JP2013145921A - Light emitting device and manufacturing method of the same - Google Patents

Light emitting device and manufacturing method of the same Download PDF

Info

Publication number
JP2013145921A
JP2013145921A JP2013084833A JP2013084833A JP2013145921A JP 2013145921 A JP2013145921 A JP 2013145921A JP 2013084833 A JP2013084833 A JP 2013084833A JP 2013084833 A JP2013084833 A JP 2013084833A JP 2013145921 A JP2013145921 A JP 2013145921A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
conductive layer
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013084833A
Other languages
Japanese (ja)
Other versions
JP5794251B2 (en
Inventor
Yuichiro Tanda
祐一郎 反田
Hiroto Tamaoki
寛人 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2013084833A priority Critical patent/JP5794251B2/en
Publication of JP2013145921A publication Critical patent/JP2013145921A/en
Application granted granted Critical
Publication of JP5794251B2 publication Critical patent/JP5794251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

PROBLEM TO BE SOLVED: To provide a thin and small light emitting device which achieves high reliability.SOLUTION: A light emitting device includes: a light emitting element; multiple conductive layers where the light emitting element is placed or electrically connected with the light emitting element; and a light transmissivity insulation member sealing the light emitting element and having the conductive layers on a bottom surface. Each conductive layer has a protruding part at a part of its side surface. Specifically, the protruding part is located on the plane side of the conductive layer and a corner of the plane side is rounded. The conductive layer has a recessed part where the light emitting element is housed and also has a color conversion member, which converts a wavelength of light from the light emitting element, in the recessed part.

Description

本発明は、照明・自動車・産業機器・一般民生機器(ディスプレイなど)に用いられる発光装置およびその製造方法に係わり、特に薄型/小型タイプの表面実装型発光装置に関する。   The present invention relates to a light emitting device used for lighting, automobiles, industrial equipment, general consumer equipment (displays, etc.) and a method for manufacturing the same, and more particularly to a thin / small surface mount type light emitting device.

従来の表面実装型発光装置として、例えば、ガラスエポキシやセラミックスなどの絶縁性基板の表面にパターン形成された一対の導電性部材に発光素子を電気的に接続し、前記発光素子付近を透光性絶縁部材にて封止してなる発光装置があげられる。   As a conventional surface mount type light emitting device, for example, a light emitting element is electrically connected to a pair of conductive members patterned on the surface of an insulating substrate such as glass epoxy or ceramics, and the vicinity of the light emitting element is translucent. A light emitting device sealed with an insulating member can be given.

上記のような発光装置は、製造工程及び部品点数が多いため、製造コストが高い。さらに、前記発光素子から発生した熱は、熱伝導率の低い絶縁性材料からなる基板を介して外部に放熱されることから、充分な放熱性が得られず、高出力タイプの発光素子を用いた場合や連続使用が望まれる場合に適用することができなかった。また、前記絶縁性基板を薄くすれば放熱経路を短くすることはできるが、上面に形成される導電性部材の強度を確保することができなくなる。このように、発光装置の放熱性の向上と薄型・小型化の実現とを共に実現することは困難であった。 The light emitting device as described above has a high manufacturing cost because of a large number of manufacturing processes and parts. Further, since heat generated from the light emitting element is radiated to the outside through a substrate made of an insulating material having low thermal conductivity, sufficient heat dissipation cannot be obtained, and a high output type light emitting element is used. It was not possible to apply it when it was used or when continuous use was desired. Further, if the insulating substrate is made thinner, the heat dissipation path can be shortened, but the strength of the conductive member formed on the upper surface cannot be ensured. As described above, it has been difficult to achieve both improvement in heat dissipation of the light emitting device and realization of thinness and miniaturization.

一方、上記のような基板を有さず、一対の電極が発光素子等を封止する透光性樹脂の底面に固着されてなる発光装置が開示されている。 On the other hand, there is disclosed a light-emitting device that does not have the above-described substrate and has a pair of electrodes fixed to the bottom surface of a translucent resin that seals a light-emitting element or the like.

特開2001−203396号JP 2001-203396 A

しかしながら、上記の樹脂に埋め込まれている電極の側面は、埋め込み方向に対してほぼ平行であることから、回路基板への実装工程や実装後の使用時に受ける衝撃等により、前記樹脂から前記電極が脱離し、発光装置の一体性が失われてしまう。特に、発光装置の場合、発光素子を封止する絶縁部材に透光性を持たせなければならないため、フィラー等を含有させて機械的強度を高めることができないことから、上記の問題が発生する確率は非常に高い。   However, since the side surface of the electrode embedded in the resin is substantially parallel to the embedding direction, the electrode is removed from the resin by an impact received during a mounting process on a circuit board or use after mounting. It will be detached and the integrity of the light emitting device will be lost. In particular, in the case of a light-emitting device, since the insulating member that seals the light-emitting element must have translucency, the above problem occurs because the mechanical strength cannot be increased by adding a filler or the like. The probability is very high.

また、上記の公報において、発光装置の具体的製造方法は明記されていない。   In the above publication, a specific method for manufacturing a light emitting device is not specified.

そこで本発明は、信頼性の高い薄型・小型化発光装置およびその製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a highly reliable thin and miniaturized light emitting device and a manufacturing method thereof.

上記の問題点を解決すべく、本発明者は鋭意検討を重ねた結果、本発明を完成するに到った。   In order to solve the above-mentioned problems, the present inventor has intensively studied and as a result, the present invention has been completed.

本発明の発光装置は、発光素子と、該発光素子が載置されるもしくは前記発光素子と電気的に接続される複数の導電層と、前記発光素子を封止するとともに前記導電層を底面に有する透光性絶縁部材と、を有し、前記導電層は側面の一部に突出部を有することを特徴とする。   The light-emitting device of the present invention includes a light-emitting element, a plurality of conductive layers on which the light-emitting element is mounted or electrically connected to the light-emitting element, the light-emitting element is sealed, and the conductive layer is disposed on a bottom surface. A light-transmitting insulating member, and the conductive layer has a protrusion on a part of a side surface.

前記突出部は、前記導電層の平面側にあることが好ましい。 The protrusion is preferably on the plane side of the conductive layer.

前記突出部の平面側角部は、丸みを帯びていることが好ましい。 The planar side corners of the protrusions are preferably rounded.

前記導電層は、前記発光素子を収納された凹部を有し、前記凹部内に前記発光素子からの光を波長変換することが可能な色変換部材を有することもできる。 The conductive layer may have a concave portion in which the light emitting element is accommodated, and a color conversion member capable of wavelength-converting light from the light emitting element in the concave portion.

また、本発明の発光装置の製造方法は、発光素子と、該発光素子が載置されるもしくは前記発光素子と電気的に接続される複数の導電層と、前記発光素子を封止するとともに前記導電層を底面に有する透光性絶縁部材と、を有し、前記導電層は側面の一部に突出部を有する発光装置の製造方法であって、金属母型材の平面にレジストを塗布し、前記レジストの一部を除去し開口部を形成する第一の工程と、前記開口部内に導電性粒子を付着させて導電層を形成する第二の工程と、引き続き前記開口部内から前記レジストの平面にわたって前記導電性粒子を付着させ導電層の突出部を形成する第三の工程と、前記レジストを除去した後、前記導電層の平面に発光素子を載置し電気的に接続し、透光性絶縁部材にて被覆する第四の工程と、前記前記導電層の底面および前記透光性絶縁性部材の底面から金属母型材を剥離する第五の工程と、を有することを特徴とする。 The method for manufacturing a light-emitting device of the present invention includes a light-emitting element, a plurality of conductive layers on which the light-emitting element is mounted or electrically connected to the light-emitting element, and sealing the light-emitting element. A translucent insulating member having a conductive layer on the bottom surface, and the conductive layer is a method for manufacturing a light emitting device having a protrusion on a part of the side surface, and a resist is applied to the plane of the metal matrix material, A first step of removing a part of the resist to form an opening, a second step of forming a conductive layer by attaching conductive particles in the opening, and a plane of the resist from the opening. A third step of attaching the conductive particles to form a protruding portion of the conductive layer, and after removing the resist, a light-emitting element is placed on the plane of the conductive layer and electrically connected to form a translucent A fourth step of covering with an insulating member; From the bottom surface and the bottom surface of the translucent insulating member of the conductive layer and the fifth step of peeling the metal matrix material, and having a.

前記第一の工程において、金属母型材の平面に、予め前記発光素子を収納することが可能な凹部を形成してもよい。 In the first step, a recess capable of accommodating the light emitting element in advance may be formed on the plane of the metal matrix material.

前記第一の工程において、前記金属母型材の前記凹部の底面と側面の成す角度は、鈍角であることが好ましい。 In the first step, the angle formed by the bottom surface and the side surface of the concave portion of the metal matrix material is preferably an obtuse angle.

前記第三の工程において、前記導電層の平面に異方性導電材料を介して前記発光素子をフリップチップ実装することが好ましい。 In the third step, the light emitting element is preferably flip-chip mounted on a plane of the conductive layer via an anisotropic conductive material.

本発明の発光装置は、上記のように構成されていることから、コストの低減が可能な薄型・小型化発光装置の信頼性を高めることができる。   Since the light-emitting device of the present invention is configured as described above, the reliability of a thin and small-sized light-emitting device capable of reducing costs can be improved.

以下、本発明を実施するための最良の形態を、図面を参照しながら説明する。ただし、以下に示す形態は、本発明の技術思想を具体化するための発光装置を例示するものであって、本発明は発光装置を以下に限定するものではない。また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細な説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. However, the form shown below illustrates the light emitting device for embodying the technical idea of the present invention, and the present invention does not limit the light emitting device to the following. Further, the present specification by no means specifies the members shown in the claims to the members of the embodiments. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Further, in the following description, the same name and reference sign indicate the same or the same members, and detailed description will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.

<発光装置>
本発明の実施の形態に係る発光装置について、図面を用いて説明する。図1(a)は、実施の形態に係る発光装置を示す概略平面図であり、図1(b)は、図1(a)のA−A線における概略断面図である。
<Light emitting device>
A light-emitting device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1A is a schematic plan view showing the light emitting device according to the embodiment, and FIG. 1B is a schematic cross-sectional view taken along the line AA of FIG.

図1(a)および図1(b)において、発光素子1と、前記発光素子1が載置されるとともに前記発光素子1の一方の電極とワイヤ3にて電気的に接続される一方の導電層2aと、前記発光素子1の他方の電極とワイヤ3にて電気的に接続される他方の導電層2bと、これらを封止する透光性絶縁部材4とを有し、前記透光性絶縁部材4の底面に前記一方の導電層2aおよび前記他方の導電層2bは離間して配置されている。前記一方の導電層2aおよび前記他方の導電層2bは、それぞれ側面に突出部2c・2dを具備している。以下、本実施の形態の各構成について詳述する。 In FIG. 1A and FIG. 1B, the light emitting element 1 and one of the conductive elements on which the light emitting element 1 is mounted and electrically connected to one electrode of the light emitting element 1 by a wire 3. A layer 2a, the other conductive layer 2b electrically connected to the other electrode of the light emitting element 1 by a wire 3, and a translucent insulating member 4 for sealing them, and the translucent property The one conductive layer 2 a and the other conductive layer 2 b are arranged on the bottom surface of the insulating member 4 so as to be separated from each other. Each of the one conductive layer 2a and the other conductive layer 2b has protrusions 2c and 2d on the side surfaces. Hereinafter, each structure of this Embodiment is explained in full detail.

(発光素子1)
本形態における発光素子1は、発光ダイオードやレーザダイオードなど、発光装置の光源となり得るものである。また、本形態における発光装置において、発光素子1とともに、受光素子、およびそれらの半導体素子を過電圧による破壊から守る保護素子(例えば、ツェナーダイオードやコンデンサー)、あるいはそれらを組み合わせたものを搭載することができる。
(Light emitting element 1)
The light emitting element 1 in this embodiment can be a light source of a light emitting device such as a light emitting diode or a laser diode. In the light-emitting device of this embodiment, the light-emitting element 1 and a light-receiving element, and a protective element (for example, a Zener diode or a capacitor) that protects the semiconductor elements from destruction due to overvoltage, or a combination thereof may be mounted. it can.

発光素子1の一例として、LEDチップについて説明する。LEDチップを構成する半導体発光素子としては、ZnSeやGaNなど種々の半導体を使用したものを挙げることができるが、蛍光物質を有する発光装置とする場合には、その蛍光物質を効率良く励起できる短波長が発光可能な窒化物半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1)が好適に挙げられる。半導体層の材料やその混晶度によって発光波長を種々選択することができる。例えば、LEDチップは、可視光領域の光だけでなく、紫外線や赤外線を出力する発光素子とすることができる。 An LED chip will be described as an example of the light emitting element 1. Examples of the semiconductor light-emitting element that constitutes the LED chip include those using various semiconductors such as ZnSe and GaN. However, in the case of a light-emitting device having a fluorescent material, the short-circuit that can efficiently excite the fluorescent material. wavelength capable of emitting nitride semiconductor (in X Al Y Ga 1- X-Y N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) is preferably exemplified. Various emission wavelengths can be selected depending on the material of the semiconductor layer and the degree of mixed crystal. For example, the LED chip can be a light emitting element that outputs not only visible light but also ultraviolet rays and infrared rays.

また、本実施の形態の発光装置において、発光素子1は同一面側に正負一対の電極を有しているものを用いているが、これに限定されるものではなく、対向する面にそれぞれ正および負の電極を有するものも適用することができる。 In the light-emitting device of this embodiment, the light-emitting element 1 has a pair of positive and negative electrodes on the same surface side, but is not limited to this, and each of the light-emitting elements 1 has positive and negative surfaces. And those with negative electrodes can also be applied.

(導電層2a・2b)
本実施の形態で用いられる複数の導電層2a・2bは、透光性絶縁部材との密着性、放熱性、および導通性が良好な材料であれば特に限定されず、種々の材料にて構成することができる。
(Conductive layers 2a and 2b)
The plurality of conductive layers 2a and 2b used in the present embodiment are not particularly limited as long as the materials have good adhesion, heat dissipation, and conductivity with the translucent insulating member, and are configured with various materials. can do.

特に、薄型・小型化発光装置の場合、回路基板との接合時における強度が必要となることから、導電層の硬度は450Hv〜550Hvであることが好ましい。また、導電層の熱伝導度は、0.01cal/(S)(cm)(℃/cm)以上であることが好ましく、より好ましくは0.5cal/(S)(cm)(℃/cm)である材料を用いるとよい。また、電気抵抗は、300μΩ・cm以下が好ましく、より好ましくは、3μΩ・cm以下である。 In particular, in the case of a thin and miniaturized light emitting device, the strength of the conductive layer is preferably 450 Hv to 550 Hv because strength at the time of bonding with the circuit board is required. The thermal conductivity of the conductive layer, 0.01cal / (S) (cm 2) is preferably (° C. / cm) or more, more preferably 0.5cal / (S) (cm 2 ) (℃ / cm)). The electrical resistance is preferably 300 μΩ · cm or less, more preferably 3 μΩ · cm or less.

これらの導電層に用いられる具体的な材料として、Cu、Au、Ni、W、Mo、Mn、およびTaなど、高融点金属の微粒子からなるメッキ層などがあげられる。これらの高融点金属のうち、特に、Niは、他の金属と比較して、引っ張りや強さ強度が高い、弾性率が高く高温でも強度が高い、熱膨張係数が金属中でも小さいなどの優れた物理的性質を有している。このような高融点金属は、発熱量の多いLEDやLDなどの半導体発光素子を搭載させる材料として適している。また、導電層の表面に、光沢度が90以上である導電性膜を設けることが好ましく、これにより光反射機能を兼ねた導電層とすることができる。ここで本明細書における光沢度とは、JIS規格に基づき、発光素子からの光を60°で入射したときの鏡面反射率が10%となる、屈折率1.567のガラス面を光沢度0と規定し、日本電色工業株式会社製VSR300A微小面色差計にて測定した値である。一方、ITOやIZOなどの透明電極材料を用い、全面に発光することが可能な発光装置とすることもできる。 Specific materials used for these conductive layers include plating layers made of fine particles of refractory metals such as Cu, Au, Ni, W, Mo, Mn, and Ta. Among these refractory metals, in particular, Ni has superior tensile strength and strength strength, high modulus of elasticity and high strength even at high temperatures, and low thermal expansion coefficient among metals compared to other metals. Has physical properties. Such a refractory metal is suitable as a material for mounting a semiconductor light emitting element such as an LED or LD that generates a large amount of heat. Further, it is preferable to provide a conductive film having a glossiness of 90 or more on the surface of the conductive layer, whereby a conductive layer having a light reflection function can be obtained. Here, the glossiness in this specification refers to a glass surface having a refractive index of 1.567 and a glossiness of 0, based on JIS standards, with a specular reflectance of 10% when light from a light emitting element is incident at 60 °. And measured with a VSR300A minute surface color difference meter manufactured by Nippon Denshoku Industries Co., Ltd. On the other hand, a light-emitting device capable of emitting light over the entire surface using a transparent electrode material such as ITO or IZO can also be provided.

(突出部2c・2d)
本実施の形態における導電層2a・2bは、側面に突出部2c・2dを有している。これにより、導電層2a・2bと透光性絶縁部材4との接着性を高めることができる。回路基板に実装された発光装置に衝撃が加えられた場合、薄い導電層を透光性絶縁部材の背面に単に固着しているだけでは、発光装置の一体化を保つことはできない。また、導電層の側面をエッチング等にて荒らすことにより透光性絶縁部材との密着性を高めることも考えられるが、複数の導電層が離間して配置されていることから、発光素子から向かい合う導電層の側面を粗面とすると、前記祖面に照射された光が離間部分の絶縁部材中に閉じこめられてしまう可能性が高い。また、透光性絶縁部材に機械的強度を高めるため方法として、酸化チタン、酸化ジルコニア、酸化アルミニウム、および酸化ケイ素などの拡散剤を添加したり、ヒュームドシリカやヒュールドアルミニウムなどの増粘剤、または顔料などを添加する手法があるが、好ましい強度を得るためには多量に含有させねばならず、透光性が低下してしまう。このように、光取り出し効率を維持しつつ封止部材自体の機械的強度を高めることは困難であった。そこで本発明では、発光装置の基本的構成部材のほとんどと架橋している導電性部材を光学特性的におよび密着性的に好ましい形状とすることで、発光装置全体の一体性を高めている。
(Protrusions 2c and 2d)
The conductive layers 2a and 2b in the present embodiment have protrusions 2c and 2d on the side surfaces. Thereby, the adhesiveness of conductive layer 2a * 2b and the translucent insulating member 4 can be improved. When an impact is applied to the light-emitting device mounted on the circuit board, the light-emitting device cannot be integrated simply by simply fixing the thin conductive layer to the back surface of the translucent insulating member. In addition, it is conceivable to improve the adhesion to the light-transmitting insulating member by roughening the side surface of the conductive layer by etching or the like, but since a plurality of conductive layers are arranged apart from each other, they face each other from the light emitting element. If the side surface of the conductive layer is a rough surface, there is a high possibility that the light applied to the root surface will be confined in the insulating member in the separated portion. In addition, as a method for increasing the mechanical strength of the translucent insulating member, a diffusing agent such as titanium oxide, zirconia oxide, aluminum oxide, and silicon oxide is added, or a thickener such as fumed silica or fürde aluminum is added. Alternatively, there is a method of adding a pigment or the like, but in order to obtain a preferable strength, it must be contained in a large amount, and the translucency is lowered. Thus, it was difficult to increase the mechanical strength of the sealing member itself while maintaining the light extraction efficiency. Therefore, in the present invention, the integrity of the light emitting device as a whole is enhanced by forming a conductive member that is cross-linked with most of the basic components of the light emitting device into a shape that is preferable in terms of optical characteristics and adhesion.

突出部2c・2dの角部は、丸みを帯びていることが好ましい。これにより、突出部に発光素子から照射された光が突出部下部に閉じられることを抑制することができる。突出部の位置は、特に限定されないが、導電層の平面側にあることが好ましく、これにより向かい合う導電層の離間部分による光のロスを低減させることができる。さらに、突出部の平面側の角部は、丸みを帯びていることが好ましく、さらには、突出部の側面が平面から底面にかけて放物線状にたれていることが好ましく、これにより光度の高い発光装置を得ることができる。ここで、本明細書において、平面とは、発光装置の光取り出し方向に該当する面をいい、前記平面と対向する面を底面という。 The corners of the projecting portions 2c and 2d are preferably rounded. Thereby, it can suppress that the light irradiated from the light emitting element to the protrusion part is closed by the protrusion part lower part. The position of the projecting portion is not particularly limited, but is preferably on the plane side of the conductive layer, which can reduce light loss due to the separated portion of the conductive layer facing each other. Furthermore, it is preferable that the corners on the flat side of the protrusions are rounded, and further, the side surfaces of the protrusions are preferably parabolic from the flat surface to the bottom surface. Can be obtained. Here, in this specification, a plane means a surface corresponding to the light extraction direction of the light emitting device, and a surface facing the plane is called a bottom surface.

また、突出部2c・2dの厚みは、各導電層の全厚みの10%から70%であることが好ましく、より好ましくは30%〜60%、さらに好ましくは40%〜60%であることが好ましい。また、一方の導電層2aの発光装置内部側の突出部2cと前記一方の導電層2aと隣り合う他方の導電層2bの発光装置内部側の突出部2dとの間隔は、生産性を考慮すると50μm〜1mmであることが好ましい。さらに光の取り出し効率を考慮すると、50μm〜300μmが好ましく、さらに50μm〜100μmであることが好ましい。 Further, the thickness of the protruding portions 2c and 2d is preferably 10% to 70% of the total thickness of each conductive layer, more preferably 30% to 60%, and still more preferably 40% to 60%. preferable. In addition, the distance between the protruding portion 2c on the inside of the light emitting device of one conductive layer 2a and the protruding portion 2d on the inside of the light emitting device of the other conductive layer 2b adjacent to the one conductive layer 2a is in consideration of productivity. It is preferable that it is 50 micrometers-1 mm. Furthermore, when considering the light extraction efficiency, 50 μm to 300 μm are preferable, and 50 μm to 100 μm are more preferable.

また、図3に示すように、他の実施の形態の発光装置は、一方の導電層2aの一端に平坦な底面を有する凹部を形成し、発光素子1を前記凹部内に載置している。前記一方の導電層2aの他端の底面は、前記凹部の底面と略平行な位置となるように、凸形状となっている。また、他方の導電層2bは、前記一方の導電層2aの一端と略同一平面にて向かい合う一端と、前記一方の導電層2aの他端と略同一平面に位置する他端とを有している。このような構成とすることにより、導電層の裏面を他の部材にて補強することなく、発光装置の機械的強度を高めることができる。さらに、実装面の支点を多数有することから、実装精度が向上される。また、前記導電層は、ほぼ均一は厚みを有することが好ましく、これにより機械的強度をさらに向上させることができる。 As shown in FIG. 3, in the light emitting device of another embodiment, a concave portion having a flat bottom surface is formed at one end of one conductive layer 2a, and the light emitting element 1 is placed in the concave portion. . The bottom surface of the other end of the one conductive layer 2a has a convex shape so as to be positioned substantially parallel to the bottom surface of the recess. The other conductive layer 2b has one end facing the one end of the one conductive layer 2a in substantially the same plane and the other end positioned substantially in the same plane as the other end of the one conductive layer 2a. Yes. With such a structure, the mechanical strength of the light-emitting device can be increased without reinforcing the back surface of the conductive layer with another member. Furthermore, since there are many fulcrums on the mounting surface, mounting accuracy is improved. The conductive layer preferably has a substantially uniform thickness, which can further improve the mechanical strength.

(ダイボンド部材5)
本実施の形態において、発光素子1は、発光装置の略中央部となる一方の導電層2aの上面にダイボンドされ、前記発光素子1の各電極は、前記一方の導電層2aおよび他方の導電層2bとそれぞれワイヤ3にて電気的に接続されている。
(Die bond member 5)
In the present embodiment, the light-emitting element 1 is die-bonded to the upper surface of one conductive layer 2a that is a substantially central portion of the light-emitting device, and each electrode of the light-emitting element 1 includes the one conductive layer 2a and the other conductive layer. 2b and each wire 3 are electrically connected.

本形態におけるダイボンド部材5とは、発光素子1と導電層2aとを固定させるための部材である。例えば、熱硬化性樹脂などの従来から用いられているダイボンド部材を用いることができ、具体的には、エポキシ樹脂、アクリル樹脂やイミド樹脂などがあげられる。また、ダイボンド部材5の熱膨張率を調整するため、これらの樹脂にフィラーを含有させることもできる。これにより、発光素子が導電層2aから剥離することを抑えることができる。また、発光素子1をダイボンドさせると共に導電層2aと電気的に接続させる場合や高い放熱性を要する場合は、Agペースト、カーボンペースト、ITOペーストあるいは金属バンプ等を用いることが好ましく、特に発熱量の多いパワー系発光装置の場合、融点が高いことから高温下にて組織的構造が変化することが少なく力学特性の低下が少ないAu−Sn系の共晶はんだを用いることが好ましい。しかしながら、発光素子1からの光に対する反射率が高い部材をダイボンド部材5として用いる場合、前記ダイボンド部材5により光が吸収されたり、発光素子1の内部に光が閉じこめられたりすることから、前記発光素子1の底面に対する前記ダイボンド部材5の占有率は、5%〜95%であることが好ましく、より好ましくは20%〜70%、さらには20%〜50%であることが好ましい。5%より少ない場合、発光素子1の放熱性および実装性が低下してしまう。また、95%より大きい場合、上述のように発光素子1の光取り出し効率が低減してしまう。 The die bond member 5 in this embodiment is a member for fixing the light emitting element 1 and the conductive layer 2a. For example, conventionally used die bond members such as thermosetting resins can be used, and specific examples include epoxy resins, acrylic resins, and imide resins. Moreover, in order to adjust the thermal expansion coefficient of the die-bonding member 5, these resins can also contain a filler. Thereby, it can suppress that a light emitting element peels from the conductive layer 2a. In addition, when the light-emitting element 1 is die-bonded and electrically connected to the conductive layer 2a or when high heat dissipation is required, it is preferable to use Ag paste, carbon paste, ITO paste, metal bumps, or the like. In the case of many power-based light-emitting devices, it is preferable to use Au—Sn-based eutectic solder that has a high melting point and therefore does not change its structural structure at high temperatures and has little deterioration in mechanical properties. However, when a member having a high reflectance with respect to the light from the light emitting element 1 is used as the die bond member 5, the light is absorbed by the die bond member 5 or the light is confined in the light emitting element 1. The occupation ratio of the die bond member 5 with respect to the bottom surface of the element 1 is preferably 5% to 95%, more preferably 20% to 70%, and further preferably 20% to 50%. When it is less than 5%, the heat dissipation and mounting properties of the light-emitting element 1 are degraded. On the other hand, if it is larger than 95%, the light extraction efficiency of the light-emitting element 1 is reduced as described above.

(ワイヤ3)
本形態において、発光素子1の電極と導電層2a・2bとを接続するワイヤ3は、導電層2a・2bとのオーミック性、機械的接続性、電気伝導性及び熱伝導性がよいものが求められる。熱伝導度としては0.01cal/(s)(cm)(℃/cm)以上が好ましく、より好ましくは0.5cal/(s)(cm)(℃/cm)以上である。また、作業性などを考慮してワイヤ3の直径は、Φ10μm〜Φ45μmであることが好ましい。具体的なワイヤの材料として、Au、Cu、Pt、Al等の金属及びそれらの合金を用いた導電性ワイヤがあげられる。また、本実施の形態において、ワイヤは、導電層2a・2b側から発光素子1の電極へボンディングする(BSOB(Bond Stitch Ball))ことが好ましく、これにより高速・狭ピッチでの低超ループを形成することができ、超薄型・小型化の発光装置を実現することができる。また、ワイヤの応力点が1カ所となることから、信頼性の高い発光装置が得られる。
(Wire 3)
In this embodiment, the wire 3 that connects the electrode of the light-emitting element 1 and the conductive layers 2a and 2b is required to have good ohmic properties, mechanical connectivity, electrical conductivity, and thermal conductivity with the conductive layers 2a and 2b. It is done. Preferably 0.01cal / (s) (cm 2 ) (℃ / cm) or higher as heat conductivity, and more preferably 0.5cal / (s) (cm 2 ) (℃ / cm) or more. In consideration of workability and the like, the diameter of the wire 3 is preferably Φ10 μm to Φ45 μm. Specific examples of the wire material include conductive wires using metals such as Au, Cu, Pt, and Al, and alloys thereof. In the present embodiment, the wire is preferably bonded to the electrode of the light-emitting element 1 from the conductive layers 2a and 2b side (BSOB (Bond Stitch Ball)), thereby forming a low super loop at a high speed and a narrow pitch. Thus, an ultra-thin and miniaturized light emitting device can be realized. In addition, since the stress point of the wire is one, a highly reliable light emitting device can be obtained.

(透光性絶縁部材4、色変換部材6)
本実施の形態の発光装置は、載置された発光素子1やワイヤ3などを塵芥、水分や外力などから保護、これら各部材の一体化、および発光素子1の光取り出し効率の向上を目的として、透光性絶縁部材4にて封止されている。透光性絶縁部材4の材料は、エポキシ樹脂やシリコーン樹脂、ユリア樹脂などの透光性樹脂や、ガラスなどのような透光性向き部材から選択することができる。また、このような透光性絶縁部材4中に、発光素子からの光の少なくとも一部を吸収して異なる波長を有する光を発する蛍光物質を含有させ、色変換部材6とすることもできる。この場合、透光性絶縁部材4として耐熱性および耐光性に優れ、紫外線を含む短波長の高エネルギー光に曝されても着色劣化しにくいシリコーン樹脂や変性シリコーン樹脂を用いることが好ましく、これにより色ズレや色ムラの発生が抑制される。また、半田付けなど被覆部材の熱膨張や熱収縮の繰り返しが行われたとしても、発光素子1と導電層2a・2bとを接続しているワイヤ3の断線や、ダイボンド部材5の剥離などの発生を抑制することができる。本形態に利用することができる蛍光物質は、発光素子の光を変換させるものであり、発光素子からの光をより長波長に変換させるものの方が効率がよい。発光素子からの光がエネルギーの高い短波長の可視光の場合、アルミニウム酸化物系蛍光体の一種であるYAG:Ce蛍光体やCaSi蛍光体が好適に用いられる。特に、YAG:Ce蛍光体は、その含有量によってLEDチップからの青色系の光を一部吸収して補色となる黄色系の光を発するため、白色系の混色光を発する高出力な発光ダイオードを、比較的簡単に形成することができる。
(Translucent insulating member 4, color conversion member 6)
The light emitting device of the present embodiment is for the purpose of protecting the mounted light emitting element 1 and wire 3 from dust, moisture, external force, etc., integrating these members, and improving the light extraction efficiency of the light emitting element 1. It is sealed with a translucent insulating member 4. The material of the translucent insulating member 4 can be selected from translucent resins such as epoxy resin, silicone resin, and urea resin, and translucent members such as glass. In addition, such a translucent insulating member 4 may include a fluorescent substance that emits light having a different wavelength by absorbing at least a part of light from the light emitting element, so that the color conversion member 6 can be obtained. In this case, it is preferable to use a silicone resin or a modified silicone resin that is excellent in heat resistance and light resistance as the translucent insulating member 4 and hardly undergoes color deterioration even when exposed to short wavelength high energy light including ultraviolet rays. Generation of color misregistration and color unevenness is suppressed. Further, even when the thermal expansion and thermal contraction of the covering member such as soldering are repeated, the wire 3 connecting the light emitting element 1 and the conductive layers 2a and 2b is disconnected, and the die bonding member 5 is peeled off. Occurrence can be suppressed. The fluorescent material that can be used in this embodiment converts light from the light emitting element, and it is more efficient to convert light from the light emitting element to a longer wavelength. When the light from the light emitting element is high energy short wavelength visible light, a YAG: Ce phosphor or a Ca 2 Si 5 N 8 phosphor, which is a kind of aluminum oxide phosphor, is preferably used. In particular, the YAG: Ce phosphor absorbs part of the blue light from the LED chip depending on its content and emits yellow light that is a complementary color. Can be formed relatively easily.

本形態に利用することができる蛍光物質は、発光素子の光を変換させるものであり、発光素子からの光をより長波長に変換させるものの方が効率がよい。発光素子からの光がエネルギーの高い短波長の可視光の場合、アルミニウム酸化物系蛍光体の一種であるYAG:Ceが好適に用いられる。特に、YAG:Ce蛍光体は、その含有量によってLEDチップからの青色系の光を一部吸収して補色となる黄色系の光を発するため、白色系の混色光を発する高出力な発光ダイオードを、比較的簡単に形成することができる。 The fluorescent material that can be used in this embodiment converts light from the light emitting element, and it is more efficient to convert light from the light emitting element to a longer wavelength. When the light from the light-emitting element is short-wavelength visible light with high energy, YAG: Ce, which is a kind of aluminum oxide phosphor, is preferably used. In particular, the YAG: Ce phosphor absorbs part of the blue light from the LED chip depending on its content and emits yellow light that is a complementary color. Can be formed relatively easily.

<発光装置の製造方法>
本実施の形態の発光装置の製造方法は、金属母型材の平面にレジストを塗布し、前記レジストの一部を除去して開口部を形成する第一の工程と、前記開口部内に導電性粒子を付着させて導電層を形成する第二の工程と、引き続き前記開口部内から前記レジストの平面にわたって前記導電性粒子を付着させ導電層の突出部を形成する第三の工程と、前記レジストを除去した後、前記導電層の平面に発光素子を載置し電気的に接続し、透光性絶縁部材にて被覆する第四の工程と、前記前記導電層の底面および前記透光性絶縁性部材の底面から金属母型材を剥離する第五の工程と、を有することを特徴とする。以下、本実施の形態の発光装置を製造するための前記各工程について、詳述する。
<Method for manufacturing light emitting device>
The method for manufacturing a light emitting device according to the present embodiment includes a first step in which a resist is applied to a plane of a metal matrix material, a part of the resist is removed to form an opening, and conductive particles are formed in the opening. A second step of forming a conductive layer by adhering, a third step of subsequently forming a protruding portion of the conductive layer by attaching the conductive particles from the opening to the plane of the resist, and removing the resist After that, a fourth step of placing a light emitting element on the plane of the conductive layer, electrically connecting it, and covering it with a translucent insulating member, a bottom surface of the conductive layer, and the translucent insulating member And a fifth step of peeling the metal matrix material from the bottom surface. Hereinafter, each process for manufacturing the light emitting device of the present embodiment will be described in detail.

(第一の工程)
本実施の形態の発光装置において、各構成部材は、全て金属母型材を裏打ち材として用いて形成される。これにより、薄く且つ精度の高い発光装置を得ることができる。
(First step)
In the light emitting device of the present embodiment, all the constituent members are formed using a metal matrix material as a backing material. Thereby, a thin and highly accurate light-emitting device can be obtained.

金属母型材とは、薄い導電層に張り合わせる箔であり、前記金属母型材の平面に発光装置の各構成部材を取り付け、製造時において発光装置全体としての剛性を確保するものであり、発光装置が完成した後、金属母型材は引き剥がして除去される。このような引き剥がし可能な金属母型材の材料は、特に限定されないが、特に体心立方構造を持つ金属であるFe,Mo,W,およびフィラメント系ステンレスなどの金属を用いることが好ましい。これにより、金属母型材と上面に積層される導電層の引き剥がし強度の制御が容易となり、発光装置の生産性を高めることができる。 The metal matrix material is a foil bonded to a thin conductive layer, and each component of the light emitting device is attached to the plane of the metal matrix material to ensure the rigidity of the entire light emitting device at the time of manufacture. Is completed, the metal matrix material is peeled off and removed. The material of the metal matrix material that can be peeled off is not particularly limited, but it is particularly preferable to use metals such as Fe, Mo, W, and filament stainless steel, which are metals having a body-centered cubic structure. Thereby, it becomes easy to control the peeling strength between the metal matrix and the conductive layer laminated on the upper surface, and the productivity of the light emitting device can be increased.

上述したような金属母型材は、平面に積層される導電層2a・2bおよび透光性絶縁部材4と引き剥がすことが可能な剥離層を有している。このような剥離層として、金属中間層を用いることができる。前記金属中間層は、上面にレジストをパターニングする際のエッチング工程においてバリアとして機能することができる材料が好ましい。く、前記金属母型材と前記金属中間層との界面には、弱接合層が形成されていることが好ましい。また、積層される導電層と前記金属母型材の間における引き剥がし強度が0.01〜0.8N/mmの範囲内にあることが好ましい。0.01N/mm未満であると、エッチング工程や搬送工程などのハンドリングで導電層が部分的に剥がれるおそれがある。また0.8N/mmを超えると、発光装置の各構成部材を形成した後の引き剥がし工程において、形成した導電層が金属母型材について剥がれないことがある。本発明において、金属中間層は、Cu、Ti,Ag,Sn,Ni,Zn,またはこれらの金属の何れかを主成分とする合金を使用することができる。特にTiを主成分とする材料では、水素を含んでいることが好ましく、これにより、金属中間層自体を脆く容易に壊れやすい性質となり、適度な引き剥がし強さを有することができる。Tiを主成分とする材料では、0.5mass%〜5mass%の水素を含むことが好ましく、また、Zrを主成分とする材料では、0.02mass%〜2.5mass%の水素を含むことが好ましい。前記水素量の範囲より少ないと、脆化が不十分で、導電層と金属母型材とを引き剥がす際の引き剥がし強さに大きなバラツキが生じ、前記水素量の範囲を超えると、発光装置の各構成部材を取り付ける工程や搬送工程において、導電層が剥がれてしまう恐れがある。ここで、本明細書におけて、主成分とするとは、その該当する材料を50mass以上有することを言う。 The metal matrix material as described above has a release layer that can be peeled off from the conductive layers 2a and 2b and the translucent insulating member 4 laminated in a plane. A metal intermediate layer can be used as such a release layer. The metal intermediate layer is preferably made of a material that can function as a barrier in an etching process when a resist is patterned on the upper surface. In addition, a weak bonding layer is preferably formed at the interface between the metal matrix material and the metal intermediate layer. Moreover, it is preferable that the peeling strength between the laminated conductive layer and the metal matrix material is in the range of 0.01 to 0.8 N / mm. If it is less than 0.01 N / mm, the conductive layer may be partially peeled off during handling such as an etching process or a conveyance process. Moreover, when it exceeds 0.8 N / mm, the formed conductive layer may not be peeled off from the metal matrix material in the peeling step after forming each constituent member of the light emitting device. In the present invention, the metal intermediate layer can be made of Cu, Ti, Ag, Sn, Ni, Zn, or an alloy containing any one of these metals as a main component. In particular, a material containing Ti as a main component preferably contains hydrogen, which makes the metal intermediate layer itself brittle and easily fragile, and has an appropriate peel strength. A material containing Ti as a main component preferably contains 0.5 mass% to 5 mass% of hydrogen, and a material containing Zr as a main component may contain 0.02 mass% to 2.5 mass% of hydrogen. preferable. If the amount of hydrogen is less than the range, the embrittlement is insufficient, and there is a large variation in the peel strength when the conductive layer and the metal matrix material are peeled off. There is a possibility that the conductive layer may be peeled off in the process of attaching each constituent member and the transporting process. Here, in this specification, having a main component means having 50 mass or more of the corresponding material.

また、前記金属母型材と前記金属中間層との界面に、弱接合層を用いてもよい。前記弱接合層は、酸素濃化層であることが好ましい。このような酸素濃化層は脆弱である。したがって、このような酸素濃化層を、予め前記金属母型材と前記金属中間層の界面に部分的に形成しておくことで、引き剥がし強度を制御することができる。ここで、酸素濃化層とは、その他の金属中間層の部分と比べて酸素含有量が高いものを言う。 Further, a weak bonding layer may be used at the interface between the metal matrix material and the metal intermediate layer. The weak bonding layer is preferably an oxygen concentrated layer. Such an oxygen enriched layer is fragile. Therefore, the peeling strength can be controlled by forming such an oxygen-enriched layer partially at the interface between the metal matrix material and the metal intermediate layer in advance. Here, the oxygen-enriched layer means a layer having a higher oxygen content than other metal intermediate layer portions.

このようにして構成された剥離可能な金属母型材上に、レジストをパターニングすることにより、所望とする導電層の平面形状の開口部を形成する。前記レジストパターンの側面は、金属母型材に対してほぼ垂直であることが好ましい。前記開口部のピッチ間は、所望とする発光装置の導電層の突出部の突出長さに合わせて調整する。 By patterning a resist on the metal base material that can be peeled thus configured, a planar opening of a desired conductive layer is formed. The side surface of the resist pattern is preferably substantially perpendicular to the metal matrix material. The pitch between the openings is adjusted according to the protrusion length of the protrusion of the conductive layer of the light emitting device.

(第二の工程・第三の工程)
次に、前記開口部内に導電性粒子を付着させて導電層を形成し、引き続き前記開口部内から前記レジストの平面にわたって前記導電性粒子を付着させ導電層の突出部を形成する第三の工程と前記レジストパターンの上方から導電性粒子を塗布する。この際、塗布量を調整することにより、導電層2a・2bの突出部の形状を調整することができる。導電性粒子の積層高さは、レジストパターンの厚みの1.3倍〜2.5倍の厚みが好ましく、より好ましくは1.5倍〜2.3倍、さらに好ましくは1.8倍〜2.0倍であることが好ましい。ここで導電性粒子の積層方法として、真空蒸着、スパッタ、イオンプレーティング、電気蒸着、および電気沈着等を用いることができる。特に真空蒸着や電気蒸着は、成膜速度が速く好ましい。また、超薄膜の導電層を形成する場合は、スパッタやイオンプレーティングなどを用いて良質な膜を得ることができる。このようにして、導電性粒子を積層した後、レジストパターンを除去することにより、導電層2a・2bを形成することができる。
(Second process, third process)
Next, a third step of forming a conductive layer by attaching conductive particles in the opening, and subsequently attaching the conductive particles from within the opening over the plane of the resist to form a protruding portion of the conductive layer; Conductive particles are applied from above the resist pattern. At this time, the shape of the protruding portions of the conductive layers 2a and 2b can be adjusted by adjusting the coating amount. The stack height of the conductive particles is preferably 1.3 to 2.5 times the thickness of the resist pattern, more preferably 1.5 to 2.3 times, and even more preferably 1.8 to 2 times. It is preferably 0.0 times. Here, as a method for laminating the conductive particles, vacuum deposition, sputtering, ion plating, electro-deposition, electro-deposition, or the like can be used. In particular, vacuum vapor deposition and electro vapor deposition are preferable because of high film formation speed. When an ultra-thin conductive layer is formed, a good quality film can be obtained using sputtering, ion plating, or the like. Thus, after laminating the conductive particles, the conductive layers 2a and 2b can be formed by removing the resist pattern.

(第四の工程)
次に、導電層の平面に発光素子を載置し電気的に接続し、これらの構成部材を覆うように透光性絶縁部材4を塗布して硬化する。
(Fourth process)
Next, the light emitting element is mounted on the plane of the conductive layer and is electrically connected, and the light-transmitting insulating member 4 is applied and cured so as to cover these constituent members.

(第五の工程)
次に、前記金属母型材のみロールに巻き取り、前記金属母型材を前記導電層2a・2bおよび前記透光性絶縁部材4から剥離する。得られた発光装置の底面に残存した金属中間層は、目的に応じ、反射部材や接合促進剤として用いるか、選択エッチングにより導電層2a・2bおよび透光性絶縁部材をほとんどエッチングしない金属中間層のエッチング液を用いて除去する。特に、導電層2a・2bを高い熱伝導性を有する材料にて構成している場合、導電層2a・2bを過度にエッチングすることなく金属中間層を除去することが可能である。
(Fifth process)
Next, only the metal matrix material is wound on a roll, and the metal matrix material is peeled off from the conductive layers 2 a and 2 b and the translucent insulating member 4. The metal intermediate layer remaining on the bottom surface of the obtained light-emitting device is used as a reflective member or a bonding accelerator depending on the purpose, or the metal intermediate layer that hardly etches the conductive layers 2a and 2b and the translucent insulating member by selective etching. It removes using the etching liquid. In particular, when the conductive layers 2a and 2b are made of a material having high thermal conductivity, the metal intermediate layer can be removed without excessively etching the conductive layers 2a and 2b.

以下、本発明に係る実施例について詳述する。なお、本発明は以下に示す実施例のみに限定されないことは言うまでもない。 Examples according to the present invention will be described in detail below. Needless to say, the present invention is not limited to the following examples.

(実施例1)
金属母型材として厚みが60μmであるSUS430帯材を用い、前記金属母型材の平面にTiからなる中間層を形成し、水素ガス雰囲気中にて熱処理を施す。次に厚み70μmでからなるレジストを形成し、□0.5mm×0.2mmの開口部と□0.5mm×1.0mmの開口部とが0.2mmピッチにて並列するようにパターニングする。
Example 1
An SUS430 band material having a thickness of 60 μm is used as the metal matrix material, an intermediate layer made of Ti is formed on the plane of the metal matrix material, and heat treatment is performed in a hydrogen gas atmosphere. Next, a resist having a thickness of 70 μm is formed and patterned so that openings of □ 0.5 mm × 0.2 mm and openings of □ 0.5 mm × 1.0 mm are arranged in parallel at a pitch of 0.2 mm.

次に、開口部内にAu/Ni層を形成する。Ni層の上面は前記レジストの平面より低くなるように形成する。引き続きAu層をレジスト平面をオーバーするように形成する。そして、最表面であるAu層にAgメッキを施す。最後に、レジストを除去することにより、厚みおよび突出長さがそれぞれ50μmである突出部2c・2dを有する導電層2a・2bを得ることができる。 Next, an Au / Ni layer is formed in the opening. The upper surface of the Ni layer is formed to be lower than the plane of the resist. Subsequently, an Au layer is formed so as to exceed the resist plane. Then, Ag plating is performed on the outermost Au layer. Finally, by removing the resist, it is possible to obtain the conductive layers 2a and 2b having the protruding portions 2c and 2d having a thickness and a protruding length of 50 μm, respectively.

続いて、一対の導電層2a・2bに発光素子1を電気的に接続する。具体的には、発光素子1として約460nmに発光ピーク波長を持ち同一面側に正負の電極を有する窒化ガリウム系化合物半導体を用い、一方の導電層2a上にダイボンド樹脂5にて固定する。次に、前記発光素子1の一対の電極上にAuバンプを形成したのち、前記一方の導電層2aから前記Auバンプへワイヤボンディングする(BSOB)。そして、これら各構成部材を覆うようにシリコーン樹脂4を塗布し、硬化させる。 Subsequently, the light emitting element 1 is electrically connected to the pair of conductive layers 2a and 2b. Specifically, a gallium nitride compound semiconductor having a light emission peak wavelength of about 460 nm and having positive and negative electrodes on the same surface is used as the light-emitting element 1, and is fixed on one conductive layer 2 a with a die bond resin 5. Next, Au bumps are formed on the pair of electrodes of the light emitting element 1, and then wire bonding is performed from the one conductive layer 2a to the Au bumps (BSOB). And the silicone resin 4 is apply | coated and hardened so that these each structural member may be covered.

次に、前記金属母型材のみロールに巻き取り、前記導電層2a・2bおよび前記シリコーン樹脂4から剥離する。得られた連続する発光装置を、前記導電層の突出部の外周部のシリコーン樹脂部分にてダイシングすることにより、図1に示す発光装置を得ることができる。 Next, only the metal matrix material is wound on a roll and peeled off from the conductive layers 2 a and 2 b and the silicone resin 4. By dicing the obtained continuous light emitting device with a silicone resin portion on the outer peripheral portion of the protruding portion of the conductive layer, the light emitting device shown in FIG. 1 can be obtained.

このようにして得られた発光装置は、1.6mm×0.8mm×0.2mmと超薄型・小型化であり、優れた信頼性を有している。 The light-emitting device thus obtained is 1.6 mm × 0.8 mm × 0.2 mm, and is ultra-thin and downsized, and has excellent reliability.

(実施例2)
レジストを、□0.5mm×0.2mmの開口部と□0.5mm×1.0mmの開口部と□0.5mm×0.2mmの開口部とが、それぞれ0.2mmピッチにて並列するようにパターニングし、一発光装置においてワイヤボンディング用の導電層を2つ、発光素子の載置用の導電層を1つとする以外は、実施例1と同様にして製造し、図2に示す発光装置を得る。このようにして得られた発光装置は、図1よりも熱引きに優れている。
(Example 2)
□ 0.5 mm × 0.2 mm openings, □ 0.5 mm × 1.0 mm openings, and □ 0.5 mm × 0.2 mm openings are arranged in parallel at a pitch of 0.2 mm. The light emitting device shown in FIG. 2 is manufactured in the same manner as in Example 1 except that one conductive layer for wire bonding and one conductive layer for mounting a light emitting element are used in one light emitting device. Get the device. The light-emitting device obtained in this way is more excellent in heat dissipation than FIG.

(実施例3)
前記金属母型材上に、予めエッチングにより複数の深さ80μmの凹部を形成し、発光素子1を収納することが可能な凹部を具備する導電層2aを形成する。次に、前記凹部内に発光素子1を載置し、前記発光素子1の各電極と各導電層2a・2bとをそれぞれワイヤ3にて電気的に接続した後、前記凹部内に前記発光素子からの光を吸収し長波長へ変換することが可能な蛍光物質が含有された透光性絶縁部材6を充填する。具体的には、シリコーン樹脂と(Y0.8Gd0.23Al512:Ce0.03蛍光物質とを、重量比で100:15となるように混合撹拌されてなる混合物を前記凹部内に充填させ、4時間放置し、前記蛍光物質を沈降させる。充填量は、中央部突出していると、集光性を高めることができる。
シリコーン樹脂を50℃3時間、50℃から150℃に上昇させながら1時間、および150℃4時間の工程にて硬化させ、色変換部部材6を形成する。
(Example 3)
On the metal matrix material, a plurality of recesses having a depth of 80 μm are formed in advance by etching, and a conductive layer 2 a having a recess capable of accommodating the light emitting element 1 is formed. Next, the light-emitting element 1 is placed in the recess, and the electrodes of the light-emitting element 1 and the conductive layers 2a and 2b are electrically connected by wires 3, respectively, and then the light-emitting element is placed in the recess. A light-transmitting insulating member 6 containing a fluorescent material that can absorb light from the light and convert it to a long wavelength is filled. Specifically, a mixture obtained by mixing and stirring a silicone resin and (Y 0.8 Gd 0.2 ) 3 Al 5 O 12 : Ce 0.03 phosphor so as to have a weight ratio of 100: 15 is filled in the recess. Leave for 4 hours to allow the fluorescent material to settle. When the filling amount protrudes from the center, the light collecting property can be enhanced.
The silicone resin is cured at a process of 50 ° C. for 3 hours, while raising the temperature from 50 ° C. to 150 ° C. for 1 hour and 150 ° C. for 4 hours, thereby forming the color conversion member 6.

次に、発光素子1からの光を集光することが可能な形状に透光性絶縁部材4を形成する。
具体的には、圧着成形やトランスファーモールドにて形成することができる。このようにして得られた発光装置を、前記導電層の突出部の外周部のシリコーン樹脂部分にてダイシングすることにより、図3に示すような集光率の高い発光装置を得ることができる。
Next, the translucent insulating member 4 is formed in a shape that can collect the light from the light emitting element 1.
Specifically, it can be formed by pressure molding or transfer molding. By dicing the thus obtained light emitting device at the silicone resin portion on the outer peripheral portion of the protruding portion of the conductive layer, a light emitting device having a high light collection rate as shown in FIG. 3 can be obtained.

(実施例4)
レジストを、□0.5mm×0.2mmの開口部0.2mmピッチにて並列するようにパターニングする以外は実施例1と同様にして導電層2a・2bを形成する。次に、前記発光素子1と前記導電層2a・2bとを、異方性導電部材を介してフリップチップ実装する。
Example 4
Conductive layers 2a and 2b are formed in the same manner as in Example 1 except that the resist is patterned so that the openings are arranged in parallel at a pitch of 0.2 mm of □ 0.5 mm × 0.2 mm. Next, the light emitting element 1 and the conductive layers 2a and 2b are flip-chip mounted via an anisotropic conductive member.

本実施の形態では、前記異方性導電部材は、プラスチック粒子表面にNi薄膜を無電解メッキに形成した後、Au薄膜を置換メッキしてなる導電性粒子を、シリコーン樹脂中に5vol%添加されたものを用いているが、これに限定されず、熱可塑性又は熱硬化性を有する有機物又は無機物からなる接着剤中に導電性粒子が具備されているものであれば特に限定されない。また、発光素子1からの光を効率よく反射することが可能な導電性粒子を用いることが好ましい。具体的な導電性粒子として、Ni粒子や、プラスチックやシリカ等の粒子の表面にNiやAu等からなる金属コートを有するものを利用することができる。また、導電性粒子の含有量は、前記接着剤に対して0.3vol%〜1.2vol%が好ましく、これにより発光素子1を載置する際の加熱および加圧により容易に導通を取ることができる。 In the present embodiment, the anisotropic conductive member is formed by adding 5 vol% of conductive particles obtained by forming a Ni thin film on the plastic particle surface by electroless plating and then substituting the Au thin film into the silicone resin. However, the present invention is not limited to this, and there is no particular limitation as long as the conductive particles are provided in an adhesive made of an organic or inorganic material having thermoplasticity or thermosetting property. In addition, it is preferable to use conductive particles that can efficiently reflect light from the light-emitting element 1. Specific conductive particles that can be used include Ni particles and particles having a metal coat made of Ni, Au, or the like on the surface of particles such as plastic and silica. In addition, the content of the conductive particles is preferably 0.3 vol% to 1.2 vol% with respect to the adhesive, and thus, conduction can be easily achieved by heating and pressurization when the light emitting element 1 is placed. Can do.

最後に、前記導電層の中心部分にてダイシングすることにより、図4に示すような超薄型・小型化発光装置が得られる。ここで、各実施例において、ダイシングラインは、所望とする発光装置のサイズに合わせて、前記実施例1乃至3のように導電層の外周部であるシリコーン樹脂部分にてダイシングするか、実施例4のように導電性層上にてダイシングするか、選択することができる。 Finally, by dicing at the central portion of the conductive layer, an ultra-thin and miniaturized light emitting device as shown in FIG. 4 can be obtained. Here, in each embodiment, the dicing line is diced at the silicone resin portion which is the outer peripheral portion of the conductive layer, as in the first to third embodiments, or according to the size of the desired light emitting device. As shown in FIG. 4, dicing on the conductive layer can be selected.

本発明は、発光ダイオードや半導体レーザなどの発光素子を搭載させた発光装置として、各種インジケータ、光センサー、ディスプレイ、フォトカプラ、バックライト光源や光プリンタヘッドなどに利用可能である。   The present invention is applicable to various indicators, optical sensors, displays, photocouplers, backlight light sources, optical printer heads, and the like as light emitting devices equipped with light emitting elements such as light emitting diodes and semiconductor lasers.

図1(a)は、本実施の形態に係る発光装置を示す概略平面図であり、図1(b)は、図1(a)のA−A線における概略断面図である。FIG. 1A is a schematic plan view showing the light-emitting device according to the present embodiment, and FIG. 1B is a schematic cross-sectional view taken along the line AA in FIG. 図2(a)は、本実施の形態に係る発光装置を示す概略平面図であり、図2(b)は、図1(a)ののA−A線における概略断面図である。FIG. 2A is a schematic plan view showing the light-emitting device according to the present embodiment, and FIG. 2B is a schematic cross-sectional view taken along the line AA in FIG. 図3(a)は、本実施の形態に係る発光装置を示す概略平面図であり、図3(b)は、図3(a)のA−A線における概略断面図である。FIG. 3A is a schematic plan view showing the light-emitting device according to the present embodiment, and FIG. 3B is a schematic cross-sectional view taken along the line AA in FIG. 図4(a)は、本実施の形態に係る発光装置を示す概略平面図であり、図4(b)は、図4(a)のA−A線における概略断面図である。FIG. 4A is a schematic plan view showing the light emitting device according to the present embodiment, and FIG. 4B is a schematic cross-sectional view taken along the line AA in FIG.

1 発光素子
2a・2b 導電層
2c・2d 突出部
3 ワイヤ
4 透光性絶縁部材
5 ダイボンド部材
6 色変換部材
7 異方性導電部材
DESCRIPTION OF SYMBOLS 1 Light emitting element 2a * 2b Conductive layer 2c * 2d Protrusion part 3 Wire 4 Translucent insulating member 5 Die bond member 6 Color conversion member 7 Anisotropic conductive member

Claims (1)

発光素子と、該発光素子が載置されるもしくは前記発光素子と電気的に接続される複数の導電層と、前記発光素子を封止するとともに前記導電層を底面に有する透光性絶縁部材と、を有し、前記導電層は側面の一部に突出部を有することを特徴とする発光装置。 A light-emitting element, a plurality of conductive layers on which the light-emitting element is mounted or electrically connected to the light-emitting element, a translucent insulating member that seals the light-emitting element and has the conductive layer on the bottom surface And the conductive layer has a protrusion on a part of the side surface.
JP2013084833A 2013-04-15 2013-04-15 Light emitting device and method for manufacturing light emitting device Active JP5794251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013084833A JP5794251B2 (en) 2013-04-15 2013-04-15 Light emitting device and method for manufacturing light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013084833A JP5794251B2 (en) 2013-04-15 2013-04-15 Light emitting device and method for manufacturing light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005349709A Division JP2007157940A (en) 2005-12-02 2005-12-02 Light emitting device and method of manufacturing same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014224803A Division JP2015026869A (en) 2014-11-05 2014-11-05 Light emitting device and manufacturing method of the same

Publications (2)

Publication Number Publication Date
JP2013145921A true JP2013145921A (en) 2013-07-25
JP5794251B2 JP5794251B2 (en) 2015-10-14

Family

ID=49041524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013084833A Active JP5794251B2 (en) 2013-04-15 2013-04-15 Light emitting device and method for manufacturing light emitting device

Country Status (1)

Country Link
JP (1) JP5794251B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183362A (en) * 2016-03-28 2017-10-05 シャープ株式会社 Light-emitting device and image display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058924A (en) * 1998-08-06 2000-02-25 Shichizun Denshi:Kk Surface mounting-type light emitting diode and its manufacture
JP2002009196A (en) * 2000-06-20 2002-01-11 Kyushu Hitachi Maxell Ltd Manufacturing method of semiconductor device
JP2002064225A (en) * 2000-06-09 2002-02-28 Sanyo Electric Co Ltd Light application device and its manufacturing method, and lighting device using the light application device
JP2003174200A (en) * 2001-12-07 2003-06-20 Hitachi Cable Ltd Light emitting device and its manufacturing method, and lead frame used for manufacture the light emitting device
JP2005079329A (en) * 2003-08-29 2005-03-24 Stanley Electric Co Ltd Surface-mounting light emitting diode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058924A (en) * 1998-08-06 2000-02-25 Shichizun Denshi:Kk Surface mounting-type light emitting diode and its manufacture
JP2002064225A (en) * 2000-06-09 2002-02-28 Sanyo Electric Co Ltd Light application device and its manufacturing method, and lighting device using the light application device
JP2002009196A (en) * 2000-06-20 2002-01-11 Kyushu Hitachi Maxell Ltd Manufacturing method of semiconductor device
JP2003174200A (en) * 2001-12-07 2003-06-20 Hitachi Cable Ltd Light emitting device and its manufacturing method, and lead frame used for manufacture the light emitting device
JP2005079329A (en) * 2003-08-29 2005-03-24 Stanley Electric Co Ltd Surface-mounting light emitting diode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183362A (en) * 2016-03-28 2017-10-05 シャープ株式会社 Light-emitting device and image display device
US10381529B2 (en) 2016-03-28 2019-08-13 Sharp Kabushiki Kaisha Light-emitting device and display device

Also Published As

Publication number Publication date
JP5794251B2 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JP2007157940A (en) Light emitting device and method of manufacturing same
TWI487137B (en) Optical-semiconductor device and method for manufacturing the same
TWI495164B (en) Light emitting device
JP2012033855A (en) Led module, led package, wiring board, and manufacturing method therefor
JP6368924B2 (en) Semiconductor device
JP6171749B2 (en) Light emitting device and manufacturing method thereof
JP4857709B2 (en) Light emitting device
US20160190408A1 (en) Light emitting device
JP6776764B2 (en) Manufacturing method of light emitting device
US20240063348A1 (en) Method of manufacturing wavelength converting member and method of manufacturing light emitting device
US9755123B2 (en) Light emitting device and method of manufacturing the light emitting device
KR101945057B1 (en) Base for optical semiconductor device and method for preparing the same, and optical semiconductor device
JP5493549B2 (en) Light emitting device and manufacturing method thereof
JP5978631B2 (en) Light emitting device
US10615314B2 (en) Light-emitting device
JP6558389B2 (en) Lead frame
US10840420B2 (en) Method for manufacturing light emitting device
JP5794251B2 (en) Light emitting device and method for manufacturing light emitting device
JP6245286B2 (en) Optical semiconductor device and manufacturing method thereof
JP2015162623A (en) Method of manufacturing light-emitting device and light-emitting device
JP2015026869A (en) Light emitting device and manufacturing method of the same
JP2011035187A (en) Light emitting device, and method of manufacturing the same
JP2020092251A (en) Light-emitting device and manufacturing method thereof
JP5402264B2 (en) Light emitting device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130514

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150727

R150 Certificate of patent or registration of utility model

Ref document number: 5794251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250