JP2013149799A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2013149799A
JP2013149799A JP2012009377A JP2012009377A JP2013149799A JP 2013149799 A JP2013149799 A JP 2013149799A JP 2012009377 A JP2012009377 A JP 2012009377A JP 2012009377 A JP2012009377 A JP 2012009377A JP 2013149799 A JP2013149799 A JP 2013149799A
Authority
JP
Japan
Prior art keywords
ohmic electrode
semiconductor device
ohmic
semiconductor
electrode structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012009377A
Other languages
English (en)
Inventor
Yosuke Takeda
洋介 武田
Yoji Kishigami
洋二 岸上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2012009377A priority Critical patent/JP2013149799A/ja
Publication of JP2013149799A publication Critical patent/JP2013149799A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

【課題】電界効果トランジスタ(FET)の特に高周波におけるオーミック抵抗を低減するためのオーミック電極構造に関する。
【解決手段】本発明に係る半導体装置は、半導体上に形成されたオーミック電極と、前記オーミック電極に接続された配線電極とを備えた半導体装置であって、前記半導体と前記オーミック電極との界面及び前記オーミック電極上に複数の凹凸部が形成され、前記オーミック電極は、前記凹凸部が形成されていない部分に、前記オーミック電極と前記配線電極との界面の法線方向に平行な直線部を有することを特徴とする。
【選択図】図1

Description

本発明は、電界効果トランジスタ(FET)の特に高周波におけるオーミック抵抗の低減に関し、半導体基板と導電体層とのオーミック電極構造に関する。
従来、半導体装置のオーミック電極は、半導体素子特性の重要な因子である半導体と導電膜接続部との間の抵抗、すなわちオーミック抵抗Rohmを低減するために、高濃度不純物添加半導体薄膜上に形成されてきた。
このオーミック抵抗Rohmを低減するためには、導電膜と不純物添加半導体薄膜との接触面積Scを増大させることにより接触面積Scの大きさにその大きさが反比例するコンタクト抵抗Rcを低減させることが重要である。コンタクト抵抗Rcを低減させ、オーミック抵抗Rohmを低減する技術として、例えば、特許文献1の技術が提案されている。
図10は、特許文献1のような従来技術に係るオーミック電極構造を適用した半導体装置1000を示す。図10(a)は従来技術に係るオーミック電極構造を適用した半導体装置1000の上面図を示し、図10(b)は半導体装置1000のA−A’断面図を示し、図10(b)は半導体装置1000のB−B’断面図を示す。図10(b)に示されるように、従来技術に係るオーミック電極構造を適用した半導体装置1000は、基板(不図示)上に積層された下層バリア層101と、下層バリア層101上に積層されたチャネル層102と、チャネル層102上に積層された上層バリア層103と、チャネル層102上に設けられたオーミック電極110と、上層バリア層103に設けられたゲート電極120とを備える。図10(a)に示されるように、半導体装置1000は、配線電極140と接続される。
図10(a)、(c)に示されるように、従来技術に係るオーミック電極構造を適用した半導体装置1000では、不純物半導体薄膜と導電膜との接触面積Scを増大させるために、不純物半導体薄膜と導電膜との界面にV字型形状の溝1010が形成されている。このように、特許文献1の技術においては、不純物半導体薄膜と導電膜との界面にV字型形状の溝1010を形成することで不純物半導体薄膜と導電膜との接触面積Scを増大させることにより、コンタクト抵抗Rcを低減させ、オーミック抵抗Rohmを低減させている。
特開平10−209428号公報
しかしながら、近年開発が進められているミリ波帯のような超高周波数帯において、従来行われてきたような単純なV字型形状の溝によるコンタクト抵抗Rcの低減は、オーミック電極の表面粗さRaを増大させる。高周波電流はオーミック電極の表面を流れるため、表面粗さRaの増大により高周波電流の電流経路の長さが大きくなり、結果としてオーミック電極のもつ配線としての導電膜部抵抗Rmが増大する。オーミック抵抗Rohmは、以下の(式1)で示される。
ohm=Rc(Sc)+Rm(Ra,f) (式1)
(式1)に示すように、オーミック電極が有するオーミック抵抗Rohmは、接触面積Scの大きさにその大きさが反比例するコンタクト抵抗Rcと、表面粗さRa及び周波数fに正の相関を有する導電膜部抵抗Rmとに分割することができる。従って、コンタクト抵抗Rcを低減するために不純物半導体薄膜と導電膜との界面にV字型形状の溝1010を形成して接触面積Scを増大させる特許文献1に記載のような従来の方法は、表皮効果が顕著に効果を現す高周波においては導電膜部抵抗Rmを増大させ、全体的なオーミック抵抗Rohmを上げてしまうという問題を抱えている。
本発明は、上記問題点を鑑みてなされたものであり、導電膜と不純物添加半導体薄膜との接触面積を確保しつつ導電膜部の交流抵抗を下げることにより、高周波における素子特性を向上することができる半導体装置を提供することを目的とする。
本発明の請求項1に係る半導体装置は、半導体上に形成されたオーミック電極と、前記オーミック電極に接続された配線電極とを備えた半導体装置であって、前記半導体と前記オーミック電極との界面及び前記オーミック電極上に複数の凹凸部が形成され、前記オーミック電極は、前記凹凸部が形成されていない部分に、前記オーミック電極と前記配線電極との界面の法線方向に平行な直線部を有することを特徴とする。
本発明の請求項2に係る半導体装置は、請求項1に記載の半導体装置において、前記凹凸部は、四角形又は台形形状を有することを特徴とする。
本発明に係るオーミック電極構造においては、半導体と導電膜との接触面積を増大させ、かつ交流電流に対する実効的な表面粗さを低減させることにより、高周波における交流抵抗を低減させ、素子の電気特性を上げることができる。
本発明に係るオーミック電極構造を適用した半導体装置100を示す図である。 本発明に係るオーミック電極構造を適用した半導体装置100を形成するための工程の説明図である。 本発明に係るオーミック電極構造を適用した半導体装置100を形成するための工程の説明図である。 本発明に係るオーミック電極構造を適用した半導体装置100を形成するための工程の説明図である。 本発明に係るオーミック電極構造を適用した半導体装置100を形成するための工程の説明図である。 本発明に係るオーミック電極構造を適用した半導体装置100を形成するための工程の説明図である。 本発明に係るオーミック電極構造を適用した半導体装置100を形成するための工程の説明図である。 本発明に係るオーミック電極構造を適用した半導体装置100を形成するための工程の説明図である。 本発明及び従来技術に係るオーミック電極構造を適用した半導体装置のそれぞれの電流経路を説明するための図である。 従来技術に係るオーミック電極構造を適用した半導体装置を示す図である。
以下、本発明に係る実施形態の例としてガリウム砒素基板上のFET素子に本発明に係るオーミック電極構造を適用した場合について、添付した図面を参照しながら詳細に説明する。図1は、ガリウム砒素基板上でのFET素子へ本発明を適用した実施形態を示す図であり、図2〜8はそれぞれ図1のオーミック電極の形成方法を示す工程図である。ここで、図1(a)〜図8(a)はそれぞれ上面図を示し、図1(b)〜図8(b)は、A−A’断面図を示すものとする。
図1は、FET素子に本発明に係るオーミック電極構造を適用した半導体装置100を示す。図1(b)に示されるように、本発明に係るオーミック電極構造を適用した半導体装置100は、基板(不図示)上に積層された下層バリア層101と、下層バリア層101上に積層されたチャネル層102と、チャネル層102上に積層された上層バリア層103と、チャネル層102上に設けられたオーミック電極110と、上層バリア層103に設けられたゲート電極120とを備える。図1(a)に示されるように、半導体装置100は、配線電極140と接続される。
オーミック電極110及びチャネル層102には、複数の凹凸部130が形成されている。ここで、図1(a)には、6つの凹凸部130が2列で構成されている例が示されているが、これに限定することなく、本発明においては複数の凹凸部130を複数列構成することができる。
図2は、基板上に成長したエピタキシャル薄膜を示す。図2に示されるエピタキシャル薄膜は、例えば、下層バリア層101として300nmのInAlAs層、チャネル層102として20nmのInGaAs層、上層バリア層103として30nmのInAlAs層103を、キャップ層としてのInGaAs層104を100nmとをそれぞれ順にエピタキシャル成長をもって成膜したエピタキシャル薄膜である。
次いで、図2に示されるエピタキシャル薄膜上にレジストを塗布し、パターニングを行う。当該レジストのパターニングは、図9を参照して後述するように交流抵抗を下げるために、オーミック電極110がドレイン電極又はソース電極から図1に示される配線電極140までの間に、当該積層構造の平面と3次元的に平行な経路を有するように行われる。好ましくは、複数の凹凸部130がオーミック電極110と配線電極140との界面の法線方向に平行な複数の列を構成するように例えば四角形又は台形形状の複数の凹凸部130をオーミック電極110の表面上に形成し、それによりオーミック電極110の表面上に当該法線方向に平行な直線部を有するようにレジストのパターニングが行われる。次いで、パターニングされたエピタキシャル膜に塩酸及び過酸化水素水の混合液によるエッチャントをもってキャップ層104の内部までのウェットエッチングを行い、図3に示されるようにキャップ層104に凹凸部130を形成する。
図9を参照して、本発明及び従来技術に係るオーミック電極構造を適用した半導体装置のそれぞれの電流経路を説明する。図9(a)は従来技術に係るオーミック電極構造を適用した半導体装置の上面図を示し、図9(b)は本発明に係るオーミック電極構造を適用した半導体装置の上面図を示し、図9(c)は従来技術に係るオーミック電極構造を適用した半導体装置の電流経路を示し、図9(d)は本発明に係るオーミック電極構造を適用した半導体装置の電流経路を示す。
図9(a)に示されるように、従来技術に係るオーミック電極構造においては、配線電極140からドレイン電極又はソース電極の間にかけてV字型形状の溝1010が形成されている。従って、高周波電流の電流経路LiはV字型形状の溝1010の表面を通ることになる。そのため、図9(c)に示されるように、電流経路LiはV字型形状の溝1010の分だけ大きくなり、表面粗さRaが大きくなるため、表皮効果によって導電膜部抵抗Rmが増大する。
それに対して、図9(b)に示されるように本発明に係るオーミック電極構造においては、配線電極140からドレイン電極又はソース電極の間にかけて凹凸部130の列900が形成されていない部分に、凹凸部130の列900と平行な直線部950が形成されている。直線部950は、凹凸部130の列900が形成されていない部分に形成されているため平坦であり、高周波電流は凹凸部130の列900が形成されている部分と比較してより抵抗の低い直線部950を通って流れる。そのため、図9(d)に示されるように電流経路Liが従来技術に係るオーミック電極構造の電流経路と比較して低減することができる。従って、表面粗さRaの増大を抑制し、表皮効果による導電膜部抵抗Rmの増大を抑制することができ、高周波における交流抵抗の低減を達成することができる。加えて、オーミック電極110とチャネル層102との界面に設けられた凹凸部130によりチャネル−オーミック電極間の接触面積を増大することができるため、本発明のオーミック電極構造を適用した半導体装置においては、チャネル−オーミック電極間の接触面積の増大と高周波における交流抵抗の低減とを同時に達成することができる。
ここで、配線電極140からドレイン電極又はソース電極の間にかけて直線部950が形成されるように凹凸部130が設けられているのであれば、凹凸部130はどのような大きさ及び間隔で設けられてもよく、凹凸部130のそれぞれの大きさやそれぞれの縦横の間隔が異なっている場合であっても本発明の効果を奏することができる。
次に、図3に示されるエピタキシャル薄膜にスライトエッチャントを用いて表面酸化膜除去を行い、オーミック電極110を形成するためのレジストのパターニングを行う。その後、図4に示されるように、EB蒸着法を以ってオーミック電極110を形成するための導体膜200を連続真空蒸着する。導体膜200は、例えばAu及びGeで構成される。
その後、図5に示されるように、ゲート電極120を形成するためにキャップ層104のリセスエッチングを行う。次いで、図6に示されるようにゲート電極120の蒸着を行う。
次いで、オーミックコンタクト形成のためのアニール処理を300℃、好ましくは窒素雰囲気下で行い、導体膜200を拡散することにより、図7に示されるようにチャネル層102上にオーミック電極110を形成する。
この後、図8(a)に示されるように、好ましくは例えば金からなる配線電極140を形成することによりトランジスタ構造が構成される。この際、配線電極140は、表面粗さの低減のため、真空蒸着法によって形成されることが好ましい。
このようにして形成されたオーミック電極構造によれば、チャネル−オーミック電極間の接触面積の増大と高周波における交流抵抗の低減とを同時に行うことができ、特にミリ波領域でコンタクト抵抗を大幅に改善することができる。
本発明は、モノリシックマイクロ波集積回路に有用な半導体装置であって、例えば低雑音増幅器LNA(Low Noise Amplifier)や大出力増幅器PA(PoweRamplifier)に利用可能である。
100 本発明に係るオーミック電極構造を適用した半導体装置
101 下層バリア層
102 チャネル層
103 上層バリア層
104 キャップ層
110 オーミック電極
120 ゲート電極
130 凹凸部
140 配線電極
200 導電膜
1000 従来技術に係るオーミック電極構造を適用した半導体装置

Claims (2)

  1. 半導体上に形成されたオーミック電極と、前記オーミック電極に接続された配線電極とを備えた半導体装置であって、
    前記半導体と前記オーミック電極との界面及び前記オーミック電極上に複数の凹凸部が形成され、
    前記オーミック電極は、前記凹凸部が形成されていない部分に、前記オーミック電極と前記配線電極との界面の法線方向に平行な直線部を有することを特徴とする半導体装置。
  2. 前記凹凸部は、四角形又は台形形状を有することを特徴とする請求項1に記載の半導体装置。
JP2012009377A 2012-01-19 2012-01-19 半導体装置 Pending JP2013149799A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012009377A JP2013149799A (ja) 2012-01-19 2012-01-19 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012009377A JP2013149799A (ja) 2012-01-19 2012-01-19 半導体装置

Publications (1)

Publication Number Publication Date
JP2013149799A true JP2013149799A (ja) 2013-08-01

Family

ID=49047012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012009377A Pending JP2013149799A (ja) 2012-01-19 2012-01-19 半導体装置

Country Status (1)

Country Link
JP (1) JP2013149799A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108987472A (zh) * 2017-05-31 2018-12-11 财团法人工业技术研究院 欧姆接触结构及具有此欧姆接触结构的半导体元件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108987472A (zh) * 2017-05-31 2018-12-11 财团法人工业技术研究院 欧姆接触结构及具有此欧姆接触结构的半导体元件
CN108987472B (zh) * 2017-05-31 2021-12-07 财团法人工业技术研究院 欧姆接触结构及具有此欧姆接触结构的半导体元件

Similar Documents

Publication Publication Date Title
EP3082160A1 (en) Semiconductor device and manufacturing method thereof
US10032728B2 (en) Trench MOSFET device and the preparation method thereof
JP5302553B2 (ja) 半導体装置とその製造方法
JP6588340B2 (ja) 窒化物パワーデバイスおよびその製造方法
JP2009532902A5 (ja)
US9536966B2 (en) Gate structures for III-N devices
US10475896B2 (en) Silicon carbide MOSFET device and method for manufacturing the same
CN105355657A (zh) 多沟道鳍式结构的绝缘栅AlGaN/GaN高电子迁移率晶体管
JP7368535B2 (ja) 窒化ガリウムデバイス、スイッチングパワートランジスタ、駆動回路、及び窒化ガリウムデバイス製造方法
CN106098757B (zh) 场效应晶体管
JP5687127B2 (ja) 半導体装置およびその製造方法
US20160079410A1 (en) Semiconductor device
CN105448962A (zh) 多沟道侧栅结构的AlGaN/GaN高电子迁移率晶体管
CN105470294A (zh) 一种垂直型氮化镓功率开关器件及其制备方法
JP2011192719A (ja) 窒化物半導体装置
JP6946824B2 (ja) 半導体装置および半導体装置の製造方法
CN105261638A (zh) 一种具有鳍型沟道结构的薄膜晶体管及其制备方法
US8399915B2 (en) Semiconductor device
JP5402220B2 (ja) 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
JP6138619B2 (ja) 半導体装置の製造方法および半導体装置
US20140117379A1 (en) Semiconductor device and method of manufacturing the same
JP2013149799A (ja) 半導体装置
CN103400864A (zh) 基于极化掺杂的GaN横向肖特基二极管
JP2014060427A (ja) 半導体装置及びその製造方法
JP7197005B2 (ja) 電界効果型トランジスタおよびその製造方法