JP2013131432A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2013131432A
JP2013131432A JP2011280943A JP2011280943A JP2013131432A JP 2013131432 A JP2013131432 A JP 2013131432A JP 2011280943 A JP2011280943 A JP 2011280943A JP 2011280943 A JP2011280943 A JP 2011280943A JP 2013131432 A JP2013131432 A JP 2013131432A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
capacity
battery
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011280943A
Other languages
Japanese (ja)
Other versions
JP5903556B2 (en
Inventor
忠義 ▲高▼橋
Tadayoshi Takahashi
Kanji Kawakami
幹児 川上
Toshie Wata
とし惠 綿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011280943A priority Critical patent/JP5903556B2/en
Publication of JP2013131432A publication Critical patent/JP2013131432A/en
Application granted granted Critical
Publication of JP5903556B2 publication Critical patent/JP5903556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a 1.5 V class nonaqueous electrolyte secondary battery using, as a positive electrode, lithium titanate excellent in overcharge and overdischarge characteristics.SOLUTION: The nonaqueous electrolyte secondary battery is formed by encapsulating a power generation element disposed so that a positive electrode and a negative electrode face each other through a separator in an outer sheath together with nonaqueous electrolyte. The positive electrode is composed of lithium titanate as an active material, conductive assistant and binder. As the binder, fluorine not-contained rubber or olefin resin such as styrene-butadiene rubber, ethylene methacrylic acid copolymer is used. The negative electrode is formed from a negative electrode in which lithium is previously occluded. Positive electrode capacity is smaller than negative electrode capacity and battery capacity is determined by the positive electrode.

Description

本発明は過放電特性、過充電特性に優れた、正極活物質がチタン酸リチウムである1.5V級非水電解液二次電池に関するものである。   The present invention relates to a 1.5 V class non-aqueous electrolyte secondary battery excellent in overdischarge characteristics and overcharge characteristics, wherein the positive electrode active material is lithium titanate.

近年、SRAMやRTCの駆動電圧の低下により、作動電圧が1.5Vで、低温での充放電特性に優れた二次電池が要望されている。この要望に対してニッケル水素電池などの従来の水溶液系二次電池では、低温環境下における電解液の凝固などの理由により対応できず、非水電解液二次電池が有望視されている。これに対応できる電池として、これまでに正極にチタン酸リチウムを、負極に炭素材料を組み合わせた非水電解液二次電池が検討されてきた。   In recent years, due to a decrease in the driving voltage of SRAM and RTC, a secondary battery having an operating voltage of 1.5 V and excellent charge / discharge characteristics at a low temperature has been demanded. In response to this demand, conventional aqueous secondary batteries such as nickel metal hydride batteries cannot cope with such reasons as the solidification of the electrolyte in a low temperature environment, and nonaqueous electrolyte secondary batteries are promising. As a battery that can cope with this, non-aqueous electrolyte secondary batteries in which lithium titanate is combined in the positive electrode and a carbon material in the negative electrode have been studied.

このチタン酸リチウムを正極に用いた非水電解液二次電池は、充放電サイクル性能には優れるが、過放電や過充電時に劣化が大きく長期信頼性が要求される様々な用途への展開が課題となっている。   This non-aqueous electrolyte secondary battery using lithium titanate as the positive electrode is excellent in charge / discharge cycle performance, but it can be used in various applications where long-term reliability is required due to large deterioration during overdischarge and overcharge. It has become a challenge.

特許文献1では、チタン酸リチウムを活物質とする正極、リチウムが吸蔵された炭素材料を含む負極からなる二次電池において、正極容量を負極容量に対して1.05〜1.20倍にすることで正極電位の低下を抑制し、過放電時や過充電時における容量劣化が抑制することが提案されている。   In Patent Document 1, in a secondary battery including a positive electrode using lithium titanate as an active material and a negative electrode including a carbon material in which lithium is occluded, the positive electrode capacity is 1.05-1.20 times the negative electrode capacity. Thus, it has been proposed to suppress the decrease in the positive electrode potential and suppress the capacity deterioration during overdischarge or overcharge.

特開平11−260412号公報JP-A-11-260412

しかしながら、本発明者らの検討によると、特許文献1の上記非水電解液二次電池においてもその効果は不十分であり、過放電時および過充電時に著しく容量劣化してしまうことがわかった。   However, according to the study by the present inventors, it has been found that the effect of the non-aqueous electrolyte secondary battery of Patent Document 1 is insufficient, and the capacity deteriorates significantly during overdischarge and overcharge. .

本発明は上記課題を解決し、過充電や過放電特性に優れたチタン酸リチウムを正極に用いた1.5V級の非水電解液二次電池を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems and to provide a 1.5 V class non-aqueous electrolyte secondary battery using lithium titanate excellent in overcharge and overdischarge characteristics as a positive electrode.

上記目的を達成するために本発明は、正極と負極とをセパレータを介して対抗配置した発電要素を非水電解液とともに外装体内に封入してなる非水電解液二次電池において、前記正極は活物質としてのチタン酸リチウムと、導電助剤およびバインダーからなり、前記バインダーとして、スチレンブタジエンゴム、エチレン・メタクリル酸共重合体などのフッ素を含有しないゴムまたはオレフィン系樹脂を用いており、負極には予めリチウムが吸蔵された負極からなり、正極容量が負極容量よりも小さく、電池容量が正極により決定されることを特徴とする非水電解液二次電池である。   In order to achieve the above object, the present invention provides a non-aqueous electrolyte secondary battery in which a power generation element in which a positive electrode and a negative electrode are opposed to each other via a separator is enclosed in a package together with a non-aqueous electrolyte. It consists of lithium titanate as an active material, a conductive additive, and a binder. As the binder, styrene-butadiene rubber, ethylene-methacrylic acid copolymer-free rubber or olefin resin is used, and the negative electrode Is a non-aqueous electrolyte secondary battery comprising a negative electrode in which lithium is previously occluded, a positive electrode capacity being smaller than a negative electrode capacity, and a battery capacity being determined by the positive electrode.

本発明によれば、チタン酸リチウム正極を用いた電池の過充電・過放電特性を著しく向上させることができ、様々な用途に対応することができる1.5V級非水電解液二次電池を得ることができる。   According to the present invention, a 1.5 V class non-aqueous electrolyte secondary battery that can remarkably improve the overcharge / overdischarge characteristics of a battery using a lithium titanate positive electrode and can be used for various applications is provided. Can be obtained.

本発明の一実施の形態における非水電解液二次電池の断面図Sectional drawing of the nonaqueous electrolyte secondary battery in one embodiment of this invention

本発明における第1の発明は、正極と負極とをセパレータを介して対抗配置した発電要素を非水電解液とともに外装体内に封入してなる非水電解液二次電池において、前記正極は活物質としてのチタン酸リチウムと、導電助剤およびバインダーからなり、前記バインダーとして、スチレンブタジエンゴム、エチレン・メタクリル酸共重合体などのフッ素を含有しないゴムまたはオレフィン系樹脂を用いており、負極には予めリチウムが吸蔵された負極からなり、正極容量が負極容量よりも小さく、電池容量が正極により決定されることを特徴とする非水電解液二次電池である。   According to a first aspect of the present invention, there is provided a non-aqueous electrolyte secondary battery in which a power generation element in which a positive electrode and a negative electrode are opposed to each other via a separator is enclosed in a package together with a non-aqueous electrolyte, wherein the positive electrode is an active material As the binder, a fluorine-free rubber or olefin resin such as styrene butadiene rubber or ethylene / methacrylic acid copolymer is used as the binder. A nonaqueous electrolyte secondary battery comprising a negative electrode in which lithium is occluded, a positive electrode capacity being smaller than a negative electrode capacity, and a battery capacity being determined by the positive electrode.

この構成とすることで、チタン酸リチウム正極を用いた電池の過充電・過放電特性を著しく向上させることができ、長期信頼性が要求される様々な用途への展開が可能となる。   By adopting this configuration, the overcharge / overdischarge characteristics of the battery using the lithium titanate positive electrode can be remarkably improved, and it can be developed for various uses that require long-term reliability.

本発明者らは、チタン酸リチウムと混合するバインダーの種類が正極の特性に大きく影響を与えることを確認した。バインダー材料としては、特許文献1にも記載されているようにフッ素系樹脂のPTFEが主に用いられている。このフッ素系樹脂は、リチウムとの反応電位が正極活物質であるチタン酸リチウムと同等かより低い電位にある。また、フッ素系樹脂はリチウムと反応することで、フッ化リチウムと炭素材料になり、大きく膨張する。放電により正極にリチウムが挿入されると活物質であるチタン酸リチウムだけでなく、バインダーのフッ素系樹脂と反応するため、正極の大幅な膨張やリチウムが消費されてしまい、結果として、電池容量の低下や、充放電サイクル性能が低下してしまう。チタン酸リチウム自身は体積膨張がほとんどなく、リチウムを消費する不可逆反応の小さい活物質であるが、その特徴を生かせていない。   The present inventors have confirmed that the type of binder mixed with lithium titanate greatly affects the characteristics of the positive electrode. As the binder material, as described in Patent Document 1, PTFE, which is a fluororesin, is mainly used. This fluororesin has a reaction potential with lithium that is equal to or lower than that of lithium titanate, which is a positive electrode active material. In addition, the fluorine-based resin reacts with lithium to become lithium fluoride and a carbon material, and expands greatly. When lithium is inserted into the positive electrode by discharge, it reacts with not only the active material lithium titanate but also the fluorine resin of the binder, so that the positive electrode is significantly expanded and lithium is consumed. Decrease and charge / discharge cycle performance will decrease. Although lithium titanate itself has little volume expansion and is an active material that consumes lithium and has a small irreversible reaction, it does not take advantage of its characteristics.

その為、正極容量を負極容量より大きくして(1.05〜1.20倍)、正極の電位を低下させず、バインダーとリチウムとの反応を抑制することができる。その結果として、不可逆容量が小さくなり、電極自身の膨張も抑制されて、充放電サイクル特性が向上する。課題としては、正極容量の5〜20%を使用しない為、体積当りのエネルギー効率が悪くなるという点があった。加えて、容量規制をしても、高温時の過放電特性や連続充電特性の劣化が進んでしまった。   Therefore, the positive electrode capacity is made larger than the negative electrode capacity (1.05 to 1.20 times), and the reaction between the binder and lithium can be suppressed without lowering the potential of the positive electrode. As a result, the irreversible capacity is reduced, the expansion of the electrode itself is suppressed, and the charge / discharge cycle characteristics are improved. As a problem, since 5 to 20% of the positive electrode capacity is not used, energy efficiency per volume is deteriorated. In addition, even if the capacity is restricted, the deterioration of the overdischarge characteristics and the continuous charge characteristics at high temperatures has progressed.

本発明では、正極容量を完全に有効活用でき、正極電位を下げることで負極の電位を上げない設計ができるため、高温時の過放電特性や連続充電特性の劣化が抑制される。加えて、体積当りのエネルギー効率も向上する。   In the present invention, the positive electrode capacity can be fully utilized effectively, and the negative electrode potential can be designed not to be increased by lowering the positive electrode potential, so that deterioration of overdischarge characteristics and continuous charge characteristics at high temperatures is suppressed. In addition, energy efficiency per volume is improved.

本発明における第2の発明は、前記負極が、Siと黒鉛の複合活物質からなることを特徴とする非水電解液二次電池である。負極の電位安定化については、単一の活物質を用いるよりも複合活物質を用いることが好ましい。Siと黒鉛はリチウムとの反応電位が同じ部分と異なる部分が存在する。その為、本発明の正極容量を大きくした電池においても、負極の電位安定性が向上し、高温時の過放電特性や連続充電特性の劣化を抑制することができる。   A second invention in the present invention is a non-aqueous electrolyte secondary battery, wherein the negative electrode is made of a composite active material of Si and graphite. For stabilizing the potential of the negative electrode, it is preferable to use a composite active material rather than a single active material. Si and graphite have portions where the reaction potential of lithium is the same and different. For this reason, even in a battery having a large positive electrode capacity according to the present invention, the potential stability of the negative electrode is improved, and deterioration of overdischarge characteristics and continuous charge characteristics at high temperatures can be suppressed.

本発明における第3の発明は、前記負極のSiと黒鉛の電気容量比においてSiの方が大きいことを特徴とする非水電解液二次電池である。黒鉛の反応電位は平坦な領域が多いが、Siの場合は反応電位が傾斜的なため、Siの方が黒鉛に比べて電位安定性が高く、高温時の過放電特性や連続充電特性が向上する。   According to a third aspect of the present invention, there is provided a nonaqueous electrolyte secondary battery characterized in that Si is larger in the electric capacity ratio of Si and graphite of the negative electrode. The reaction potential of graphite is often flat, but in the case of Si, the reaction potential is inclined. Therefore, Si has higher potential stability than graphite, and it improves overdischarge characteristics and continuous charge characteristics at high temperatures. To do.

特に反応面積が大きい非晶質相と結晶質合金相からなるSiを用いると効果が大きい。また、Siと黒鉛の比率は質量比で60:40〜90:10の範囲が好ましく、Siの比率を大きくすることが好ましい。   In particular, when Si comprising an amorphous phase and a crystalline alloy phase having a large reaction area is used, the effect is great. Further, the ratio of Si to graphite is preferably in the range of 60:40 to 90:10 by mass ratio, and it is preferable to increase the ratio of Si.

非晶質相と結晶質合金相からなるSiを合成するメカニカルアロイング法は、ボールミルを用いて原料混合物を機械的に撹拌、混合し、原料混合物にエネルギーを与えて固相反応により合金粉末を作製する方法である。メカニカルアロイング法で用いるボールミルとしては、転動ボールミル、振動ボールミル、遊星ボールミルがあげられる。   The mechanical alloying method for synthesizing Si consisting of an amorphous phase and a crystalline alloy phase involves mechanically stirring and mixing the raw material mixture using a ball mill, and applying energy to the raw material mixture to produce the alloy powder by solid-phase reaction. It is a manufacturing method. Examples of the ball mill used in the mechanical alloying method include a rolling ball mill, a vibration ball mill, and a planetary ball mill.

メカニカルアロイング法により得られるSi非晶質相は、広角X線回折法により得られるX線回折像において、Siの(111)面の回折ピークが存在しなくなっており、最大結晶子サイズが200nm以下になっている。   The Si amorphous phase obtained by the mechanical alloying method has no diffraction peak on the Si (111) plane in the X-ray diffraction image obtained by the wide-angle X-ray diffraction method, and the maximum crystallite size is 200 nm. It is as follows.

前記Siと合金化可能な金属としては、Ti、Co、Ni、Cu、Mg、Zr、V、Mo、W、MnおよびFeを用いることができる。負極の電気伝導性の観点からは電子伝導性の高いSiとTiの結晶質合金相が好ましく、組成式TiSiで表される金属間化合物相が特に好ましい。 Ti, Co, Ni, Cu, Mg, Zr, V, Mo, W, Mn, and Fe can be used as the metal that can be alloyed with Si. From the viewpoint of electrical conductivity of the negative electrode, a crystalline alloy phase of Si and Ti having high electron conductivity is preferable, and an intermetallic compound phase represented by the composition formula TiSi 2 is particularly preferable.

Siと合金化させる金属元素Mとの質量比が10:90〜40:60であることが好ましい。また、三元合金については、Siと、合金化元素M1と合金化元素M2と、の質量比が10:90(M1とM2の質量比は任意)〜40:60(M1とM2の質量比は任意)であることが好ましい。   The mass ratio of Si to the metal element M to be alloyed is preferably 10:90 to 40:60. For the ternary alloy, the mass ratio of Si, the alloying element M1 and the alloying element M2 is 10:90 (the mass ratio of M1 and M2 is arbitrary) to 40:60 (the mass ratio of M1 and M2) Is optional).

以下、本発明の好ましい実施の形態について説明する。なお、以下に示す実施の形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。   Hereinafter, preferred embodiments of the present invention will be described. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.

図1は本発明の一実施の形態による非水電解液二次電池の一例であるコイン型リチウム二次電池の断面図である。   FIG. 1 is a cross-sectional view of a coin-type lithium secondary battery which is an example of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.

発電要素を収容するコイン型の電池外装体の容器は、耐食性に優れたステンレス鋼からなる正極缶1と、同様にステンレス鋼の負極缶2、及び正極缶1と負極缶2とを絶縁する機能に加え、物理的に発電要素を液蜜的に電池容器内に密閉するためのガスケット3を有している。   The coin-type battery case container that houses the power generation element has a function of insulating the positive electrode can 1 made of stainless steel with excellent corrosion resistance, the stainless steel negative electrode can 2, and the positive electrode can 1 and the negative electrode can 2. In addition, it has a gasket 3 for physically sealing the power generation element in the battery container.

正極缶1と負極缶2との間に介在されるガスケット3には、材料としてポリプロピレン樹脂やポリフェニレンスルフイド、ポリエーテルエーテルケトンなどのエンジニアリングプラスチックやフッ素樹脂からなるものを使用することができる。このガスケット3と正極缶1及び負極缶2との間にはシーラント(図示せず)が形成されている。   For the gasket 3 interposed between the positive electrode can 1 and the negative electrode can 2, a material made of engineering plastics such as polypropylene resin, polyphenylene sulfide, polyether ether ketone, or fluororesin can be used. A sealant (not shown) is formed between the gasket 3 and the positive electrode can 1 and the negative electrode can 2.

シーラントとしては、例えばブチルゴムをトルエンで希釈した溶液を塗布し、トルエンを蒸発させることによりブチルゴム膜からなるシーラントを形成することができる。   As the sealant, for example, a sealant made of a butyl rubber film can be formed by applying a solution obtained by diluting butyl rubber with toluene and evaporating the toluene.

正極4は、活物質としてのチタン酸リチウムに、導電剤、バインダーを添加し、純水を加えて湿式混合した後、乾燥して得られた合剤粉末を成型したものである。   The positive electrode 4 is obtained by molding a mixture powder obtained by adding a conductive agent and a binder to lithium titanate as an active material, adding pure water, performing wet mixing, and drying.

正極4の導電剤としては、カーボンブラック、アセチレンブラック、デンカブラックからなる群より選択される少なくとも一種が好ましい。加えて、天然黒鉛、人造黒鉛などを混合して用いることができる。導電剤の配合量としては、3〜10質量%の範囲である。   The conductive agent for the positive electrode 4 is preferably at least one selected from the group consisting of carbon black, acetylene black, and denka black. In addition, natural graphite, artificial graphite and the like can be mixed and used. As a compounding quantity of a electrically conductive agent, it is the range of 3-10 mass%.

正極4のバインダーとしては、フッ素を含有しないゴムまたはオレフィン系樹脂が用い
られ、例えばゴムとしてニトリルブタジエンゴム、メタクリレート・ブタジエンゴム、スチレンブタジエンゴム、オレフィン系樹脂としてエチレン・メタクリル酸共重合体などを用いることができる。
As the binder of the positive electrode 4, a fluorine-free rubber or olefin resin is used. For example, nitrile butadiene rubber, methacrylate / butadiene rubber, styrene butadiene rubber is used as rubber, and ethylene / methacrylic acid copolymer is used as olefin resin. be able to.

負極5としては天然黒鉛、人造黒鉛、難黒鉛化性炭素などの炭素材料を活物質に、カーボンブラックを導電剤に、バインダーにポリフッ化ビニリデン(PVDF)からなる合剤やシート状のLi―Al合金やシート状のLiーSi合金などがあげられる。特に、Siの非晶質相とSiとTiの結晶質合金相からなるSiと、黒鉛を活物質に、導電剤にカーボンブラック、バインダーに非架橋型のポリアクリル酸を湿式混合した後、乾燥して得られた合剤粉末を成型したものを用いることが好ましい。   As the negative electrode 5, a carbon material such as natural graphite, artificial graphite, or non-graphitizable carbon is used as an active material, carbon black is used as a conductive agent, and a binder or polyvinylidene fluoride (PVDF) is used as a binder. Examples thereof include an alloy and a sheet-like Li-Si alloy. In particular, Si is composed of an amorphous phase of Si, a crystalline alloy phase of Si and Ti, graphite as an active material, carbon black as a conductive agent, and non-crosslinked polyacrylic acid as a binder, followed by drying. It is preferable to use a mixture powder obtained by molding.

この黒鉛としては、天然黒鉛、人造黒鉛などを用いることができる。   As this graphite, natural graphite, artificial graphite or the like can be used.

正極4と負極5との間に配置されるセパレータ6には、図示していない非水電解液が充填されている。正極集電体7は正極缶1の内面にカーボン塗料を塗布することで形成されている。   A separator 6 disposed between the positive electrode 4 and the negative electrode 5 is filled with a non-aqueous electrolyte (not shown). The positive electrode current collector 7 is formed by applying a carbon paint on the inner surface of the positive electrode can 1.

多孔質絶縁体である不織布、フィルムなどのセパレータ6の材料としては、ポロプロピレン、ポリエチレンなどのオレフィン系ポリマー、ポリブチレンテレフタレート、ポリフェニレンスルフイド、ポリエーテルエーテルケトンなどのエンジニアリングプラスチック、無機のガラス繊維などが使用できる。   Examples of the material of the separator 6 such as a nonwoven fabric and a film that are porous insulators include olefin polymers such as polypropylene and polyethylene, engineering plastics such as polybutylene terephthalate, polyphenylene sulfide, and polyether ether ketone, and inorganic glass fibers. Etc. can be used.

非水電解液を構成する溶質としては、LiPF、LiBF、LiClO、LiCFSO、LiAsF、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)などの単体あるいは複数成分を混合して使用することができる。 Solutes constituting the non-aqueous electrolyte include LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN ( A single component such as CF 3 SO 2 ) (C 4 F 9 SO 2 ) or a mixture of a plurality of components can be used.

また、非水電解液を構成する溶媒として、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、スルホラン、ジメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキソラン、γ−ブチロラクトンなどの単体または複数成分を使用することができるが、これに限定されるものではない。   Further, as a solvent constituting the non-aqueous electrolyte, propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, sulfolane, dimethoxyethane, diethoxyethane, tetrahydrofuran, dioxolane, γ-butyrolactone However, the present invention is not limited to this.

エチレンサルフィド、1,3プロパンサルトン、1,4ブタンスルトン、スルホレン、ビニレンカーボネート、ビニルエチレンカボネートを有機電解液に対して1〜10質量%添加して用いることができる。   1 to 10% by mass of ethylene sulfide, 1,3 propane sultone, 1,4 butane sultone, sulfolene, vinylene carbonate and vinyl ethylene carbonate can be added to the organic electrolyte.

以下、本発明の好ましい実施例について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

(実施例1)
(発明電池1の作製)
図1は、本発明の実施例で用いた厚さ1.4mm、直径6.8mmの非水電解液二次電池の断面図である。
Example 1
(Production of Inventive Battery 1)
FIG. 1 is a cross-sectional view of a nonaqueous electrolyte secondary battery having a thickness of 1.4 mm and a diameter of 6.8 mm used in an example of the present invention.

正極4は、水酸化リチウムとアナターゼ形の二酸化チタンとの混合物を850℃で10時間焼成して得られたチタン酸リチウムを活物質に、導電剤として比表面積が800m/gのカーボンブラックとpHが10のエチレン・メタクリル酸共重合体を分散させた水溶液系バインダーとを、純水を混合したのち水分を乾燥させて正極合剤を得た。正極合剤は、活物質、導電剤、バインダーを85:7:8の質量比の合剤とした。この合剤を、直
径4mm、厚さ0.7mmのペレット状に成型した後、150℃中で12時間乾燥した。得られたペレット状の正極材料は、正極缶1の内面にカーボン塗料を塗布することで形成された正極集電体7に接触するようにしてある。
The positive electrode 4 is composed of lithium titanate obtained by firing a mixture of lithium hydroxide and anatase-type titanium dioxide at 850 ° C. for 10 hours as an active material, carbon black having a specific surface area of 800 m 2 / g as a conductive agent, A pure water was mixed with an aqueous binder in which an ethylene / methacrylic acid copolymer having a pH of 10 was dispersed, and then water was dried to obtain a positive electrode mixture. As the positive electrode mixture, an active material, a conductive agent, and a binder were mixed at a mass ratio of 85: 7: 8. This mixture was molded into a pellet having a diameter of 4 mm and a thickness of 0.7 mm, and then dried at 150 ° C. for 12 hours. The obtained pellet-like positive electrode material is in contact with the positive electrode current collector 7 formed by applying a carbon paint on the inner surface of the positive electrode can 1.

負極5は、活物質として(002)面の格子定数が3.35の天然黒鉛と、導電材として比表面積が800m/gのカーボンブラックと、pHが2のポリアクリル酸からなる水溶液系バインダーとを、純水を加えて湿式混合したのち、水分を乾燥させて負極合剤を得た。合剤組成は、活物質:導電剤のカーボンブラック:ポリアクリル酸の質量比が90:5:5である。負極合剤を、直径4mm、厚さ0.3mmのペレット状に成型した後、150°C中で12時間乾燥して負極5を得た。 The negative electrode 5 is an aqueous binder composed of natural graphite having a (002) plane lattice constant of 3.35 as an active material, carbon black having a specific surface area of 800 m 2 / g as a conductive material, and polyacrylic acid having a pH of 2. After adding pure water and wet mixing, the water was dried to obtain a negative electrode mixture. In the mixture composition, the mass ratio of carbon black: polyacrylic acid in the active material: conductive agent is 90: 5: 5. The negative electrode mixture was molded into a pellet shape having a diameter of 4 mm and a thickness of 0.3 mm, and then dried at 150 ° C. for 12 hours to obtain a negative electrode 5.

リチウム金属のシートを負極の封口板の表面に圧着した。電池組み立て時に、非水電解液を注入することによりリチウムと負極5が短絡した状態になり、電気化学的にリチウムが負極5の天然黒鉛に吸蔵されて、CLiで表される層間化合物を得た。リチウム金属のシートはCLiが形成される理論容量に相当する容量になるよう外径と厚みの形状を設定した。 A lithium metal sheet was pressure-bonded to the surface of the negative electrode sealing plate. When the battery is assembled, by injecting a non-aqueous electrolyte, lithium and the negative electrode 5 are short-circuited, and lithium is occluded electrochemically in the natural graphite of the negative electrode 5 to form an intercalation compound represented by C 6 Li. Obtained. The outer diameter and thickness of the lithium metal sheet were set so as to have a capacity corresponding to the theoretical capacity in which C 6 Li was formed.

正極4と負極5との間に配置されるセパレータ6には、ポリプロピレン製のフィルムとポリプロピレン製の不織布の2枚からなるものを使用し、ポリプロピレン製のフィルムが負極5側に、ポリプロピレン製の不織布が正極4側に対向するように配置した。   The separator 6 disposed between the positive electrode 4 and the negative electrode 5 is made of a polypropylene film and a polypropylene non-woven fabric. The polypropylene non-woven fabric is placed on the negative electrode 5 side. Was arranged so as to face the positive electrode 4 side.

プロピレンカーボネート(PC)とエチレンカーボネート(EC)と1,2・ジメトキシエタン(DME)の体積比が3:2:5の混合溶媒に溶質として1molのLiN(CFSOを溶解させた非水電解液を用いた。この非水電解液は正極缶1、負極缶2とガスケット3からなる電池容器内のセパレータ6に含浸されている。正極容量/負極容量の容量比は0.95である。 1 mol of LiN (CF 3 SO 2 ) 2 was dissolved as a solute in a mixed solvent having a volume ratio of propylene carbonate (PC), ethylene carbonate (EC) and 1,2 · dimethoxyethane (DME) of 3: 2: 5. A non-aqueous electrolyte was used. This non-aqueous electrolyte is impregnated in a separator 6 in a battery container composed of a positive electrode can 1, a negative electrode can 2 and a gasket 3. The capacity ratio of positive electrode capacity / negative electrode capacity is 0.95.

このようにして得られた非水電解液二次電池を、本実施例1に係る発明電池1とした。   The non-aqueous electrolyte secondary battery thus obtained was designated as an inventive battery 1 according to Example 1.

(発明電池2の作製)
発明電池1の正極容量/負極容量の容量比を0.90にした以外は同構成である発明電池2を作製した。
(Production of Inventive Battery 2)
Inventive battery 2 having the same configuration was prepared except that the capacity ratio of positive electrode capacity / negative electrode capacity of inventive battery 1 was 0.90.

(発明電池3の作製)
発明電池1の正極容量/負極容量の容量比を0.85にした以外は同構成である発明電池3を作製した。
(Production of Inventive Battery 3)
Inventive battery 3 having the same configuration was produced except that the capacity ratio of positive electrode capacity / negative electrode capacity of inventive battery 1 was changed to 0.85.

(発明電池4の作製)
発明電池1の正極容量/負極容量の容量比を0.80にした以外は同構成である発明電池4を作製した。
(Production of Inventive Battery 4)
Inventive battery 4 having the same configuration was prepared except that the capacity ratio of positive electrode capacity / negative electrode capacity of inventive battery 1 was 0.80.

(発明電池5の作製)
発明電池1の正極容量/負極容量の容量比を0.75にした以外は同構成である発明電池5を作製した。
(Production of Inventive Battery 5)
Inventive battery 5 having the same configuration was prepared except that the capacity ratio of positive electrode capacity / negative electrode capacity of inventive battery 1 was changed to 0.75.

(発明電池6の作製)
発明電池1の正極容量/負極容量の容量比を0.70にした以外は同構成である発明電池6を作製した。
(Production of Invention Battery 6)
Inventive battery 6 having the same configuration was prepared except that the capacity ratio of positive electrode capacity / negative electrode capacity of inventive battery 1 was 0.70.

(発明電池7の作製)
発明電池1の負極活物質をSiにした以外は同構成である発明電池7を作製した。
(Production of Inventive Battery 7)
Inventive battery 7 having the same configuration was prepared except that the negative electrode active material of inventive battery 1 was changed to Si.

ここで負極活物質のSiはSiの非晶質相とSiとTiの結晶質合金相からなるものである。非晶質のSiを含むTi−Si合金は、母合金ドープ法によりSiの1cmあたりP原子を1×1018個ドープしたSiウェハを、乳鉢で砕いて平均粒径1mmの粉末とした。また、母合金ドープ法によりSiの1cmあたりB原子を1×1018個ドープしたSiウェハを、乳鉢で砕いて平均粒径1mmの粉末とした。 Here, Si of the negative electrode active material is composed of an amorphous phase of Si and a crystalline alloy phase of Si and Ti. For the Ti—Si alloy containing amorphous Si, a Si wafer doped with 1 × 10 18 P atoms per cm 3 of Si by a mother alloy doping method was crushed with a mortar to obtain a powder having an average particle diameter of 1 mm. Further, a Si wafer doped with 1 × 10 18 B atoms per 1 cm 3 of Si by a mother alloy doping method was crushed in a mortar to obtain a powder having an average particle diameter of 1 mm.

このN型半導体とP型半導体のSi粉末を質量比で10:90で混合した1.5kgと、平均粒径0.5mmのTi粉末1kgと、1インチ径のステンレス鋼製ボール300kgとを、内容積95リットルのステンレス鋼製の振動ボールミル(商品コード:FV−30、中央加工機社製)の容器内に入れて蓋をした。   1.5 kg of this N-type semiconductor and P-type semiconductor Si powder mixed at a mass ratio of 10:90, 1 kg of Ti powder with an average particle size of 0.5 mm, and 300 kg of 1 inch stainless steel balls, The container was put in a container of a stainless steel vibrating ball mill (product code: FV-30, manufactured by Chuo Kaoki Co., Ltd.) having an internal volume of 95 liters and covered.

容器内を減圧し、Arガスを容器内が1気圧になるまで導入した。次いで、振動ボールミルの振幅を8mm、駆動モータの回転数を1200rpmにそれぞれ設定して、20時間メカニカルアロイングを行い、負極活物質として用いるTi37wt%−Si63wt%合金粉末を作製した。   The inside of the container was depressurized, and Ar gas was introduced until the inside of the container reached 1 atm. Next, the amplitude of the vibration ball mill was set to 8 mm and the rotational speed of the drive motor was set to 1200 rpm, respectively, and mechanical alloying was performed for 20 hours to produce a Ti 37 wt% -Si 63 wt% alloy powder used as a negative electrode active material.

波長1.5405ÅのCuKα線を線源として、広角X線回折装置(商品コード:RINT−2500、理学電機社製)を用いて、回折角2θ=10°〜80°の範囲における回折強度を測定した。Siの(111)面に帰属する回折角付近におけるピークの有無を調べたところ、ピークは存在しなかった。   Using a wide angle X-ray diffractometer (product code: RINT-2500, manufactured by Rigaku Corporation) using a CuKα ray having a wavelength of 1.5405 mm as a radiation source, the diffraction intensity in a range of diffraction angle 2θ = 10 ° to 80 ° is measured. did. When the presence or absence of a peak near the diffraction angle attributed to the (111) plane of Si was examined, no peak was present.

また、得られた合金粉末をTEM(透過型電子顕微鏡)を用いて観察したところ、その最大結晶子サイズは40nmであり、平均結晶子サイズは10nmであった。Siの非晶質相とTiとSiの合金相からなる活物質が得られた。   Moreover, when the obtained alloy powder was observed using TEM (transmission electron microscope), the maximum crystallite size was 40 nm and the average crystallite size was 10 nm. An active material comprising an amorphous phase of Si and an alloy phase of Ti and Si was obtained.

(比較電池Aの作製)
発明電池1の正極容量/負極容量の容量比を1.05にした以外は同構成である比較電池Aを作製した。
(Production of comparative battery A)
Comparative battery A having the same configuration was prepared except that the capacity ratio of positive electrode capacity / negative electrode capacity of Invention Battery 1 was 1.05.

(比較電池Bの作製)
発明電池1の正極容量/負極容量の容量比を1.10にした以外は同構成である比較電池Bを作製した。
(Production of comparative battery B)
A comparative battery B having the same configuration was prepared except that the capacity ratio of positive electrode capacity / negative electrode capacity of the inventive battery 1 was 1.10.

(比較電池Cの作製)
発明電池1の正極容量/負極容量の容量比を1.20にした以外は同構成である比較電池Cを作製した。
(Production of comparative battery C)
A comparative battery C having the same configuration was prepared except that the capacity ratio of positive electrode capacity / negative electrode capacity of the inventive battery 1 was 1.20.

(比較電池Dの作製)
発明電池1の正極のバインダーとしてポリテトラフルオロエチレン(PTFE)を用いた以外は同構成である比較電池Dを作製した。
(Production of comparative battery D)
A comparative battery D having the same structure was prepared except that polytetrafluoroethylene (PTFE) was used as the binder of the positive electrode of the inventive battery 1.

(比較電池Eの作製)
発明電池1の正極のバインダーとして4フッ化エチレン・六フッ化プロピレン共重合体(FEP)を用いた以外は同構成である比較電池Eを作製した。
(Production of comparative battery E)
A comparative battery E having the same structure was prepared except that tetrafluoroethylene / hexafluoropropylene copolymer (FEP) was used as the binder of the positive electrode of the inventive battery 1.

発明電池1〜7と比較電池A〜Eについて、初期充放電容量を確認した。まず、0.1mAの定電流で0.8Vまで1サイクル目の放電を行った。続いて、2サイクル目として0.1mAの定電流で2.0Vまで充電後、0.5Vまで放電した。こうして得られた2
サイクル目の放電容量を発明電池1の初期充放電容量の相対値として100とした。また、発明電池2〜7と比較電池A〜Eの容量については発明電池1を基準とした相対値として初期充放電容量を求めた。
The initial charge / discharge capacities of the inventive batteries 1 to 7 and the comparative batteries A to E were confirmed. First, a first cycle discharge was performed to 0.8 V with a constant current of 0.1 mA. Subsequently, as the second cycle, the battery was charged to 2.0 V with a constant current of 0.1 mA and then discharged to 0.5 V. 2 thus obtained
The discharge capacity at the cycle was set to 100 as the relative value of the initial charge / discharge capacity of the inventive battery 1. Moreover, about the capacity | capacitance of invention battery 2-7 and comparative battery AE, initial stage charge / discharge capacity was calculated | required as a relative value on the basis of invention battery 1. FIG.

充放電サイクル試験は初期放電容量確認と同様の条件で100回充放電を行い、放電容量を確認した。   The charge / discharge cycle test was performed 100 times under the same conditions as the initial discharge capacity confirmation, and the discharge capacity was confirmed.

また、0.1mAの定電流で0Vまで放電して過放電状態にした後、30KΩの放電抵抗を接続して完全放電状態で60℃の環境槽に保存した。100日経過後に、環境槽から室温環境下に出して放電抵抗を取り除き、0.1mAの定電流で2.0Vまで充電した後、0.1mAの定電流で0.5Vまで放電して過放電後の放電容量を測定した。   Moreover, after discharging to 0V with a constant current of 0.1 mA to make it an overdischarged state, a 30 KΩ discharge resistor was connected and stored in an environmental tank at 60 ° C. in a completely discharged state. After 100 days, remove the discharge resistance from the environmental tank to room temperature, charge to 2.0 V with a constant current of 0.1 mA, discharge to 0.5 V with a constant current of 0.1 mA, and overdischarge. The subsequent discharge capacity was measured.

過充電評価は、初期容量確認後に0.1mAの定電流で2.0Vまで放電した後、60℃の環境槽に入れて2.0Vの電圧を連続印加した状態で保存した。100日経過後に、環境槽から出して、0.1mAの定電流で0.5Vまで放電して過充電後の放電容量を測定した。   In the overcharge evaluation, after the initial capacity was confirmed, the battery was discharged to 2.0 V at a constant current of 0.1 mA, and then stored in a state where a voltage of 2.0 V was continuously applied in a 60 ° C. environmental tank. After 100 days, the battery was taken out of the environmental tank, discharged to 0.5 V with a constant current of 0.1 mA, and the discharge capacity after overcharging was measured.

初期充放電容量、充放電サイクル後の放電容量、過放電後の放電容量、過充電後の放電容量の結果を(表1)に示す。それぞれ初期充放電容量を100とし、相対値で示した。   Table 1 shows the results of the initial charge / discharge capacity, the discharge capacity after the charge / discharge cycle, the discharge capacity after overdischarge, and the discharge capacity after overcharge. The initial charge / discharge capacity was set to 100, and the relative value was shown.

正極のバインダーとしてフッ素を含有しないエチレン・メタクリル酸共重合体を用い、正極容量が負極容量よりも小さい発明電池1〜7については、正極に起因する特性劣化が抑制されることにより、充放電サイクル後、60℃の過放電後と過充電後において高い放電容量を維持することができた。   For the inventive batteries 1 to 7 using an ethylene / methacrylic acid copolymer containing no fluorine as the binder of the positive electrode and having a positive electrode capacity smaller than the negative electrode capacity, the charge / discharge cycle is suppressed by suppressing the deterioration of characteristics due to the positive electrode. Thereafter, a high discharge capacity could be maintained after 60 ° C. overdischarge and after overcharge.

正極のバインダーとして、フッ素を含有しないエチレン・メタクリル酸共重合体を用い、正極容量が負極容量よりも大きい比較電池A〜Cについては、正極に起因する特性劣化が軽減されるものの、負極の劣化により、充放電サイクル後、60℃の過放電後と過充電後において放電容量が低下した。   As a positive electrode binder, an ethylene / methacrylic acid copolymer that does not contain fluorine is used. For comparative batteries A to C having a positive electrode capacity larger than the negative electrode capacity, the deterioration of the characteristics due to the positive electrode is reduced. Thus, after the charge / discharge cycle, the discharge capacity decreased after overdischarge at 60 ° C. and after overcharge.

正極のバインダーとして、フッ素を含有するポリテトラフルオロエチレン、4フッ化エチレン・六フッ化プロピレン共重合体を用い、正極容量が負極容量よりも小さい比較電池D,Eについては、正極のバインダーに起因する劣化により充放電サイクル後、60℃の過放電後と過充電後において放電容量が著しく低下した。   As the positive electrode binder, polytetrafluoroethylene / tetrafluoroethylene / tetrafluoroethylene / hexafluoropropylene copolymer containing fluorine is used, and the comparative batteries D and E whose positive electrode capacity is smaller than the negative electrode capacity are caused by the positive electrode binder. As a result of the deterioration, the discharge capacity significantly decreased after the overdischarge at 60 ° C. and after the overcharge after the charge / discharge cycle.

(実施例2)
(発明電池8の作製)
発明電池1の負極に黒鉛とSiの容量比が7:3になるように配合された複合活物質以外は同構成である発明電池8を作製した。
(Example 2)
(Production of Invention Battery 8)
Inventive battery 8 having the same structure was prepared except for the composite active material blended in the negative electrode of inventive battery 1 so that the capacity ratio of graphite and Si was 7: 3.

発明電池8について実施例1と同様に充放電サイクル、過放電、過充電試験を行った。その結果を表2に示す。   The inventive battery 8 was subjected to charge / discharge cycles, overdischarge and overcharge tests in the same manner as in Example 1. The results are shown in Table 2.

負極に複合活物質を用いた発明電池8では、若干の特性の向上が見られた。   In invention battery 8 using a composite active material for the negative electrode, a slight improvement in characteristics was observed.

(実施例3)
(発明電池9の作製)
発明電池1の負極に黒鉛とSiの容量比が6:4になるように配合された複合活物質以外は同構成である発明電池9を作製した。
(Example 3)
(Production of Invention Battery 9)
Inventive battery 9 having the same structure was prepared except for the composite active material blended in the negative electrode of inventive battery 1 so that the capacity ratio of graphite and Si was 6: 4.

(発明電池10の作製)
発明電池1の負極に黒鉛とSiの容量比が5:5になるように配合された複合活物質以外は同構成である発明電池10を作製した。
(Production of Invention Battery 10)
Inventive battery 10 having the same configuration was prepared except for the composite active material blended in the negative electrode of inventive battery 1 so that the capacity ratio of graphite and Si was 5: 5.

(発明電池11の作製)
発明電池1の負極に黒鉛とSiの容量比が4:6になるように配合された複合活物質以外は同構成である発明電池11を作製した。
(Production of Invention Battery 11)
Inventive battery 11 having the same structure was prepared except for the composite active material blended in the negative electrode of inventive battery 1 so that the capacity ratio of graphite and Si was 4: 6.

(発明電池12の作製)
発明電池1の負極に黒鉛とSiの容量比が3:7になるように配合された複合活物質以外は同構成である発明電池12を作製した。
(Production of Invention Battery 12)
Inventive battery 12 having the same structure was prepared except for the composite active material blended in the negative electrode of inventive battery 1 so that the capacity ratio of graphite and Si was 3: 7.

(発明電池13の作製)
発明電池1の負極に黒鉛とSiの容量比が1:9になるように配合された複合活物質以外は同構成である発明電池13を作製した。
(Production of Invention Battery 13)
Inventive battery 13 having the same configuration was prepared except for the composite active material blended in the negative electrode of inventive battery 1 so that the capacity ratio of graphite and Si was 1: 9.

発明電池9〜13について実施例1と同様に充放電サイクル、過放電、過充電試験を行った。その結果を表3に示す。   Inventive batteries 9 to 13 were subjected to charge / discharge cycles, overdischarge and overcharge tests in the same manner as in Example 1. The results are shown in Table 3.

前記負極のSiと黒鉛の容量比がSiの方が大きくなるほど、特性において更に向上が見られた。   As the capacity ratio between Si and graphite of the negative electrode was increased, the characteristics were further improved.

充放電サイクル性能、過充電、過放電特性に優れた1.5V級非水電解液二次電池を提供することで、長期間に渡って使用される様々な機器の電源としての用途に対応することができ、産業上の利用価値は非常に高い。   By providing a 1.5V class non-aqueous electrolyte secondary battery with excellent charge / discharge cycle performance, overcharge, and overdischarge characteristics, it can be used as a power source for various devices used over a long period of time. The industrial utility value is very high.

1 正極缶
2 負極缶
3 ガスケット
4 正極
5 負極
6 セパレータ
7 正極集電体
DESCRIPTION OF SYMBOLS 1 Positive electrode can 2 Negative electrode can 3 Gasket 4 Positive electrode 5 Negative electrode 6 Separator 7 Positive electrode collector

Claims (3)

正極と負極とをセパレータを介して対抗配置した発電要素を非水電解液とともに外装体内に封入してなる非水電解液二次電池において、前記正極は活物質としてのチタン酸リチウムと、導電助剤およびバインダーからなり、前記バインダーとして、スチレンブタジエンゴム、エチレン・メタクリル酸共重合体などのフッ素を含有しないゴムまたはオレフィン系樹脂を用いており、負極には予めリチウムが吸蔵された負極からなり、正極容量が負極容量よりも小さく、電池容量が正極により決定されることを特徴とする非水電解液二次電池。 In a non-aqueous electrolyte secondary battery in which a power generation element in which a positive electrode and a negative electrode are opposed to each other via a separator is enclosed in a package together with a non-aqueous electrolyte, the positive electrode includes lithium titanate as an active material, and a conductive assistant. It comprises an agent and a binder, and as the binder, a fluorine-free rubber such as styrene butadiene rubber or ethylene / methacrylic acid copolymer or an olefin-based resin is used, and the negative electrode includes a negative electrode in which lithium is previously occluded, A non-aqueous electrolyte secondary battery, wherein the positive electrode capacity is smaller than the negative electrode capacity, and the battery capacity is determined by the positive electrode. 負極が、Siと黒鉛の複合活物質からなることを特徴とする請求項1記載の非水電解液二次電池。 2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the negative electrode is made of a composite active material of Si and graphite. 前記負極のSiと黒鉛の電気容量比においてSiの方が大きいことを特徴する請求項2記載の非水電解液二次電池。 The nonaqueous electrolyte secondary battery according to claim 2, wherein Si is larger in an electric capacity ratio of Si and graphite of the negative electrode.
JP2011280943A 2011-12-22 2011-12-22 Non-aqueous electrolyte secondary battery Active JP5903556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011280943A JP5903556B2 (en) 2011-12-22 2011-12-22 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011280943A JP5903556B2 (en) 2011-12-22 2011-12-22 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2013131432A true JP2013131432A (en) 2013-07-04
JP5903556B2 JP5903556B2 (en) 2016-04-13

Family

ID=48908820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011280943A Active JP5903556B2 (en) 2011-12-22 2011-12-22 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5903556B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098213A1 (en) * 2014-12-17 2016-06-23 日産自動車株式会社 Negative-electrode active material for electrical device, and electrical device using same
JPWO2015111187A1 (en) * 2014-01-24 2017-03-23 日産自動車株式会社 Electrical device
US10535870B2 (en) 2014-01-24 2020-01-14 Nissan Motor Co., Ltd. Electrical device
WO2021132675A1 (en) * 2019-12-27 2021-07-01 日本ゼオン株式会社 Method for manufacturing or recycling member for electrochemical device, method for manufacturing electrochemical device, member for electrochemical device, and electrochemical device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064592A (en) * 1996-06-14 1998-03-06 Hitachi Maxell Ltd Lithium secondary battery
US20020026707A1 (en) * 1996-06-14 2002-03-07 Hitachi Maxell, Ltd. Nonaqueous secondary battery with lithium titanium cathode
JP2006221847A (en) * 2005-02-08 2006-08-24 Sii Micro Parts Ltd Lithium secondary cell
JP2007220439A (en) * 2006-02-16 2007-08-30 Sii Micro Parts Ltd Electrochemical cell and its manufacturing method
JP2007227072A (en) * 2006-02-22 2007-09-06 Sii Micro Parts Ltd Electrochemical cell
JP2007273279A (en) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2009146657A (en) * 2007-12-12 2009-07-02 Aoi Electronics Co Ltd Solid electrolyte lithium secondary battery
JP2009252348A (en) * 2008-04-01 2009-10-29 Panasonic Corp Nonaqueous electrolyte battery
JP2010287496A (en) * 2009-06-12 2010-12-24 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using it
JP2011159622A (en) * 2010-01-28 2011-08-18 Samsung Sdi Co Ltd Negative electrode active material containing nano metal particles and superconductive nano-particles and lithium battery containing the same
JP2011238589A (en) * 2010-04-14 2011-11-24 Tokyo Ohka Kogyo Co Ltd Method of producing comb-shaped electrode

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064592A (en) * 1996-06-14 1998-03-06 Hitachi Maxell Ltd Lithium secondary battery
US20020026707A1 (en) * 1996-06-14 2002-03-07 Hitachi Maxell, Ltd. Nonaqueous secondary battery with lithium titanium cathode
JP2006221847A (en) * 2005-02-08 2006-08-24 Sii Micro Parts Ltd Lithium secondary cell
JP2007220439A (en) * 2006-02-16 2007-08-30 Sii Micro Parts Ltd Electrochemical cell and its manufacturing method
JP2007227072A (en) * 2006-02-22 2007-09-06 Sii Micro Parts Ltd Electrochemical cell
JP2007273279A (en) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2009146657A (en) * 2007-12-12 2009-07-02 Aoi Electronics Co Ltd Solid electrolyte lithium secondary battery
JP2009252348A (en) * 2008-04-01 2009-10-29 Panasonic Corp Nonaqueous electrolyte battery
JP2010287496A (en) * 2009-06-12 2010-12-24 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using it
JP2011159622A (en) * 2010-01-28 2011-08-18 Samsung Sdi Co Ltd Negative electrode active material containing nano metal particles and superconductive nano-particles and lithium battery containing the same
JP2011238589A (en) * 2010-04-14 2011-11-24 Tokyo Ohka Kogyo Co Ltd Method of producing comb-shaped electrode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015111187A1 (en) * 2014-01-24 2017-03-23 日産自動車株式会社 Electrical device
US10476101B2 (en) 2014-01-24 2019-11-12 Nissan Motor Co., Ltd. Electrical device
US10535870B2 (en) 2014-01-24 2020-01-14 Nissan Motor Co., Ltd. Electrical device
WO2016098213A1 (en) * 2014-12-17 2016-06-23 日産自動車株式会社 Negative-electrode active material for electrical device, and electrical device using same
WO2021132675A1 (en) * 2019-12-27 2021-07-01 日本ゼオン株式会社 Method for manufacturing or recycling member for electrochemical device, method for manufacturing electrochemical device, member for electrochemical device, and electrochemical device

Also Published As

Publication number Publication date
JP5903556B2 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5063948B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
US20170256820A1 (en) Ionic liquid and plastic crystal
JP5187551B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
CN106463768B (en) Lithium ion secondary battery
CN111403809B (en) Additive for lithium secondary battery, electrolyte and lithium secondary battery comprising same
JP2011253762A (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery, electric tool, electric vehicle, and power storage system
JP2012009458A (en) Lithium secondary battery
WO2014133165A1 (en) Lithium-ion secondary cell
KR20120088675A (en) Manganese phosphates and related electrode active materials
KR20160081582A (en) Composite anode active material, preparing method thereof, anode and lithium secondary battery comprising the same
WO2012120895A1 (en) Terminal-equipped battery
JPWO2016163282A1 (en) Lithium ion secondary battery
CN110235281A (en) Stabilized active material for Li-ion batteries piles
WO2016157745A1 (en) Cathode material, non-aqueous electrolyte secondary battery cathode, and non-aqueous electrolyte secondary battery
JP2013196910A (en) Nonaqueous electrolyte secondary battery
JP5903556B2 (en) Non-aqueous electrolyte secondary battery
JP2012069454A (en) Nonaqueous electrolyte secondary battery
JP4984402B2 (en) Nonaqueous electrolyte secondary battery
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
KR20160080865A (en) Positive active material and manufacturing method thereof, positive electrode and lithium battery containing the material
JP6406049B2 (en) Positive electrode material, positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5830647B2 (en) Non-aqueous electrolyte secondary battery
JP2012069453A (en) Nonaqueous electrolyte secondary battery
WO2019142744A1 (en) Non-aqueous electrolyte secondary battery
JP5843885B2 (en) Polymer and secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140901

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R151 Written notification of patent or utility model registration

Ref document number: 5903556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151