A JP2012023198A JP2012023198A JP2013159525A JP 2013159525 A JP2013159525 A JP 2013159525A JP 2012023198 A JP2012023198 A JP 2012023198A JP 2012023198 A JP2012023198 A JP 2012023198A JP 2013159525 A JP2013159525 A JP 2013159525A
Authority
JP
Japan
Prior art keywords
diameter
single crystal
silicon single
disturbance
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012023198A
Other languages
Japanese (ja)
Other versions
JP5716689B2 (en
Inventor
Atsushi Ozaki
篤志 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2012023198A priority Critical patent/JP5716689B2/en
Publication of JP2013159525A publication Critical patent/JP2013159525A/en
Application granted granted Critical
Publication of JP5716689B2 publication Critical patent/JP5716689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing silicon single crystal and a device for manufacturing the silicon single crystal that can grow the silicon single crystal while performing diameter control with high precision by suitably correcting a heater temperature.SOLUTION: In a method for manufacturing silicon single crystal including steps of: detecting the diameter of the silicon single crystal being lifted by a diameter detection section 1, correcting a heater temperature by temperature correction operation means 3A on the basis of the detected diameter, and lifting the silicon single crystal while controlling the diameter when manufacturing the silicon single crystal by heating and lifting seed crystal from a melt by a Czochralski method, a diameter variation determination section 5 determines whether variation factor in detected diameter is caused by a disturbance for correction of the heater temperature. When it is determined that the variation is caused by a disturbance, temperature correction operation means 3B for disturbance different from the temperature correction operation means 3A corrects the heater temperature and the silicon single crystal is lifted while having its diameter controlled.

Description

本発明は、チョクラルスキー法にて、直径の変動を制御しながらシリコン単結晶を引き上げるシリコン単結晶の製造方法及び製造装置に関する。   The present invention relates to a silicon single crystal manufacturing method and a manufacturing apparatus for pulling up a silicon single crystal while controlling a variation in diameter by the Czochralski method.

近年、LSIのMOS型高集積半導体素子の集積度が増大され、ゲート酸化膜が薄膜化されたことから、ゲート酸化膜の絶縁耐圧特性の向上が強く要求されている。ところが、チョクラルスキー法(CZ法)により製造されたシリコン単結晶には微小な欠陥(Grown−in欠陥)が存在することが知られており、このような欠陥は酸化膜耐圧特性をはじめとするデバイス特性に悪影響を及ぼす。   In recent years, since the integration degree of LSI MOS type highly integrated semiconductor elements has been increased and the gate oxide film has been thinned, there is a strong demand for improvement in the dielectric strength characteristics of the gate oxide film. However, it is known that a silicon single crystal manufactured by the Czochralski method (CZ method) has a minute defect (Grown-in defect). Adversely affects device characteristics.

このGrown−in欠陥による問題を解決するため、引上速度0.8mm/min以下の低速で、シリコン単結晶を成長させる方法が特許文献1により提案されている。しかし、低速で成長させたシリコン単結晶から得られたウェーハにも、赤外散乱欠陥、OSFリング、転位クラスタ等のGrown−in欠陥が存在し、ウェーハ面内で無欠陥領域は限られている。また、単結晶を低速で成長することは生産性の低下をもたらすため好ましくない。   In order to solve the problem due to this Grown-in defect, Patent Document 1 proposes a method of growing a silicon single crystal at a low speed of 0.8 mm / min or less. However, a wafer obtained from a silicon single crystal grown at a low speed also has grown-in defects such as infrared scattering defects, OSF rings, and dislocation clusters, and the defect-free region is limited in the wafer plane. . In addition, it is not preferable to grow a single crystal at a low speed because the productivity is lowered.

そこで、全面にわたってGrown−in欠陥の無いシリコン単結晶ウェーハを製造する方法が、特許文献2において提案されている。この方法は、引上速度をV(mm/min)とし、シリコン融点から1300℃までの温度範囲における引上軸方向の結晶内温度勾配の平均値をG(℃/mm)とするとき、V/G値を所定の範囲内に制御してシリコン単結晶を成長させる製造方法である。
この発明では、V/G値を制御することにより、横断面全面で無欠陥であるシリコン単結晶を製造したり、あるいはOSFリングを狙いとする位置に発生させたり、または消滅させることも可能となる。つまり、温度勾配Gが特定の成長炉で引上速度Vを一定として単結晶が成長できれば、全面無欠陥シリコン単結晶やOSFリングの位置が制御されたシリコン単結晶を製造できることになる。
Therefore, Patent Document 2 proposes a method for manufacturing a silicon single crystal wafer having no grown-in defects over the entire surface. In this method, when the pulling rate is V (mm / min) and the average value of the temperature gradient in the crystal in the pulling axis direction in the temperature range from the silicon melting point to 1300 ° C. is G (° C./mm), V This is a manufacturing method in which a silicon single crystal is grown by controlling the / G value within a predetermined range.
In the present invention, by controlling the V / G value, it is possible to produce a silicon single crystal that is defect-free over the entire cross section, or to generate or disappear at a position aimed at the OSF ring. Become. That is, if the single crystal can be grown with the temperature gradient G being constant in the specific growth furnace and the pulling speed V being constant, a defect-free silicon single crystal on the entire surface or a silicon single crystal in which the position of the OSF ring is controlled can be manufactured.

一方、シリコン単結晶を成長させる際には、成長させる単結晶の直径の変動を抑え、所望直径で一定に制御しつつ成長させることも、ウェーハを製造する際の製造歩留り等の見地から重要となる。この単結晶の直径を制御する方法としては、成長させる単結晶の直径を、引上速度とヒータ供給電力(ヒータ温度、以下単に温度と呼ぶことがある)で制御する直径制御方法がある(特許文献3)。
このような直径制御方法においては、引上速度を変化させた場合は速効性があって直径を直ぐに変化させることができるのに対し、ヒータ温度を変化させた場合はその効果が現れるのが遅い。このように、ヒータ温度の増減の効果で、単結晶の直径が増減するまでに時間がかかる理由は、ヒータ温度の変化により融液の温度が変化し、単結晶直径が変化する程度まで熱が伝導するのに時間を要するためである。
On the other hand, when growing a silicon single crystal, it is also important from the standpoint of manufacturing yield when manufacturing a wafer to suppress the fluctuation of the diameter of the single crystal to be grown and to grow it while controlling it at a desired diameter. Become. As a method for controlling the diameter of the single crystal, there is a diameter control method in which the diameter of the single crystal to be grown is controlled by a pulling speed and a heater supply power (heater temperature, hereinafter simply referred to as temperature) (patent) Reference 3).
In such a diameter control method, when the pulling-up speed is changed, there is a rapid effect and the diameter can be changed immediately, whereas when the heater temperature is changed, the effect is slow to appear. . As described above, due to the effect of the increase / decrease in the heater temperature, it takes a long time for the diameter of the single crystal to increase / decrease because the temperature of the melt changes due to the change in the heater temperature, This is because it takes time to conduct.

このようなことから、引上速度を全く変化させずに一定にして、目標の直径に成長させようとヒータ温度だけで直径を制御すると、目標直径に成長させることが困難となる。このため供給電力の制御方法としては、検出直径に応じてヒータへの供給電力を変化させるのではなく、主に検出直径に応じて引上速度を変化させることで成長させる単結晶の直径を制御し、この引上速度の変化に応じて供給電力を制御する方法がとられている。   For this reason, if the diameter is controlled only by the heater temperature so that the pulling speed is kept constant without changing at all and the diameter is controlled only by the heater temperature, it becomes difficult to grow the target diameter. For this reason, the control method of the supplied power is not to change the power supplied to the heater according to the detected diameter, but mainly to control the diameter of the single crystal to be grown by changing the pulling speed according to the detected diameter. However, a method of controlling the supply power in accordance with the change in the pulling speed is used.

上記したように、検出直径に応じて引上速度を変化させることで成長させる単結晶の直径を制御する場合、引上速度の変化には速効性があって直径をすぐに変化させることができる。しかし、検出直径がわずかに変化しただけでも引上速度がそれに対応して大きく変わってしまうことになるため、引上速度を一定の範囲内に制御することができなくなる。
そこで、特許文献4では、単結晶の直径の変動を抑え、かつV/G値を一定の狭い範囲内に制御する方法が提案されている。
As described above, when the diameter of a single crystal to be grown is controlled by changing the pulling speed according to the detected diameter, the pulling speed change has a rapid effect and the diameter can be changed immediately. . However, even if the detected diameter changes slightly, the pulling speed changes correspondingly, so that the pulling speed cannot be controlled within a certain range.
Therefore, Patent Document 4 proposes a method of suppressing the fluctuation of the diameter of the single crystal and controlling the V / G value within a certain narrow range.

特開平2−267195号公報JP-A-2-267195 特開平8−330316号公報JP-A-8-330316 特公平7−74117号公報Japanese Examined Patent Publication No. 7-74117 特開平2001−316199号公報JP-A-2001-316199

特許文献4では、検出直径に応じた引上速度へのフィードバック量を、±0.01〜0.05mm/minの極めて狭い範囲にまで制限することでV/G値を制御する。そのため、引上速度により単結晶の直径を制御するためには、スパン制限をする前の引上速度制御値と設定引上速度を比較することにより、ヒータ温度補正量を演算してヒータ温度設定を出力することによって、シリコン単結晶の直径を制御する方法が提案されている。
この方法により、引上速度によらず、ヒータへの供給電力制御を主体として、単結晶を目標直径に成長させることが可能となった。
In Patent Document 4, the V / G value is controlled by limiting the feedback amount to the pulling speed according to the detected diameter to an extremely narrow range of ± 0.01 to 0.05 mm / min. Therefore, in order to control the diameter of the single crystal by the pulling speed, the heater temperature correction amount is calculated by comparing the pulling speed control value before the span restriction with the set pulling speed, and the heater temperature setting Has been proposed to control the diameter of the silicon single crystal.
By this method, it became possible to grow a single crystal to a target diameter mainly by controlling the power supplied to the heater regardless of the pulling speed.

しかし、この方法を用いて引き上げる単結晶製造において、ある確率で、直径変動が大きくなる場合が発生する。それは、単結晶の直径を制御するのに、直径の増減に対して速効性のある引上速度の変化と比較して、直径の増減に対して時間がかかるヒータ温度の変化を相対的に大きくしていることによる。
すなわち、上記方法では、ヒータ温度の変化による直径の増減効果を早めるために、ヒータ温度の制御量を大きく設定する必要がある。ただし、その制御量の設定が大きすぎると、直径変動が少ない場合には、適切な制御を保つことができるが、直径変化が一度大きくなると、制御量が大きくなり過ぎて、ある範囲内で直径が凸凹を繰り返すハンチング状態となったり、直径制御が破綻することがある。また、制御量の設定が小さすぎると、大きな直径変化に対しても適切な制御を保てるが、直径変化が小さい場合は、周期の長い直径の変動を抑えきれないことがある。
However, in the production of a single crystal that is pulled up using this method, there may occur a case where the diameter fluctuation becomes large with a certain probability. It has a relatively large change in heater temperature, which takes time to increase and decrease in diameter, compared to a change in pulling speed that is effective for increasing and decreasing the diameter in controlling the diameter of a single crystal. It depends on what you are doing.
That is, in the above method, it is necessary to set a large control amount of the heater temperature in order to accelerate the diameter increase / decrease effect due to the change of the heater temperature. However, if the control amount is set too large, appropriate control can be maintained if the diameter fluctuation is small, but once the diameter change becomes large, the control amount becomes too large and the diameter within a certain range. May be in a hunting state where unevenness is repeated, or the diameter control may fail. Further, if the control amount is set too small, appropriate control can be maintained even for a large diameter change. However, if the diameter change is small, fluctuations in the diameter with a long cycle may not be suppressed.

本発明は、上記問題点に鑑みてなされたものであって、ヒータ温度を適切に補正することで、高精度に直径制御しながらシリコン単結晶を成長させることができるシリコン単結晶の製造方法及び製造装置を提供することを目的とする。   The present invention has been made in view of the above problems, and by appropriately correcting the heater temperature, a silicon single crystal manufacturing method capable of growing a silicon single crystal while controlling the diameter with high accuracy, and An object is to provide a manufacturing apparatus.

上記目的を達成するために、本発明は、チョクラルスキー法にて、ヒータにより加熱して、融液から種結晶を引上げることによりシリコン単結晶を製造する際に、前記引き上げ中のシリコン単結晶の直径を検出し、該検出直径を基に温度補正演算手段で前記ヒータ温度を補正して、前記シリコン単結晶の直径を制御しながら引上げるシリコン単結晶の製造方法において、前記ヒータ温度の補正において、前記検出直径の変動要因が外乱であるかを判断し、外乱であると判断した場合は、前記温度補正演算手段と異なる外乱用温度補正演算手段で前記ヒータ温度を補正して、前記シリコン単結晶の直径を制御しながら引き上げることを特徴とするシリコン単結晶の製造方法を提供する。   In order to achieve the above object, the present invention provides a silicon single crystal that is being pulled when the silicon single crystal is produced by heating with a heater and pulling up a seed crystal from a melt by the Czochralski method. In the method for producing a silicon single crystal, wherein the diameter of the crystal is detected, the heater temperature is corrected by temperature correction calculation means based on the detected diameter, and the diameter of the silicon single crystal is controlled and pulled up. In the correction, it is determined whether the variation factor of the detected diameter is a disturbance, and if it is determined that the disturbance is a disturbance, the heater temperature is corrected by a disturbance temperature correction calculation unit different from the temperature correction calculation unit, Provided is a method for producing a silicon single crystal characterized by pulling up while controlling the diameter of the silicon single crystal.

このように、検出直径の変動要因が外乱であるか判断して、通常の温度補正演算手段と外乱用温度補正演算手段とによりヒータ温度を補正することで、外乱による直径変動に対する過剰なヒータ温度補正を抑制することができ、大小両方の直径変動に対して適切にヒータ温度を補正できるため、精度良く直径制御を行うことができる。従って、引き上げ速度による直径制御幅を小さくでき、容易に所望の結晶品質とすることができる。以上より、結晶性や直径の均一性が優れたシリコン単結晶を歩留まり良く製造することができる。   In this way, it is determined whether the variation factor of the detected diameter is a disturbance, and the heater temperature is corrected by the normal temperature correction calculation unit and the disturbance temperature correction calculation unit, so that the excessive heater temperature with respect to the diameter variation due to the disturbance Since the correction can be suppressed and the heater temperature can be appropriately corrected for both large and small diameter fluctuations, the diameter can be controlled with high accuracy. Therefore, the diameter control width by the pulling speed can be reduced, and the desired crystal quality can be easily obtained. As described above, a silicon single crystal having excellent crystallinity and diameter uniformity can be manufactured with high yield.

このとき、前記外乱用温度補正演算手段を、前記検出直径が同じ場合で前記温度補正演算手段で算出される前記ヒータ温度の補正量より小さい補正量を算出するものとすることが好ましい。
このような外乱用温度補正演算手段とすれば、外乱による突発的な直径変動に対して、過剰な補正量を算出せずに適切にヒータ温度を補正できる。
At this time, it is preferable that the disturbance temperature correction calculation unit calculates a correction amount smaller than the correction amount of the heater temperature calculated by the temperature correction calculation unit when the detected diameter is the same.
With such disturbance temperature correction calculation means, it is possible to appropriately correct the heater temperature without calculating an excessive correction amount with respect to sudden diameter fluctuations due to disturbance.

このとき、前記検出直径の変動要因が外乱であるかの判断を、前記検出直径と目標直径との差の絶対値が一定値以上、及び、前記検出直径と検出直前の一定時間の検出直径の平均値との差の絶対値が一定値以上の少なくとも一つに該当する場合に外乱であると判断することが好ましい。
このように判断することで、検出直径の変動要因が外乱であるかを正確かつ容易に判断することができる。
At this time, the determination of whether the variation factor of the detected diameter is a disturbance is made based on whether the absolute value of the difference between the detected diameter and the target diameter is a certain value or more, and the detected diameter of the detected diameter at a certain time immediately before the detected diameter. It is preferable to determine that the disturbance is present when the absolute value of the difference from the average value corresponds to at least one of a certain value or more.
By determining in this way, it can be accurately and easily determined whether the variation factor of the detected diameter is disturbance.

また本発明は、チョクラルスキー法にて、ヒータにより加熱して、融液から種結晶を引上げることによりシリコン単結晶を製造する装置であって、前記引き上げ中のシリコン単結晶の直径を検出する直径検出部と、該直径検出部による検出直径の変動要因が外乱であるかを判断する直径変動判断部と、該直径変動判断部で外乱ではないと判断した場合は、前記検出直径を基に温度補正演算手段で前記ヒータ温度を補正し、前記直径変動判断部で外乱と判断した場合は、前記温度補正演算手段と異なる外乱用温度補正演算手段で前記ヒータ温度を補正するヒータ温度補正部とを備え、前記直径変動判断部で検出直径の変動要因が外乱ではないと判断した場合には、前記温度補正演算手段で前記ヒータ温度を補正し、前記直径変動判断部で検出直径の変動要因が外乱であると判断した場合には、前記外乱用温度補正演算手段で前記ヒータ温度を補正して、前記シリコン単結晶の直径を制御しながら引上げるものであることを特徴とするシリコン単結晶の製造装置を提供する。   The present invention is also an apparatus for producing a silicon single crystal by heating with a heater and pulling up a seed crystal from a melt by the Czochralski method, and detecting the diameter of the silicon single crystal being pulled. A diameter detecting unit that determines whether the variation factor of the detected diameter by the diameter detecting unit is a disturbance, and the diameter variation determining unit determines that the disturbance is not a disturbance. A heater temperature correction unit that corrects the heater temperature by a disturbance temperature correction calculation unit different from the temperature correction calculation unit when the temperature correction calculation unit corrects the heater temperature and the diameter variation determination unit determines disturbance. When the diameter variation determining unit determines that the variation factor of the detected diameter is not a disturbance, the temperature correction calculating unit corrects the heater temperature, and the diameter variation determining unit When it is determined that the fluctuation factor is disturbance, the heater temperature is corrected by the disturbance temperature correction calculation means, and the diameter is increased while controlling the diameter of the silicon single crystal. An apparatus for producing a silicon single crystal is provided.

このような装置であれば、大きな直径変動と小さな直径変動の両方に対して適切なヒータ温度補正による直径制御を行うことができる。従って、引き上げ速度による直径制御幅を小さくでき、容易に所望の結晶品質とすることができる。以上より、結晶性や直径の均一性に優れたシリコン単結晶を製造することができる装置となる。   With such an apparatus, it is possible to perform diameter control by appropriate heater temperature correction for both large diameter fluctuation and small diameter fluctuation. Therefore, the diameter control width by the pulling speed can be reduced, and the desired crystal quality can be easily obtained. From the above, an apparatus capable of producing a silicon single crystal excellent in crystallinity and diameter uniformity is obtained.

このとき、前記外乱用温度補正演算手段は、前記検出直径が同じ場合で前記温度補正演算手段で算出される前記ヒータ温度の補正量より小さい補正量を算出するものであることが好ましい。
このような外乱用温度補正演算手段であれば、外乱による突発的な直径変動に対して、過剰な補正量を算出せずに適切にヒータ温度を補正できる装置となる。
In this case, it is preferable that the disturbance temperature correction calculation unit calculates a correction amount smaller than the heater temperature correction amount calculated by the temperature correction calculation unit when the detected diameters are the same.
With such disturbance temperature correction calculation means, it becomes a device that can appropriately correct the heater temperature without calculating an excessive correction amount against sudden diameter fluctuations due to disturbance.

このとき、前記直径変動判断部は、前記検出直径と目標直径との差の絶対値が一定値以上、及び、前記検出直径と検出直前の一定時間の検出直径の平均値との差の絶対値が一定値以上の少なくとも一つに該当する場合に外乱であると判断するものであることが好ましい。
このような直径変動判断部であれば、検出直径の変動要因が外乱であるかを正確かつ容易に判断することができる装置となる。
At this time, the diameter variation determination unit is configured such that the absolute value of the difference between the detected diameter and the target diameter is a certain value or more, and the absolute value of the difference between the detected diameter and the average value of the detected diameters for a certain time immediately before the detection. Preferably, it is determined that the disturbance is a disturbance when at least one of the values falls within a certain value.
Such a diameter variation determination unit is an apparatus that can accurately and easily determine whether the variation factor of the detected diameter is a disturbance.

以上のように、本発明によれば、ヒータ温度を効率的に制御してシリコン単結晶の直径変動を抑制することで、結晶性に優れ、直径の均一性にも優れたシリコン単結晶を生産性良く製造することができる。   As described above, according to the present invention, a silicon single crystal having excellent crystallinity and excellent uniformity in diameter is produced by efficiently controlling the heater temperature and suppressing the diameter fluctuation of the silicon single crystal. Can be manufactured with good performance.

本発明のシリコン単結晶の製造装置の一例の概略図である。It is the schematic of an example of the manufacturing apparatus of the silicon single crystal of this invention. 本発明においてシリコン単結晶を直径制御する際のフロー図である。It is a flow figure at the time of controlling the diameter of a silicon single crystal in the present invention. 従来のシリコン単結晶を直径制御する際のフロー図である。It is a flowchart at the time of diameter control of the conventional silicon single crystal.

以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in detail as an example of an embodiment with reference to the drawings, but the present invention is not limited thereto.

図1に本発明に係るシリコン単結晶の製造装置の一例の概略図を示す。シリコン単結晶の製造装置10は、上部にネック部12が形成されたメインチャンバ11を有している。このメインチャンバ11のネック部12の上方にはゲートバルブ部13を介してプルチャンバ(図示せず)及び引上機構部(図示せず)が設けられている。   FIG. 1 shows a schematic view of an example of an apparatus for producing a silicon single crystal according to the present invention. The silicon single crystal manufacturing apparatus 10 has a main chamber 11 having a neck portion 12 formed at the top thereof. A pull chamber (not shown) and a pulling mechanism (not shown) are provided above the neck portion 12 of the main chamber 11 via a gate valve portion 13.

このメインチャンバ11の内部には、黒鉛ルツボ20に嵌合された石英ルツボ15が支持軸14を介して設置されている。石英ルツボ15を囲繞するように原料シリコン多結晶を溶融するヒータ18が設けられており、ヒータ18とメインチャンバ11の内壁との間には断熱材19が設けられている。ヒータ18の周囲、及びシリコン融液16の上方に形成されるホットゾーンの周囲には、引上軸方向の結晶内温度勾配の平均値Gが所望の値となるような炉内構造とするために、場合によってはサブヒータが設けられることもある。   Inside the main chamber 11, a quartz crucible 15 fitted to a graphite crucible 20 is installed via a support shaft 14. A heater 18 for melting the raw material silicon polycrystal is provided so as to surround the quartz crucible 15, and a heat insulating material 19 is provided between the heater 18 and the inner wall of the main chamber 11. In order to have an in-furnace structure around the heater 18 and around the hot zone formed above the silicon melt 16 such that the average value G of the temperature gradient in the crystal in the pull-up axis direction becomes a desired value. In some cases, a sub-heater may be provided.

また、シリコン単結晶24を引き上げるための引上手段22が、プルチャンバから上下回転自在なように垂下される。図示の例では引上手段22の先端には、種結晶23が取付けられる。引上手段22としては、シャフトを用いたものや、ワイヤ等の可撓手段を用いたものであっても良い。   In addition, pulling means 22 for pulling up the silicon single crystal 24 is suspended from the pull chamber so as to freely rotate up and down. In the illustrated example, a seed crystal 23 is attached to the tip of the pulling means 22. The pulling means 22 may be one using a shaft or one using a flexible means such as a wire.

メインチャンバ11の肩部に設けられた窓には、シリコン単結晶24の直径を検出するために結晶育成界面17を撮像する直径検出手段21が配置されている。この直径検出手段21としては、例えばCCDカメラを用いることができる。
そして、図2(a)、(b)に示すように、直径検出手段21により撮像された画像から引き上げ中のシリコン単結晶24の直径を検出する直径検出部1と、該直径検出部1による検出直径の変動要因が外乱であるかを判断する直径変動判断部5と、該直径変動判断部5で外乱ではないと判断した場合は、検出直径を基に温度補正演算手段3Aでヒータ温度を補正し、直径変動判断部5で外乱と判断した場合は、温度補正演算手段3Aと異なる外乱用温度補正演算手段3Bでヒータ温度を補正するヒータ温度補正部3とを備えている。
In the window provided on the shoulder portion of the main chamber 11, a diameter detecting means 21 for imaging the crystal growth interface 17 is arranged in order to detect the diameter of the silicon single crystal 24. As this diameter detection means 21, for example, a CCD camera can be used.
Then, as shown in FIGS. 2A and 2B, the diameter detector 1 that detects the diameter of the silicon single crystal 24 being pulled up from the image captured by the diameter detector 21, and the diameter detector 1 When the diameter variation determining unit 5 determines whether the variation factor of the detected diameter is disturbance, and when the diameter variation determining unit 5 determines that it is not disturbance, the temperature correction calculation unit 3A determines the heater temperature based on the detected diameter. When the correction is performed and the diameter fluctuation determination unit 5 determines that the disturbance is present, the heater temperature correction unit 3 is provided that corrects the heater temperature using a disturbance temperature correction calculation unit 3B different from the temperature correction calculation unit 3A.

上記のような本発明の単結晶製造装置10を用いて、例えば以下のような本発明の製造方法を実施することができる。
例えば、石英ルツボ15内に収容された原料シリコン多結晶を、ヒータ18で加熱、溶融して融液16とする。そして、種結晶23を融液16に浸漬させ、引上手段22によってシリコン単結晶24を成長させつつ引上げる。この際、引き上げ速度及びヒータ出力を制御しながら、所望直径、所望欠陥領域となるようにシリコン単結晶24を引き上げる。
For example, the following manufacturing method of the present invention can be carried out using the single crystal manufacturing apparatus 10 of the present invention as described above.
For example, the raw material silicon polycrystalline housed in the quartz crucible 15 is heated and melted by the heater 18 to form the melt 16. Then, the seed crystal 23 is immersed in the melt 16 and pulled up while the silicon single crystal 24 is grown by the pulling means 22. At this time, the silicon single crystal 24 is pulled up to have a desired diameter and a desired defect region while controlling the pulling speed and the heater output.

本発明の装置10では、直径検出手段21により得られた単結晶直径を、引上速度及びヒータ温度にフィードバックすることによりシリコン単結晶24の直径を制御する。
以下、本発明のシリコン単結晶製造における単結晶の直径制御フローを説明する。
In the apparatus 10 of the present invention, the diameter of the silicon single crystal 24 is controlled by feeding back the single crystal diameter obtained by the diameter detecting means 21 to the pulling speed and the heater temperature.
The single crystal diameter control flow in the silicon single crystal production of the present invention will be described below.

まず、直径検出手段21により融液16とシリコン単結晶24との間の結晶育成界面17の付近を撮像して、直径検出部1で成長中のシリコン単結晶24の直径を検出する。この際、直径検出部1において、石英ルツボ15内の結晶育成界面17と直径検出手段21との距離に基づいて補正を加え、直径検出手段21が観察している領域で最も光度の高い輝環部の直径の算出がなされ、成長中の単結晶直径が演算で求められる(融液からシリコン単結晶へと固化する際に凝固熱が発散され、最も光度が高くなるため、最も光度の高い輝環部が成長中の単結晶直径となる)。   First, the diameter detector 21 images the vicinity of the crystal growth interface 17 between the melt 16 and the silicon single crystal 24, and the diameter detector 1 detects the diameter of the growing silicon single crystal 24. At this time, in the diameter detection unit 1, correction is made based on the distance between the crystal growth interface 17 in the quartz crucible 15 and the diameter detection means 21, and the luminous ring having the highest luminous intensity in the region observed by the diameter detection means 21. The diameter of the part is calculated, and the diameter of the growing single crystal is calculated (the solidification heat is dissipated when solidifying from the melt to the silicon single crystal, and the luminous intensity is the highest, so the luminous intensity is the highest. The ring is the diameter of the growing single crystal).

そして、直径制御演算手段において、上記直径検出部1で検出された検出直径と設定直径とを比較して直径制御演算を行い、現実に成長されている単結晶の直径と設定直径との差分を抽出する。   Then, the diameter control calculation means compares the detected diameter detected by the diameter detection unit 1 with the set diameter, performs the diameter control calculation, and calculates the difference between the diameter of the actually grown single crystal and the set diameter. Extract.

直径変動判断部5においては、直径検出部1、直径制御演算手段で求められた単結晶の直径を基にして、現在の直径変動の要因が外乱であるかを判断する。
判断基準は、直径偏差(検出直径と目標直径の差)の絶対値が一定値以上を外乱と判断する。この場合、例えば基準とする上記一定値を1.5mm以上の値に設定することができる。
The diameter variation determining unit 5 determines whether the current factor of the diameter variation is a disturbance based on the diameter of the single crystal obtained by the diameter detecting unit 1 and the diameter control calculating means.
The criterion is that the absolute value of the diameter deviation (difference between the detected diameter and the target diameter) is a certain value or more is determined as a disturbance. In this case, for example, the fixed value as a reference can be set to a value of 1.5 mm or more.

または、直径変化率(検出直前の一定時間の平均直径値と検出(現在)直径値との差)の絶対値が一定値以上を外乱と判断する。この場合、例えば基準とする上記一定値を0.2mm/min以上の値に設定することができる。
また、直径偏差(検出直径と目標直径の差)と直径変化率(検出直前の一定時間の平均直径値と検出直径値との差)の組合せで外乱を判断しても良い。
Alternatively, it is determined that the absolute value of the diameter change rate (the difference between the average diameter value for a certain time immediately before detection and the detected (current) diameter value) is a certain value or more is a disturbance. In this case, for example, the reference fixed value can be set to a value of 0.2 mm / min or more.
Further, the disturbance may be determined by a combination of a diameter deviation (difference between a detected diameter and a target diameter) and a diameter change rate (difference between an average diameter value and a detected diameter value for a certain time immediately before detection).

外乱による直径変動は、目標直径からの差や変化率が通常時の変動より大きくなるため、上記のように判断することで外乱による直径変動を効率的により精度良く判断することができる。   Since the diameter variation due to the disturbance has a difference from the target diameter and the rate of change larger than the normal variation, the diameter variation due to the disturbance can be efficiently and accurately determined by making the above determination.

このとき、直径変動判断部5において直径変動が通常である(外乱による変動ではない)と判断された場合は、図2(a)に示すように、温度補正演算手段(通常時)3Aを用いて補正のための出力を演算し、基本温度パターン演算手段2からの結晶長さによる基本値を加えてヒータ温度設定出力4でヒータ温度の適切な制御を継続する。   At this time, when the diameter fluctuation determining unit 5 determines that the diameter fluctuation is normal (not the fluctuation due to disturbance), as shown in FIG. 2A, the temperature correction calculation means (normal time) 3A is used. Then, an output for correction is calculated, a basic value based on the crystal length from the basic temperature pattern calculation means 2 is added, and appropriate control of the heater temperature is continued with the heater temperature setting output 4.

一方、直径変動判断部5において直径変動要因が外乱であると判断された場合は、図2(b)に示すように、外乱用温度補正演算手段(外乱時)3Bを用いて補正のための出力を演算し、基本温度パターン演算手段2からの結晶長さによる基本値を加えてヒータ温度設定出力4でヒータ温度の制御を行う。
このように、外乱時と通常時で異なる演算手段を用いることで、ヒーター温度の過剰な補正を抑制して精度の良い直径制御を実施できる。
On the other hand, when the diameter variation determining unit 5 determines that the diameter variation factor is disturbance, as shown in FIG. 2B, the disturbance temperature correction calculation means (at the time of disturbance) 3B is used for correction. The output is calculated, the basic value based on the crystal length from the basic temperature pattern calculating means 2 is added, and the heater temperature is controlled by the heater temperature setting output 4.
In this way, by using different calculation means during disturbance and during normal time, it is possible to suppress the correction of the heater temperature excessively and perform accurate diameter control.

外乱用温度補正演算手段は、検出直径が同じ場合で温度補正演算手段で算出されるヒータ温度の補正量より小さい補正量を算出することが好ましい。
このように、外乱時には、同じ検出直径(同じ直径変動)で通常時よりも補正量(制御量)を小さく算出することで、ヒータ温度設定出力は小さな変化しかしないため、直径が凸凹を繰り返すハンチング状態や、直径制御の破綻を効果的に防止することができる。
Preferably, the disturbance temperature correction calculation means calculates a correction amount smaller than the heater temperature correction amount calculated by the temperature correction calculation means when the detected diameter is the same.
In this way, during disturbance, the heater temperature setting output is only a small change by calculating the correction amount (control amount) smaller than normal at the same detected diameter (same diameter fluctuation), so hunting is repeated with uneven diameters. The failure of state and diameter control can be effectively prevented.

このように補正量を通常時より小さく算出する外乱用温度補正演算手段3Bは、例えば、温度補正演算手段3Aの演算式に対して、所定の割合(0〜1)を乗じて、算出される補正量を小さくしたものか、または、PID制御における各項の値(比例項P、微分項D、積分項I)を、補正量が小さくなるように各々設定しても良い。または、外乱用温度補正演算手段3Bは、まったく補正を行わない(補正量=0)ものとしてもよい。
また、温度補正演算手段3A、外乱用温度補正演算手段3Bにおける設定値は、一組とは限らず、例えば直胴長さ(結晶長さ)に対して複数組設定することもできる。
In this way, the disturbance temperature correction calculation unit 3B that calculates the correction amount smaller than normal is calculated by multiplying the calculation formula of the temperature correction calculation unit 3A by a predetermined ratio (0 to 1), for example. The correction amount may be reduced, or the value of each term (proportional term P, differential term D, integral term I) in PID control may be set so that the correction amount is small. Alternatively, the disturbance temperature correction calculation unit 3B may perform no correction at all (correction amount = 0).
Further, the set values in the temperature correction calculation means 3A and the disturbance temperature correction calculation means 3B are not limited to one set, and for example, a plurality of sets can be set for the straight body length (crystal length).

なお、直径変動判断部5による直径変動要因の判断は、単結晶引き上げ中に常時実施することができ、又は、一定時間間隔で実施することもできる。   In addition, the determination of the diameter variation factor by the diameter variation determination unit 5 can be performed all the time during the pulling of the single crystal, or can be performed at regular time intervals.

以上のような本発明によれば、シリコン単結晶の直径をヒータ温度補正演算で目標範囲内とする方法において、従来の方法、装置に比べて、製造する単結晶の直径制御特性を向上することができ、直径変動が少なく、ほぼ目標直径通りの単結晶が製造できる。従って、直径変動による単結晶のロス(製品規格直径に合わせて表面を円筒状に研削するときに発生するロス)を軽減できたり、直径変動を起因とする品質不良を低減できるなど、製造歩留りを向上することができる。   According to the present invention as described above, in the method of setting the diameter of the silicon single crystal within the target range by the heater temperature correction calculation, the diameter control characteristics of the single crystal to be manufactured can be improved as compared with the conventional method and apparatus. Therefore, there is little variation in diameter, and a single crystal having almost the same target diameter can be produced. Therefore, it is possible to reduce the loss of single crystal due to diameter variation (loss that occurs when grinding the surface in a cylindrical shape according to the product standard diameter), and to reduce quality defects due to diameter variation, etc. Can be improved.

なお、上記では、本発明によるシリコン単結晶製造の例として、V/Gを制御しつつシリコン単結晶を製造する例を中心に説明したが、本発明はこれに限定されることはなく、通常の引上速度の変動範囲でシリコン単結晶の引上げを行う場合であっても適用することができる。また、本発明で用いるチョクラルスキー法としては、磁場を印加するMCZ法も含まれる。   In the above, as an example of manufacturing a silicon single crystal according to the present invention, an example of manufacturing a silicon single crystal while controlling V / G has been mainly described. However, the present invention is not limited to this, Even when the silicon single crystal is pulled in the range of fluctuations in the pulling rate, it can be applied. The Czochralski method used in the present invention includes the MCZ method in which a magnetic field is applied.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
図1に記載したような本発明の単結晶製造装置により、直径12インチ(300mm)、軸方位が<100>、導電型がP型のシリコン単結晶を、直径36インチ(914mm)の石英ルツボに収容された融液から成長させた。成長させる単結晶の断面のOSFリングが、目標とする位置になるように制御して、検出可能なGrown−in欠陥が、単結晶断面の全面にわたって存在しないようにするために、炉内の熱分布Gに応じて引上速度Vを±0.01mm/minの範囲内に制御し、単結晶が炉内で受ける熱履歴を一定に保った。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
Example 1
With the single crystal manufacturing apparatus of the present invention as shown in FIG. 1, a silicon crucible having a diameter of 12 inches (300 mm), an axial orientation of <100>, and a conductivity type of P type is converted into a quartz crucible having a diameter of 36 inches (914 mm). It was grown from the melt contained in. In order to control the OSF ring of the cross-section of the single crystal to be grown to a target position so that no detectable Grown-in defects exist over the entire surface of the single crystal cross-section, The pulling speed V was controlled in the range of ± 0.01 mm / min according to the distribution G, and the heat history that the single crystal received in the furnace was kept constant.

単結晶の直径の制御は、図2(a)(b)に示すように、直径変動判断部5により直径の変動要因が外乱であるかの判断を実施することで、ヒータ温度補正部3において温度補正演算手段3Aと外乱用温度補正演算手段3Bを切り替えてヒータ温度補正量を演算して、ヒータ温度を補正しながら行った。
このとき、直径変動判断部5による外乱であるかの判断を、15分間隔で実施した。また、直径偏差(検出直径と目標直径の差)の絶対値が1.5mm以上であれば外乱と判断し、外乱の場合に、外乱用温度補正演算手段3Bでは、まったく補正を行わない(補正量=0)ものとした。製造後の単結晶の直径制御状況を表1に示す。
As shown in FIGS. 2 (a) and 2 (b), the diameter of the single crystal is controlled by determining whether the variation factor of the diameter is a disturbance or not by the heater temperature correction unit 3. This was performed while correcting the heater temperature by calculating the heater temperature correction amount by switching between the temperature correction calculating means 3A and the disturbance temperature correction calculating means 3B.
At this time, it was determined at 15 minute intervals whether the disturbance was caused by the diameter fluctuation determining unit 5. Further, if the absolute value of the diameter deviation (difference between the detected diameter and the target diameter) is 1.5 mm or more, it is determined as a disturbance, and in the case of a disturbance, the disturbance temperature correction calculation unit 3B does not perform any correction (correction). Amount = 0). Table 1 shows the diameter control status of the single crystal after production.

Figure 2013159525
Figure 2013159525

表1に示すように、実施例1で製造されたシリコン単結晶では、直胴(製品)全長のうち、直径変動大(目標値の±2mmより大きい)の領域は6.7%、直径変動中(目標値の±1mm以上±2mm以下)の領域は40.0%、直径変動小(目標値の±1mm未満)の領域は53.3%となった。また、直胴(製品)全長に渡り、目標の結晶品質が得られた。   As shown in Table 1, in the silicon single crystal manufactured in Example 1, the region of large diameter variation (greater than the target value ± 2 mm) in the entire length of the straight body (product) is 6.7%, and the diameter variation The middle area (± 1 mm or more and ± 2 mm or less of the target value) was 40.0%, and the area of small diameter fluctuation (less than ± 1 mm of the target value) was 53.3%. Moreover, the target crystal quality was obtained over the entire length of the straight body (product).

(実施例2)
実施例1と同様に、シリコン単結晶を製造し、直径変動判断部5による外乱であるかの判断を15分間隔で実施した。ただし、実施例2では、直径偏差(検出直径と目標直径の差)の絶対値が1.0mm以上、かつ直径変化率(直前一定時間の平均直径値と現在直径値との差)の絶対値が0.3mm/min以上である場合を外乱と判断した。また、外乱の場合には、外乱用温度補正演算手段3Bでは、PID制御における比例項Pを通常時(温度補正演算手段3A)の1/2として(微分項D=0、積分項I=0)、補正を行った。製造後の単結晶の直径制御状況を表1に示す。
(Example 2)
In the same manner as in Example 1, a silicon single crystal was manufactured, and the diameter fluctuation determination unit 5 determined whether or not the disturbance was an interval of 15 minutes. However, in Example 2, the absolute value of the diameter deviation (difference between the detected diameter and the target diameter) is 1.0 mm or more, and the absolute value of the diameter change rate (difference between the average diameter value and the current diameter value for a certain period of time immediately before). Was determined to be a disturbance. In the case of disturbance, the disturbance temperature correction calculation means 3B sets the proportional term P in the PID control to ½ of the normal time (temperature correction calculation means 3A) (differential term D = 0, integral term I = 0). ), And corrected. Table 1 shows the diameter control status of the single crystal after production.

表1に示すように、実施例2で製造されたシリコン単結晶は、直胴(製品)全長のうち、直径変動大(目標値の±2mmより大きい)の領域は3.3%、直径変動中(目標値の±1mm以上±2mm以下)の領域は23.3%、直径変動小(目標値の±1mm未満)の領域は73.4%となり、直径変動小の領域がさらに大きく向上した。また、直胴(製品)全長に渡り、目標の結晶品質が得られた。   As shown in Table 1, the silicon single crystal manufactured in Example 2 has a diameter variation of 3.3% in the entire length of the straight body (product) (larger than the target value ± 2 mm), and the diameter variation. The area of medium (± 1 mm or more ± 2 mm or less of the target value) is 23.3%, the area of small diameter fluctuation (less than ± 1 mm of the target value) is 73.4%, and the area of small diameter fluctuation is further improved. . Moreover, the target crystal quality was obtained over the entire length of the straight body (product).

(比較例)
実施例1と同様に、シリコン単結晶を製造した。ただし、図3に示すように、直径変動判断を行わずに、一つの温度補正演算手段のみでヒータ温度補正を行う従来の方法で直径制御を実施した。製造後の単結晶の直径制御状況を表1に示す。
(Comparative example)
A silicon single crystal was produced in the same manner as in Example 1. However, as shown in FIG. 3, the diameter control is performed by a conventional method in which the heater temperature correction is performed by only one temperature correction calculation unit without performing the diameter fluctuation determination. Table 1 shows the diameter control status of the single crystal after production.

表1より、比較例で製造されたシリコン単結晶は、直胴(製品)全長のうち、直径変動大(目標値の±2mmより大きい)の領域は16.7%、直径変動中(目標値の±1mm以上±2mm以下)の領域は56.7%、直径変動小(目標値の±1mm未満)の領域は26.6%となった。また、直径変動大の領域において、一部Grown−in欠陥が観察された。   From Table 1, the silicon single crystal produced in the comparative example has a diameter variation of 16.7% in the entire length of the straight body (product) (greater than ± 2 mm of the target value), and the diameter is changing (target value). The region of ± 1 mm or more and ± 2 mm or less) was 56.7%, and the region of small diameter fluctuation (less than the target value ± 1 mm) was 26.6%. In addition, some Grown-in defects were observed in the region of large diameter fluctuation.

以上より、本発明のように外乱の判断を行い、通常時とは異なる外乱用温度補正演算手段でもヒータ温度補正を行って直径制御を実施することで、シリコン単結晶の直径の均一性を向上させることができ、優れた結晶品質の単結晶を製造できることが分かった。   As described above, the uniformity of the diameter of the silicon single crystal is improved by determining the disturbance as in the present invention and performing the diameter control by performing the heater temperature correction even with the disturbance temperature correction calculation means different from the normal time. It was found that a single crystal having excellent crystal quality can be produced.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

1…直径検出部、 2…基本温度パターン演算手段、 3…ヒータ温度補正部、
3A…温度補正演算手段、 3B…外乱用温度補正演算手段、
4…ヒータ温度設定出力、 5…直径変動判断部、
10…シリコン単結晶の製造装置、 11…メインチャンバ、 12…ネック部、
13…ゲートバルブ部、 14…支持軸、 15…石英ルツボ、 16…融液、
17…結晶育成界面、 18…ヒータ、 19…断熱材、 20…黒鉛ルツボ、
21…直径検出手段、 22…引上手段、 23…種結晶、
24…シリコン単結晶。
DESCRIPTION OF SYMBOLS 1 ... Diameter detection part, 2 ... Basic temperature pattern calculation means, 3 ... Heater temperature correction | amendment part,
3A ... temperature correction calculation means, 3B ... disturbance temperature correction calculation means,
4 ... Heater temperature setting output, 5 ... Diameter variation judgment part,
DESCRIPTION OF SYMBOLS 10 ... Manufacturing apparatus of a silicon single crystal, 11 ... Main chamber, 12 ... Neck part,
13 ... Gate valve part, 14 ... Support shaft, 15 ... Quartz crucible, 16 ... Melt,
17 ... Crystal growth interface, 18 ... Heater, 19 ... Insulating material, 20 ... Graphite crucible,
21 ... Diameter detection means, 22 ... Lifting means, 23 ... Seed crystal,
24: Silicon single crystal.

Claims (6)

チョクラルスキー法にて、ヒータにより加熱して、融液から種結晶を引上げることによりシリコン単結晶を製造する際に、前記引き上げ中のシリコン単結晶の直径を検出し、該検出直径を基に温度補正演算手段で前記ヒータ温度を補正して、前記シリコン単結晶の直径を制御しながら引上げるシリコン単結晶の製造方法において、
前記ヒータ温度の補正において、前記検出直径の変動要因が外乱であるかを判断し、外乱であると判断した場合は、前記温度補正演算手段と異なる外乱用温度補正演算手段で前記ヒータ温度を補正して、前記シリコン単結晶の直径を制御しながら引き上げることを特徴とするシリコン単結晶の製造方法。
In the Czochralski method, when producing a silicon single crystal by heating with a heater and pulling a seed crystal from the melt, the diameter of the silicon single crystal being pulled is detected, and the detected diameter is based on the detected diameter. In the method of manufacturing a silicon single crystal, the temperature of the silicon single crystal is raised while controlling the diameter of the silicon single crystal by correcting the heater temperature with a temperature correction calculation means.
In the correction of the heater temperature, it is determined whether the variation factor of the detected diameter is a disturbance. If it is determined that the disturbance is a disturbance, the heater temperature is corrected by a disturbance temperature correction calculation unit different from the temperature correction calculation unit. A method for producing a silicon single crystal, wherein the silicon single crystal is pulled while being controlled in diameter.
前記外乱用温度補正演算手段を、前記検出直径が同じ場合で前記温度補正演算手段で算出される前記ヒータ温度の補正量より小さい補正量を算出するものとすることを特徴とする請求項1に記載のシリコン単結晶の製造方法。   2. The disturbance temperature correction calculation unit calculates a correction amount smaller than the heater temperature correction amount calculated by the temperature correction calculation unit when the detected diameter is the same. The manufacturing method of the silicon single crystal of description. 前記検出直径の変動要因が外乱であるかの判断を、前記検出直径と目標直径との差の絶対値が一定値以上、及び、前記検出直径と検出直前の一定時間の検出直径の平均値との差の絶対値が一定値以上の少なくとも一つに該当する場合に外乱であると判断することを特徴とする請求項1又は請求項2に記載のシリコン単結晶の製造方法。   The determination of whether the variation factor of the detected diameter is a disturbance is an absolute value of the difference between the detected diameter and the target diameter is a certain value or more, and an average value of the detected diameter and a detected diameter for a certain time immediately before detection 3. The method for producing a silicon single crystal according to claim 1, wherein a disturbance is determined when the absolute value of the difference between the two corresponds to at least one of a certain value or more. 4. チョクラルスキー法にて、ヒータにより加熱して、融液から種結晶を引上げることによりシリコン単結晶を製造する装置であって、
前記引き上げ中のシリコン単結晶の直径を検出する直径検出部と、該直径検出部による検出直径の変動要因が外乱であるかを判断する直径変動判断部と、該直径変動判断部で外乱ではないと判断した場合は、前記検出直径を基に温度補正演算手段で前記ヒータ温度を補正し、前記直径変動判断部で外乱と判断した場合は、前記温度補正演算手段と異なる外乱用温度補正演算手段で前記ヒータ温度を補正するヒータ温度補正部とを備え、
前記直径変動判断部で検出直径の変動要因が外乱ではないと判断した場合には、前記温度補正演算手段で前記ヒータ温度を補正し、前記直径変動判断部で検出直径の変動要因が外乱であると判断した場合には、前記外乱用温度補正演算手段で前記ヒータ温度を補正して、前記シリコン単結晶の直径を制御しながら引上げるものであることを特徴とするシリコン単結晶の製造装置。
An apparatus for producing a silicon single crystal by heating a Czochralski method with a heater and pulling a seed crystal from the melt,
A diameter detection unit that detects the diameter of the silicon single crystal being pulled, a diameter variation determination unit that determines whether the variation factor of the detected diameter by the diameter detection unit is a disturbance, and the diameter variation determination unit is not a disturbance If it is determined that the temperature of the heater is corrected by the temperature correction calculation means based on the detected diameter, and if the disturbance is determined by the diameter fluctuation determination unit, the temperature correction calculation means for disturbance different from the temperature correction calculation means And a heater temperature correction unit that corrects the heater temperature.
When the diameter variation determining unit determines that the variation factor of the detected diameter is not disturbance, the temperature correction calculating unit corrects the heater temperature, and the diameter variation determining unit is the disturbance factor of the detected diameter. If it is determined, the temperature of the heater is corrected by the disturbance temperature correction calculation means, and the silicon single crystal is pulled up while controlling the diameter of the silicon single crystal.
前記外乱用温度補正演算手段は、前記検出直径が同じ場合で前記温度補正演算手段で算出される前記ヒータ温度の補正量より小さい補正量を算出するものであることを特徴とする請求項4に記載のシリコン単結晶の製造装置。   5. The disturbance temperature correction calculation means calculates a correction amount smaller than the heater temperature correction amount calculated by the temperature correction calculation means when the detected diameters are the same. The manufacturing apparatus of the silicon single crystal of description. 前記直径変動判断部は、前記検出直径と目標直径との差の絶対値が一定値以上、及び、前記検出直径と検出直前の一定時間の検出直径の平均値との差の絶対値が一定値以上の少なくとも一つに該当する場合に外乱であると判断するものであることを特徴とする請求項4又は請求項5に記載のシリコン単結晶の製造装置。   The diameter variation determining unit is configured such that an absolute value of a difference between the detected diameter and a target diameter is a certain value or more, and an absolute value of a difference between the detected diameter and an average value of the detected diameters for a certain time immediately before the detection is a constant value. 6. The apparatus for producing a silicon single crystal according to claim 4, wherein the apparatus is judged to be a disturbance when at least one of the above is satisfied.
JP2012023198A 2012-02-06 2012-02-06 Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus Active JP5716689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012023198A JP5716689B2 (en) 2012-02-06 2012-02-06 Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012023198A JP5716689B2 (en) 2012-02-06 2012-02-06 Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2013159525A true JP2013159525A (en) 2013-08-19
JP5716689B2 JP5716689B2 (en) 2015-05-13

Family

ID=49172090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012023198A Active JP5716689B2 (en) 2012-02-06 2012-02-06 Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5716689B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075082A (en) * 2015-10-15 2017-04-20 上海新昇半導體科技有限公司 Single crystal silicon ingot and method for forming wafer
US9816199B2 (en) 2014-12-24 2017-11-14 Sumco Corporation Method of manufacturing single crystal
WO2022254885A1 (en) * 2021-06-04 2022-12-08 グローバルウェーハズ・ジャパン株式会社 Method for producing silicon monocrystal

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184797A (en) * 1983-04-04 1984-10-20 Agency Of Ind Science & Technol Preparation of group iii-v compound semiconductor single crystal
JPH0388795A (en) * 1989-08-31 1991-04-15 Toshiba Corp Production of single crystal
JPH04108687A (en) * 1990-08-28 1992-04-09 Furukawa Electric Co Ltd:The Controlling method for outside diameter of single crystal
JPH05279174A (en) * 1992-03-30 1993-10-26 Sumitomo Metal Ind Ltd Method for lifting single crystal
JP2001019588A (en) * 1999-07-12 2001-01-23 Sumitomo Metal Ind Ltd Method for controlling diameter of single crystal and device for growing crystal
JP2001316199A (en) * 2000-04-28 2001-11-13 Shin Etsu Handotai Co Ltd Manufacturing method and manufacturing device for silicon single crystal
JP2003192487A (en) * 2001-12-21 2003-07-09 Sumitomo Mitsubishi Silicon Corp Method and apparatus for growing single crystal
JP2004035353A (en) * 2002-07-05 2004-02-05 Sumitomo Mitsubishi Silicon Corp Process for preparing silicon single crystal
JP2005082474A (en) * 2003-09-11 2005-03-31 Toshiba Ceramics Co Ltd Method for producing silicon single crystal

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184797A (en) * 1983-04-04 1984-10-20 Agency Of Ind Science & Technol Preparation of group iii-v compound semiconductor single crystal
JPH0388795A (en) * 1989-08-31 1991-04-15 Toshiba Corp Production of single crystal
JPH04108687A (en) * 1990-08-28 1992-04-09 Furukawa Electric Co Ltd:The Controlling method for outside diameter of single crystal
JPH05279174A (en) * 1992-03-30 1993-10-26 Sumitomo Metal Ind Ltd Method for lifting single crystal
JP2001019588A (en) * 1999-07-12 2001-01-23 Sumitomo Metal Ind Ltd Method for controlling diameter of single crystal and device for growing crystal
JP2001316199A (en) * 2000-04-28 2001-11-13 Shin Etsu Handotai Co Ltd Manufacturing method and manufacturing device for silicon single crystal
JP2003192487A (en) * 2001-12-21 2003-07-09 Sumitomo Mitsubishi Silicon Corp Method and apparatus for growing single crystal
JP2004035353A (en) * 2002-07-05 2004-02-05 Sumitomo Mitsubishi Silicon Corp Process for preparing silicon single crystal
JP2005082474A (en) * 2003-09-11 2005-03-31 Toshiba Ceramics Co Ltd Method for producing silicon single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9816199B2 (en) 2014-12-24 2017-11-14 Sumco Corporation Method of manufacturing single crystal
JP2017075082A (en) * 2015-10-15 2017-04-20 上海新昇半導體科技有限公司 Single crystal silicon ingot and method for forming wafer
WO2022254885A1 (en) * 2021-06-04 2022-12-08 グローバルウェーハズ・ジャパン株式会社 Method for producing silicon monocrystal

Also Published As

Publication number Publication date
JP5716689B2 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
KR102157388B1 (en) Silicon single crystal manufacturing method and apparatus
JP4929817B2 (en) Method for measuring distance between reference reflector and melt surface, method for controlling melt surface position using the same, and apparatus for producing silicon single crystal
WO2020039553A1 (en) Method for growing silicon single crystal
JP2008195545A (en) Method for measuring distance between lower end surface of heat shielding member and surface of material melt, and method for controlling the distance
CN108779577B (en) Method for producing silicon single crystal
JP6885301B2 (en) Single crystal manufacturing method and equipment
JP2009221079A (en) Method and apparatus for manufacturing semiconductor crystal by fz method
JP2010215431A (en) Method for producing semiconductor single crystal
JP5716689B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JP3601328B2 (en) Method for producing silicon single crystal and silicon single crystal and silicon wafer produced by this method
JP3867476B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JP5145721B2 (en) Method and apparatus for producing silicon single crystal
JP2009057270A (en) Method of raising silicon single crystal
JP2015229612A (en) Manufacturing method of single crystal
JP5768764B2 (en) Manufacturing method of semiconductor single crystal rod
JP2001019588A (en) Method for controlling diameter of single crystal and device for growing crystal
JP6152784B2 (en) Manufacturing method of semiconductor crystal
TWI613334B (en) Automatic crystal growth method with high success rate
JP2007308335A (en) Method for pulling single crystal
KR101540235B1 (en) Apparutus and Method for Manufacturing Single Crystal Ingot
JP2017190261A (en) Method and apparatus for producing monocrystal
JP2001261482A (en) Method for growing single crystal
JP2010018499A (en) Method for producing single crystal
JP2001354490A (en) Method for producing single crystal
JP2014240338A (en) Method of producing semiconductor single crystal rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150302

R150 Certificate of patent or registration of utility model

Ref document number: 5716689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250