JPH05279174A - Method for lifting single crystal - Google Patents

Method for lifting single crystal

Info

Publication number
JPH05279174A
JPH05279174A JP7411692A JP7411692A JPH05279174A JP H05279174 A JPH05279174 A JP H05279174A JP 7411692 A JP7411692 A JP 7411692A JP 7411692 A JP7411692 A JP 7411692A JP H05279174 A JPH05279174 A JP H05279174A
Authority
JP
Japan
Prior art keywords
single crystal
pulling
change amount
diameter
heater temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7411692A
Other languages
Japanese (ja)
Other versions
JP2787042B2 (en
Inventor
Yoshiyuki Kashiwabara
義之 柏原
Yoshiyuki Matoba
祥行 的場
Toshiyuki Yamamoto
俊行 山本
Eiji Kajita
栄治 梶田
Yasunori Maeda
靖則 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU ELECTRON METAL CO Ltd
Nippon Steel Corp
Original Assignee
KYUSHU ELECTRON METAL CO Ltd
Sumitomo Sitix Corp
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU ELECTRON METAL CO Ltd, Sumitomo Sitix Corp, Sumitomo Metal Industries Ltd filed Critical KYUSHU ELECTRON METAL CO Ltd
Priority to JP4074116A priority Critical patent/JP2787042B2/en
Publication of JPH05279174A publication Critical patent/JPH05279174A/en
Application granted granted Critical
Publication of JP2787042B2 publication Critical patent/JP2787042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide the subject method capable of lifting the single crystal having a preliminarily set shape/dimension and enabling to obtain the single crystal iof a high quality reduced in the defects caused by its heat distortion and having the stable deposition amount of impurities under an approximately constant lifting rate for the single crystal. CONSTITUTION:The single crystal having a preliminarily set shape dimension is lifted by operating a single crystal-lifting device at a lifting rate within a preliminarily set range and by adjusting the heat-generating amount and temperature of a heater. The single crystal-lifting device comprises a crucible for melting the polycrystals of a raw material for semiconductors, a heating means arranged around the crucible, a lifting means for growing the single crystal and lifting the single crystal from a melted liquid in the crucible, and a means for measuring the diameter of the lifted single crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は単結晶引き上げ方法、よ
り詳しくは半導体素材多結晶を溶融させるるつぼと、該
るつぼの周囲に配設された加熱手段と、前記るつぼ内の
溶融液から単結晶を成長させながら引き上げる引き上げ
具と、引き上げた前記単結晶の直径を計測する手段とか
らなる単結晶引き上げ装置を用いて単結晶の直径を制御
する単結晶引き上げ方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for pulling a single crystal, more specifically, a crucible for melting a polycrystal semiconductor material, a heating means arranged around the crucible, and a single crystal from the melt in the crucible. The present invention relates to a single crystal pulling method for controlling the diameter of a single crystal using a single crystal pulling apparatus including a pulling tool for pulling while growing the single crystal and a means for measuring the diameter of the pulled single crystal.

【0002】[0002]

【従来の技術】一般的な単結晶引き上げ装置の制御系を
図3に基づいて説明する。図中11はるつぼを示してお
り、るつぼ11の周囲にはヒータ12が配設され、るつ
ぼ11の上方には単結晶13を成長させながら引き上げ
る引き上げ具14が配設されている。そしてるつぼ11
の回転速度、ヒータ12の温度、単結晶13の直径、引
き上げ具14の引き上げ速度がそれぞれ計算機15によ
って制御されている。
2. Description of the Related Art A control system of a general single crystal pulling apparatus will be described with reference to FIG. Reference numeral 11 in the drawing denotes a crucible, a heater 12 is arranged around the crucible 11, and a pulling tool 14 for pulling up the single crystal 13 while growing the single crystal 13 is arranged above the crucible 11. And crucible 11
The computer 15 controls the rotation speed, the temperature of the heater 12, the diameter of the single crystal 13, and the pulling speed of the pulling tool 14.

【0003】従来より単結晶引き上げ装置10におい
て、単結晶13の直径を制御する操作量として単結晶引
き上げ速度、ヒータ温度及びるつぼ11の回転速度があ
る。このうち特に単結晶引き上げ速度は単結晶13の直
径への応答が早いため、操作量とするのに適している。
一方、ヒータ温度は単結晶13の直径への応答が遅く、
ヒータ温度変更から直径が変化し始めるまでの間に直径
変化が現れない無駄時間が存在するため、単独の操作量
とするのは困難とされていた。従って、単結晶13の直
径を一時的に単結晶引き上げ速度で制御し、基準の引き
上げ速度から実際の単結晶引き上げ速度の平均的偏差を
なくすようにヒータ温度を修正する単純フィードバック
制御による単結晶引き上げ方法が採用されていた(特公
昭51−5993号公報)。
Conventionally, in the single crystal pulling apparatus 10, the manipulated variables for controlling the diameter of the single crystal 13 include the single crystal pulling speed, the heater temperature, and the rotation speed of the crucible 11. Of these, the single crystal pulling rate is particularly suitable for the manipulated variable because the single crystal 13 has a quick response to the diameter of the single crystal 13.
On the other hand, the heater temperature has a slow response to the diameter of the single crystal 13,
Since there is a dead time in which the diameter does not change from the time when the heater temperature is changed to the time when the diameter starts to change, it has been considered difficult to set a single operation amount. Therefore, the diameter of the single crystal 13 is temporarily controlled by the single crystal pulling speed, and the single crystal pulling is performed by simple feedback control in which the heater temperature is corrected so as to eliminate the average deviation of the actual single crystal pulling speed from the reference pulling speed. The method was adopted (Japanese Patent Publication No. 51-5993).

【0004】[0004]

【発明が解決しようとする課題】上記した引き上げ速度
を操作量とする単結晶13の引き上げ方法においては、
単結晶引き上げ速度操作量に対する単結晶直径の応答は
早く、単結晶直径の制御性は良いが、単結晶引き上げ速
度を変動させるために単結晶13の凝固界面と溶融液表
面との距離が変動して界面に流入する熱量が変動し、熱
歪みが発生して欠陥ができやすくなるといった問題や、
単結晶引き上げ速度を変化させることで冷却フード(図
3中16)中での結晶の冷却温度が変動し、熱歪み等に
よる欠陥の種が発生する等の課題があった。
In the method of pulling the single crystal 13 using the above-mentioned pulling speed as the manipulated variable,
The response of the single crystal diameter to the manipulated variable of the single crystal pulling rate is fast, and the controllability of the single crystal diameter is good, but the distance between the solidification interface of the single crystal 13 and the surface of the melt varies because the single crystal pulling rate is changed. The amount of heat that flows into the interface fluctuates, thermal distortion occurs and defects easily occur,
By changing the single crystal pulling rate, the cooling temperature of the crystal in the cooling hood (16 in FIG. 3) fluctuates, and there are problems such as generation of defect seeds due to thermal strain.

【0005】また、単結晶引き上げ速度は絶えず変化し
ており、これを迅速にヒータ温度で補償することはかえ
って大きな外乱となるため、一般には上記したようにあ
る時間の平均単結晶引き上げ速度をもとに補償を行って
いたが、これにヒータ温度の応答の遅れがあいまって十
分な補償が行えず、引き上げ速度の目標からのずれが大
きい場合があった。このため、すでに引き上げ冷却中の
単結晶13部分の熱処理時間が変動して不純物(シリコ
ンの場合は主として酸素)の析出量が変動し、単結晶1
3の品質に大きな問題が生じるという課題があった。
Further, since the single crystal pulling rate is constantly changing, and promptly compensating for this with a heater temperature is a large disturbance, so generally, the average single crystal pulling rate for a certain period of time is also as described above. However, due to the delay in the response of the heater temperature, sufficient compensation cannot be performed, and the pulling speed may deviate from the target. Therefore, the heat treatment time of the portion of the single crystal 13 that has already been pulled and cooled fluctuates, and the precipitation amount of impurities (mainly oxygen in the case of silicon) fluctuates.
There was a problem that the quality of 3 causes a big problem.

【0006】従って、集積度の高いメガビット以上の超
LSI用の基板としてこの単結晶13を用いた場合、L
SIの製品歩留が低下するという課題もあった。
Therefore, when this single crystal 13 is used as a substrate for a VLSI having a high degree of integration of megabits or more, L
There is also a problem that the product yield of SI is reduced.

【0007】一方、ヒータ温度のみで制御しようとした
場合、ヒータ温度の応答は遅く無駄時間も存在し、従来
の現状の結晶径と目標径との偏差をもとに操作量を変更
する単純フィードバック制御では最悪の場合、るつぼ1
1の溶融液温度が低下しすぎて溶融液が凝固したり、逆
に溶融液温度が上がりすぎて単結晶13が溶融液からち
ぎれてしまうという課題があった。
On the other hand, when it is attempted to control only by the heater temperature, the response of the heater temperature is slow and there is a dead time, and a simple feedback for changing the manipulated variable based on the deviation between the conventional crystal diameter and the target diameter. In the worst case of control, crucible 1
There was a problem that the melt temperature of No. 1 was too low and the melt was solidified, and conversely the melt temperature was too high and the single crystal 13 was torn from the melt.

【0008】本発明はこのような課題に鑑み発明された
ものであって、熱歪みによる欠陥が少なく、酸素等の不
純物析出量の安定した単結晶を製造することができる単
結晶引き上げ方法を提供することを目的としている。
The present invention has been invented in view of the above problems, and provides a single crystal pulling method capable of producing a single crystal having few defects due to thermal strain and a stable precipitation amount of impurities such as oxygen. The purpose is to do.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る単結晶引き上げ方法は、半導体素材多結
晶を溶融させるるつぼと、該るつぼの周囲に配設された
加熱手段と、前記るつぼ内の溶融液から単結晶を成長さ
せながら引き上げる引き上げ具と、引き上げた前記単結
晶の直径を計測する手段とからなる単結晶引き上げ装置
を用い、単結晶直径を制御する目的では、引き上げ速度
をあらかじめ設定された範囲内で操作するとともに、ヒ
ータ温度やるつぼ回転数を操作することにより、あらか
じめ設定された形状寸法の単結晶を引き上げることを特
徴とし(1)、また、上記(1)記載の単結晶引き上げ
方法において、ヒータ温度、るつぼの回転速度及び単結
晶引き上げ速度の過去及び現在値と、単結晶直径の過去
及び現在値とから単結晶直径の将来値を予測するモデル
を用い、前記るつぼの回転速度が現状のまま維持される
という条件下で単結晶直径の予測値と目標値との偏差を
予測し、所定時間先の単結晶直径の予測値と目標値との
偏差をなくすように、所定時間先までの単結晶直径の予
測値と目標値との偏差の自乗和と、前記モデルから算出
したヒータ温度変更量の自乗和、引き上げ速度変更量の
自乗和、引き上げ速度と目標引き上げ速度との偏差の自
乗和にそれぞれ係数を乗じた値との和が最小となるよう
に所定時間先までのヒータ温度変更量及び引き上げ速度
変更量を決定することを特徴としている(2)。
In order to achieve the above object, a method for pulling a single crystal according to the present invention comprises a crucible for melting a polycrystal of a semiconductor material, a heating means arranged around the crucible, and For the purpose of controlling the diameter of the single crystal, the pulling rate is controlled by using a single crystal pulling device including a pulling tool that pulls up the single crystal from the melt in the crucible while growing the single crystal, and a means for measuring the diameter of the pulled single crystal. A single crystal having a preset shape and size is pulled by operating the heater temperature and the number of rotations of the crucible in addition to operating within a preset range (1), and the above (1) In the single crystal pulling method, from the past and present values of the heater temperature, the rotation speed of the crucible and the single crystal pulling speed, and the past and present values of the single crystal diameter. Using a model to predict the future value of the crystal diameter, predict the deviation between the predicted value and the target value of the single crystal diameter under the condition that the rotation speed of the crucible is maintained as it is, the single crystal of a predetermined time ahead To eliminate the deviation between the predicted value and the target value of the diameter, the square sum of the deviation between the predicted value and the target value of the single crystal diameter up to a predetermined time, and the square sum of the heater temperature change amount calculated from the model, The heater temperature change amount and the pull speed change amount up to a predetermined time ahead so that the sum of the square of the pull speed change amount and the sum of the square of the deviation between the pull speed and the target pull speed multiplied by each coefficient is minimized. Is determined (2).

【0010】さらに、上記(1)記載の単結晶引き上げ
方法において、ヒータ温度及び単結晶引き上げ速度の過
去及び現在値と、るつぼの回転速度の過去、現在値及び
計画値と、単結晶直径の過去及び現在値とから単結晶直
径の将来値を予測するモデルを用い、単結晶直径の予測
値と目標値との偏差を予測し、所定時間先の単結晶直径
の予測値と目標値との偏差をなくすように、所定時間先
までの単結晶直径の予測値と目標値との偏差の自乗和
と、前記モデルから算出したヒータ温度変更量の自乗
和、引き上げ速度変更量の自乗和、引き上げ速度と目標
引き上げ速度との偏差の自乗和にそれぞれ係数を乗じた
値との和が最小となるように所定時間先までのヒータ温
度変更量及び引き上げ速度変更量を決定し、前記ヒータ
温度及び引き上げ速度を先行して操作することで前記る
つぼの回転数を操作して単結晶を引き上げることを特徴
としている(3)。
Further, in the single crystal pulling method described in (1) above, past and present values of heater temperature and single crystal pulling rate, past and present values and planned values of crucible rotation speed, and past single crystal diameter. Using the model that predicts the future value of the single crystal diameter from the current value and the current value, the deviation between the predicted value of the single crystal diameter and the target value is predicted, and the deviation between the predicted value and the target value of the single crystal diameter after a predetermined time So as to eliminate the square sum of the deviation between the predicted value and the target value of the single crystal diameter up to a predetermined time ahead, the square sum of the heater temperature change amount calculated from the model, the square sum of the pull rate change amount, and the pull rate. The heater temperature change amount and the pull speed change amount up to a predetermined time ahead are determined so that the sum of the squared sum of the deviations between the target temperature and the target pull speed is multiplied by a coefficient, and the heater temperature and the pull speed are changed. Prior to by operating by operating the rotational speed of the crucible is characterized by pulling a single crystal (3).

【0011】あるいは、上記(1)記載の単結晶引き上
げ方法において、ヒータ温度、るつぼの回転速度、単結
晶引き上げ速度及び単結晶直径の過去の実績値と、該単
結晶直径の目標値と実績値との偏差の過去の総和と、前
記単結晶引き上げ速度の目標値と実績値との偏差の過去
の総和と、前記単結晶直径の将来目標値と前記単結晶引
き上げ速度の計画値とのそれぞれに、前記単結晶直径が
目標値となりかつ引き上げ速度が目標からずれない様ヒ
ータ温度変更量と引き上げ速度変更量とが求まるように
あらかじめ決めておいたゲインを乗じ、ヒータ温度変更
量と引き上げ速度変更量とを決定することを特徴として
いる(4)。
Alternatively, in the single crystal pulling method described in the above (1), the past actual values of the heater temperature, the crucible rotation speed, the single crystal pulling speed, and the single crystal diameter, and the target value and the actual value of the single crystal diameter. And the past total of the deviation, the past total of the deviation between the target value and the actual value of the single crystal pulling speed, the future target value of the single crystal diameter and the planned value of the single crystal pulling speed, respectively. , The heater temperature change amount and the pulling speed change amount are multiplied by a gain determined in advance so as to obtain the heater temperature change amount and the pulling speed change amount so that the single crystal diameter becomes the target value and the pulling speed does not deviate from the target. It is characterized by determining (4).

【0012】あるいは、上記(1)記載の単結晶引き上
げ方法において、ヒータ温度、るつぼの回転速度、単結
晶引き上げ速度及び単結晶直径の過去の実績値と、該単
結晶直径の目標値と実績値との偏差の過去の総和と、単
結晶引き上げ速度の目標値と実績値との偏差の過去の総
和と、前記単結晶直径の将来目標値と、前記単結晶引き
上げ速度の計画値と、前記るつぼの回転速度の計画値と
のそれぞれに、前記単結晶直径が目標値となりかつ引き
上げ速度が目標からずれない様ヒータ温度変更量と引き
上げ速度変更量とが求まるようにあらかじめ決めておい
たゲインを乗じ、ヒータ温度変更量と引き上げ速度変更
量とを決定することを特徴としている(5)。
Alternatively, in the single crystal pulling method described in the above (1), past actual values of the heater temperature, the crucible rotation speed, the single crystal pulling speed, and the single crystal diameter, and the target value and the actual value of the single crystal diameter. And the past total of the deviation, the past total of the deviation between the target value and the actual value of the single crystal pulling speed, the future target value of the single crystal diameter, the planned value of the single crystal pulling speed, and the crucible. To each of the planned values of the rotation speed of the above, multiply the heater temperature change amount and the pulling speed change amount that are predetermined so that the single crystal diameter becomes the target value and the pulling speed does not deviate from the target, by multiplying by The heater temperature change amount and the pulling speed change amount are determined (5).

【0013】また、上記(3)または(5)記載の単結
晶引き上げ方法において、単結晶中の酸素濃度が所定範
囲に入るようにるつぼの回転速度に時間パターンを与
え、それに対する影響量を補償しながらヒータ温度変更
量と引き上げ速度変更量とを決定することにより、前記
単結晶中の酸素濃度を所定の範囲に入れることを特徴と
している(6)。
In the method for pulling a single crystal according to the above (3) or (5), a time pattern is given to the rotation speed of the crucible so that the oxygen concentration in the single crystal falls within a predetermined range, and the amount of influence on it is compensated. However, by determining the heater temperature change amount and the pulling speed change amount, the oxygen concentration in the single crystal is set within a predetermined range (6).

【0014】すなわち本発明者らは、単結晶引き上げ速
度及びヒータ温度の変動等による単結晶の直径の動的変
化を定量的に予測するために離散化した単結晶直径予測
式を作成し、この関係式を基にヒータ温度変更量と引き
上げ速度変更量とを決定することで、引き上げ速度変更
量及び目標引き上げ速度と引き上げ速度との偏差を小さ
くし、しかも従来と略同等の寸法精度の単結晶を引き上
げることができることを見いだし、本発明に至ったもの
である。
That is, the inventors of the present invention created a discretized single crystal diameter prediction formula for quantitatively predicting a dynamic change in the diameter of the single crystal due to fluctuations in the single crystal pulling rate and heater temperature. By determining the heater temperature change amount and the pulling speed change amount based on the relational expression, the deviation between the pulling speed change amount and the target pulling speed and the pulling speed can be reduced, and moreover, the single crystal with substantially the same dimensional accuracy as the conventional one. The present invention has been accomplished by discovering that the above can be raised.

【0015】単結晶直径予測式を数1に示す。The equation for predicting the diameter of a single crystal is shown in Equation 1.

【0016】[0016]

【数1】 [Equation 1]

【0017】なお、数1に示した式の次数mはモデルに
必要とされる精度で決定されるが、ここではm=3とし
た。
The order m of the equation shown in the equation 1 is determined by the accuracy required for the model, but here m = 3.

【0018】数1は単結晶直径、ヒータ温度、単結晶引
き上げ速度、るつぼの回転速度の過去及び現在値より離
散化時間であるΔtの1つ先の単結晶直径を予測するも
ので、推定精度の一例を図2に示す。
Mathematical formula 1 predicts the single crystal diameter which is one time after the discrete time Δt from the past and present values of the single crystal diameter, the heater temperature, the single crystal pulling speed, and the crucible rotation speed. An example is shown in FIG.

【0019】図2において、数1により算出した時間の
経過に対する単結晶直径の変化量を点線で示し、実際の
単結晶直径の変化量を実線で示した。
In FIG. 2, the amount of change in the diameter of the single crystal with respect to the passage of time calculated by Equation 1 is shown by the dotted line, and the amount of change in the actual diameter of the single crystal is shown by the solid line.

【0020】以下、ヒータ温度及び引き上げ速度を制御
する方法について説明する。数1で示された単結晶直
径、ヒータ温度、単結晶引き上げ速度、るつぼの回転速
度の過去及び現在の値より単結晶直径を予測するモデル
を用いて、るつぼの回転速度が現状のまま維持されると
いう条件下で、L時間後までの予測径と目標径との差の
自乗和Σ(Rn+i −Xn+i2 と、K時間後までのヒー
タ温度変更量の自乗和Σ(Un+i+1 −Un+i2 、引き
上げ速度変更量の自乗和Σ(Vn+i+l −Vn+i2 、目
標引き上げ速度と引き上げ速度との偏差の自乗和Σ(S
n+i −Vn+i2 にそれぞれ重み係数Qu、Qv、Qs
を乗じた値との和を最小とするようにヒータ温度操作量
n 〜Un+K および引き上げ速度操作量Vn 〜Vn+k
決定する。
A method for controlling the heater temperature and the pulling rate will be described below. Using the model for predicting the single crystal diameter from the past and present values of single crystal diameter, heater temperature, single crystal pulling speed, and crucible rotation speed shown in Equation 1, the crucible rotation speed is maintained as it is. The sum of squares Σ (R n + i −X n + i ) 2 of the difference between the predicted diameter and the target diameter after L hours and the sum of squares of the heater temperature change amount after K hours Σ. (U n + i + 1 −U n + i ) 2 , sum of squares of change in pulling speed Σ (V n + i + l −V n + i ) 2 , sum of squares of deviation between target pulling speed and pulling speed Σ (S
n + i −V n + i ) 2 and weighting factors Qu, Qv, Qs, respectively.
The sum of the value obtained by multiplying the determining heater temperature operating amount U n ~U n + K and pulling speed manipulated variable V n ~V n + k to minimize.

【0021】あるいは、数1で示された単結晶直径、ヒ
ータ温度、単結晶引き上げ速度の過去及び現在値と、る
つぼの回転速度の過去、現在及び計画値とにより単結晶
直径を予測するモデルを用いて、L時間後までの予測径
と目標径との差の自乗和Σ(Rn+i −Xn+i2 と、K
時間後までのヒータ温度変更量の自乗和Σ(Un+i+1
n+i2 、引き上げ速度変更量の自乗和Σ(Vn+i+l
−Vn+i2 、目標引き上げ速度と引き上げ速度との偏
差の自乗和Σ(Sn+i −Vn+i2 にそれぞれ重み係数
Qu、Qv、Qsを乗じた値との和を最小とするように
ヒータ温度操作量Un 〜Un+K および引き上げ速度操作
量Vn 〜Vn+k を決定する方法もある。
Alternatively, a model for predicting the single crystal diameter based on the past and present values of the single crystal diameter, the heater temperature, and the single crystal pulling speed and the past, present and planned values of the crucible rotation speed shown in Equation 1 is used. Then, the sum of squares Σ (R n + i −X n + i ) 2 of the difference between the predicted diameter and the target diameter up to the L-th time is used, and K
Sum of squares of heater temperature change amount up to time Σ (U n + i + 1
U n + i ) 2 , the sum of squares of the pulling speed change amount Σ (V n + i + l
−V n + i ) 2 and the sum of squared sum Σ (S n + i −V n + i ) 2 of the deviation between the target pulling speed and the pulling speed, multiplied by the weighting factors Qu, Qv, and Qs, respectively. there is a method of determining heater temperature operating amount U n ~U n + K and pulling speed manipulated variable V n ~V n + k to a minimum.

【0022】または、下記の数2及び数3に示したよう
に、直径の過去の経緯(第1項)、ヒータ温度変更の過
去の経緯(第2項)、単結晶引き上げ速度の過去の経緯
(第3項)、るつぼ回転速度の過去の経緯(第4項)、
目標径との偏差をなくすために用意された目標径と実測
径とのずれの過去の積算値(第5項)、目標引き上げ速
度との偏差をなくすために用意された目標引き上げ速度
と引き上げ速度とのずれの過去の積算値(第6項)、る
つぼの回転速度の計画値(第7項)及び単結晶直径の将
来目標径(第8項)を考慮してヒータ温度操作量及び引
き上げ速度操作量を決定する。
Alternatively, as shown in the following equations 2 and 3, the past history of diameter (first term), the past history of heater temperature change (second term), and the past history of single crystal pulling rate. (Clause 3), Past history of crucible rotation speed (Claim 4),
The past integrated value of the deviation between the target diameter and the measured diameter prepared to eliminate the deviation from the target diameter (section 5), and the target pulling speed and pulling speed prepared to eliminate the deviation from the target pulling speed Heater operation amount and pulling speed considering the past accumulated value of deviation from (6th item), planned value of crucible rotation speed (7th item) and future target diameter of single crystal diameter (8th item) Determine the manipulated variable.

【0023】[0023]

【数2】 [Equation 2]

【0024】[0024]

【数3】 [Equation 3]

【0025】また、数2及び数3に示した式において、
るつぼの回転速度の計画値(第7項)を考慮せずにヒー
タ温度変更量及び引き上げ速度変更量を決定する方法も
ある。
Further, in the equations shown in the equations 2 and 3,
There is also a method of determining the heater temperature change amount and the pulling speed change amount without considering the planned value of the rotation speed of the crucible (7th term).

【0026】上記した制御則における制御ゲインは例え
ば、数4に示した評価関数を最小にするように数学的手
法により決定される。
The control gain in the above-mentioned control law is determined by a mathematical method so as to minimize the evaluation function shown in equation (4).

【0027】[0027]

【数4】 [Equation 4]

【0028】さらに、結晶中の酸素濃度を一定とするた
めにるつぼの回転速度に時間パターンを与え、それに対
する影響量を補償しながらヒータ温度変更量を決定する
方法もある。
Further, there is also a method of giving a time pattern to the rotational speed of the crucible in order to keep the oxygen concentration in the crystal constant, and determining the heater temperature change amount while compensating for the amount of influence on it.

【0029】[0029]

【作用】上記した方法によれば、半導体素材多結晶を溶
融させるるつぼと、該るつぼの周囲に配設された加熱手
段と、前記るつぼ内の溶融液から単結晶を成長させなが
ら引き上げる引き上げ具と、引き上げた前記単結晶の直
径を計測する手段とからなる単結晶引き上げ装置を用
い、直径制御のため引き上げ速度をあらかじめ設定され
た範囲内で操作するとともに、ヒータ温度を操作するこ
とにより、あらかじめ設定された形状寸法の単結晶を引
き上げるので、単結晶の凝固界面と溶融液表面との距離
の変動が少なく、前記界面に流入する熱量が安定し、熱
歪みによる欠陥が少ない、また、引き上げて冷却中の単
結晶部分の熱処理時間が一定することとなり、酸素等の
不純物析出量が安定した単結晶が製造される。
According to the above-mentioned method, the crucible for melting the polycrystal semiconductor material, the heating means arranged around the crucible, and the pulling tool for pulling the single crystal from the melt in the crucible while growing the single crystal. , Using a single crystal pulling apparatus consisting of a means for measuring the diameter of the pulled single crystal, the pulling speed is set within a preset range for diameter control, and the heater temperature is set in advance. Since the single crystal with the specified shape and dimensions is pulled up, there is little fluctuation in the distance between the solidification interface of the single crystal and the surface of the melt, the amount of heat flowing into the interface is stable, and there are few defects due to thermal strain. The heat treatment time of the single crystal portion therein is constant, and a single crystal in which the amount of impurities such as oxygen deposited is stable is manufactured.

【0030】また、上記(2)記載の単結晶引き上げ方
法においても、上記(1)と同様の作用が得られる。
Also, in the single crystal pulling method described in (2) above, the same effect as in (1) above can be obtained.

【0031】あるいは、ヒータ温度及び単結晶引き上げ
速度の過去及び現在値と、るつぼの回転速度の過去、現
在値及び計画値と、単結晶直径の過去及び現在値とから
単結晶直径の将来値を予測するモデルを用い、単結晶直
径の予測値と目標値との偏差を予測し、所定時間先の単
結晶直径の予測値と目標値との偏差をなくすように、所
定時間先までの単結晶直径の予測値と目標値との偏差の
自乗和と、前記モデルから算出したヒータ温度変更量の
自乗和、引き上げ速度変更量の自乗和、目標引き上げ速
度と引き上げ速度との偏差の自乗和にそれぞれ係数を乗
じた値との和が最小となるように所定時間先までのヒー
タ温度変更量及び引き上げ速度変更量を決定し、前記ヒ
ータ温度及び引き上げ速度を先行して操作することで前
記るつぼの回転数を操作して単結晶を引き上げる場合に
は、上記作用に加えて単結晶中に所望の酸素濃度が含ま
れた、不純物析出量が安定した単結晶が製造される。
Alternatively, the future value of the single crystal diameter is calculated from the past and present values of the heater temperature and the pulling rate of the single crystal, the past, present and planned values of the rotation speed of the crucible, and the past and present values of the single crystal diameter. Using the model to predict, predict the deviation between the predicted value of the single crystal diameter and the target value, so as to eliminate the deviation between the predicted value and the target value of the single crystal diameter after a predetermined time, the single crystal up to the predetermined time Sum of squares of deviation between predicted value of diameter and target value, sum of squares of heater temperature change amount calculated from the model, sum of squares of change amount of pulling speed, sum of squares of difference between target pulling speed and pulling speed Rotation of the crucible is determined by determining the heater temperature change amount and the pull-up speed change amount up to a predetermined time so that the sum of the value multiplied by the coefficient is minimized and operating the heater temperature and the pull-up speed in advance. number Operation to when pulling a single crystal, the desired oxygen concentration in the single crystal in addition to the above effects is included, a single crystal amount impurity deposition is stabilized is manufactured.

【0032】あるいは、上記(4)記載の単結晶引き上
げ方法においても、上記(1)記載の単結晶引き上げ方
法と同様の作用が得られる。
Alternatively, also in the single crystal pulling method described in (4) above, the same action as in the single crystal pulling method described in (1) above can be obtained.

【0033】また、上記(3)または(5)記載の単結
晶引き上げ方法において、単結晶中の酸素濃度が所定範
囲に入るようにるつぼの回転速度に時間パターンを与
え、それに対する影響量を補償しながらヒータ温度変更
量及び引き上げ速度変更量を決定する場合には、前記単
結晶中の酸素濃度が所定の範囲に入り、不純物析出量が
安定するとともに熱歪みによる欠陥が少ない単結晶が製
造される。
In the method for pulling a single crystal according to the above (3) or (5), a time pattern is given to the rotation speed of the crucible so that the oxygen concentration in the single crystal falls within a predetermined range, and the amount of influence on it is compensated. However, when determining the heater temperature change amount and the pulling speed change amount, the oxygen concentration in the single crystal falls within a predetermined range, and a single crystal is produced in which the amount of impurity precipitation is stable and the number of defects due to thermal strain is small. It

【0034】[0034]

【実施例】以下、本発明に係る単結晶引き上げ方法の実
施例を説明する。なお、本実施例による単結晶引き上げ
装置の制御系の構成は従来とほぼ同一であるため、その
説明は省略する。
EXAMPLES Examples of the single crystal pulling method according to the present invention will be described below. The configuration of the control system of the single crystal pulling apparatus according to the present embodiment is almost the same as that of the conventional one, and the description thereof will be omitted.

【0035】本実施例に係る単結晶引き上げ方法におい
ては目標径を154mm、目標引き上げ速度を1.1m
m/minに設定して行った。
In the single crystal pulling method according to this embodiment, the target diameter is 154 mm and the target pulling speed is 1.1 m.
It was set at m / min.

【0036】数1に示された式より、30分先(L=3
0min)までの単結晶の予測径と目標径とのずれの自
乗和と20分先(K=20min)までのヒータ温度変
更量の自乗和に1000を乗じた値と、引き上げ速度変
更量の自乗和に10を乗じた値と、目標引き上げ速度と
引き上げ速度とのずれの自乗和に100を乗じた値との
和を最小とする20分先までのヒータ温度変更量と引き
上げ速度変更量を求め、ヒータ温度変更量を決定した場
合の直径制御結果を図1に示す。
From the equation shown in the equation 1, 30 minutes ahead (L = 3
0 min) the sum of squares of the deviation between the predicted diameter of the single crystal and the target diameter, the value obtained by multiplying the sum of squares of the heater temperature change amount up to 20 minutes (K = 20 min) by 1000, and the square of the pulling speed change amount. Obtain the heater temperature change amount and the pull speed change amount up to 20 minutes ahead that minimizes the sum of the value obtained by multiplying the sum by 10 and the value obtained by multiplying the sum of squares of the difference between the target pull speed and the pull speed by 100. FIG. 1 shows the diameter control result when the heater temperature change amount is determined.

【0037】図1より明らかなように、引き上げ速度を
あらかじめ設定された範囲内で操作し、温度センサーの
電圧変化により検知したヒータ温度を制御することによ
って直径のばらつきが少なく、所望の直径を有する単結
晶を引き上げることができることが分かる。
As is apparent from FIG. 1, by operating the pulling rate within a preset range and controlling the heater temperature detected by the voltage change of the temperature sensor, the diameter variation is small and the desired diameter is obtained. It can be seen that the single crystal can be pulled.

【0038】また、数4に示した評価関数JにおいてQ
u=1000、Qv=10、Qs=100としてゲイン
を求め、使用した場合の直径制御結果も図1に示したも
のと同様であった。
Also, in the evaluation function J shown in the equation 4, Q
The gain was determined with u = 1000, Qv = 10, and Qs = 100, and the diameter control result when used was similar to that shown in FIG.

【0039】さらに、単結晶中の酸素濃度が所定の範囲
に入るように、るつぼの回転速度に時間パターン与え、
それに対する影響量をヒータ温度変更及び引き上げ速度
変更によって補償した場合の単結晶品質を表1に示す。
Further, a time pattern is given to the rotation speed of the crucible so that the oxygen concentration in the single crystal falls within a predetermined range.
Table 1 shows the single crystal quality when the influence amount on it is compensated by changing the heater temperature and changing the pulling rate.

【0040】[0040]

【表1】 [Table 1]

【0041】このように、上記実施例に係る単結晶引き
上げ方法においては、単結晶引き上げ速度をあらかじめ
設定された範囲内で操作し、ヒータ温度を制御すること
で、あらかじめ設定された形状寸法の単結晶を引き上げ
ることができるとともに、熱歪みによる欠陥が少なく、
不純物析出量が安定した高品質の単結晶を得ることが可
能となる。
As described above, in the single crystal pulling method according to the above-mentioned embodiment, the single crystal pulling speed is operated within the preset range, and the heater temperature is controlled to obtain the single crystal having the preset shape and dimension. The crystal can be pulled up, and there are few defects due to thermal strain,
It is possible to obtain a high-quality single crystal in which the amount of precipitated impurities is stable.

【0042】なお上記実施例においてはヒータ温度量を
操作する場合について説明したが、ヒータ温度の代わり
にヒータ入熱量を操作しても良い。
In the above embodiment, the case where the heater temperature amount is operated has been described, but the heater heat input amount may be operated instead of the heater temperature.

【0043】[0043]

【発明の効果】以上詳述したように本発明に係る単結晶
引き上げ方法にあっては、半導体素材多結晶を溶融させ
るるつぼと、該るつぼの周囲に配設された加熱手段と、
前記るつぼ内の溶融液から単結晶を成長させながら引き
上げる引き上げ具と、引き上げた前記単結晶の直径を計
測する手段とからなる単結晶引き上げ装置を用い、引き
上げ速度はあらかじめ設定された範囲内で操作するとと
もに、ヒータ温度を操作することにより、あらかじめ設
定された形状寸法の単結晶を引き上げるので、単結晶の
凝固界面と溶融液表面との距離の変動が少なく、前記界
面に流入する熱量が安定し、熱歪みによる欠陥発生を少
なくすることができ、また、引き上げて冷却中の単結晶
部分の熱処理時間が略一定することとなり、酸素等の不
純物析出量が安定した単結晶を製造することができる。
As described above in detail, in the method for pulling a single crystal according to the present invention, a crucible for melting a polycrystalline semiconductor material, a heating means arranged around the crucible,
A pulling tool for pulling while growing a single crystal from the melt in the crucible, and a single crystal pulling device consisting of means for measuring the diameter of the pulled single crystal, the pulling speed is operated within a preset range In addition, by operating the heater temperature, the single crystal having a preset geometrical dimension is pulled up, so there is little fluctuation in the distance between the solidification interface of the single crystal and the surface of the melt, and the amount of heat flowing into the interface is stable. In addition, the occurrence of defects due to thermal strain can be reduced, and the heat treatment time of the single crystal portion during pulling and cooling can be made substantially constant, and a single crystal with a stable precipitation amount of impurities such as oxygen can be manufactured. ..

【0044】また、上記(2)記載の単結晶引き上げ方
法においても、上記(1)と同様の効果が得られる。
Also, in the single crystal pulling method described in (2) above, the same effect as in (1) above can be obtained.

【0045】あるいは、ヒータ入熱及び単結晶引き上げ
速度の過去及び現在値と、るつぼの回転速度の過去、現
在値及び計画値と、単結晶直径の過去及び現在値とから
単結晶直径の将来値を予測するモデルを用い、単結晶直
径の予測値と目標値との偏差を予測し、所定時間先の単
結晶直径の予測値と目標値との偏差をなくすように、所
定時間先までの単結晶直径の予測値と目標値との偏差の
自乗和と、前記モデルから算出したヒータ温度変更量の
自乗和、引き上げ速度変更量の自乗和、目標引き上げ速
度と引き上げ速度との偏差の自乗和にそれぞれ係数を乗
じた値との和が最小となるように所定時間先までのヒー
タ温度変更量及び引き上げ速度変更量を決定し、前記ヒ
ータ温度及び引き上げ速度を先行して操作することで前
記るつぼの回転数を操作して単結晶を引き上げる場合に
は、上記作用に加えて単結晶中に所望の酸素が含まれ
た、不純物析出量が安定した単結晶を製造することがで
きる。
Alternatively, the past and present values of the heat input to the heater and the pulling rate of the single crystal, the past and present values and the planned value of the rotation speed of the crucible, and the past and present values of the single crystal diameter are used to determine the future value of the single crystal diameter. Using a model that predicts the deviation of the predicted value of the single crystal diameter from the target value, and to eliminate the deviation of the predicted value of the single crystal diameter of the predetermined time from the target value, The square sum of the deviation between the predicted value and the target value of the crystal diameter, the square sum of the heater temperature change amount calculated from the model, the square sum of the pulling speed change amount, and the square sum of the deviation between the target pulling speed and the pulling speed. The heater temperature change amount and the pulling speed change amount up to a predetermined time are determined so that the sum of the values multiplied by the respective coefficients is minimized, and the heater temperature and the pulling speed are operated in advance to operate the crucible. Number of rotations Operation to when pulling a single crystal, in addition to the effect desired oxygen in the single crystal is included, the amount of impurity deposition can be produced a stable single crystal.

【0046】あるいは、上記(4)記載の単結晶引き上
げ方法においても、上記(1)記載の単結晶引き上げ方
法と同様の効果が得られる。
Alternatively, in the single crystal pulling method described in (4) above, the same effect as in the single crystal pulling method described in (1) above can be obtained.

【0047】また、上記(3)または(5)記載の単結
晶引き上げ方法において、単結晶中の酸素濃度が所定範
囲に入るようにるつぼの回転速度に時間パターンを与
え、それに対する影響量を補償しながらヒータ温度変更
量を決定する場合には、前記単結晶中の酸素濃度が所定
の範囲に入り、不純物析出量が安定するとともに熱歪み
による欠陥が少ない単結晶を製造することができる。
In the method for pulling a single crystal according to the above (3) or (5), a time pattern is given to the rotational speed of the crucible so that the oxygen concentration in the single crystal falls within a predetermined range, and the amount of influence on it is compensated. However, when the heater temperature change amount is determined, the oxygen concentration in the single crystal falls within a predetermined range, the amount of impurity precipitation is stabilized, and a single crystal having few defects due to thermal strain can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る単結晶引き上げ方法の実施例の直
径制御性を示したグラフである。
FIG. 1 is a graph showing the diameter controllability of an example of a single crystal pulling method according to the present invention.

【図2】単結晶引き上げ方法のモデルの直径の推定精度
を示したグラフである。
FIG. 2 is a graph showing the estimation accuracy of the diameter of the model of the single crystal pulling method.

【図3】単結晶引き上げ方法における直径制御系の構成
を示す概略図である。
FIG. 3 is a schematic diagram showing a configuration of a diameter control system in a single crystal pulling method.

フロントページの続き (72)発明者 的場 祥行 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 山本 俊行 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 梶田 栄治 佐賀県杵島郡江北町大字上小田2201番地 九州電子金属株式会社内 (72)発明者 前田 靖則 佐賀県杵島郡江北町大字上小田2201番地 九州電子金属株式会社内Front page continued (72) Inventor Matoba Yoshiyuki, 4-533 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Sumitomo Metal Industries, Ltd. (72) Toshiyuki Yamamoto 4-53, Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Issue Sumitomo Metal Industries Co., Ltd. (72) Inventor Eiji Kajita 2201 Kamioda, Kohoku-cho, Kishima-gun, Saga Prefecture Kyushu Electronic Metals Co., Ltd. Yasunori Maeda 2201 Kamioda, Kokuhoku-cho, Kijima-jima, Saga Prefecture Kyushu Electronic Metal Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 半導体素材多結晶を溶融させるるつぼ
と、該るつぼの周囲に配設された加熱手段と、前記るつ
ぼ内の溶融液から単結晶を成長させながら引き上げる引
き上げ具と、引き上げた前記単結晶の直径を計測する手
段とからなる単結晶引き上げ装置を用い、引き上げ速度
をあらかじめ設定された範囲内で操作するとともに、ヒ
ータ発熱量またはヒータ温度(以下「ヒータ温度」と記
す)を操作することにより、あらかじめ設定された形状
寸法の単結晶を引き上げることを特徴とする単結晶引き
上げ方法。
1. A crucible for melting a polycrystal semiconductor material, a heating means arranged around the crucible, a pulling tool for pulling a single crystal from a melt in the crucible while growing the single crystal, and the pulled single crystal. Using a single crystal pulling device consisting of means for measuring the diameter of the crystal, operating the pulling speed within a preset range, and operating the heater heat value or heater temperature (hereinafter referred to as "heater temperature"). According to the method, a single crystal pulling method of pulling a single crystal having a preset shape and dimension.
【請求項2】 ヒータ温度、るつぼの回転速度及び単結
晶引き上げ速度の過去及び現在値と、単結晶直径の過去
及び現在値とから単結晶直径の将来値を予測するモデル
を用い、前記るつぼの回転速度が現状のまま維持される
という条件下で単結晶直径の予測値と目標値との偏差を
予測し、所定時間先の単結晶直径の予測値と目標値との
偏差をなくすように、所定時間先までの単結晶直径の予
測値と目標値との偏差の自乗和と、前記モデルから算出
したヒータ温度変更量の自乗和、引き上げ速度変更量の
自乗和、引き上げ速度と目標引き上げ速度との偏差の自
乗和にそれぞれ係数を乗じた値との和が最小となるよう
に所定時間先までのヒータ温度変更量及び引き上げ速度
変更量を決定する請求項1記載の単結晶引き上げ方法。
2. A model for predicting a future value of a single crystal diameter from past and present values of a heater temperature, a rotation speed of a crucible and a pulling speed of a single crystal, and past and present values of a diameter of a single crystal is used, Predict the deviation between the predicted value and the target value of the single crystal diameter under the condition that the rotation speed is maintained as it is, so as to eliminate the deviation between the predicted value and the target value of the single crystal diameter after a predetermined time, Squared sum of deviations between the predicted value and the target value of the single crystal diameter up to a predetermined time ahead, the squared sum of the heater temperature change amount calculated from the model, the squared sum of the pulling speed change amount, the pulling speed and the target pulling speed, The method for pulling a single crystal according to claim 1, wherein the heater temperature change amount and the pulling speed change amount up to a predetermined time ahead are determined so that the sum of the squared sum of the deviations of the above ones and the value obtained by multiplying each coefficient is minimized.
【請求項3】 ヒータ温度及び単結晶引き上げ速度の過
去及び現在値と、るつぼの回転速度の過去、現在値及び
計画値と、単結晶直径の過去及び現在値とから単結晶直
径の将来値を予測するモデルを用い、単結晶直径の予測
値と目標値との偏差を予測し、所定時間先の単結晶直径
の予測値と目標値との偏差をなくすように、所定時間先
までの単結晶直径の予測値と目標値との偏差の自乗和
と、前記モデルから算出したヒータ温度変更量の自乗
和、引き上げ速度変更量の自乗和、引き上げ速度と目標
引き上げ速度との偏差の自乗和にそれぞれ係数を乗じた
値との和が最小となるように所定時間先までのヒータ温
度変更量及び引き上げ速度変更量を決定し、前記ヒータ
温度及び引き上げ速度を先行して操作することで前記る
つぼの回転数を操作して単結晶を引き上げる請求項1記
載の単結晶引き上げ方法。
3. The future value of the single crystal diameter is calculated from the past and present values of the heater temperature and the pulling speed of the single crystal, the past, present and planned values of the rotation speed of the crucible, and the past and present values of the single crystal diameter. Using the model to predict, predict the deviation between the predicted value of the single crystal diameter and the target value, so as to eliminate the deviation between the predicted value and the target value of the single crystal diameter after a predetermined time, the single crystal up to the predetermined time Sum of squares of deviation between predicted value of diameter and target value, sum of squares of heater temperature change amount calculated from the model, sum of squares of change amount of pulling speed, sum of squares of difference between pulling speed and target pulling speed, respectively. Rotation of the crucible is determined by determining the heater temperature change amount and the pull-up speed change amount up to a predetermined time so that the sum of the value multiplied by the coefficient is minimized and operating the heater temperature and the pull-up speed in advance. Manipulating numbers The method for pulling a single crystal according to claim 1, wherein the single crystal is pulled.
【請求項4】 ヒータ温度、るつぼの回転速度、単結晶
引き上げ速度及び単結晶直径の過去の実績値と、該単結
晶直径の目標値と実績値との偏差の過去の総和と、前記
単結晶引き上げ速度の目標値と実績値との偏差の過去の
総和と、前記単結晶直径の将来目標値と前記単結晶引き
上げ速度の計画値とのそれぞれに、前記単結晶直径が目
標値となりかつ引き上げ速度が目標からずれない様ヒー
タ温度変更量と引き上げ速度変更量とが求まるようにあ
らかじめ決めておいたゲインを乗じ、ヒータ温度変更量
と引き上げ速度変更量を決定する請求項1記載の単結晶
引き上げ方法。
4. The past actual values of the heater temperature, the crucible rotation speed, the single crystal pulling speed, and the single crystal diameter, and the past total of deviations between the target value and the actual value of the single crystal diameter, and the single crystal. The past total of the deviation between the target value and the actual value of the pulling rate, and the future target value of the single crystal diameter and the planned value of the single crystal pulling rate, respectively, the single crystal diameter becomes the target value and the pulling rate 2. The method for pulling a single crystal according to claim 1, wherein the heater temperature change amount and the pulling speed change amount are determined by multiplying the heater temperature change amount and the pulling speed change amount by a predetermined gain so that the heater temperature change amount and the pulling speed change amount are obtained. ..
【請求項5】 ヒータ温度、るつぼの回転速度、単結晶
引き上げ速度及び単結晶直径の過去の実績値と、該単結
晶直径の目標値と実績値との偏差の過去の総和と、単結
晶引き上げ速度の目標値と実績値との偏差の過去の総和
と、前記単結晶直径の将来目標値と、前記単結晶引き上
げ速度の計画値と、前記るつぼの回転速度の計画値との
それぞれに、前記単結晶直径が目標値となりかつ引き上
げ速度が目標からずれない様ヒータ温度変更量と引き上
げ速度変更量とが求まるようにあらかじめ決めておいた
ゲインを乗じ、ヒータ温度変更量と引き上げ速度変更量
とを決定する請求項1記載の単結晶引き上げ方法。
5. The past actual values of the heater temperature, the rotation speed of the crucible, the single crystal pulling speed, and the single crystal diameter, the past total of the deviations between the target value and the actual value of the single crystal diameter, and the single crystal pulling. The past total of the deviation between the target value of the speed and the actual value, the future target value of the single crystal diameter, the planned value of the single crystal pulling speed, and the planned value of the rotation speed of the crucible, respectively, Multiply the heater temperature change amount and the pulling speed change amount by multiplying the heater temperature change amount and the pulling speed change amount by a predetermined gain so that the single crystal diameter becomes the target value and the pulling speed does not deviate from the target. The single crystal pulling method according to claim 1, which is determined.
【請求項6】 単結晶中の酸素濃度が所定範囲に入るよ
うにるつぼの回転速度に時間パターンを与え、それに対
する影響量を補償しながらヒータ温度変更量と引き上げ
速度変更量とを決定することにより、前記単結晶中の酸
素濃度を所定の範囲に入れる請求項3または請求項5記
載の単結晶引き上げ方法。
6. A heater temperature change amount and a pulling speed change amount are determined while giving a time pattern to the rotation speed of the crucible so that the oxygen concentration in the single crystal falls within a predetermined range, and compensating the influence amount thereof. 6. The method for pulling a single crystal according to claim 3, wherein the oxygen concentration in the single crystal is set within a predetermined range according to the above.
JP4074116A 1992-03-30 1992-03-30 Single crystal pulling method Expired - Lifetime JP2787042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4074116A JP2787042B2 (en) 1992-03-30 1992-03-30 Single crystal pulling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4074116A JP2787042B2 (en) 1992-03-30 1992-03-30 Single crystal pulling method

Publications (2)

Publication Number Publication Date
JPH05279174A true JPH05279174A (en) 1993-10-26
JP2787042B2 JP2787042B2 (en) 1998-08-13

Family

ID=13537913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4074116A Expired - Lifetime JP2787042B2 (en) 1992-03-30 1992-03-30 Single crystal pulling method

Country Status (1)

Country Link
JP (1) JP2787042B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057456A (en) * 2009-09-04 2011-03-24 Sumco Corp Method for producing single crystal and single crystal
US8187378B2 (en) 2007-08-29 2012-05-29 Sumco Corporation Silicon single crystal pulling method
JP2013087039A (en) * 2011-10-21 2013-05-13 Ftb Research Institute Co Ltd Method of controlling diameter of single crystal ingot
JP2013159525A (en) * 2012-02-06 2013-08-19 Shin Etsu Handotai Co Ltd Method for manufacturing silicon single crystal and device for manufacturing silicon single crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846573A (en) * 1971-10-18 1973-07-03
JPS55113696A (en) * 1979-02-23 1980-09-02 Nippon Telegr & Teleph Corp <Ntt> Semiconductor single crystal growing method by pulling method
JPH01313385A (en) * 1988-06-09 1989-12-18 Kokusai Electric Co Ltd Method for controlling diameter of semiconductor single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846573A (en) * 1971-10-18 1973-07-03
JPS55113696A (en) * 1979-02-23 1980-09-02 Nippon Telegr & Teleph Corp <Ntt> Semiconductor single crystal growing method by pulling method
JPH01313385A (en) * 1988-06-09 1989-12-18 Kokusai Electric Co Ltd Method for controlling diameter of semiconductor single crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187378B2 (en) 2007-08-29 2012-05-29 Sumco Corporation Silicon single crystal pulling method
JP2011057456A (en) * 2009-09-04 2011-03-24 Sumco Corp Method for producing single crystal and single crystal
JP2013087039A (en) * 2011-10-21 2013-05-13 Ftb Research Institute Co Ltd Method of controlling diameter of single crystal ingot
JP2013159525A (en) * 2012-02-06 2013-08-19 Shin Etsu Handotai Co Ltd Method for manufacturing silicon single crystal and device for manufacturing silicon single crystal

Also Published As

Publication number Publication date
JP2787042B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
JP5601801B2 (en) Single crystal silicon ingot growth method and growth apparatus
TWI722480B (en) Method for growing silicon single crystal
US6776840B1 (en) Method and apparatus for controlling diameter of a silicon crystal in a locked seed lift growth process
KR101424834B1 (en) Procedure for in-situ determination of thermal gradients at the crystal growth front
JP4380537B2 (en) Method for producing silicon single crystal
JPH0777996B2 (en) Cone part growing control method and device
JPH0438719B2 (en)
EP0294311B1 (en) Automatic control of crystal rod diameter
US7582160B2 (en) Silicone single crystal production process
JP2003512282A (en) Method of controlling semiconductor crystal growth
EP1068375B1 (en) Open-loop method and system for controlling growth of semiconductor crystal
TWI490380B (en) Reversed action diameter control in a semiconductor crystal growth system
JPH05279174A (en) Method for lifting single crystal
TW200815628A (en) Single crystal manufacturing apparatus and method
JP2010037192A5 (en)
JPH0543386A (en) Method for pulling up single crystal
JP2001316199A (en) Manufacturing method and manufacturing device for silicon single crystal
Lee et al. MPC based feedforward trajectory for pulling speed tracking control in the commercial Czochralski crystallization process
JP2005082474A (en) Method for producing silicon single crystal
KR100571570B1 (en) Determination of Hot Zone Structure for High Speed Impression of Czochralski Crystal Growth Furnace
JPH01313385A (en) Method for controlling diameter of semiconductor single crystal
JP4292429B2 (en) Defect control method of silicon single crystal
JPH06234591A (en) Method for pulling up single crystal
JP2000281481A (en) Apparatus for growing single crystal and growth of single crystal
JPH05148080A (en) Method for growing single crystal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090605

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100605

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100605

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110605

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 14

EXPY Cancellation because of completion of term