JP2013154693A - 燃料タンクシステム - Google Patents

燃料タンクシステム Download PDF

Info

Publication number
JP2013154693A
JP2013154693A JP2012015328A JP2012015328A JP2013154693A JP 2013154693 A JP2013154693 A JP 2013154693A JP 2012015328 A JP2012015328 A JP 2012015328A JP 2012015328 A JP2012015328 A JP 2012015328A JP 2013154693 A JP2013154693 A JP 2013154693A
Authority
JP
Japan
Prior art keywords
valve
canister
fuel tank
vent pipe
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012015328A
Other languages
English (en)
Other versions
JP5810942B2 (ja
Inventor
Shuichi Aso
秀一 麻生
Masanori Akagi
正紀 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012015328A priority Critical patent/JP5810942B2/ja
Publication of JP2013154693A publication Critical patent/JP2013154693A/ja
Application granted granted Critical
Publication of JP5810942B2 publication Critical patent/JP5810942B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

【課題】料タンクのタンク内圧が高い状態で燃料タンクからキャニスタに大量の気体が移動することを抑制可能な燃料タンクシステムを得る。
【解決手段】燃料タンク14とキャニスタ34とを連通するベント配管36にダイヤフラム弁46を設ける。ダイヤフラム弁46の背圧室58とキャニスタ側ベント配管36Cとの間にキャニスタ側バイパス通路66を設ける。キャニスタ側バイパス通路66には、電磁弁68を設ける。弁部材本体54が開弁位置からさらに開弁方向に移動すると、弁部材本体第1係合部材112と第2係合部材122とが係合し、ベント配管の流路の断面積を減少させる。
【選択図】図1

Description

本発明は、燃料タンクシステムに関する。
特許文献1には、燃料タンクからキャニスタに至るエバポラインに電磁式の封鎖弁(開閉弁)を配設した蒸発燃料排出抑制装置が記載されている。この文献に記載された構成では、封鎖弁によりエバポラインを完全に閉じることで、密閉式の燃料タンクシステムを構成できるようになっている。
上記した構造の燃料タンクシステムでは、給油時以外で、燃料タンクのタンク内圧が高くなったときに燃料タンク内の気体をキャニスタ等に逃がす場合に、封鎖弁を開弁する必要がある。しかし、タンク内圧が高い状態で封鎖弁を開弁すると、大量の蒸発燃料を含む気体がキャニスタに移動してしまう。
特開2005−104394号公報
本発明は上記事実を考慮し、燃料タンクのタンク内圧が高い状態で燃料タンクからキャニスタに大量の気体が移動することを抑制可能な燃料タンクシステムを得ることを課題とする。
請求項1に記載の発明では、内部に燃料を収容可能な燃料タンクと、前記燃料タンク内で生じた蒸発燃料を吸着剤によって吸着及び脱離するキャニスタと、前記キャニスタの内部を大気開放するための大気開放管と、前記燃料タンクと前記キャニスタとを連通し燃料タンク内の蒸発燃料をキャニスタに送るためのベント配管と、前記ベント配管において前記燃料タンクのタンク内圧が作用するように設けられた主室と該主室に対し弁部材本体を挟んで反対側の背圧室とに区画され、背圧室の圧力に対し主室の圧力が高くなって圧力差が開弁圧を超えると該圧力差で弁部材本体が開弁位置へ移動することでベント配管を連通する弁部材と、前記ベント配管における前記燃料タンクから前記弁部材までのタンク側ベント配管と前記背圧室とを連通可能なタンク側バイパス通路と、前記ベント配管における前記弁部材から前記キャニスタまでのキャニスタ側ベント配管と前記背圧室とを連通可能なキャニスタ側バイパス通路と、前記キャニスタ側バイパス通路に設けられてキャニスタ側バイパス通路を開閉するように制御される電磁弁と、前記圧力差が前記開弁圧よりも高い規定圧力を超えると前記ベント配管の流路断面積を減少させる流路断面積減少手段と、を有する。
この燃料タンクシステムでは、燃料タンクとキャニスタとがベント配管によって連通可能とされている。また、ベント配管には、タンク側バイパス通路から背圧室を経てキャニスタ側バイパス通路に至るバイパス径路が構成されている。弁部材によってベント配管が連通不能に閉塞されると共に、キャニスタ側バイパス通路に設けられた電磁弁が閉弁されることで、燃料タンク内の蒸発燃料がキャニスタに移動しないように密閉することができる。
燃料タンク内の蒸発燃料を大量にキャニスタに送るときには、制御装置が電磁弁を開弁すると、キャニスタ側バイパス通路が開放されるので、背圧室が大気開放される。これに対し、主室にはタンク内圧(正圧)が作用しているので、主室の圧力が背圧室の圧力よりも相対的に高くなる。そして、背圧室と主室との圧力差が弁部材の開弁圧を超えると弁部材本体が開弁位置へ移動し、ベント配管を連通する。これにより、背圧室を大気開放することになるので、背圧室を大気開放しない構成と比較して、ベント配管を開放させるための弁部材の動作に必要な力は小さくて済み、弁部材の開弁圧が小さくなる。
この燃料タンクシステムは、流路断面積減少手段を有している。流路断面積減少手段は、背圧室と主室との圧力差が、弁部材の開弁圧よりも高い所定の規定圧力を超えると、ベント配管の流路断面積を減少させる。したがって、燃料タンクからベント配管を通じてキャニスタに流れる気体の量も制限される。これにより、燃料タンクのタンク内圧が高い状態でも、燃料タンクからキャニスタに大量の気体が移動することを抑制できる。
なお、ここでいう流路断面積の「減少」には、流路断面積を少なくすることの他に、流路を完全に閉塞してしまう場合も含む。
請求項2に記載の発明では、請求項1に記載の発明において、前記弁部材本体が、前記キャニスタ側ベント配管に構成された弁座に接触して前記ベント配管を閉塞する閉弁位置と該弁座から離間する前記開弁位置とを移動し、前記流路断面積減少手段が、前記圧力差で前記弁部材本体が前記開弁位置からさらに開弁方向へ移動することで前記流路断面積を減少させる。
弁部材本体が弁座に対し接触及び離間する簡単な構造でベント配管を閉塞及び連通(開放)することができる。そして、背圧室と主室との圧力差により弁部材本体が開弁位置からさらに開弁方向に移動すると、この移動を利用してベント配管の流路断面積を減少させることができる。
請求項3に記載の発明では、請求項2に記載の発明において、前記流路断面積減少手段が、前記キャニスタ側ベント配管及び前記弁部材本体にそれぞれ設けられ前記弁部材本体が前記弁座から離間した状態で弁部材本体の開弁方向への移動を制限するように接触してキャニスタ側ベント配管と弁部材本体との隙間を閉塞する接触部材、を有する。
キャニスタ側ベント配管及び弁部材本体に設けられた接触部材が接触することで、キャニスタ側ベント配管と弁部材本体との隙間を閉塞することもできる。これにより、燃料タンクからキャニスタへの気体の移動を抑制できる。キャニスタ側ベント配管の接触部材と弁部材本体の接触部材とが互いに係合するような形状とすることも可能であり、このように係合させることで、弁部材本体の開弁方向への移動量を制限することも可能となる。
請求項4に記載の発明では、請求項3に記載の発明において、前記弁部材による前記ベント配管の開弁時でのベント配管の連通部分の流路断面積よりも小さい流路断面積で、前記接触部材が前記隙間を閉塞した状態においてタンク側ベント配管とキャニスタ側ベント配管とを連通させる小連通部、を有する。
接触部材が前記隙間を閉塞した状態で、タンク側ベント配管とキャニスタ側ベント配管とは、小連通部で連通される。この小連通部は、弁部材によってベント配管が開弁された時のベント配管の連通部分の流路断面積よりも小さい流路断面積を有している。すなわち、接触部材が係合してキャニスタ側ベント配管と弁部材本体との隙間が閉塞された状態であっても、小連通部を通じて、燃料タンクの気体をキャニスタに移動させることが可能となる。これにより、主室の圧力を低下させ、背圧室と主室との圧力差をより少なくすることが可能になる。
請求項5に記載の発明では、前記小連通部が、前記接触部材を厚み方向に貫通する貫通孔である。
貫通孔を接触部材に設ける簡単な構造で小連通部を構成できる。
本発明は上記構成としたので、燃料タンクのタンク内圧が高い状態で燃料タンクからキャニスタに大量の気体が移動することを抑制可能となる。
本発明の第1実施形態の燃料タンクシステムの全体構成を示す概略図である。 本発明の第1実施形態の燃料タンクシステムにおいてダイヤフラム弁及び電磁弁が閉弁した状態で部分的に拡大して示す断面図である。 本発明の第1実施形態の燃料タンクシステムにおいてダイヤフラム弁が閉弁し電磁弁が開弁した状態で部分的に拡大して示す断面図である。 本発明の第1実施形態の燃料タンクシステムにおいてダイヤフラム弁及び電磁弁が開弁した状態で示す断面図である。 本発明の第1実施形態の燃料タンクシステムにおいてダイヤフラム弁の弁部材本体が開弁位置からさらに開弁方向に移動した状態で示す断面図である。 本発明の第1実施形態の燃料タンクシステムにおいて燃料タンクの正圧を開放している状態で示す断面図である。 本発明の第1実施形態の燃料タンクシステムにおいて燃料タンクの負圧を開放している状態で示す断面図である。 本発明の第1実施形態の燃料タンクシステムにおけるダイヤフラム弁及びその近傍を一部破断して示す拡大斜視図である。 本発明の第2実施形態の燃料タンクシステムにおいてダイヤフラム弁及び電磁弁が閉弁した状態で部分的に拡大して示す断面図である。 本発明の第3実施形態の燃料タンクシステムにおいてダイヤフラム弁及び電磁弁が閉弁した状態で部分的に拡大して示す断面図である。 本発明の第1実施形態の変形例の燃料タンクシステムにおいてダイヤフラム弁及び電磁弁が閉弁した状態で部分的に拡大して示す断面図である。
図1には、本発明の第1実施形態の燃料タンクシステム12が示されている。この燃料タンクシステム12は、内部に燃料を収容可能な燃料タンク14を有している。
燃料タンク14には給油配管82の下部が接続されている。給油配管82の上端は給油口16とされており、この給油口16に給油ガンを差し入れて、燃料タンク14に給油することができる。給油時以外は、給油口16はたとえば給油口用キャップ18等で閉塞されている。
自動車のボデーパネルには、給油口16及び給油口用キャップ18を車体の外側から覆うリッド20が設けられている。リッド20は、リッドオープナースイッチ22を操作することで、制御装置32によって矢印R1方向に回転される。リッド20がこのように矢印R1方向に回転した状態では、給油口用キャップ18を給油口16から脱着すると共に、給油口16に給油ガンを差し入れることが可能となる。
リッド20の開閉状態は、リッド開閉センサ20Sで検出されて、制御装置32に送られる。本実施形態では、リッド20が開放された状態を「燃料タンクへの給油状態」とみなしており、リッド開閉センサ20Sは給油状態センサの一例となっている。給油状態センサとしては、リッド開閉センサ20Sに代えて、給油口用キャップ18の着脱状態を検出するセンサ等を用いることも可能である。
燃料タンク14内には、燃料ポンプ24が備えられている。燃料ポンプ24とエンジン26とは燃料供給配管28で接続されている。燃料ポンプ24の駆動により、燃料タンク14内の燃料を、燃料供給配管28を通じてエンジン26に送ることができる。
燃料タンク14には、タンク内圧センサ30が備えられている。タンク内圧センサ30は、燃料タンク14のタンク内圧を検出し、その情報を制御装置32に送る。
燃料タンクシステム12には、キャニスタ34が備えられている。キャニスタ34の内部には、蒸発燃料を吸着可能な吸着剤(活性炭等)が収容されている。キャニスタ34と燃料タンク14の上部とは、ベント配管36で接続されている。燃料タンク14内で生じた蒸発燃料は、このベント配管36を通じてキャニスタ34に送られる。
キャニスタ34には、エンジン26と連通するパージ配管38と、キャニスタ34内を大気開放する大気開放配管40とが接続されている。エンジン26の駆動時等において、エンジン26の負圧を作用させて、キャニスタ34内の吸着剤に吸着された蒸発燃料を脱離させ、エンジン26に送ることができる。このとき、大気開放配管40を通じてキャニスタ34に大気が導入される。
大気開放配管40には、診断用ポンプ42が備えられている。診断用ポンプ42は、制御装置32によって制御される。診断用ポンプ42は、キャニスタ34を通じて燃料タンクシステム12に所定の圧力を作用させることで、燃料タンクシステム12の故障等を診断するときに用いられる。
ベント配管36の一端(燃料タンク14内の端部)には、満タン規制バルブ44が取り付けられている。燃料タンク14内の燃料液面が所定の満タン液面以下では、満タン規制バルブ44は開弁されており、燃料タンク14内の蒸発燃料を含む気体をキャニスタ34に送ることができる。燃料タンク14内の燃料液面が所定の液面(満タン液面)を超えると、満タン規制バルブ44は閉弁される。これにより、燃料タンク14内の気体がキャニスタ34に流れなくなる。この状態で、さらに燃料タンク14内に給油されると、燃料が給油配管82を上昇して給油ガンに達する。給油ガンのオートストップ機能が働くと、給油が停止される。
ベント配管36の中間部分(燃料タンク14とキャニスタ34の間の部分)には、ダイヤフラム弁46が設けられている。ダイヤフラム弁46は、本発明の弁部材の一例である。以下、必要に応じて、このダイヤフラム弁46よりも燃料タンク側のベント配管36をタンク側ベント配管36Tといいい、ダイヤフラム弁46よりもキャニスタ34側のベント配管36をキャニスタ側ベント配管36Cという。
図2に詳細に示すように、ダイヤフラム弁46は、タンク側ベント配管36Tの他端側を偏平な円筒状に拡径した弁ハウジング48を有している。弁ハウジング48の内部には、キャニスタ側ベント配管36Cの一端側が弁ハウジング48と同軸となるように収容されており、弁座50が構成されている。この弁座50と弁ハウジング48の間の部分が主室52となっている。図1から分かるように、主室52はタンク側ベント配管36Tを通じて燃料タンク14の内部と連通可能になる。
弁座50の上端の開口部分は、弁部材本体54によって閉塞可能とされている。弁部材本体54の周囲は、ダイヤフラム56によって弁ハウジング48の内周面に固着されている。そして、弁部材本体54及びダイヤフラム56よりも図2において上側の空間が、背圧室58となっている。したがって、主室52と背圧室58とが、ダイヤフラム56によって区画されている。
弁部材本体54及びダイヤフラム56が圧力を受ける面積(受圧面積)は、背圧室58側の受圧面積の方が、主室52側の受圧面積よりも、弁座50の断面積の分だけ、広くなっている。
背圧室58には、圧縮コイルスプリング60が収容されている。圧縮コイルスプリング60は、弁部材本体54に対し、弁座50に向かう方向(矢印S1方向)の所定のバネ力を作用させている。さらに、ダイヤフラム56も、弁部材本体54に対し矢印S1方向への所定のバネ力を作用させている。これにより、弁部材本体54は、弁座50の開口部分を閉塞する方向に付勢されている。たとえば、主室52の内圧と背圧室58の内圧とが同程度である場合には、弁部材本体54は弁座50の開口部分に密着する。これにより、ダイヤフラム弁46は閉弁状態となり、ベント配管36における気体の移動が阻止される。
これに対し、たとえば、背圧室58が主室52よりも所定以上の負圧(内圧が低い状態)になると、圧縮コイルスプリング60及びダイヤフラム56のバネ力に抗して弁部材本体54が背圧室58側へ移動し、弁座50の開口部分を開放する。これにより、ダイヤフラム弁46は開弁状態となり、ベント配管36において、気体の移動が可能になる。
タンク側ベント配管36Tと背圧室58との間には、タンク側バイパス通路62が設けられている。このタンク側バイパス通路62を通じて、燃料タンク14と背圧室58との間で気体が移動可能となる。
タンク側バイパス通路62には、内径を局所的に小さくした縮径部64が設けられている。この縮径部64により、燃料タンク14と背圧室58との間の気体に移動に所定の抵抗が生じる。
なお、このように、燃料タンク14と背圧室58との間の気体に移動に所定の抵抗を生じさせる手段としては、タンク側バイパス通路62を局所的に縮径した構造に限定されない。たとえば、タンク側バイパス通路62の内径を全体的に小さくして、気体の移動に所定の抵抗を生じさせてもよい。さらに、タンク側バイパス通路62を所定位置で曲げて(屈曲でも湾曲でもよい)、気体の移動に所定の抵抗を生じさせてもよい。
キャニスタ側ベント配管36Cと背圧室58との間には、キャニスタ側バイパス通路66が設けられている。キャニスタ側バイパス通路66の中間部分には、制御装置32によって開閉制御される電磁弁68が設けられている。
電磁弁68は、電磁弁ハウジング70を有している。電磁弁ハウジング70内には、制御装置32によって通電制御されるコイル部72と、このコイル部72からの駆動力を受けて、矢印S2方向及びその反対方向に移動するプランジャ部74、及びプランジャ部74の先端に設けられた円板状の電磁弁本体76を有している。さらに、キャニスタ側バイパス通路66の一部(中間部分)が電磁弁ハウジング70内を通っている。
電磁弁本体76は、キャニスタ側バイパス通路66に設けられた弁座78に接触した状態では、キャニスタ側バイパス通路66を閉塞する。これに対し、図3に示すように、電磁弁本体76が弁座78から離れると、キャニスタ側バイパス通路66を通じて気体が移動可能となる。本実施形態では、電磁弁本体76が弁座78から離れる方向、すなわち、キャニスタ側バイパス通路66を開放するときの電磁弁本体76の移動方向が、背圧室58からの正圧を受ける方向と一致するように、電磁弁本体76の向きが設定されている。
プランジャ部74には、圧縮コイルスプリング80が装着されている。圧縮コイルスプリング80は、電磁弁本体76に対し所定のバネ力を矢印S2方向に作用させることで、制御装置32で制御されていない状態では、電磁弁本体76が不用意に弁座78から離れないようにしている。
図8にも詳細に示すように、弁部材本体54には、第1係合部材112が設けられており、キャニスタ側ベント配管36Cの弁座78の近傍部分には、第2係合部材122が設けられている。
第1係合部材112は、弁部材本体54に下側から取り付けられた円板状の取付板部114と、この取付板部114の外周部分から下方へ円筒状に延出された円筒部116、さらに、円筒部116の下端から径方向内側に延出された第1環状部118とを有している。第1環状部118の内縁は、キャニスタ側ベント配管36Cとの間に、全周にわたって所定の間隙を構成している。
本実施形態では、円筒部116に、この円筒部116を板厚方向に貫通する複数の貫通孔116Hが周方向に一定間隔をあけて形成されている。
これに対し、第2係合部材122は、キャニスタ側ベント配管36Cの外周面から径方向外側に延出された環状の第2接触部124により構成されている。そして、第2環状部124は、第1係合部材112の取付板部114と第1環状部118との間に位置するように、第1係合部材112に嵌合されている。
第2環状部124の外縁は、円筒部116との間で、全周にわたって所定の間隙を構成している。
主室52と背圧室58との圧力が同程度(これらの圧力差が、ダイヤフラム弁46の開弁圧よりも小さい)の状態では、図2に示すように、弁部材本体54が下方に移動した位置にあり、第2環状部124に取付板部114が接触している。弁部材本体54の閉弁位置であり、ダイヤフラム弁46は閉弁状態になっている。閉弁状態では、第1係合部材112と第2係合部材122との間を気体が移動不能である。すなわち、燃料タンク14内の気体がベント配管36を通じてキャニスタ34に移動することはない。
これに対し、背圧室58の圧力が主室52の圧力に対して低下し、これらの圧力差がダイヤフラム弁46の開弁圧を超えると、弁部材本体54が閉弁位置から上方向(開弁方向)へ移動する。図4に示すように、第2環状部124が第1環状部118及び取付板部114の双方と非接触になっている状態では、弁部材本体54は開弁位置にあり、ダイヤフラム弁46は開弁状態になっている。開弁状態では、第1係合部材112と第2係合部材122との間を気体が移動可能である。すなわち、キャニスタ側ベント配管36Cと弁部材本体54との間に隙間D1が構成され、燃料タンク14内の気体がベント配管36を通じてキャニスタ34に移動可能になっている。
さらに、主室52と背圧室58との圧力差が大きくなって、ダイヤフラム弁46の開弁圧よりも高い所定の規定圧力を超えると、図5に示すように、弁部材本体54が開弁位置から上方向(開弁方向)へとさらに移動し、第1環状部118が第2環状部124に下側から接触する。この状態では、第1環状部118と第2環状部124とは、周方向の全周で接触しており、隙間D1(図4参照)が閉塞されるので、これら環状部の間では気体が移動不能となる。しかし、円筒部116に貫通孔116Hが形成されているので、主室52からキャニスタ側ベント配管36C(弁座78の近傍部分)への気体の移動は許容される。ただし、気体が移動する際の流路の実質的な断面積としては、弁部材本体54が開弁位置にあるときよりも小さくなっている。
次に、本実施形態の燃料タンクシステム12の作用を説明する。
本実施形態の燃料タンクシステム12では、通常状態、すなわち、燃料タンク14に給油していない状態(車両は走行中であっても駐車中であってもよい)では、図2に示すように、電磁弁68の電磁弁本体76は閉弁されている。また、ダイヤフラム弁46の弁部材本体54も閉弁されている。このため、燃料タンク14のタンク内圧が、ダイヤフラム弁46の主室52及び背圧室58の双方に作用している。ダイヤフラム弁46は、圧縮コイルスプリング60及びダイヤフラム56のバネ力により閉弁状態を維持しており、不用意に開弁されることはない。
燃料の給油時には、リッドオープナースイッチ22が操作されると、制御装置32は、リッド20を開放する。さらに制御装置32は、図3に示すように、電磁弁68を開弁する。これにより、ダイヤフラム弁46の背圧室58は、大気開放配管40からキャニスタ34、キャニスタ側ベント配管36C及びキャニスタ側バイパス通路66を通じて大気開放される。すなわち、背圧室58の圧力が低下し大気圧に近づく。
これに対し、主室52も、背圧室58からさらにタンク側バイパス通路62及びタンク側ベント配管36Tを通じて大気開放される。しかし、本実施形態では、タンク側バイパス通路62に縮径部64が設けられており、主室52と背圧室58との間の気体の移動に所定の抵抗が生じるため、主室52の圧力が背圧室58の圧力と同程度になるには長い時間を要する。すなわち、背圧室58と主室52との間に圧力差が生じた状態(背圧室58の方が主室52よりも圧力が低い状態)となる。したがって、背圧室58と主室52との間に、このような圧力差が生じない構成と比較して、ダイヤフラム弁46をより小さな開弁圧で開弁させることができる。これにより、背圧室58と主室52と圧力差がダイヤフラム弁46の開弁圧を超えると、図4に示すように、弁部材本体54が背圧室58側(上側)へ移動し、ダイヤフラム弁46が開弁される。
ここで、ダイヤフラム弁46を小さな開弁圧で開弁させるためには、弁部材本体54を小型化することが考えられる。しかし、弁部材本体54は、弁座50を閉塞する部材であるため、弁部材本体54を小型化すると、弁座50、すなわち、キャニスタ側ベント配管36Cの一部の内径も小さくする必要が生じる。したがって、ダイヤフラム弁46の開弁時に、ベント配管36の流量を確保する観点からは、弁座50を大径化することが望まれる。これに伴い、弁部材本体54も大型になるが、このように大型化された弁部材本体54であっても、小さな開弁圧で開弁可能となる。
本実施形態では、ダイヤフラム弁46の弁部材本体54は上記したように大型化できるのに対し、電磁弁68の電磁弁本体76は、ベント配管36(弁座50)を開閉する作用を奏する必要がなく、キャニスタ側バイパス通路66を開閉できればよいため、小型化できる。電磁弁本体76において、燃料タンク14のタンク内圧を受ける面積も小さくなるので、電磁弁68の閉弁に必要な押し付け荷重(図2における矢印S2方向の荷重)も小さくできる。これにより、電磁弁68として小型化及び省電力化を図り、低コストで且つ燃費に優れた燃料タンクシステム12を得ることができる。
特に、本実施形態では、電磁弁68の電磁弁本体76の開弁方向と、背圧室58から電磁弁本体76に正圧が作用する方向とが一致している(図2における矢印S2と反対の方向)。このため、電磁弁本体76を開弁方向に移動させるためのコイル部72からの駆動力も小さくて済み、より省電力化を測ることができる。
なお、本実施形態では、上記したように、弁座50の内径を大きくしても、ダイヤフラム弁46の開弁圧、すなわち弁部材本体54の動作に必要な力は少なくて済む。弁座50すなわちベント配管36の内径を大きくすることで、ベント配管36の通気抵抗を低減することができる。これにより、給油時に燃料タンク14内で発生する蒸発燃料が、ベント配管36を通じてキャニスタ34へ流れやすくなり、給油を行いやすい燃料タンクシステム12となる。
また、給油前には、ダイヤフラム弁46が開弁されることで、燃料タンク14のタンク内圧が低下される。本実施形態では、ベント配管36の通気抵抗を小さくすることで、タンク内圧を低下させるために必要な時間も短縮され、より短時間での給油が可能になる。
車両の走行中は、図1に示すように、タンク内圧センサ30によって燃料タンク14のタンク内圧が検出されている。このタンク内圧が、あらかじめ設定された所定値を超えていない場合は、図2に示すように、制御装置32は電磁弁68を閉弁している。ダイヤフラム弁46も閉弁されているので、燃料タンク14は密閉されている。燃料タンク14内で発生した蒸発燃料がキャニスタ34に移動することはない。
タンク内圧が所定値を超えると、制御装置32は電磁弁68を開閉制御する(ここでいう「開閉制御」には電磁弁68を開弁状態に維持することも含まれる)。電磁弁68の開弁時(図3に示した状態と同様の状態)には、タンク側ベント配管36Tからタンク側バイパス通路62、背圧室58、キャニスタ側バイパス通路66、キャニスタ側ベント配管36Cを経てキャニスタ34へ蒸発燃料が移動可能となる。
そして、たとえば電磁弁68を適切に開閉制御することで、ベント配管36を流れる蒸発燃料の流量とタンク内圧とを制御することが可能になる。この場合、電磁弁68の開閉制御は、電磁弁本体76の矢印S2方向又は反対方向への移動量を調整することで流路の断面積を調整するようにしてもよい。また、デューティー制御(弁部材本体54の開弁位置と閉弁位置とを切り替える時間の制御)で行ってもよい。
電磁弁68の開弁時には背圧室58が大気開放されるのに対し、主室52にはタンク内圧が直接的に作用している。このとき、上記した給油時と同様に、タンク側バイパス通路62の縮径部64によって、主室52と背圧室58との間の気体の移動に所定の抵抗が生じるため、主室52と背圧室58との圧力差が大きくなる。そして、この圧力差が、ダイヤフラム弁46の開弁圧よりも大きい規定圧力を超えると、弁部材本体54は、開弁方向(矢印S1と反対の方向)にさらに移動する。
図5に示すように、第1環状部118が第2環状部124に接触すると、この状態では、第1環状部118と第2環状部124との間では気体が移動不能となる。ただし、円筒部116に形成された貫通孔116Hを通じて、主室52からキャニスタ側ベント配管36C(弁座78の近傍部分)への気体の移動は許容される。この場合、気体が移動する際の流路の実質的な断面積としては、弁部材本体54が開弁位置にあるときよりも小さい。したがって、ダイヤフラム弁46が開弁状態となっているときよりも少ない流量で、燃料タンク14内の気体がベント配管36を通じてキャニスタ34に移動する。この気体の移動により、主室52の圧力が低下し、背圧室58と主室52との圧力差は小さくなる。
以上の説明から分かるように、本実施形態の燃料タンクシステム12では、燃料タンク14のタンク内圧が高い状態で、ダイヤフラム弁46が開弁状態となる構成と比較して、大量の気体が燃料タンク14からキャニスタ34へ大量の気体が移動することを抑制できる。なお、このようにして燃料タンク14からベント配管36を通じて排出された蒸発燃料は、キャニスタ34の吸着剤で吸着されてもよいが、エンジン26が駆動している場合には、さらにパージ配管38を通じてエンジン26に送り、エンジン26で燃焼させてもよい。
しかも、本実施形態の燃料タンクシステム12では、このように、タンク内圧が所定値を超えたときのベント配管36における流量調整を行う部材を、給油時に背圧室58を大気開放するための電磁弁68が兼ねていることになる。したがって、これらの作用を奏する部材を別々に設けた構成と比較して、低コストで構成できると共に、軽量となる。
車両の駐車中においても、通常は、電磁弁68及びダイヤフラム弁46が閉弁されているので、燃料タンク14は密閉されている。燃料タンク14内で発生した蒸発燃料がキャニスタ34に移動することはない。
車両の駐車中に、燃料タンク14のタンク内圧が正圧(大気圧よりも高い状態)になったときには、タンク内圧は背圧室58を通じて、電磁弁68の電磁弁本体76を開弁する方向(図2に示す矢印S2と反対の方向)に作用する。駐車中は電磁弁68が制御装置32によって開閉制御されない。しかし、タンク内圧が所定の閾値(以下「正圧閾値」という)を超えた場合には、図6に示すように、タンク内圧(正圧)を受けた電磁弁本体76が、圧縮コイルスプリング80のバネ力に抗して開弁方向に移動する。すなわち、電磁弁68は、燃料タンク14の正圧を開放する正圧開放弁として動作しており、正圧開放弁をあらたに設ける必要がない。したがって、正圧開放弁を別に設けた構成と比較して、低コストで構成できると共に、軽量となる。
しかも、本実施形態の燃料タンクシステム12における電磁弁68は、上記したように給油時や走行時等にも所定の条件で開閉制御される。換言すれば、タンク内圧が正圧閾値を超えた場合以外にも、電磁弁本体76は開弁位置と閉弁位置との間を移動している。このため、タンク内圧が正圧閾値を超えた場合にのみ開弁される正圧開放弁と比較して、電磁弁本体76が弁座78に不用意に固着する現象が発生しづらくなり、耐固着性が向上する。
車両の駐車中に、燃料タンク14のタンク内圧が負圧(大気圧よりも低い状態)になったときには、タンク内圧(負圧)は、背圧室58を通じて、ダイヤフラム弁46の弁部材本体54を開弁する方向(図2に示す矢印S1と反対の方向)に作用する。タンク内圧が所定の閾値(以下「負圧閾値」という)よりも低くなった場合には、図7に示すように、タンク内圧(負圧)を背圧室58側から受けた弁部材本体54が、圧縮コイルスプリング60及びダイヤフラム56のバネ力に抗して、開弁方向(矢印S1と反対の方向)に移動する。すなわち、ダイヤフラム弁46は、燃料タンク14の負圧を開放する負圧開放弁として動作しており、負圧開放弁をあらたに設ける必要がない。したがって、負圧開放弁を別に設けた構成と比較して、低コストで構成できると共に、軽量となる。
しかも、本実施形態の燃料タンクシステム12におけるダイヤフラム弁46は、上記したように、給油時等においても所定の条件で開閉される。換言すれば、タンク内圧が負圧閾値を下回った場合以外にも、弁部材本体54は開弁位置と閉弁位置との間を移動している。このため、タンク内圧が負圧閾値を下回った場合にのみ開弁される負圧開放弁と比較して、弁部材本体54が弁座50に不用意に固着する現象が発生しづらくなり、耐固着性が向上する。
図9には、本発明の第2実施形態の燃料タンクシステム132が、ダイヤフラム弁136及びその近傍で拡大して示されている。第2実施形態において、燃料タンクシステムの全体的構成は第1実施形態と同一であるので、図示を省略する。また、第2実施形態において、第1実施形態と同一の構成要素、部材等については同一符号を付して、詳細な説明を省略する。
第2実施形態では、円筒部116に貫通孔116H(図2参照)が形成されていない点が第1実施形態と異なっている。
したがって、第2実施形態では、車両走行中に主室52と背圧室58との圧力差が規定圧力を超え、第1環状部118が第2環状部124に接触した状態では、第1実施形態と同様に第1環状部118と第2環状部124との間では気体が移動不能であるが、第1実施形態と異なり、貫通孔116Hを通じて気体が移動することはない。すなわち、第2実施形態では、主室52と背圧室58との圧力差が規定圧力を超えた状態では、燃料タンク14内の気体をベント配管36を通じてキャニスタ34に流れないようにすることが可能である。
図10には、本発明の第3実施形態の燃料タンクシステム142が、ダイヤフラム弁146及びその近傍で拡大して示されている。第3実施形態においても、燃料タンクシステムの全体的構成は第1実施形態と同一であるので、図示を省略する。また、第3実施形態において、第1実施形態と同一の構成要素、部材等については同一符号を付して、詳細な説明を省略する。
第3実施形態では、円筒部116に貫通孔116H(図2参照)が形成されていないが、第2係合部材122の第2環状部124に貫通孔124Hが形成されている。貫通孔124Hは、第2環状部124に第1環状部118が接触した状態でも第1環状部118によって塞がれることのない位置(第2環状部124における径方向内側)に形成されている。また、貫通孔124Hは、第2環状部124の周方向には間隔をあけて複数形成されている。
このような構成とされた第3実施形態においても、第1実施形態と同様の作用効果を奏する。特に第3実施形態では、円筒部116に貫通孔116H(図2参照)を形成していないので、円筒部116の形状の自由度が高くなる。たとえば、弁部材本体54の開弁方向への移動量が少なくても、ダイヤフラム弁46を開弁状態としたり、第1環状部118を第2環状部124に接触させて気体の移動を抑制したりする動作を実現することが可能となる。
本発明の小連通部として、上記では、貫通孔116H、124Hを挙げているが、小連通部は、このような貫通孔に限定されない。たとえば、第1環状部118及び第2環状部124が接触した状態で、これらの間に微小な間隙が構成されるように、第1環状部118の内縁近傍もしくは第2環状部124の外縁近傍に凹みを形成した構造でもよい。上記した貫通孔116H、124Hを形成すれば、簡単な構造で、小連通部を構成できる。貫通孔116H、124Hの数も、上記では複数としているが、1つのみでもよい。
また、上記では、本発明の接触部材として、第1係合部材112及び第2係合部材122を挙げており、これら係合部材は、互いに係合することで、弁部材本体54が過度に開弁方向に移動することを抑制している。しかし、本発明の接触部材としては、接触することによりベント配管36を閉塞する(あるいは流路断面積を減少させる)ことが可能であればよく、弁部材本体54の過度の移動を抑制する作用は、他の部材が担うようにしてもよい。たとえば、背圧室58内にストッパを設け、弁部材本体54の開弁方向への過度の移動を弁部材本体54に接触することで抑制する構造でもよい。
上記では、電磁弁68の電磁弁本体76として、その開弁方向が背圧室58から正圧が作用する方向と一致する向きとされたものを挙げている。しかし、電磁弁本体76の開弁方向はこれに限定されず、図11に示すように、電磁弁本体76の開弁方向が、背圧室58からの正圧の作用方向と反対になっていてもよい。この構成では、電磁弁本体76を閉弁位置に維持するためのコイル部72からの駆動力が小さくて済む。
本発明の弁部材として、上記ではダイヤフラム弁46を挙げているが、弁部材はダイヤフラム弁46に限定されない。たとえば、ダイヤフラム56を無くすと共に、弁部材本体54をその外周が弁ハウジング48の内周に接触するように大径化した構成でもよい。この構成では、弁部材本体54が単独で主室52と背圧室58とを区画すると共に、弁座50に接触することでベント配管36を閉塞する位置と、弁座50から離れることでベント配管36を開放する位置とを移動する。
12 燃料タンクシステム
14 燃料タンク
32 制御装置
34 キャニスタ
36 ベント配管
36T タンク側ベント配管
36C キャニスタ側ベント配管
40 大気開放配管
46 ダイヤフラム弁(弁部材)
50 弁座
52 主室
54 弁部材本体
58 背圧室
62 タンク側バイパス通路
66 キャニスタ側バイパス通路
68 電磁弁
78 弁座
112 第1係合部材(接触部材、流路断面積減少手段)
116H 貫通孔(小連通部)
122 第2係合部材(接触部材、流路断面積減少手段)
124 第2環状部
124H 貫通孔(小連通部)
132 燃料タンクシステム
136 ダイヤフラム弁
142 燃料タンクシステム
146 ダイヤフラム弁

Claims (5)

  1. 内部に燃料を収容可能な燃料タンクと、
    前記燃料タンク内で生じた蒸発燃料を吸着剤によって吸着及び脱離するキャニスタと、
    前記キャニスタの内部を大気開放するための大気開放管と、
    前記燃料タンクと前記キャニスタとを連通し燃料タンク内の蒸発燃料をキャニスタに送るためのベント配管と、
    前記ベント配管において前記燃料タンクのタンク内圧が作用するように設けられた主室と該主室に対し弁部材本体を挟んで反対側の背圧室とに区画され、背圧室の圧力に対し主室の圧力が高くなって圧力差が開弁圧を超えると該圧力差で弁部材本体が開弁位置へ移動することでベント配管を連通する弁部材と、
    前記ベント配管における前記燃料タンクから前記弁部材までのタンク側ベント配管と前記背圧室とを連通可能なタンク側バイパス通路と、
    前記ベント配管における前記弁部材から前記キャニスタまでのキャニスタ側ベント配管と前記背圧室とを連通可能なキャニスタ側バイパス通路と、
    前記キャニスタ側バイパス通路に設けられてキャニスタ側バイパス通路を開閉するように制御される電磁弁と、
    前記圧力差が前記開弁圧よりも高い規定圧力を超えると前記ベント配管の流路断面積を減少させる流路断面積減少手段と、
    を有する燃料タンクシステム。
  2. 前記弁部材本体が、前記キャニスタ側ベント配管に構成された弁座に接触して前記ベント配管を閉塞する閉弁位置と該弁座から離間する前記開弁位置とを移動し、
    前記流路断面積減少手段が、前記圧力差で前記弁部材本体が前記開弁位置からさらに開弁方向へ移動することで前記流路断面積を減少させる請求項1に記載の燃料タンクシステム。
  3. 前記流路断面積減少手段が、
    前記キャニスタ側ベント配管及び前記弁部材本体にそれぞれ設けられ前記弁部材本体が前記弁座から離間した状態で弁部材本体の開弁方向への移動を制限するように接触してキャニスタ側ベント配管と弁部材本体との隙間を閉塞する接触部材、
    を有する請求項2に記載の燃料タンクシステム。
  4. 前記弁部材による前記ベント配管の開弁時でのベント配管の連通部分の流路断面積よりも小さい流路断面積で、前記接触部材が前記隙間を閉塞した状態においてタンク側ベント配管とキャニスタ側ベント配管とを連通させる小連通部、
    を有する請求項3に記載の燃料タンクシステム。
  5. 前記小連通部が、前記接触部材を厚み方向に貫通する貫通孔である請求項4記載の燃料タンクシステム。
JP2012015328A 2012-01-27 2012-01-27 燃料タンクシステム Active JP5810942B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012015328A JP5810942B2 (ja) 2012-01-27 2012-01-27 燃料タンクシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012015328A JP5810942B2 (ja) 2012-01-27 2012-01-27 燃料タンクシステム

Publications (2)

Publication Number Publication Date
JP2013154693A true JP2013154693A (ja) 2013-08-15
JP5810942B2 JP5810942B2 (ja) 2015-11-11

Family

ID=49050340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012015328A Active JP5810942B2 (ja) 2012-01-27 2012-01-27 燃料タンクシステム

Country Status (1)

Country Link
JP (1) JP5810942B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105604746A (zh) * 2014-11-18 2016-05-25 丰田自动车株式会社 燃料箱系统
CN109715428A (zh) * 2016-09-06 2019-05-03 考特克斯·特克斯罗恩有限公司及两合公司 用于控制工作液体容器的内部压力的方法,及具有内部压力控制器的工作液体容器系统
CN112377667A (zh) * 2020-03-31 2021-02-19 上汽通用五菱汽车股份有限公司 一种消除气流脉动及车内噪声的碳罐电磁阀及管路系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245870A (en) * 1991-03-11 1993-09-21 Pierburg Gmbh Apparatus for measuring the fraction of liquid fuel in a fuel tank
JP2002371925A (ja) * 2001-06-12 2002-12-26 Toyota Motor Corp ベーパ処理装置の差圧弁構造
JP2012500750A (ja) * 2008-08-26 2012-01-12 イートン コーポレーション パイロット式燃料タンクの蒸気遮断弁

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245870A (en) * 1991-03-11 1993-09-21 Pierburg Gmbh Apparatus for measuring the fraction of liquid fuel in a fuel tank
JP2002371925A (ja) * 2001-06-12 2002-12-26 Toyota Motor Corp ベーパ処理装置の差圧弁構造
JP2012500750A (ja) * 2008-08-26 2012-01-12 イートン コーポレーション パイロット式燃料タンクの蒸気遮断弁

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105604746A (zh) * 2014-11-18 2016-05-25 丰田自动车株式会社 燃料箱系统
CN105604746B (zh) * 2014-11-18 2018-06-01 丰田自动车株式会社 燃料箱系统
CN109715428A (zh) * 2016-09-06 2019-05-03 考特克斯·特克斯罗恩有限公司及两合公司 用于控制工作液体容器的内部压力的方法,及具有内部压力控制器的工作液体容器系统
CN109715428B (zh) * 2016-09-06 2022-08-09 考特克斯·特克斯罗恩有限公司及两合公司 用于控制工作液体容器的内部压力的方法,及具有内部压力控制器的工作液体容器系统
US11491865B2 (en) 2016-09-06 2022-11-08 Kautex Textron Gmbh & Co., Kg Method for controlling the internal pressure of a service fluid container, and service fluid container system with an internal pressure controller
CN112377667A (zh) * 2020-03-31 2021-02-19 上汽通用五菱汽车股份有限公司 一种消除气流脉动及车内噪声的碳罐电磁阀及管路系统

Also Published As

Publication number Publication date
JP5810942B2 (ja) 2015-11-11

Similar Documents

Publication Publication Date Title
WO2013018215A1 (ja) 燃料タンクシステム
JP5749250B2 (ja) 高圧流体リザーバ用バルブアセンブリ
EP2665614B1 (en) Valve assembly for high-pressure fluid reservoir
JP6287809B2 (ja) 燃料タンクシステム
JP5817536B2 (ja) 燃料タンクシステム
JP5821683B2 (ja) 燃料タンクシステム
CN108301942B (zh) 燃料箱系统及燃料箱系统的控制方法
JP5849713B2 (ja) 燃料タンクシステム
JP2016089791A (ja) 燃料タンクシステム及び燃料タンクシステム異常検知方法
JP5810942B2 (ja) 燃料タンクシステム
JP6137134B2 (ja) 燃料タンクシステム
JP5811890B2 (ja) 燃料タンクシステム
US10029559B2 (en) Fuel tank structure
JP5807587B2 (ja) 燃料タンクシステム
US9683522B2 (en) Fuel tank system and method for sensing perforation
JP5803699B2 (ja) 燃料タンクシステム異常検知方法
JP5790521B2 (ja) 燃料タンクシステム
JP5807527B2 (ja) 燃料タンクシステム
JP5783052B2 (ja) 燃料タンクシステム
JP5786750B2 (ja) 燃料タンクシステム
JP5724883B2 (ja) 燃料タンクシステム
JP2013167177A (ja) 燃料タンクシステム
JP5849755B2 (ja) 燃料タンクシステム
JPWO2013018215A1 (ja) 燃料タンクシステム
JP2012097658A (ja) 燃料タンクシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150831

R151 Written notification of patent or utility model registration

Ref document number: 5810942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151