JP2010287496A - Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using it - Google Patents

Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using it Download PDF

Info

Publication number
JP2010287496A
JP2010287496A JP2009141396A JP2009141396A JP2010287496A JP 2010287496 A JP2010287496 A JP 2010287496A JP 2009141396 A JP2009141396 A JP 2009141396A JP 2009141396 A JP2009141396 A JP 2009141396A JP 2010287496 A JP2010287496 A JP 2010287496A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
nonaqueous electrolyte
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009141396A
Other languages
Japanese (ja)
Inventor
Takashi Harada
隆 原田
Yosuke Saito
陽介 齋藤
Tomohiro Sato
智洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2009141396A priority Critical patent/JP2010287496A/en
Publication of JP2010287496A publication Critical patent/JP2010287496A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode material for nonaqueous electrolyte secondary battery capable of supplying a nonaqueous electrolyte secondary battery having a high discharge capacity and a high charge and discharge efficiency and with superior rate characteristics, and a negative electrode for nonaqueous electrolyte secondary battery using the same, and a nonaqueous secondary battery using these. <P>SOLUTION: The negative electrode material for nonaqueous electrolyte secondary battery is a negative electrode material containing a compound oxide with titanium (Ti) and niobium (Nb) contained and the specific surface area by BET method is 0.18 m<SP>2</SP>/g or more. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非水電解質二次電池用負極材、非水電解質二次電池用負極及びそれを用いた非水電解質二次電池に関する。   The present invention relates to a negative electrode material for a nonaqueous electrolyte secondary battery, a negative electrode for a nonaqueous electrolyte secondary battery, and a nonaqueous electrolyte secondary battery using the same.

近年、電気自動車やロードレーベリング用等の電源として大型の二次電池が要望されており、特に、ニッケル・カドミウム、ニッケル・水素電池に比べ、よりエネルギー密度の高い非水溶媒系リチウム二次電池が注目されてきている。
リチウム二次電池の負極材料としては、これまで黒鉛などが検討されている。黒鉛はサイクル特性に優れ、電極膨張が小さく、且つ、安価であるために使用されてきた。しかしながら、黒鉛からなる負極材料は、大型ニ次電池の特性として重要な項目の一つである高入出力特性が低い課題がある。そこで、近年は黒鉛負極の代わりに、入出力特性に優れるスピネル型構造を有するチタン酸リチウム(以下適宜、「LiTi12」と略す場合がある)等の検討がなされている。特にチタン酸リチウムはレート特性(入出力特性)に優れ、且つサイクル特性にも優れているので負極としての研究が数多く試みられている。しかしながら、チタン酸リチウムの理論容量は175mAh/gと、現行の黒鉛系負極の理論容量372mAh/gに比べて小さく、より高容量、高入出力なチタン酸化物系負極材の開発が望まれている。
こうした中で特許文献1には、固相反応で合成したTiNb1029、TiNb2462を正極材粉末とし、Li電極基準で1.5Vまでの最初の放電容量がLi/(Ti
+Nb)モル比として、それぞれ0.46(=99mAh/g)、0.72(=147mAh/g)となることが記載されている。
In recent years, there has been a demand for large-sized secondary batteries as power sources for electric vehicles and road labeling, and in particular, non-aqueous solvent lithium secondary batteries with higher energy density compared to nickel-cadmium and nickel-hydrogen batteries. Has attracted attention.
As a negative electrode material for a lithium secondary battery, graphite and the like have been studied so far. Graphite has been used because of its excellent cycle characteristics, small electrode expansion, and low cost. However, the negative electrode material made of graphite has a problem of low high input / output characteristics, which is one of the important characteristics of large secondary batteries. Therefore, in recent years, lithium titanate having a spinel structure excellent in input / output characteristics (hereinafter sometimes abbreviated as “Li 4 Ti 5 O 12 ”, etc.) has been studied in place of the graphite negative electrode. In particular, lithium titanate is excellent in rate characteristics (input / output characteristics) and cycle characteristics, and therefore, many studies as a negative electrode have been made. However, the theoretical capacity of lithium titanate is 175 mAh / g, which is smaller than the theoretical capacity of 372 mAh / g of the current graphite negative electrode, and development of a titanium oxide negative electrode material with higher capacity and higher input / output is desired. Yes.
Under these circumstances, Patent Document 1 discloses that Ti 2 Nb 10 O 29 and TiNb 24 O 62 synthesized by solid-phase reaction are used as positive electrode powders, and the initial discharge capacity up to 1.5 V based on the Li electrode is Li / (Ti
It is described that the + Nb) molar ratio is 0.46 (= 99 mAh / g) and 0.72 (= 147 mAh / g), respectively.

また非特許文献1には、固相反応で合成したTiNb、TiNb1029、TiNb2462を正極材粉末とし、Li電極基準で1.4Vまでの最初の放電容量が
Li/(Ti+Nb)モル比として、それぞれ0.89(=207mAh/g)、0.83(=179mAh/g)、0.80(=164mAh/g)となることが記載されている。
In Non-Patent Document 1, TiNb 2 O 7 , Ti 2 Nb 10 O 29 , and TiNb 24 O 62 synthesized by solid-phase reaction are used as positive electrode powders, and the initial discharge capacity up to 1.4 V on the basis of the Li electrode is disclosed. It is described that the Li / (Ti + Nb) molar ratio is 0.89 (= 207 mAh / g), 0.83 (= 179 mAh / g), and 0.80 (= 164 mAh / g), respectively.

また非特許文献2には固相反応で合成したKTiNbOを酸でイオン交換後、330℃で焼成することにより脱水してTiNbを得ている。これを正極材粉末としてC/100の低レートでLi電極基準で1.0Vまでの最初の放電容量が、Li/(Ti+Nb)モル比として1(=251mAh/g)となることが記載されている。
さらに非特許文献3には固相反応で合成したPNb25、H−Nb、GeNb1847、VNb25を1.0Vまで充放電することにより、Nbの一部がV価からIII価まで酸化還元されることにより、最初の放電容量が最大のもので225mAh/g程度となることが記載されている。
Also after the ion exchange the KTiNbO 5 synthesized in solid phase reactions in Non-Patent Document 2 with an acid, to obtain a Ti 2 Nb 2 O 9 was dehydrated by firing at 330 ° C.. It is described that this is a positive electrode material powder, and the initial discharge capacity up to 1.0 V on the basis of the Li electrode with a low rate of C / 100 is 1 (= 251 mAh / g) as the Li / (Ti + Nb) molar ratio. Yes.
Furthermore, Non-Patent Document 3 discloses that a part of Nb is obtained by charging / discharging PNb 9 O 25 , H—Nb 2 O 5 , GeNb 18 O 47 , VNb 9 O 25 synthesized by solid phase reaction to 1.0 V. It is described that the initial discharge capacity is about 225 mAh / g at the maximum by oxidation-reduction from V valence to III valence.

特公平6−66141号No. 6-66141

R. J. Cava,D. W. Murphy, S. M. Zahurak,Journal of The Electrochemical Society,130(1983)2345−2351R. J. et al. Cava, D.C. W. Murphy, S.M. M.M. Zahurak, Journal of The Electrochemical Society, 130 (1983) 2345-2351. J. -F. Colin, V. Pralong, M. Hervieu, V. Caignaert, B. Raveau, Chemistry of Materials 20 (2008) 1534−1540J. et al. -F. Colin, V.M. Pralong, M.M. Hervieu, V.M. Caignaert, B.A. Raveau, Chemistry of Materials 20 (2008) 1534-1540 Sebastien Patoux, Mickael Dolle, Gwenaelle Rousse, and Christian Masquelier,Journal of The Electrochemical Society,149(2002)A391−A400Sebastian Patux, Mickel Doll, Gwenaelle Rousse, and Christian Masquerier, Journal of The Electrochemical Society, 149 (2002) A391-A400.

前述の通り、近年の電池に対する更なる高入出力化の必要性に伴い、容量が高く、高入出力可能なチタン酸化物系負極材の活用が望まれているが、例えば、高容量化可能な層状構造を有するチタン酸化物系負極材では理論容量に対して発現容量が小さい、サイクル特性が劣化し易いといった問題がある。従って、例えば、リチウム二次電池の更なる高容量化、サイクル特性の向上等においてチタン酸化物に多価イオン導入し、リチウムイオンの挿入サイトの増加および移動の高効率化の工夫が強く求められている。   As described above, with the need for higher input / output in recent years, it is desired to use a titanium oxide-based negative electrode material having a high capacity and capable of high input / output. The titanium oxide negative electrode material having a simple layered structure has a problem that the developed capacity is smaller than the theoretical capacity, and the cycle characteristics are liable to deteriorate. Therefore, for example, in order to further increase the capacity of lithium secondary batteries, improve cycle characteristics, etc., polyvalent ions are introduced into titanium oxide, and there is a strong demand for improvements in the insertion sites of lithium ions and the efficiency of migration. ing.

しかしながら、特許文献1および非特許文献1に開示されるチタンニオブ複合酸化物の正極材粉末の場合、リチウムの酸化還元電位を基準としてそれぞれ1.5V、1.4Vまでしか放電していないため、NbがIV価までしか還元されておらず、従って発現容量が小さい。これらの文献において、1.5Vまたは1.4Vまでしか放電していないのは、これらの複合酸化物を正極として検討していたため、出来るだけ高い電位で充放電した方が電池とした場合に、より大きな電位を得ることが出来、優位であるためである。   However, in the case of the positive electrode material powder of titanium-niobium composite oxide disclosed in Patent Document 1 and Non-Patent Document 1, only 1.5 V and 1.4 V are discharged based on the oxidation-reduction potential of lithium, respectively. Is reduced only to the IV value, and thus the expression capacity is small. In these documents, only 1.5V or 1.4V was discharged because these composite oxides were considered as positive electrodes, and when the battery was charged and discharged at as high a potential as possible, This is because a larger potential can be obtained and is advantageous.

また非特許文献2に開示されるチタンニオブ複合酸化物の正極材粉末の場合、リチウムの酸化還元電位を基準として1.0Vまで放電しているが、実際にLi+が挿入可能なサイトが少ない。このため、C/100という非常に低レートにおいてもNbがIV価までしか還元されておらず、初期の不可逆容量も大きいため、30サイクル後の可逆容量は125mAh/gと小さい。   Further, in the case of the positive electrode powder of titanium niobium composite oxide disclosed in Non-Patent Document 2, discharge is performed to 1.0 V with reference to the oxidation-reduction potential of lithium, but there are actually few sites where Li + can be inserted. For this reason, even at a very low rate of C / 100, Nb is reduced only to the IV value and the initial irreversible capacity is large, so the reversible capacity after 30 cycles is as small as 125 mAh / g.

さらに非特許文献3には、PNb25、H−Nb、GeNb1847、VNb25をリチウムの酸化還元電位を基準として1.0Vまで放電することで、Nbの一部をIII価まで還元して使用しているが、初期放電容量の最大値はC/10という低レートで225mAh/gと小さく、高レート特性についての記述はない。またTiNb
を1400℃で固相反応により合成したという記述もあるが、電極としての評価結果についての記述はない。なお、非特許文献3に記載の方法で製造したTiNbは、後述の本願発明の比較例1と同様、BET法による非表面積が小さすぎる。このため、可逆容量が小さく、レート特性も劣ると予想される。
Further, Non-Patent Document 3 discloses that PNb 9 O 25 , H—Nb 2 O 5 , GeNb 18 O 47 , and VNb 9 O 25 are discharged to 1.0 V on the basis of the oxidation-reduction potential of lithium, so that Nb The maximum initial discharge capacity is as low as 225 mAh / g at a low rate of C / 10, and there is no description of high rate characteristics. TiNb 2
Although there is a description that O 7 was synthesized by solid phase reaction at 1400 ° C., there is no description about the evaluation result as an electrode. In addition, TiNb 2 O 7 produced by the method described in Non-Patent Document 3 has a too small non-surface area by the BET method, as in Comparative Example 1 of the present invention described later. For this reason, it is expected that the reversible capacity is small and the rate characteristics are inferior.

本発明は上記の課題を鑑みて創案されたものである。
即ち、本発明は放電容量が高く、レート特性に優れた非水電解質二次電池を提供し得る非水二次電池用負極材及び非水電解質二次電池用負極とこれらを用いた非水電解質二次電池を提供することを目的とする。
The present invention has been made in view of the above problems.
That is, the present invention provides a nonaqueous electrolyte secondary battery having a high discharge capacity and excellent rate characteristics, a negative electrode material for a nonaqueous secondary battery, a negative electrode for a nonaqueous electrolyte secondary battery, and a nonaqueous electrolyte using these An object is to provide a secondary battery.

本発明者らは上記課題を鑑みて、鋭意検討した結果、チタンニオブ複合酸化物の比表面積を大きくすることで充放電効率および放電容量、レート特性が良好なチタンニオブ複合酸化物を見出し、本発明を完成させた。
すなわち、本発明の要旨は、以下の通りである。
(1)チタン(Ti)およびニオブ(Nb)を含有する複合酸化物を含有する負極材であ
って、BET法による比表面積が0.18m/g以上であることを特徴とする非水電解質二次電池用負極材。
(2)充電状態において、Nb(+V価)の3d 5/2ピークを207.5eVとした
XPS分析において結合エネルギー=204.3±1eVの位置にピークaを有すること
を特徴とする(1)に記載の非水電解質二次電池用負極材。
(3)チタン(Ti)およびニオブ(Nb)を含有する複合酸化物が、TiNb、TiNb1029およびTiNb2462の少なくともいずれかと同構造であることを特徴とする(1)または(2)に記載の非水電解質二次電池用負極材。
(4)負極活物質として、請求項(1)ないし(3)のいずれか一項に記載の負極材を含むことを特徴とする非水電解質二次電池用負極。
(5)リチウムイオンを吸蔵・放出可能な正極及び負極並びに電解質を備える非水電解質二次電池において、該負極が、(4)に記載の非水電解質二次電池用負極であることを特徴とする非水電解質二次電池。
As a result of intensive studies in view of the above problems, the present inventors have found a titanium niobium composite oxide having good charge / discharge efficiency, discharge capacity, and rate characteristics by increasing the specific surface area of the titanium niobium composite oxide. Completed.
That is, the gist of the present invention is as follows.
(1) A non-aqueous electrolyte comprising a composite oxide containing titanium (Ti) and niobium (Nb), and having a specific surface area of 0.18 m 2 / g or more according to the BET method Secondary battery negative electrode material.
(2) It has a peak a at the position of binding energy = 204.3 ± 1 eV in XPS analysis in which the 3d 5/2 peak of Nb (+ V valence) is 207.5 eV in the charged state (1) A negative electrode material for a non-aqueous electrolyte secondary battery according to 1.
(3) The composite oxide containing titanium (Ti) and niobium (Nb) has the same structure as at least one of TiNb 2 O 7 , Ti 2 Nb 10 O 29 and TiNb 24 O 62 ( The negative electrode material for nonaqueous electrolyte secondary batteries according to 1) or (2).
(4) A negative electrode for a non-aqueous electrolyte secondary battery comprising the negative electrode material according to any one of claims (1) to (3) as a negative electrode active material.
(5) A nonaqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and an electrolyte, wherein the negative electrode is a negative electrode for a nonaqueous electrolyte secondary battery according to (4), Non-aqueous electrolyte secondary battery.

本発明によれば、放電容量が高く、初期及びサイクル中の放電効率が高くサイクル特性に優れた高性能の非水電解質二次電池を安定して効率的に実現することができる。   According to the present invention, it is possible to stably and efficiently realize a high-performance nonaqueous electrolyte secondary battery having a high discharge capacity, high initial discharge efficiency during cycles and high cycle characteristics, and excellent cycle characteristics.

NbOのXPS分析結果を示す図である。Is a diagram showing the XPS analysis results of NbO 2. 実施例1で得られた負極材のXPS分析結果を示す図である。FIG. 3 is a diagram showing the XPS analysis result of the negative electrode material obtained in Example 1.

以下、本発明を詳細に説明するが、本発明は以下の説明に制限されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。
[1] 非水電解質二次電池用負極材
本発明の非水二次電池用負極材は、チタン(Ti)およびニオブ(Nb)を含有する複合酸化物を含有する負極材であって、BET法による比表面積が0.18m/g以上であることを特徴とするものである。
Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following description, and can be arbitrarily modified and implemented without departing from the gist of the present invention.
[1] Anode material for non-aqueous electrolyte secondary battery
The negative electrode material for a non-aqueous secondary battery of the present invention is a negative electrode material containing a composite oxide containing titanium (Ti) and niobium (Nb), and has a specific surface area of 0.18 m 2 / g or more by the BET method. It is characterized by being.

<チタン(Ti)およびニオブ(Nb)を含有する複合酸化物>
本発明における「チタン(Ti)およびニオブ(Nb)を含有する複合酸化物」とは、主たる構成元素がチタン、ニオブを含有する複合酸化物であれば特に制限はなく、H,
Li, Na, K, Csといった1A族元素を含有していても良く、またチタン、ニオブの一部を、V,Ta,Cr,Mo,WといったVA族、VIA族元素で置換していても良い。具体的には、ワドスレイ相と呼ばれるTiNb、TiNb1029、TiNb2462、トンネルおよび層状構造を有するKTi10Nb27、NaTiNbO13といった化合物があげられる。
<Composite oxide containing titanium (Ti) and niobium (Nb)>
In the present invention, “a composite oxide containing titanium (Ti) and niobium (Nb)” is not particularly limited as long as the main constituent element is a composite oxide containing titanium and niobium.
1A group elements such as Li, Na, K, and Cs may be contained, and a part of titanium and niobium may be substituted with VA group and VIA group elements such as V, Ta, Cr, Mo, and W. good. Specifically, compounds such as TiNb 2 O 7 , Ti 2 Nb 10 O 29 , TiNb 24 O 62 , K 4 Ti 10 Nb 2 O 27 having a tunnel and layered structure, and NaTi 5 NbO 13 , which are called wadsley phases, are mentioned. .

上記の複合酸化物が、本願発明の効果を奏する理由は、以下のとおりであると推察される。すなわち、上記化合物を負極として用いた場合、低電位まで充電されることにより、TiのIV価からIII価への還元と同時に、NbのV価からIII価への還元が起こり充電効率および放電容量が高くなり、レート特性が高くなるものと推察される。なお、構成元素がTiおよびNbを含有する場合、他の元素で複合酸化物を構成する場合とは異なり、原子量が比較的小さいため、質量当りの充放電容量が大きくなると共に、酸化還元の可逆性が良いために、上記の特性を有する。   The reason why the above complex oxide exhibits the effects of the present invention is presumed as follows. That is, when the above compound is used as a negative electrode, charging to a low potential causes reduction of Ti from IV value to III value and simultaneously reduction of Nb from V value to III value, resulting in charging efficiency and discharge capacity. It is presumed that the rate characteristic becomes higher. In the case where the constituent elements contain Ti and Nb, unlike the case where the composite oxide is composed of other elements, the atomic weight is relatively small, so that the charge / discharge capacity per mass is increased and the redox is reversible. Because of its good properties, it has the above characteristics.

<BET比表面積>
本発明の負極材のBET比表面積は、0.18m/g以上であることを特徴としている。なかでも、好ましくは0.19m/g以上、更に好ましくは2m/g以上、また
、上限に関しては、特に限定されないが、通常は300m/g以下、好ましくは280m/g以下、更に好ましくは260m/g以下の範囲である。BET比表面積の値がこの範囲であれば、電池の充放電効率および放電容量が高く、高速充放電においてリチウムの出し入れが速く、レート特性に優れるので好ましい。測定条件においては後述の実施例において示す通りである。
<XPS分析>
また、上記の複合酸化物は、充電状態でNb(+V価)の3d 5/2ピークを207.5eVとしたXPS分析において結合エネルギー=204.3±1eVの位置にピークaを有することが好ましい。
<BET specific surface area>
The negative electrode material of the present invention has a BET specific surface area of 0.18 m 2 / g or more. Among them, preferably 0.19 m 2 / g or more, more preferably 2m 2 / g or more, with respect to the upper limit is not particularly limited, usually 300 meters 2 / g or less, preferably 280 meters 2 / g, further Preferably it is the range of 260 m < 2 > / g or less. If the value of the BET specific surface area is in this range, it is preferable because the charge / discharge efficiency and discharge capacity of the battery are high, lithium is quickly taken in and out in high-speed charge / discharge, and the rate characteristics are excellent. The measurement conditions are as shown in the examples described later.
<XPS analysis>
In addition, the above complex oxide preferably has a peak a at the position of binding energy = 204.3 ± 1 eV in XPS analysis in which the 3d 5/2 peak of Nb (+ V valence) is 207.5 eV in a charged state. .

ここで本発明における複合酸化物のXPS分析の結合エネルギーについて説明する。
本発明の複合酸化物は、Nb(+V価)の3d 5/2ピークを207.5eVとしたX
PS分析において結合エネルギー=204.3±1eVの位置にピークaを有することを
特徴としている。リチウムイオンがチタン、ニオブを含有する複合酸化物に挿入されたときに、ピークaの現れない複合酸化物は、NbのV価からIV価への還元しか使用できない
ため、充電容量が小さく、放電容量も小さくなる。従って、リチウムイオンが挿入されたときに、ピークaが現れ、リチウムイオンが脱離したときにはピークaが消失することが可逆性という観点から好ましい。
Here, the binding energy of XPS analysis of the composite oxide in the present invention will be described.
In the composite oxide of the present invention, the 3d 5/2 peak of Nb (+ V valence) is 207.5 eV.
The PS analysis is characterized by having a peak a at a position of binding energy = 204.3 ± 1 eV. When lithium ions are inserted into a composite oxide containing titanium and niobium, a composite oxide that does not show peak a can only be used to reduce Nb from the V valence to the IV valence. The capacity is also reduced. Therefore, it is preferable from the viewpoint of reversibility that peak a appears when lithium ions are inserted and peak a disappears when lithium ions are desorbed.

ここでピークaは結合エネルギー=204.3±1eVの位置に出現するピークのうち最大強度を持つものを指す。 また他のピークと重なっているときは、分離解析によって
ピーク位置を求める必要がある。
また、ここでピークaは、図1に示すNbOに観察されるIV価に由来する結合エネルギー=205.7eVより低エネルギー側にあることから、IV価より低価数状態に由来するピークである。測定条件においては後述の実施例において示す通りである。
Here, the peak a indicates the peak having the maximum intensity among the peaks appearing at the position of binding energy = 204.3 ± 1 eV. Moreover, when it overlaps with another peak, it is necessary to obtain a peak position by separation analysis.
Here, the peak a is a peak derived from a lower valence state than the IV valence because the binding energy derived from the IV valence observed in NbO 2 shown in FIG. 1 is on the lower energy side than 205.7 eV. is there. The measurement conditions are as shown in the examples described later.

なお、チタン、ニオブ含有複合酸化物において、NbをIV価より低価数まで酸化・還元して使用しているかどうかは、便宜的に複合酸化物が含有している全TiのIV価〜III価、全NbのV価〜IV価を使用したと仮定したときに得られる容量と比較し、それよりも実際に発現している容量が大きいことにより確認できる。具体的には、TiNb、TiNb1029、TiNb2462において、それぞれ232mAh/g、215m
Ah/g、204mAh/gより発現容量が大きいときには、NbをIV価より低価数まで酸化・還元していると見なすことができ、NbがIV価より低価数であるときには、上記XPS分析においてピークaが観察される。ここでの発現容量は、複合酸化物に含まれるチタ
ン、ニオブが酸化・還元されるのに充分な低レートで得られる値である。低レートの具体的な例としては、後述の実施例における放電容量評価に記載の条件をあげることができる。
In addition, in the titanium and niobium-containing composite oxide, whether or not Nb is used after being oxidized / reduced to a lower valence than the IV value depends on the IV value of all Ti contained in the composite oxide for convenience. Compared with the capacity obtained when it is assumed that the valence and the IV valence of all Nb are used, it can be confirmed that the capacity actually expressed is larger than that. Specifically, in TiNb 2 O 7 , Ti 2 Nb 10 O 29 , and TiNb 24 O 62 , 232 mAh / g and 215 m, respectively.
When the expression capacity is larger than Ah / g and 204 mAh / g, it can be considered that Nb is oxidized / reduced to a valence lower than the IV value, and when Nb is a valence lower than the IV value, the above XPS analysis A peak a is observed in FIG. The expression capacity here is a value obtained at a low rate sufficient to oxidize and reduce titanium and niobium contained in the composite oxide. As a specific example of the low rate, the conditions described in the discharge capacity evaluation in the examples described later can be given.

本発明の負極材は、リチウムイオンを吸蔵・放出可能な正極及び負極、並びに電解質を備えたリチウム二次電池等の非水電解質二次電池における負極活物質として極めて有用である。例えば、負極として本発明の負極材を使用し、通常使用されるリチウム二次電池用の金属カルコゲナイド系正極及びカーボネート系溶媒を主体とする有機電解液を組み合わせて構成した非水電解質二次電池は、容量が大きく、サイクル特性に優れ、大型電池や車載用の電池として極めて優れたものである。   The negative electrode material of the present invention is extremely useful as a negative electrode active material in a non-aqueous electrolyte secondary battery such as a positive and negative electrodes capable of occluding and releasing lithium ions, and a lithium secondary battery equipped with an electrolyte. For example, a non-aqueous electrolyte secondary battery using a negative electrode material of the present invention as a negative electrode and combining a commonly used metal chalcogenide positive electrode for lithium secondary batteries and an organic electrolyte mainly composed of a carbonate solvent is It has a large capacity, excellent cycle characteristics, and is extremely excellent as a large battery or a vehicle battery.

ピーク位置aは、例えば、前述に示したような条件でXPSにより求めることができる。
なお、以下において、本発明の負極材を活物質として用い、集電体上に活物質を含む層を設けたものが「負極」である。
<X線回折測定>
X線回折測定としては、例えば負極材粉末試料をガラス製試料ホルダに詰め照射面にセットし、粉末X線回折装置(例えば、パナリティカル製「PW1700」)を用いて測定することができ、測定条件においては後述の実施例において示す通りである。
For example, the peak position a can be obtained by XPS under the conditions described above.
In the following, the “negative electrode” is the one in which the negative electrode material of the present invention is used as an active material and a layer containing the active material is provided on a current collector.
<X-ray diffraction measurement>
As the X-ray diffraction measurement, for example, a negative electrode material powder sample is packed in a glass sample holder and set on an irradiation surface, and measurement can be performed using a powder X-ray diffraction apparatus (for example, “PW1700” manufactured by Panalical). The conditions are as shown in the examples described later.

<体積基準平均粒径>
本発明の負極材の体積基準平均粒径は、特に制限されないが、通常0.1μm以上、好ましくは1μm以上、更に好ましくは3μm以上、また通常60μm以下、好ましくは55μm以下、更に好ましくは50μm以下である。負極材の体積基準平均粒径がこの範囲を下回ると、粒径が小さすぎるため、負極材粉末間の導電パスや、負極材粉末と後述の導電剤等との間の導電パスが取り難くなり、サイクル特性が悪化する場合もある。一方、この範囲を上回ると、後述の如く塗布により集電体上に負極活物質層を製造する時にむらが生じ易い場合もある。
体積基準平均粒径は、測定対象に界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの2体積%水溶液(約1mL)を混合し、イオン交換水を分散媒としてレーザー回折式粒度分布計(例えば、堀場製作所社製「LA−920」)にて、体積基準の平均粒径(メジアン径)を測定した値を用いる。
<Volume standard average particle size>
The volume-based average particle diameter of the negative electrode material of the present invention is not particularly limited, but is usually 0.1 μm or more, preferably 1 μm or more, more preferably 3 μm or more, and usually 60 μm or less, preferably 55 μm or less, more preferably 50 μm or less. It is. If the volume-based average particle size of the negative electrode material is below this range, the particle size is too small, and it is difficult to take a conductive path between the negative electrode material powder and a conductive path between the negative electrode material powder and a conductive agent described later. In some cases, the cycle characteristics may deteriorate. On the other hand, if it exceeds this range, unevenness may easily occur when the negative electrode active material layer is produced on the current collector by coating as described later.
The volume-based average particle size is measured by mixing a 2% by volume aqueous solution (about 1 mL) of polyoxyethylene (20) sorbitan monolaurate, which is a surfactant, and laser diffraction particle size distribution using ion-exchanged water as a dispersion medium. A value obtained by measuring a volume-based average particle diameter (median diameter) with a meter (for example, “LA-920” manufactured by Horiba, Ltd.) is used.

<一次粒子の平均粒径>
本発明の負極材の一次粒子の平均粒径は、特に制限されないが、通常は5nm以上、好ましくは10nm以上、更に好ましくは20nm以上、また、通常は20μm以下、好ましくは15μm以下、更に好ましくは10μm以下の範囲である。一次粒子の平均粒径の値がこの範囲であれば、電池の高速充放電においてリチウムの出し入れが早く、レート特性に優れるので好ましい。
一次粒子の平均粒径は、負極材をSEMにて異なる3視野以上を観察し、その平均値から一次粒子の平均粒径を求める。なお、一次粒子が繊維状の場合は繊維径方向を、楕円形の場合は短軸方向を平均粒径として用いる。
<Average particle size of primary particles>
The average particle size of the primary particles of the negative electrode material of the present invention is not particularly limited, but is usually 5 nm or more, preferably 10 nm or more, more preferably 20 nm or more, and usually 20 μm or less, preferably 15 μm or less, more preferably The range is 10 μm or less. If the value of the average particle diameter of the primary particles is within this range, it is preferable because lithium can be taken in and out quickly and the rate characteristics are excellent in high-speed charge / discharge of the battery.
The average particle diameter of the primary particles is obtained by observing three or more different views of the negative electrode material with an SEM, and obtaining the average particle diameter of the primary particles from the average value. The fiber diameter direction is used as the average particle diameter when the primary particles are fibrous, and the minor axis direction is used as the average particle diameter when the primary particles are elliptical.

<タップ密度>
本発明の負極材のタップ密度は、特に制限されないが、通常0.1g/cm以上、好ましくは0.4g/cm以上、更に好ましくは0.7g/cm以上、また、通常4.0g/cm以下、好ましくは3.0g/cm以下の範囲である。タップ密度がこの範囲であれば、負極活物質層の充填密度を上げ易く、レート特性に優れた高容量の電池を得易い。
<Tap density>
The tap density of the negative electrode material of the present invention is not particularly limited, but is usually 0.1 g / cm 3 or more, preferably 0.4 g / cm 3 or more, more preferably 0.7 g / cm 3 or more, and usually 4. The range is 0 g / cm 3 or less, preferably 3.0 g / cm 3 or less. If the tap density is within this range, it is easy to increase the packing density of the negative electrode active material layer, and it is easy to obtain a high-capacity battery excellent in rate characteristics.

タップ密度は、目開き300μmの篩を使用し、20cmのタッピングセルに負極材を落下させてセルを満杯に充填した後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行ない、その時のタッピング密度を測定した値を用いる。
[製造方法]
本発明の負極に用いる負極材の製造方法には特に制限はないが、例えば、以下に挙げる製造法等によって製造することができる。
The tap density is measured using a sieve having a mesh size of 300 μm, dropping the negative electrode material into a 20 cm 3 tapping cell to fill the cell, and then using a powder density measuring device (for example, a tap denser manufactured by Seishin Enterprise Co., Ltd.). Then, tapping with a stroke length of 10 mm is performed 1000 times, and a value obtained by measuring the tapping density at that time is used.
[Production method]
Although there is no restriction | limiting in particular in the manufacturing method of the negative electrode material used for the negative electrode of this invention, For example, it can manufacture by the manufacturing method etc. which are mentioned below.

<原料>
負極材の原料(以下適宜、「原料」と記す場合がある)のうち、Ti原料としては、例えば金属チタン、酸化チタン(アナターゼ型、ルチル型等)、チタン錯体(グリコール酸チタン錯体、クエン酸チタン錯体等)、チタンアルコキシド(チタンイソプロポキシド等)、チタン塩(硫酸チタン等)、チタン塩化物(四塩化チタン等)、チタニアゾル等を用いることができる。 Nb原料としては、例えば金属ニオブ、酸化ニオブ(Nb
NbO、Nb、NbO等)、シュウ酸ニオブアンモニウム、水酸化ニオブ、五塩化ニオブ、オキシ塩化ニオブ、臭化ニオブ、フッ化ニオブ、ニオブアルコキシド(ペンタ
メトキシニオブ、ペンタエトキシニオブ、ペンタ−i−プロポキシニオブ、ペンタ−n−
プロポキシニオブ、ペンタ−i−プトキシニオブ、ペンタ−n−プトキシニオブ、ペンタ
−sec−プトキシニオブ等)、酸化ニオブゾル等を用いることができる。
<Raw material>
Among the raw materials for the negative electrode material (hereinafter sometimes referred to as “raw material” as appropriate), examples of the Ti raw material include titanium metal, titanium oxide (anatase type, rutile type, etc.), titanium complex (titanium glycolate complex, citric acid). Titanium complex etc.), titanium alkoxide (titanium isopropoxide etc.), titanium salt (titanium sulfate etc.), titanium chloride (titanium tetrachloride etc.), titania sol etc. can be used. Examples of the Nb raw material include metal niobium, niobium oxide (Nb 2 O 5 ,
NbO 2 , Nb 2 O 3 , NbO, etc.), niobium ammonium oxalate, niobium hydroxide, niobium pentachloride, niobium oxychloride, niobium bromide, niobium fluoride, niobium alkoxide (pentamethoxyniobium, pentaethoxyniobium, penta- i-propoxyniobium, penta-n-
Propoxyniobium, penta-i-ptoxyniobium, penta-n-ptoxyniobium, penta-sec-ptoxyniobium, etc.), niobium oxide sol, and the like can be used.

酸素原料としては、酸素を含有するガス(空気、酸素等)、前記Tiや元素M原料としての酸化物中の酸素、炭酸塩中の酸素等を用いることができる。
Ti、Nb、酸素の原料としては、Ti、Nb、酸素を組み合わせた単一の化合物(若しくは元素)を用いてもよく、複数の化合物として用いてもよい。
また、これらTi、Nb、酸素原料の形態は、例えば、粉末状、顆粒状、ペレット状、塊状、板状等として用いることができる。
As an oxygen source, oxygen-containing gas (air, oxygen, etc.), Ti, oxygen in oxide as element M source, oxygen in carbonate, etc. can be used.
As a raw material for Ti, Nb, and oxygen, a single compound (or element) combining Ti, Nb, and oxygen may be used, or a plurality of compounds may be used.
Moreover, the form of these Ti, Nb, and oxygen raw material can be used as a powder form, a granular form, a pellet form, a lump shape, a plate shape, etc., for example.

<方法>
負極材の製造方法としては、
(1)水熱合成処理を用いる方法
(2)固相反応処理を用いる方法
(3)錯体重合反応処理を用いる方法
等が挙げられる。
<Method>
As a manufacturing method of the negative electrode material,
(1) Method using hydrothermal synthesis treatment
(2) Method using solid-phase reaction treatment
(3) Method using complex polymerization reaction treatment
Etc.

以下に、(1)、(2)、(3)の製造方法について説明する。
(1)水熱合成処理を用いる方法
(水熱合成)
水熱合成は、水性出発原料を耐圧容器に入れ、自己発生圧下、または結晶化を阻害しない気体の加圧下、攪拌あるいは無攪拌で、所定温度に保持することにより行われる。本発明における水熱合成処理とは、前述のTi原料とNb原料からなる混合溶液を、オートクレーブ等の耐圧容器内で100℃以上の温度にて反応させる工程のことである。
Below, the manufacturing method of (1), (2), (3) is demonstrated.
(1) Method using hydrothermal synthesis treatment
(Hydrothermal synthesis)
Hydrothermal synthesis is carried out by placing an aqueous starting material in a pressure vessel and maintaining it at a predetermined temperature under stirring or without stirring under self-generated pressure or under pressure of a gas that does not inhibit crystallization. The hydrothermal synthesis treatment in the present invention is a step of reacting the above mixed solution composed of the Ti raw material and the Nb raw material at a temperature of 100 ° C. or higher in a pressure-resistant vessel such as an autoclave.

前記混合水溶液は、必要に応じてpHを調整してもよい。pH調整には、硫酸等の酸性水溶液、アンモニア水等のアルカリ性水溶液を使用することができる。
水熱合成の温度は、合成する負極材に合わせて適宜設定することができるが、100〜300℃、合成のし易さの観点からは150〜250℃が好ましい。また、水熱合成の圧力としては、例えば0.1MPa〜1.6MPa程度であり、水熱合成の時間としては、例えば1時間〜10日間程度である。また、水熱合成処理中は撹拌を行なっても、静置状態のままでも構わない。 水熱合成後、生成物を分離、水洗、乾燥し、係るチタンニオブ
含有複合酸化物を得る。付着している有機物を除去するため、または結晶性を上げるために焼成を行っても良い。例えば、焼成は500〜1300℃の温度で0.5時間〜1日程度保持する。焼成時の雰囲気は、チタンニオブ複合酸化物を安定に製造するために大気雰囲気が好ましい。焼成に用いる装置としては、特に制限はないが、シャトル炉、トンネル炉、電気炉、リードハンマー炉、ロータリーキルン等が挙げられる。
You may adjust pH of the said mixed aqueous solution as needed. For pH adjustment, an acidic aqueous solution such as sulfuric acid or an alkaline aqueous solution such as ammonia water can be used.
The temperature of the hydrothermal synthesis can be appropriately set according to the negative electrode material to be synthesized, but is preferably 100 to 300 ° C. and 150 to 250 ° C. from the viewpoint of ease of synthesis. In addition, the hydrothermal synthesis pressure is, for example, about 0.1 MPa to 1.6 MPa, and the hydrothermal synthesis time is, for example, about 1 hour to 10 days. Moreover, stirring may be performed during the hydrothermal synthesis process, or the stationary state may be maintained. After hydrothermal synthesis, the product is separated, washed with water, and dried to obtain the titanium-niobium-containing composite oxide. Baking may be performed in order to remove attached organic substances or to increase crystallinity. For example, baking is held at a temperature of 500 to 1300 ° C. for about 0.5 hour to 1 day. The atmosphere during firing is preferably an air atmosphere in order to stably produce the titanium-niobium composite oxide. The apparatus used for firing is not particularly limited, and examples include a shuttle furnace, a tunnel furnace, an electric furnace, a lead hammer furnace, and a rotary kiln.

(その他の処理)
前記焼成処理の後に、必要に応じて更に粉砕、分級処理を施しても構わない。粉砕に用いる装置については、特に制限はないが、例えば、粗粉砕機としてはジョークラッシャー、衝撃式クラッシャー、コーンクラッシャー等が挙げられ、中間粉砕機としてはロールクラッシャー、ハンマーミル等が挙げられ、微粉砕機としてはボールミル、振動ミル、ピンミル、攪拌ミル、ジェットミル等が挙げられる。
(Other processing)
After the baking treatment, further pulverization and classification treatment may be performed as necessary. The apparatus used for pulverization is not particularly limited. For example, examples of the coarse pulverizer include a jaw crusher, an impact crusher, and a cone crusher. Examples of the intermediate pulverizer include a roll crusher and a hammer mill. Examples of the pulverizer include a ball mill, a vibration mill, a pin mill, a stirring mill, and a jet mill.

分級処理に用いる装置としては、特に制限はないが、例えば、乾式篩い分けの場合:回転式篩い、動揺式篩い、旋動式篩い、振動式篩い等を用いることができ、乾式気流式分級の場合:重力式分級機、慣性力式分級機、遠心力式分級機(クラシファイア、サイクロン等)等を用いることができ、湿式篩い分けの場合:機械的湿式分級機、水力分級機、沈降
分級機、遠心式湿式分級機等を用いることができる。
There are no particular restrictions on the apparatus used for the classification process. For example, in the case of dry sieving: rotary sieving, oscillating sieving, rotating sieving, vibrating sieving, etc. can be used. Cases: Gravity classifiers, inertial classifiers, centrifugal classifiers (classifiers, cyclones, etc.) can be used. In the case of wet sieving: mechanical wet classifiers, hydraulic classifiers, sedimentation classifiers A centrifugal wet classifier or the like can be used.

(2)固相反応処理を用いる方法
(固相反応処理)
固相反応とは、一般的に、固体内又は固体間で起こる化学反応のことをいうが、本発明における固相反応処理とは、前述のTi原料とNb原料を混合、熱処理し反応させる工程のことである。
(2) Method using solid-phase reaction treatment
(Solid-phase reaction treatment)
The solid-phase reaction generally refers to a chemical reaction that occurs in a solid or between solids. The solid-phase reaction treatment in the present invention is a process in which the Ti raw material and the Nb raw material are mixed, heat-treated and reacted. That is.

固相反応処理の熱処理温度は、600〜1400℃程度の温度で1〜48時間程度保持することで固相反応させた粉末を得る。熱処理時の雰囲気としては、チタンニオブ複合酸化物を安定に製造するために大気雰囲気が好ましい。
(その他の処理)
前述のその他の処理と同様な方法を用いることができる。
The heat treatment temperature of the solid phase reaction treatment is maintained at a temperature of about 600 to 1400 ° C. for about 1 to 48 hours to obtain a solid phase reacted powder. The atmosphere during the heat treatment is preferably an air atmosphere in order to stably produce the titanium-niobium composite oxide.
(Other processing)
A method similar to the other processing described above can be used.

(3)錯体重合反応処理を用いる方法
(錯体重合反応処理)
錯体重合反応とは、第一に構成金属元素を金属錯体として安定化し、第二にこの金属錯体の分解や沈殿析出を防ぐために有機高分子の網の中に固定する化学反応のことをいうが、本発明における錯体重合反応処理とは、錯体形成剤であるクエン酸などのオキシカルボン酸を過剰に含むグリコール(エチレングリコール、プロピレングリコールなど)溶液中に、前述のTi原料とNb原料を溶解させ、金属オキシカルボン酸錯体を形成させた後、120〜200℃程度の温度に加熱し、オキシカルボン酸のカルボキシル基とグリコールのヒドロキシル基との間での連鎖的な脱水エステル反応によりポリエステル高分子ゲルを得る。
(3) Method using complex polymerization reaction treatment
(Complex polymerization reaction treatment)
The complex polymerization reaction is a chemical reaction that first stabilizes a constituent metal element as a metal complex, and secondly fixes it in an organic polymer network to prevent decomposition or precipitation of the metal complex. The complex polymerization reaction treatment in the present invention means that the above-mentioned Ti raw material and Nb raw material are dissolved in a glycol (ethylene glycol, propylene glycol, etc.) solution containing an excessive amount of oxycarboxylic acid such as citric acid as a complex forming agent. After forming the metal oxycarboxylic acid complex, the polyester polymer gel is heated to a temperature of about 120 to 200 ° C. and subjected to a chain dehydration ester reaction between the carboxyl group of the oxycarboxylic acid and the hydroxyl group of the glycol. Get.

更に300〜350℃程度で熱処理を加えることで炭化させる。更に500℃程度で熱処理することで脱炭酸させ、また更に600〜1100℃程度の温度で1〜48時間程度
熱処理を加えることで結晶化させる工程のことである。熱処理時の雰囲気としては、チタンニオブ複合酸化物を安定に製造するために大気雰囲気が好ましい。
(その他の処理)
前述のその他の処理と同様な方法を用いることができる。
Furthermore, it carbonizes by adding heat processing at about 300-350 degreeC. Further, it is a step of decrystallization by heat treatment at about 500 ° C., and further crystallization by applying heat treatment at a temperature of about 600 to 1100 ° C. for about 1 to 48 hours. The atmosphere during the heat treatment is preferably an air atmosphere in order to stably produce the titanium-niobium composite oxide.
(Other processing)
A method similar to the other processing described above can be used.

[2]非水電解質二次電池用負極
本発明の非水電解質二次電池用負極は、負極活物質として本発明の負極材を用いたものであり、一般的には、集電体上に本発明の負極材を含む負極活物質層を導電性が確保されるように設けてなるものである。
このような本発明の負極は、リチウムイオンを吸蔵・放出可能な正極及び負極、並びに電解質を備えたリチウム二次電池等の非水電解質二次電池における負極として極めて有用である。特に、本発明の負極を、通常使用されるリチウム二次電池用の金属カルコゲナイド系正極及びカーボネート系溶媒を主体とする有機電解液を組み合わせて構成した非水電解質二次電池は、放電容量、充放電効率が大きく、レート特性が良く極めて優れたものである。
[2] Negative electrode for nonaqueous electrolyte secondary battery
The negative electrode for a non-aqueous electrolyte secondary battery of the present invention uses the negative electrode material of the present invention as a negative electrode active material, and generally includes a negative electrode active material layer containing the negative electrode material of the present invention on a current collector. Is provided so as to ensure conductivity.
Such a negative electrode of the present invention is extremely useful as a negative electrode in a non-aqueous electrolyte secondary battery such as a positive and negative electrodes capable of inserting and extracting lithium ions, and a lithium secondary battery including an electrolyte. In particular, the non-aqueous electrolyte secondary battery comprising the negative electrode of the present invention in combination with a metal chalcogenide-based positive electrode for a lithium secondary battery that is normally used and an organic electrolyte mainly composed of a carbonate-based solvent has a discharge capacity, charge capacity, and the like. The discharge efficiency is large, the rate characteristic is good, and it is extremely excellent.

[負極活物質]
本発明の負極活物質には、本発明の負極材を用いるが、本発明の効果を妨げない限り、負極材に本発明の負極材以外の負極材(以下「負極材A」と称す。)を混合して用いてもよい。負極材Aを用いる場合、負極材Aは、リチウムイオンを充放電可能であれば何でもよい。例えば、負極材Aとしては天然黒鉛(鱗片状黒鉛、球形化黒鉛等)、人造黒鉛(メソカーボンマイクロビーズ等)のグラファイト類、ピッチや樹脂等を焼成した非晶質炭素類、黒鉛と非晶質炭素を複合化した多相構造材料類、アルミニウム、錫等の金属類、Si
等の酸化物類が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
負極材Aの添加量は、特に限定されないが、本発明の負極材に対して、通常1質量%以上、好ましくは5質量%以上、更に好ましくは20質量%以上、また、通常80質量%以下、好ましくは70質量%以下、更に好ましくは60質量%以下である。
[Negative electrode active material]
As the negative electrode active material of the present invention, the negative electrode material of the present invention is used. As long as the effects of the present invention are not hindered, the negative electrode material is a negative electrode material other than the negative electrode material of the present invention (hereinafter referred to as “negative electrode material A”). May be used in combination. When the negative electrode material A is used, the negative electrode material A may be anything as long as it can charge and discharge lithium ions. For example, as the negative electrode material A, natural graphite (flaky graphite, spheroidized graphite, etc.), artificial graphite (mesocarbon microbeads, etc.), amorphous carbon obtained by firing pitch, resin, etc., graphite and amorphous Materials composed of carbonaceous composites, metals such as aluminum and tin, Si
Examples thereof include oxides such as O 2 . These may be used individually by 1 type and may be used in combination of 2 or more type.
The addition amount of the negative electrode material A is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more, more preferably 20% by mass or more, and usually 80% by mass or less with respect to the negative electrode material of the present invention. Preferably, it is 70 mass% or less, More preferably, it is 60 mass% or less.

[集電体]
集電体としては、例えば、金属円柱、金属コイル、金属板、金属箔膜、炭素板、炭素薄膜、炭素円柱等が用いられる。この中でも特に金属箔膜が、現在工業化製品に使用されているために好ましい。なお、金属薄膜は適宣メッシュ状にして用いてもよい。
[Current collector]
As the current collector, for example, a metal cylinder, a metal coil, a metal plate, a metal foil film, a carbon plate, a carbon thin film, a carbon cylinder, or the like is used. Among these, a metal foil film is particularly preferable because it is currently used in industrialized products. The metal thin film may be used in a suitable mesh shape.

金属箔膜の厚さは、特に限定はされないが、通常1μm以上、好ましくは5μm以上、更に好ましくは10μm以上、また、通常100μm以下、好ましくは50μm以下、更に好ましくは20μm以下である。上記範囲よりも薄い金属箔膜の場合、集電体として必要な強度が不足する場合がある。
また、集電体に用いられる金属としては、具体的には、銅、ニッケル、ステンレス鋼、鉄、チタン、アルミニウム、アルミニウム合金等が挙げられる。
The thickness of the metal foil film is not particularly limited, but is usually 1 μm or more, preferably 5 μm or more, more preferably 10 μm or more, and usually 100 μm or less, preferably 50 μm or less, more preferably 20 μm or less. In the case of a metal foil film thinner than the above range, the strength required as a current collector may be insufficient.
Specific examples of the metal used for the current collector include copper, nickel, stainless steel, iron, titanium, aluminum, and an aluminum alloy.

[物性]
<充填密度>
負極の充填密度は、特に制限されないが、通常0.1g/cm以上、好ましくは0.5g/cm以上、また通常5.0g/cm以下、好ましくは4.0g/cm以下である。負極の充填密度がこの範囲を下回ると、高容量の電池を得難い場合もある。一方、この範囲を上回ると負極中の気孔量が少なくなる場合があり、好ましい電池特性を得難い場合もある。負極の充填密度は、集電体を除く負極重量を、負極面積と負極厚みで除して求めた値を用いる。
[Physical properties]
<Filling density>
The packing density of the negative electrode is not particularly limited, but is usually 0.1 g / cm 3 or more, preferably 0.5 g / cm 3 or more, and usually 5.0 g / cm 3 or less, preferably 4.0 g / cm 3 or less. is there. When the packing density of the negative electrode is below this range, it may be difficult to obtain a high-capacity battery. On the other hand, if it exceeds this range, the amount of pores in the negative electrode may be reduced, and it may be difficult to obtain favorable battery characteristics. As the packing density of the negative electrode, a value obtained by dividing the negative electrode weight excluding the current collector by the negative electrode area and the negative electrode thickness is used.

<空隙率>
負極の空隙率は、特に制限されないが、通常10%以上、好ましくは20%以上、また通常50%以下、好ましくは40%以下である。負極の空隙率がこの範囲を下回ると、負極中の気孔が少なく電解液が浸透し難くなり、好ましい電池特性を得難い場合もある。一方、この範囲を上回ると、負極中の気孔が多く負極強度が弱くなりすぎて、好ましい電池特性を得難い場合もある。負極の空隙率は、負極の水銀ポロシメータによる細孔分布測定によって得られる全細孔容積を、集電体を除いた負極材活物質層の見掛け体積で割った値の百分率を用いる。
<Porosity>
The porosity of the negative electrode is not particularly limited, but is usually 10% or more, preferably 20% or more, and usually 50% or less, preferably 40% or less. When the porosity of the negative electrode is less than this range, there are few pores in the negative electrode, and the electrolyte does not easily penetrate, and it may be difficult to obtain preferable battery characteristics. On the other hand, if it exceeds this range, there may be many pores in the negative electrode and the negative electrode strength becomes too weak, making it difficult to obtain favorable battery characteristics. As the porosity of the negative electrode, a percentage of a value obtained by dividing the total pore volume obtained by measuring the pore distribution with a mercury porosimeter of the negative electrode by the apparent volume of the negative electrode active material layer excluding the current collector is used.

<導電剤>
負極活物質層には、導電剤を含んでもよい。導電剤は、用いる負極活物質の充放電電位において、化学変化を起こさない電子伝導性材料であれば何でもよい。例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカ−ボンブラック類、炭素繊維、気相成長炭素繊維(VGCF)、金属繊維等の導電性繊維類、フッ化カーボン、銅等の金属粉末類等を単独又はこれらの混合物として含ませることができる。これらの導電剤のなかで、アセチレンブラック、VGCFが特に好ましい。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。導電剤の添加量は、特に限定されないが、負極活物質に対して、1〜30質量%が好ましく、特に1〜15質量%が好ましい。
<Conductive agent>
The negative electrode active material layer may include a conductive agent. The conductive agent may be any electronic conductive material that does not cause a chemical change at the charge / discharge potential of the negative electrode active material to be used. For example, carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, carbon fibers, vapor grown carbon fibers (VGCF), conductive fibers such as metal fibers, fluorine Metal powders such as carbonized carbon and copper can be contained alone or as a mixture thereof. Of these conductive agents, acetylene black and VGCF are particularly preferable. These may be used individually by 1 type and may be used in combination of 2 or more type. Although the addition amount of a electrically conductive agent is not specifically limited, 1-30 mass% is preferable with respect to a negative electrode active material, and 1-15 mass% is especially preferable.

<結着剤>
結着剤としては、後述する液体溶媒に対して安定な高分子が好ましい。例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、芳香族ポリアミド、セルロース
等の樹脂系高分子、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム又はエチレン・プロピレンゴム等のゴム状高分子、スチレン・ブタジエン・スチレンブロック共重合体、その水素添加物、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子、シンジオタクチック1,2−ポリブタジエン、エチレン・酢酸ビニル共重合体、又はプロピレン・α−オレフィン(炭素数2〜12)共重合体等の軟質樹脂状高分子、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、又はポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子、アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<Binder>
As the binder, a polymer that is stable against a liquid solvent described later is preferable. For example, resin polymers such as polyethylene, polypropylene, polyethylene terephthalate, aromatic polyamide, cellulose, rubbery polymers such as styrene / butadiene rubber, isoprene rubber, butadiene rubber or ethylene / propylene rubber, styrene / butadiene / styrene block Polymers, hydrogenated products thereof, styrene / ethylene / butadiene / styrene copolymers, styrene / isoprene / styrene block copolymers and thermoplastic elastomeric polymers such as hydrogenated products, syndiotactic 1,2-polybutadiene , Ethylene / vinyl acetate copolymer, or soft resinous polymer such as propylene / α-olefin (carbon number 2 to 12) copolymer, polyvinylidene fluoride, polytetrafluoroethylene, or polytetrafluoroethylene / ethylene The fluoropolymer of the polymer such as, a polymer composition or the like having an ionic conductivity of alkali metal ions (especially lithium ions) can be mentioned. These may be used individually by 1 type and may be used in combination of 2 or more type.

上記のイオン伝導性を有する高分子組成物としては、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物や、ポリエーテル化合物の架橋体高分子や、ポリエピクロルヒドリン、ポリフォスファゼン、ポリシロキサン、ポリビニルピロリドン、ポリビニリデンカーボネート、又はポリアクリロニトリル等の高分子化合物に、リチウム塩又はリチウムを主体とするアルカリ金属塩かを複合させた高分子、又はこれにプロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン等の高い誘電率又はイオン−双極子相互作用力かを有する有機化合物を配合した高分子を用いることができる。   Examples of the polymer composition having ion conductivity include polyether polymer compounds such as polyethylene oxide and polypropylene oxide, crosslinked polymers of polyether compounds, polyepichlorohydrin, polyphosphazene, polysiloxane, and polyvinylpyrrolidone. , A polymer in which a lithium salt or an alkali metal salt mainly composed of lithium is combined with a polymer compound such as polyvinylidene carbonate or polyacrylonitrile, or a high dielectric such as propylene carbonate, ethylene carbonate, or γ-butyrolactone. A polymer in which an organic compound having a rate or an ion-dipole interaction force is blended can be used.

具体的には、通常、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、芳香族ポリアミド、又はセルロース及びその誘導体(例えばカルボキシメチルセルロース)等の樹脂系高分子、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、又はエチレン・プロピレンゴム等のゴム状高分子、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、又はポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物、ポリエーテル化合物の架橋体高分子が挙げられ、好ましくは、ポリエチレン、ポリプロピレン、スチレン・ブタジエンゴム、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、又はポリエチレンオキシドが挙げられ、更に好ましくは、ポリエチレン、スチレン・ブタジエンゴム、ポリフッ化ビニリデン、又はポリテトラフルオロエチレンが挙げられる。これらは、現在工業的に一般に使用されており、扱い易いため好適である。   Specifically, resin polymers such as polyethylene, polypropylene, polyethylene terephthalate, aromatic polyamide, or cellulose and derivatives thereof (for example, carboxymethylcellulose), styrene / butadiene rubber, isoprene rubber, butadiene rubber, or ethylene / propylene are usually used. Rubber-like polymers such as rubber, fluoropolymers such as polyvinylidene fluoride, polytetrafluoroethylene, or polytetrafluoroethylene / ethylene copolymers, polyether polymer compounds such as polyethylene oxide and polypropylene oxide, polyethers Examples include crosslinked polymers of the compound, preferably polyethylene, polypropylene, styrene / butadiene rubber, polyvinylidene fluoride, polytetrafluoroethylene, or polyethylene oxide. Is, more preferably, polyethylene, styrene-butadiene, polyvinylidene fluoride, or polytetrafluoroethylene. These are currently used industrially and are suitable because they are easy to handle.

この負極の構造は、本発明の負極材と、負極材A及び/又は導電剤と、結着剤を分散液中に分散させたスラリー状のものを、集電体基板上に薄く塗布・乾燥する工程、続いて所定の厚み・密度まで圧密するプレス工程により製造される。
負極活物質、必要に応じて用いられる導電剤と結着剤を混合して集電体上に塗布する際の負極活物質スラリーの調製には、水系溶媒又は有機溶媒が分散媒として用いられる。水系溶媒としては、通常、水が用いられるが、これにエタノール等のアルコール類、N−メチルピロリドン等の環状アミド類等の添加剤を水に対して、30質量%以下程度まで添加することもできる。
The structure of this negative electrode is that the negative electrode material of the present invention, the negative electrode material A and / or a conductive agent, and a slurry in which a binder is dispersed in a dispersion liquid are thinly applied and dried on a current collector substrate. Followed by a pressing step of compacting to a predetermined thickness and density.
An aqueous solvent or an organic solvent is used as a dispersion medium for preparing a negative electrode active material slurry when a negative electrode active material, a conductive agent and a binder used as necessary are mixed and applied onto a current collector. As the aqueous solvent, water is usually used, and additives such as alcohols such as ethanol and cyclic amides such as N-methylpyrrolidone may be added to water up to about 30% by mass or less. it can.

また、有機溶媒としては、通常、N−メチルピロリドン等の環状アミド類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等の直鎖状アミド類、アニソール、トルエン、キシレン等の芳香族炭化水素類、ブタノール、シクロヘキサノール等のアルコール類が挙げられ、中でも、N−メチルピロリドン等の環状アミド類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等の直鎖状アミド類等が好ましい。   As the organic solvent, usually, cyclic amides such as N-methylpyrrolidone, linear amides such as N, N-dimethylformamide and N, N-dimethylacetamide, and aromatic carbonization such as anisole, toluene and xylene Examples thereof include alcohols such as hydrogens, butanol and cyclohexanol, among which cyclic amides such as N-methylpyrrolidone, linear amides such as N, N-dimethylformamide and N, N-dimethylacetamide are preferable. .

負極活物質、結着剤及び必要に応じて配合される導電剤をこれらの溶媒に混合して負極活物質スラリーを調製し、これを負極用集電体基板に所定の厚みとなるように塗布することにより負極活物質層が形成されるが、この負極活物質スラリー中の負極活物質の濃度の
上限は通常70質量%以下、好ましくは55質量%以下であり、下限は通常30質量%以上、好ましくは40質量%以上である。負極活物質の濃度がこの上限を超えると負極活物質スラリー中の負極活物質が凝集し易くなり、下限を下回ると負極活物質スラリーの保存中に負極活物質が沈降し易くなる。
A negative electrode active material, a binder, and a conductive agent blended as necessary are mixed with these solvents to prepare a negative electrode active material slurry, and this is applied to the negative electrode current collector substrate so as to have a predetermined thickness. Thus, the negative electrode active material layer is formed. The upper limit of the concentration of the negative electrode active material in the negative electrode active material slurry is usually 70% by mass or less, preferably 55% by mass or less, and the lower limit is usually 30% by mass or more. , Preferably it is 40 mass% or more. When the concentration of the negative electrode active material exceeds this upper limit, the negative electrode active material in the negative electrode active material slurry tends to aggregate, and when the concentration is lower than the lower limit, the negative electrode active material tends to settle during storage of the negative electrode active material slurry.

また、負極活物質スラリー中の結着剤の濃度の上限は通常30質量%以下、好ましくは10質量%以下であり、下限は通常0.1質量%以上、好ましくは0.5重量以上である。結着剤の濃度がこの上限を超えると得られる負極の内部抵抗が大きくなり、下限を下回ると負極活物質層の結着性に劣るものとなる。
[3]非水電解質二次電池
本発明の非水電解質二次電池は、リチウムイオンを吸蔵・放出可能な正極及び負極、並びに電解質を備える非水電解質二次電池において、負極に本発明の負極材を用いたものである。
The upper limit of the binder concentration in the negative electrode active material slurry is usually 30% by mass or less, preferably 10% by mass or less, and the lower limit is usually 0.1% by mass or more, preferably 0.5% or more. . When the concentration of the binder exceeds this upper limit, the internal resistance of the negative electrode obtained increases, and when the concentration is lower than the lower limit, the binding property of the negative electrode active material layer becomes poor.
[3] Non-aqueous electrolyte secondary battery
The nonaqueous electrolyte secondary battery of the present invention is a nonaqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and an electrolyte, and the negative electrode material of the present invention is used for the negative electrode.

本発明の非水電解質二次電池を構成する正極、電解質等の電池構成上必要な、負極以外の部材の選択については特に制限されない。以下において、本発明の負極材を負極として用いた場合の非水電解質二次電池を構成する負極以外の部材の材料等を例示するが、使用し得る材料はこれらの具体例に限定されるものではない。
[正極]
正極は、集電体基板上に、正極活物質と、結着及び増粘効果を有する有機物(結着剤)を含有する活物質層を形成してなり、通常、正極活物質と結着剤を、水又は有機溶媒中に分散させたスラリー状のものを、集電体基板上に薄く塗布・乾燥する工程、続いて所定の厚み・密度まで圧密するプレス工程により形成される。
There is no particular limitation on the selection of members other than the negative electrode necessary for the battery configuration such as the positive electrode and the electrolyte constituting the nonaqueous electrolyte secondary battery of the present invention. In the following, materials of members other than the negative electrode constituting the nonaqueous electrolyte secondary battery when the negative electrode material of the present invention is used as a negative electrode will be exemplified, but usable materials are limited to these specific examples. is not.
[Positive electrode]
The positive electrode is formed by forming a positive electrode active material and an active material layer containing an organic substance (binder) having a binding and thickening effect on a current collector substrate. Usually, the positive electrode active material and the binder are used. The slurry is dispersed in water or an organic solvent, and is applied by a thin coating and drying process on a current collector substrate, followed by a pressing process for compacting to a predetermined thickness and density.

<正極活物質>
正極活物質には、リチウムを吸蔵・放出できる機能を有している限り特に制限はないが、例えば、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物等のリチウム遷移金属複合酸化物材料;二酸化マンガン等の遷移金属酸化物材料;フッ化黒鉛等の炭素質材料等を使用することができる。具体的には、LiFeO、LiCoO、LiNiO、LiMn及びこれらの非定比化合物、MnO、TiS、FeS、Nb、Mo、CoS、V、P、CrO、V、TeO、GeO2、LiFePO、LiMnPO、LiNi0.5Mn1.5等を用いることができる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<Positive electrode active material>
The positive electrode active material is not particularly limited as long as it has a function capable of inserting and extracting lithium. For example, lithium transition metal composite oxide materials such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide Transition metal oxide materials such as manganese dioxide; carbonaceous materials such as graphite fluoride can be used. Specifically, LiFeO 2 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and their non-stoichiometric compounds, MnO 2 , TiS 2 , FeS 2 , Nb 3 S 4 , Mo 3 S 4 , CoS 2 , V 2 O 5 , P 2 O 5 , CrO 3 , V 3 O 3 , TeO 2 , GeO 2, LiFePO 4 , LiMnPO 4 , LiNi 0.5 Mn 1.5 O 4 and the like can be used. These may be used individually by 1 type and may be used in combination of 2 or more type.

<導電剤>
正極活物質層には、正極用導電剤を用いることができる。正極用導電剤は、用いる正極活物質の充放電電位において、化学変化を起こさない電子伝導性材料であれば何でもよい。例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト類;アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカ−ボンブラック類;炭素繊維、金属繊維等の導電性繊維類;フッ化カーボン類;アルミニウム等の金属粉末類;酸化亜鉛、チタン酸カリウム等の導電性ウィスカー類;酸化チタン等の導電性金属酸化物;ポリフェニレン誘導体等の有機導電性材料;等を単独又はこれらの混合物として含ませることができる。これらの導電剤のなかで、人造黒鉛、アセチレンブラック等が特に好ましい。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<Conductive agent>
A positive electrode conductive agent can be used for the positive electrode active material layer. The positive electrode conductive agent may be any electron conductive material that does not cause a chemical change at the charge / discharge potential of the positive electrode active material used. For example, graphite such as natural graphite (flaky graphite etc.), artificial graphite, etc .; carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black; carbon fiber, metal fiber, etc. Conductive fibers of: carbon fluorides; metal powders such as aluminum; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; organic conductive materials such as polyphenylene derivatives; Etc. can be included alone or as a mixture thereof. Among these conductive agents, artificial graphite, acetylene black and the like are particularly preferable. These may be used individually by 1 type and may be used in combination of 2 or more type.

導電剤の添加量は、特に限定されないが、正極活物質に対して、1〜50質量%が好ましく、特に1〜30質量%が好ましい。カーボンやグラファイトでは、2〜15質量%が特に好ましい。
<結着剤>
正極活物質層の形成に用いられる結着剤としては、特に制限はなく、熱可塑性樹脂、熱硬化性樹脂の何れであってもよい。例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体又は前記材料の(Na)イオン架橋体、エチレン−メタクリル酸共重合体又は前記材料の(Na)イオン架橋体、エチレン−アクリル酸メチル共重合体又は前記材料の(Na)イオン架橋体、エチレン−メタクリル酸メチル共重合体又は前記材料の(Na)イオン架橋体を挙げることができ、これらの材料を単独又は混合物として用いることができる。これらの材料の中でより好ましい材料はポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)である。
Although the addition amount of a electrically conductive agent is not specifically limited, 1-50 mass% is preferable with respect to a positive electrode active material, and 1-30 mass% is especially preferable. In the case of carbon or graphite, 2 to 15% by mass is particularly preferable.
<Binder>
There is no restriction | limiting in particular as a binder used for formation of a positive electrode active material layer, Any of a thermoplastic resin and a thermosetting resin may be sufficient. For example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), Tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin) , Polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrif Oroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer or (Na + ) ion crosslinked product, ethylene-methacrylic acid copolymer or (Na + ) ion crosslinked product of the material, ethylene-methyl acrylate copolymer, or (Na + ) ion crosslinked product of the material, ethylene-methacrylic acid Examples thereof include an acid methyl copolymer or a (Na + ) ion-crosslinked product of the above materials, and these materials can be used alone or as a mixture. Among these materials, more preferable materials are polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE).

<その他の添加剤>
正極活物質層には、前述の導電剤の他、更にフィラー、分散剤、イオン伝導体、圧力増強剤及びその他の各種添加剤を配合することができる。フィラーは、構成された電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、ガラス、炭素等の繊維が用いられる。フィラーの添加量は特に限定されないが、活物質層中の含有量として0〜30質量%が好ましい。
<Other additives>
In addition to the conductive agent described above, the positive electrode active material layer may further contain a filler, a dispersant, an ionic conductor, a pressure enhancer, and other various additives. Any filler can be used as long as it is a fibrous material that does not cause a chemical change in the constructed battery. Usually, olefin polymers such as polypropylene and polyethylene, and fibers such as glass and carbon are used. Although the addition amount of a filler is not specifically limited, 0-30 mass% is preferable as content in an active material layer.

<溶媒>
正極活物質スラリーの調製には、水系溶媒又は有機溶媒が分散媒として用いられる。水系溶媒としては、通常、水が用いられるが、これにエタノール等のアルコール類、N−メチルピロリドン等の環状アミド類等の添加剤を水に対して、30質量%以下程度まで添加することもできる。また、有機溶媒としては、通常、N−メチルピロリドン等の環状アミド類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等の直鎖状アミド類、アニソール、トルエン、キシレン等の芳香族炭化水素類、ブタノール、シクロヘキサノール等のアルコール類が挙げられ、中でも、N−メチルピロリドン等の環状アミド類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等の直鎖状アミド類等が好ましい。
<Solvent>
In preparing the positive electrode active material slurry, an aqueous solvent or an organic solvent is used as a dispersion medium. As the aqueous solvent, water is usually used, and additives such as alcohols such as ethanol and cyclic amides such as N-methylpyrrolidone may be added to water up to about 30% by mass or less. it can. As the organic solvent, usually, cyclic amides such as N-methylpyrrolidone, linear amides such as N, N-dimethylformamide and N, N-dimethylacetamide, and aromatic carbonization such as anisole, toluene and xylene Examples thereof include alcohols such as hydrogens, butanol and cyclohexanol, among which cyclic amides such as N-methylpyrrolidone, linear amides such as N, N-dimethylformamide and N, N-dimethylacetamide are preferable. .

正極活物質、結着剤である結着及び増粘効果を有する有機物及び必要に応じて配合される正極用導電剤、その他フィラー等をこれらの溶媒に混合して正極活物質スラリーを調製し、これを正極用集電体基板に所定の厚みとなるように塗布することにより正極活物質層が形成される。
なお、この正極活物質スラリー中の正極活物質の濃度の上限は通常70質量%以下、好ましくは55質量%以下であり、下限は通常30質量%以上、好ましくは40質量%以上である。正極活物質の濃度がこの上限を超えると正極活物質スラリー中の正極活物質が凝集し易くなり、下限を下回ると正極活物質スラリーの保存中に正極活物質が沈降し易くなる。
A positive electrode active material, a binder as a binder, an organic substance having a thickening effect, a positive electrode conductive agent blended as necessary, and other fillers are mixed in these solvents to prepare a positive electrode active material slurry, The positive electrode active material layer is formed by applying this to the positive electrode current collector substrate so as to have a predetermined thickness.
The upper limit of the concentration of the positive electrode active material in the positive electrode active material slurry is usually 70% by mass or less, preferably 55% by mass or less, and the lower limit is usually 30% by mass or more, preferably 40% by mass or more. If the concentration of the positive electrode active material exceeds this upper limit, the positive electrode active material in the positive electrode active material slurry tends to aggregate, and if it falls below the lower limit, the positive electrode active material tends to settle during storage of the positive electrode active material slurry.

また、正極活物質スラリー中の結着剤の濃度の上限は通常30質量%以下、好ましくは10質量%以下であり、下限は通常0.1質量%以上、好ましくは0.5重量以上である。結着剤の濃度がこの上限を超えると得られる正極の内部抵抗が大きくなり、下限を下回ると正極活物質層の結着性に劣るものとなる場合もある。   Further, the upper limit of the concentration of the binder in the positive electrode active material slurry is usually 30% by mass or less, preferably 10% by mass or less, and the lower limit is usually 0.1% by mass or more, preferably 0.5% or more. . When the concentration of the binder exceeds this upper limit, the internal resistance of the positive electrode obtained increases, and when it falls below the lower limit, the binding property of the positive electrode active material layer may be inferior.

<集電体>
正極用集電体としては、例えば、電解液中での陽極酸化によって表面に不動態皮膜を形成する弁金属又はその合金を用いるのが好ましい。弁金属としては、周期表4族、5族、13族に属する金属及びこれらの合金を例示することができる。具体的には、Al、Ti、Zr、Hf、Nb、Ta及びこれらの金属を含む合金等を例示することができ、Al、Ti、Ta及びこれらの金属を含む合金を好ましく使用することができる。特にAl及びその合金は軽量であるためエネルギー密度が高くて望ましい。正極用集電体の厚みは特に限定されないが通常1〜50μm程度である。
<Current collector>
As the positive electrode current collector, for example, it is preferable to use a valve metal or an alloy thereof that forms a passive film on the surface by anodic oxidation in an electrolytic solution. Examples of the valve metal include metals belonging to Groups 4, 5, and 13 of the periodic table and alloys thereof. Specifically, Al, Ti, Zr, Hf, Nb, Ta and alloys containing these metals can be exemplified, and Al, Ti, Ta and alloys containing these metals can be preferably used. . In particular, Al and its alloys are desirable because of their light weight and high energy density. The thickness of the positive electrode current collector is not particularly limited, but is usually about 1 to 50 μm.

[電解質]
電解質としては、電解液や固体電解質等、任意の電解質を用いることができる。なおここで電解質とはイオン導電体すべてのことをいい、電解液及び固体電解質は共に電解質に含まれるものとする。
電解液としては、例えば、非水系溶媒に溶質を溶解したものを用いることができる。溶質としては、アルカリ金属塩や4級アンモニウム塩等を用いることができる。具体的には、LiClO、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiC(CFSO等が好ましく用いられる。これらの溶質は、1種類を選択して使用してもよいし、2種以上を混合して使用してもよい。電解液中のこれらの溶質の含有量は、0.2mol/L以上、特に0.5mol/L以上で、2mol/L以下、特に1.5mol/L以下であることが好ましい。
[Electrolytes]
Any electrolyte such as an electrolytic solution or a solid electrolyte can be used as the electrolyte. Here, the electrolyte refers to all ionic conductors, and both the electrolytic solution and the solid electrolyte are included in the electrolyte.
As the electrolytic solution, for example, a solution obtained by dissolving a solute in a non-aqueous solvent can be used. As the solute, an alkali metal salt, a quaternary ammonium salt, or the like can be used. Specifically, LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 and the like are preferably used. One kind of these solutes may be selected and used, or two or more kinds may be mixed and used. The content of these solutes in the electrolytic solution is preferably 0.2 mol / L or more, particularly 0.5 mol / L or more, and 2 mol / L or less, particularly 1.5 mol / L or less.

非水系溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネート、γ−ブチロラクトン等の環状エステル化合物;1,2−ジメトキシエタン等の鎖状エーテル;クラウンエーテル、2−メチルテトラヒドロフラン、1,2−ジメチルテトラヒドロフラン、1,3−ジオキソラン、テトラヒドロフラン等の環状エーテル;ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネート等の鎖状カーボネート等を用いることができる。これらの中でも、環状カーボネートと鎖状カーボネートを含有する非水溶媒が好ましい。
これらの溶媒は1種類を選択して使用してもよいし、2種以上を混合して使用してもよい。
Examples of the non-aqueous solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and vinylene carbonate, cyclic ester compounds such as γ-butyrolactone; chain ethers such as 1,2-dimethoxyethane; crown ethers, 2- Cyclic ethers such as methyltetrahydrofuran, 1,2-dimethyltetrahydrofuran, 1,3-dioxolane, and tetrahydrofuran; chain carbonates such as diethyl carbonate, ethyl methyl carbonate, and dimethyl carbonate can be used. Among these, a nonaqueous solvent containing a cyclic carbonate and a chain carbonate is preferable.
One type of these solvents may be selected and used, or two or more types may be mixed and used.

本発明に係る非水系電解液は、分子内に不飽和結合を有する環状炭酸エステルや従来公知の過充電防止剤、脱酸剤、脱水剤等の種々の助剤を含有していてもよい。
分子内に不飽和結合を有する環状炭酸エステルとしては、例えば、ビニレンカーボネート系化合物、ビニルエチレンカーボネート系化合物、メチレンエチレンカーボネート系化合物等が挙げられる。
The nonaqueous electrolytic solution according to the present invention may contain various auxiliary agents such as a cyclic carbonate having an unsaturated bond in the molecule, a conventionally known overcharge inhibitor, a deoxidizer, and a dehydrator.
Examples of the cyclic carbonate having an unsaturated bond in the molecule include vinylene carbonate compounds, vinyl ethylene carbonate compounds, methylene ethylene carbonate compounds, and the like.

ビニレンカーボネート系化合物としては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、4,5−ジエチルビニレンカーボネート、フルオロビニレンカーボネート、トリフルオロメチルビニレンカーボネート等が挙げられる。
ビニルエチレンカーボネート系化合物としては、例えば、ビニルエチレンカーボネート、4−メチル−4−ビニルエチレンカーボネート、4−エチル−4−ビニルエチレンカーボネート、4−n−プロピル−4−ビニルエチレンカーボネート、5−メチル−4−ビニルエチレンカーボネート、4,4−ジビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート等が挙げられる。
Examples of the vinylene carbonate compounds include vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4,5-diethyl vinylene carbonate, fluoro vinylene carbonate, trifluoromethyl vinylene carbonate, and the like.
Examples of the vinyl ethylene carbonate compound include vinyl ethylene carbonate, 4-methyl-4-vinyl ethylene carbonate, 4-ethyl-4-vinyl ethylene carbonate, 4-n-propyl-4-vinyl ethylene carbonate, 5-methyl- Examples include 4-vinylethylene carbonate, 4,4-divinylethylene carbonate, 4,5-divinylethylene carbonate, and the like.

メチレンエチレンカーボネート系化合物としては、例えば、メチレンエチレンカーボネート、4,4−ジメチル−5−メチレンエチレンカーボネート、4,4−ジエチル−5−メチレンエチレンカーボネート等が挙げられる。
これらのうち、ビニレンカーボネート、ビニルエチレンカーボネートが好ましく、特にビニレンカーボネートが好ましい。
Examples of the methylene ethylene carbonate compound include methylene ethylene carbonate, 4,4-dimethyl-5-methylene ethylene carbonate, 4,4-diethyl-5-methylene ethylene carbonate, and the like.
Of these, vinylene carbonate and vinyl ethylene carbonate are preferable, and vinylene carbonate is particularly preferable.

これらは1種を単独で用いても、2種類以上を併用してもよい。
非水系電解液が分子内に不飽和結合を有する環状炭酸エステル化合物を含有する場合、非水系電解液中におけるその割合は、通常0.01質量%以上、好ましくは0.1質量%以上、特に好ましくは0.3質量%以上、最も好ましくは0.5質量%以上であり、通常8質量%以下、好ましくは4質量%以下、特に好ましくは3質量%以下である。
These may be used individually by 1 type, or may use 2 or more types together.
When the non-aqueous electrolyte contains a cyclic carbonate compound having an unsaturated bond in the molecule, the proportion in the non-aqueous electrolyte is usually 0.01% by mass or more, preferably 0.1% by mass or more, particularly Preferably it is 0.3 mass% or more, Most preferably, it is 0.5 mass% or more, Usually 8 mass% or less, Preferably it is 4 mass% or less, Most preferably, it is 3 mass% or less.

分子内に不飽和結合を有する環状炭酸エステルを電解液に含有させることにより、電池のサイクル特性を向上させることができる。その理由は明かではないが、負極の表面に安定な保護被膜を形成することができるためと推測される。ただし、その含有量が少ないとこの特性が十分に向上しない。しかし、含有量が多すぎると高温保存時にガス発生量が増大する傾向にあるので、電解液中の含有量は上記の範囲にするのが好ましい。   By including in the electrolyte a cyclic carbonate having an unsaturated bond in the molecule, the cycle characteristics of the battery can be improved. Although the reason is not clear, it is presumed that a stable protective film can be formed on the surface of the negative electrode. However, when the content is small, this property is not sufficiently improved. However, if the content is too large, the gas generation amount tends to increase during high-temperature storage, so the content in the electrolyte is preferably in the above range.

過充電防止剤としては、例えば、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール;2,6−ジフルオロアニソ−ル等の含フッ素アニソール化合物等が挙げられる。
これらは1種を単独で用いてもよく、2種類以上併用してもよい。
非水系電解液中における過充電防止剤の割合は、通常0.1〜5質量%である。過充電防止剤を含有させることにより、過充電等のときに電池の破裂・発火を抑制することができる。
Examples of the overcharge inhibitor include aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran; 2-fluoro Partially fluorinated products of the above aromatic compounds such as biphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene; fluorine-containing compounds such as 2,4-difluoroanisole and 2,5-difluoroanisole; Anisole compounds and the like can be mentioned.
These may be used alone or in combination of two or more.
The ratio of the overcharge inhibitor in the non-aqueous electrolyte is usually 0.1 to 5% by mass. By containing an overcharge preventing agent, rupture / ignition of the battery can be suppressed during overcharge or the like.

他の助剤としては、例えば、フルオロエチレンカーボネート、トリフルオロプロピレンカーボネート、フェニルエチレンカーボネート、エリスリタンカーボネート、スピロ−ビス−ジメチレンカーボネート、メトキシエチル−メチルカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、フェニルコハク酸無水物等のカルボン酸無水物;エチレンサルファイト、1,3−プロパンスルトン、1,4−ブタンスルトン、メタンスルホン酸メチル、ブスルファン、スルホラン、スルホレン、ジメチルスルホン、テトラメチルチウラムモノスルフィド、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド等の含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン、N−メチルスクシイミド等の含窒素化合物;ヘプタン、オクタン、シクロヘプタン等の炭化水素化合物、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物等が挙げられる。
これらは1種を単独で用いてもよく、2種類以上併用して用いてもよい。
非水系電解液中におけるこれらの助剤の割合は、通常0.1〜5質量%である。これらの助剤を含有することにより、高温保存後の容量維持特性やサイクル特性を向上させるこ
とができる。
Other auxiliary agents include, for example, carbonate compounds such as fluoroethylene carbonate, trifluoropropylene carbonate, phenylethylene carbonate, erythritan carbonate, spiro-bis-dimethylene carbonate, methoxyethyl-methyl carbonate; succinic anhydride, anhydrous glutar Carboxylic acid anhydrides such as acid, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, phenylsuccinic anhydride; Ethylene sulfite, 1,3-propane sultone, 1,4-butane sultone, methyl methanesulfonate, busulfan, sulfolane, sulfolene, dimethyl sulfone, tetramethylthiuram monosulfide Sulfur-containing compounds such as N, N-dimethylmethanesulfonamide and N, N-diethylmethanesulfonamide; 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxazolidinone, 1,3 -Nitrogen-containing compounds such as dimethyl-2-imidazolidinone and N-methylsuccinimide; hydrocarbon compounds such as heptane, octane and cycloheptane; fluorine-containing compounds such as fluorobenzene, difluorobenzene, hexafluorobenzene and benzotrifluoride An aromatic compound etc. are mentioned.
These may be used alone or in combination of two or more.
The ratio of these auxiliaries in the nonaqueous electrolytic solution is usually 0.1 to 5% by mass. By containing these auxiliaries, capacity maintenance characteristics and cycle characteristics after high-temperature storage can be improved.

また、非水系電解液は、電解液中に有機高分子化合物を含ませ、ゲル状、ゴム状、固体シート状等の固体電解質としてもよい。この場合、有機高分子化合物の具体例としては、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物;ポリエーテル系高分子化合物の架橋体高分子;ポリビニルアルコール、ポリビニルブチラール等のビニルアルコール系高分子化合物;ビニルアルコール系高分子化合物の不溶化物;ポリエピクロルヒドリン;ポリフォスファゼン;ポリシロキサン;ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリル等のビニル系高分子化合物;ポリ(ω−メトキシオリゴオキシエチレンメタクリレート)、ポリ(ω−メトキシオリゴオキシエチレンメタクリレート−co−メチルメタクリレート)等のポリマー共重合体等が挙げられる。   Further, the non-aqueous electrolyte solution may include an organic polymer compound in the electrolyte solution, and may be a solid electrolyte such as a gel, rubber, or solid sheet. In this case, specific examples of the organic polymer compound include polyether polymer compounds such as polyethylene oxide and polypropylene oxide; crosslinked polymers of polyether polymer compounds; vinyl alcohol polymers such as polyvinyl alcohol and polyvinyl butyral. Compound; insolubilized product of vinyl alcohol polymer; polyepichlorohydrin; polyphosphazene; polysiloxane; vinyl polymer such as polyvinylpyrrolidone, polyvinylidene carbonate, polyacrylonitrile; poly (ω-methoxyoligooxyethylene methacrylate), Examples thereof include polymer copolymers such as poly (ω-methoxyoligooxyethylene methacrylate-co-methyl methacrylate).

[その他の構成部材]
非水電解質二次電池には、電解質、負極、及び正極の他に、更に必要に応じて、外缶、セパレータ、ガスケット、封口板、セルケース等を用いることもできる。
セパレータの材質や形状は特に制限されない。セパレータは正極と負極が物理的に接触しないように分離するものであり、イオン透過性が高く、電気抵抗が低いものであるのが好ましい。セパレータは電解液に対して安定で保液性が優れた材料の中から選択するのが好ましい。具体例としては、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布が挙げられる。
[Other components]
In addition to the electrolyte, the negative electrode, and the positive electrode, an outer can, a separator, a gasket, a sealing plate, a cell case, and the like can be used for the non-aqueous electrolyte secondary battery as necessary.
The material and shape of the separator are not particularly limited. The separator is separated so that the positive electrode and the negative electrode do not come into physical contact with each other, and preferably has high ion permeability and low electrical resistance. The separator is preferably selected from materials that are stable with respect to the electrolyte and excellent in liquid retention. Specific examples include porous sheets or nonwoven fabrics made from polyolefins such as polyethylene and polypropylene.

[非水電解質二次電池の形状]
本発明の非水電解質二次電池の形状は特に制限されず、例えば、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等にすることができる。
[Shape of non-aqueous electrolyte secondary battery]
The shape of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited. For example, a cylinder type in which a sheet electrode and a separator are spiral, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, a pellet electrode and a separator It can be made into the coin type etc. which were laminated | stacked.

[非水電解質二次電池の製造方法]
電解質、負極及び正極を少なくとも有する本発明の非水電解質二次電池を製造する方法は特に限定されず、通常採用されている方法の中から適宜選択することができる。本発明の非水電解質二次電池の製造方法の一例を挙げると、外缶上に負極を乗せ、その上に電解液とセパレータを設け、更に負極と対向するように正極を乗せて、ガスケット、封口板と共にかしめて電池を組み立てる方法が挙げられる。
[Method for producing non-aqueous electrolyte secondary battery]
The method for producing the nonaqueous electrolyte secondary battery of the present invention having at least an electrolyte, a negative electrode, and a positive electrode is not particularly limited, and can be appropriately selected from commonly employed methods. An example of the method for producing the nonaqueous electrolyte secondary battery of the present invention is as follows: a negative electrode is placed on an outer can, an electrolytic solution and a separator are provided thereon, and a positive electrode is placed so as to face the negative electrode; A method of assembling the battery by caulking with a sealing plate is mentioned.

次に実施例により本発明を更に詳細に説明するが、本発明はその要旨を超えない限り、これらの実施例によって何ら限定されるものではない。
[実施例1]
(固相反応)
酸化チタン粉末(和光純薬工業(株)社製「酸化チタン(IV)、アナターゼ型」)と五酸化ニオブ粉末(H.C.Starck社製「Nb、Ceramic Grade)をモル比で1:1となるように秤量した。これらを乳鉢中でエタノールを適量添加して湿
式混合後、アルミナ坩堝に入れ電気炉を用いて大気雰囲気下1000℃・24時間熱処理した。自然放冷した後、再度乳鉢中で粉砕・混合を行い、1000℃・24時間熱処理を行った。XRDピークは、TiNbと一致した。N吸着によるBET法での比表面積は1.77m/gであった。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these Examples, unless the summary is exceeded.
[Example 1]
(Solid phase reaction)
Titanium oxide powder (“Titanium (IV) oxide, anatase type” manufactured by Wako Pure Chemical Industries, Ltd.) and niobium pentoxide powder (“Nb 2 O 5 , Ceramic Grade” manufactured by HC Starck) in molar ratio Weighed the mixture to a ratio of 1: 1, added an appropriate amount of ethanol in a mortar, wet-mixed, placed in an alumina crucible, and heat-treated in an air oven at 1000 ° C. for 24 hours. Then, the mixture was pulverized and mixed again in a mortar, and heat-treated at 1000 ° C. for 24 hours, the XRD peak coincided with TiNb 2 O 7. The specific surface area by the BET method by N 2 adsorption was 1.77 m 2 / g. Met.

〈XRD測定条件〉
X線源 :Cu−Kα線(λ=1.5405Å)、
出力設定 :40kV・30mA
測定時光学条件:
発散スリット=1°
散乱スリット=1°
受光スリット=0.2mm
回折ピークの位置 2θ(回折角)
測定範囲 2θ=5〜60度
スキャン速度 :0.05度(2θ)/sec
連続スキャン
〈BET比表面積測定条件〉
BET比表面積は、比表面積測定装置「NOVA1200」(ユアサアイオニクス(株)社製)を用い、負極材粉末に対して減圧下(真空度5×10−4 Torr以下)150℃
で1時間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.01、0.02、0.04、0.07、0.10となるように調整した高純度窒素ガス(5N8)を用い、窒素吸着BET5点法によって測定した値を用いた。
<XRD measurement conditions>
X-ray source: Cu-Kα ray (λ = 1.5405Å),
Output setting: 40 kV, 30 mA
Optical conditions during measurement:
Divergent slit = 1 °
Scattering slit = 1 °
Receiving slit = 0.2mm
Diffraction peak position 2θ (Diffraction angle)
Measurement range 2θ = 5 to 60 degrees Scan speed: 0.05 degrees (2θ) / sec
Continuous scan <BET specific surface area measurement conditions>
The BET specific surface area was 150 ° C. under reduced pressure (degree of vacuum 5 × 10 −4 Torr or less) with respect to the negative electrode material powder using a specific surface area measuring device “NOVA1200” (manufactured by Yuasa Ionics Co., Ltd.)
High-purity nitrogen gas adjusted so that the relative pressure of nitrogen with respect to atmospheric pressure is 0.01, 0.02, 0.04, 0.07, 0.10 (5N8) was used, and the value measured by the nitrogen adsorption BET 5-point method was used.

〈リチウム二次電池用負極の作製方法〉
上記方法で作製した負極材粉末70mgに対し、導電助剤としてカーボンブラック(電気化学工業株式会社製「デンカブラック粉状品」)20mgを入れ、乳鉢中で混合した。この混合物に、更にバインダーとしPTFE(三井・デュポンフルオロケミカル株式会社
製「6−J」)を10mg入れ、乳鉢中で更に混合した。得られたバインダーを含む混合物を引き伸ばした後、9mmφの径に打ち抜き、更にステンレスメッシュに圧力10kNで圧着し負極とした。ここで、負極の重量は9mmφに打ち抜いた時に、重量(ステンレスメッシュを除く)が6.5〜7.5mgの範囲になるように調整した。
この負極を110℃で一昼夜真空乾燥して評価用の負極とした。
<Method for producing negative electrode for lithium secondary battery>
20 mg of carbon black (“Denka Black Powder” manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent was added to 70 mg of the negative electrode material powder produced by the above method, and mixed in a mortar. To this mixture, 10 mg of PTFE (“6-J” manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) as a binder was further added and further mixed in a mortar. The obtained mixture containing the binder was stretched, punched out to a diameter of 9 mmφ, and further pressure-bonded to a stainless steel mesh at a pressure of 10 kN to obtain a negative electrode. Here, the weight of the negative electrode was adjusted so that the weight (excluding the stainless steel mesh) was in the range of 6.5 to 7.5 mg when punched to 9 mmφ.
This negative electrode was vacuum-dried at 110 ° C. for a whole day and night to obtain a negative electrode for evaluation.

〈リチウム二次電池の作製方法〉
得られた負極をアルゴン雰囲気下のグローブボックスへ移し、電解液としてエチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=3/7(重量比)の混合液を溶媒とした1mol/L−LiPF6電解液と、セパレータとしてポリエチレンセパレータと、対極としてリチウム金属対極とを用い、コイン電池(リチウム二次電池)を作製した。
<Production method of lithium secondary battery>
The obtained negative electrode was transferred to a glove box under an argon atmosphere, and 1 mol / L-LiPF 6 using a mixed solution of ethylene carbonate (EC) / ethyl methyl carbonate (EMC) = 3/7 (weight ratio) as a solvent as an electrolytic solution. A coin battery (lithium secondary battery) was manufactured using the electrolytic solution, a polyethylene separator as a separator, and a lithium metal counter electrode as a counter electrode.

〈放電容量評価〉
0.15mA/cm2の電流密度でリチウム対極に対して1.0Vまで充電し、更に、
10mVの一定電圧で電流値が0.02mAになるまで充電し、負極中にリチウムをドープした後、0.15mA/cm2の電流密度でリチウム対極に対して2.5Vまで放電を
行なう充放電サイクルを5サイクル繰り返し、3〜5サイクル目の放電の平均値を放電容量とした。また、重量当りの放電容量とする場合は、活物質重量は負極重量から導電助剤とバインダーとステンレスメッシュの重量を差し引くことで求め、以下に従って計算した。
<Discharge capacity evaluation>
Charge to a lithium counter electrode to 1.0 V at a current density of 0.15 mA / cm 2 , and
Charging / discharging at a constant voltage of 10 mV until the current value reaches 0.02 mA, doping lithium into the negative electrode, and then discharging to 2.5 V with respect to the lithium counter electrode at a current density of 0.15 mA / cm 2 The cycle was repeated 5 cycles, and the average value of the discharge at the 3rd to 5th cycles was defined as the discharge capacity. Further, when the discharge capacity per weight was determined, the weight of the active material was obtained by subtracting the weight of the conductive additive, the binder, and the stainless mesh from the weight of the negative electrode, and calculated according to the following.

放電容量(mAh/g)
=3〜5サイクル目の平均放電容量(mAh)/活物質重量(g)
活物質重量(g)=負極重量(g)−(バインダー重量(g)+導電助剤重量(g)
+ステンレスメッシュ重量(g))
Discharge capacity (mAh / g)
= 3-5th cycle average discharge capacity (mAh) / active material weight (g)
Active material weight (g) = Negative electrode weight (g) − (Binder weight (g) + Conductive auxiliary agent weight (g)
+ Stainless steel mesh weight (g)

〈充放電効率評価〉
放電容量の測定時に、以下に従って計算した。
充放電効率(%)={3rd放電容量(mAh)/3rd充電容量(mAh)}×1
00
<Evaluation of charge / discharge efficiency>
When measuring the discharge capacity, it was calculated according to the following.
Charge / discharge efficiency (%) = {3rd discharge capacity (mAh) / 3rd charge capacity (mAh)} × 1
00

〈レート特性評価〉
0.15mA/cm2の電流密度でリチウム対極に対して1.0Vまで充電し、更に、
10mVの一定電圧で電流値が0.02mAになるまで充電し、負極中にリチウムをドープした後、レート5Cでリチウム対極に対して2.5Vまで放電を行ない、放電容量を得た。
この負極材粉末の物性および電池評価結果を表−1に示す。
<Rate characteristic evaluation>
Charge to a lithium counter electrode to 1.0 V at a current density of 0.15 mA / cm 2 , and
The battery was charged at a constant voltage of 10 mV until the current value reached 0.02 mA, doped with lithium in the negative electrode, and then discharged to 2.5 V with respect to the lithium counter electrode at a rate of 5 C to obtain a discharge capacity.
Table 1 shows the physical properties and battery evaluation results of the negative electrode material powder.

〈XPS測定条件〉
XPS分析(X線光電子分光法)については、アルバック・ファイ社製ESCAを用い、Al Kα線をX線源とし、出力14kV, 350Wを用い、マルチプレックス測定により、取り出し
角を65°として測定する。測定試料は、電池を0.15mA/cm2の電流密度で1.
0Vまで充電し、更に、10mVの一定電圧で電流値が0.02mAになるまで充電後、アルゴンガスで満たされたグローブボックス内で電池を解体し、負極を切り出し、大気に曝すことなくXPS装置にセットした。測定により得られたXPSスペクトルは、Nb(+V
価)の3d5/2ピークを207.5eVとして帯電補正を行なった。ピーク解析は、装置付属の解析ソフト(multipak)を用いて、202eV〜215eVの範囲でベースライン補正を行ない、4本のピークでカーブフィッティングを行なった。この結果を図2に示す。ピークaは、204.3eVに位置する。
<XPS measurement conditions>
For XPS analysis (X-ray photoelectron spectroscopy), an ESCA manufactured by ULVAC-PHI is used, an Al Kα ray is used as an X-ray source, an output is 14 kV, 350 W, and the extraction angle is 65 ° by multiplex measurement. . The measurement sample is a battery with a current density of 0.15 mA / cm 2 .
After charging to 0V and further charging until the current value reaches 0.02mA at a constant voltage of 10mV, the battery is disassembled in a glove box filled with argon gas, the negative electrode is cut out, and the XPS device is exposed to the atmosphere Set. The XPS spectrum obtained by the measurement is Nb (+ V
The 3d5 / 2 peak of (valence) was set to 207.5 eV, and the charge correction was performed. For peak analysis, baseline correction was performed in the range of 202 eV to 215 eV using analysis software (multipak) attached to the apparatus, and curve fitting was performed with four peaks. The result is shown in FIG. Peak a is located at 204.3 eV.

[実施例2]
(固相反応)
実施例1において、1100℃で熱処理した以外は同様の操作を行った。XRDピークは、TiNbに一致した。N吸着によるBET法での比表面積は1.13m/gであった。この粉末を用いて実施例1と同様にして、負極及びコイン電池の作成、並びに評価を行いその結果を表−1に示した。
[Example 2]
(Solid phase reaction)
In Example 1, the same operation was performed except that heat treatment was performed at 1100 ° C. The XRD peak was consistent with TiNb 2 O 7 . The specific surface area according to the BET method by N 2 adsorption was 1.13 m 2 / g. Using this powder, the negative electrode and coin battery were prepared and evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[実施例3]
(固相反応)
実施例1において、坩堝を白金に、1300℃で熱処理した以外は同様の操作を行った。XRDピークは、TiNbに一致した。N吸着によるBET法での比表面積は0.43m/gであった。この粉末を用いて実施例1と同様にして、負極及びコイン電池の作成、並びに評価を行いその結果を表−1に示した。
[Example 3]
(Solid phase reaction)
In Example 1, the same operation was performed except that the crucible was heat-treated at 1300 ° C. on platinum. The XRD peak was consistent with TiNb 2 O 7 . The specific surface area according to the BET method by N 2 adsorption was 0.43 m 2 / g. Using this powder, the negative electrode and coin battery were prepared and evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[比較例1]
(固相反応)
実施例3において、1400℃、24時間熱処理した以外は同様の操作を行った。XRDピークは、TiNbに一致した。N吸着によるBET法での比表面積は0.17
/gであった。この粉末を用いて実施例1と同様にして、負極及びコイン電池の作成、並びに評価を行いその結果を表−1に示した。
[Comparative Example 1]
(Solid phase reaction)
In Example 3, the same operation was performed except that heat treatment was performed at 1400 ° C. for 24 hours. The XRD peak was consistent with TiNb 2 O 7 . Specific surface area of BET method by N 2 adsorption is 0.17
m 2 / g. Using this powder, the negative electrode and coin battery were prepared and evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[実施例4]
(固相反応)
実施例1において、酸化チタン粉末と五酸化ニオブ粉末のモル比を2:5、熱処理温度を1100℃とした以外は同様の操作を行った。XRDピークは、TiNb1029に一致した。N吸着によるBET法での比表面積は0.69m/gであった。この粉末を用いて実施例1と同様にして、負極及びコイン電池の作成、並びに評価を行いその結果を表−1に示した。
[Example 4]
(Solid phase reaction)
In Example 1, the same operation was performed except that the molar ratio of the titanium oxide powder to the niobium pentoxide powder was 2: 5 and the heat treatment temperature was 1100 ° C. The XRD peak was consistent with Ti 2 Nb 10 O 29 . The specific surface area according to the BET method by N 2 adsorption was 0.69 m 2 / g. Using this powder, the negative electrode and coin battery were prepared and evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[実施例5]
(固相反応)
実施例4において、坩堝を白金に、1300℃・24時間熱処理した以外は同様の操作を行った。XRDピークは、TiNb1029に一致した。N吸着によるBET法での比表面積は0.75m/gであった。この粉末を用いて実施例1と同様にして、負極及びコイン電池の作成、並びに評価を行いその結果を表−1に示した。
[Example 5]
(Solid phase reaction)
In Example 4, the same operation was performed except that the crucible was heat-treated on platinum at 1300 ° C. for 24 hours. The XRD peak was consistent with Ti 2 Nb 10 O 29 . The specific surface area according to the BET method by N 2 adsorption was 0.75 m 2 / g. Using this powder, the negative electrode and coin battery were prepared and evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[実施例6]
(固相反応)
実施例5において、熱処理温度を1400℃とした以外は同様の操作を行った。XRDピークは、TiNb1029に一致した。N吸着によるBET法での比表面積は0.34m/gであった。この粉末を用いて実施例1と同様にして、負極及びコイン電池の作成、並びに評価を行いその結果を表−1に示した。
[Example 6]
(Solid phase reaction)
In Example 5, the same operation was performed except that the heat treatment temperature was 1400 ° C. The XRD peak was consistent with Ti 2 Nb 10 O 29 . The specific surface area according to the BET method by N 2 adsorption was 0.34 m 2 / g. Using this powder, the negative electrode and coin battery were prepared and evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[実施例7]
(固相反応)
実施例1において、坩堝を白金に、酸化チタン粉末と五酸化ニオブ粉末のモル比を1:12、1300℃・24時間熱処理した以外は同様の操作を行った。XRDピークは、TiNb2462に一致した。N吸着によるBET法での比表面積は0.20m/gであった。この粉末を用いて実施例1と同様にして、負極及びコイン電池の作成、並びに評価を行いその結果を表−1に示した。
[Example 7]
(Solid phase reaction)
In Example 1, the same operation was performed except that the crucible was made of platinum and the molar ratio of the titanium oxide powder to the niobium pentoxide powder was heat-treated at 1:12, 1300 ° C. for 24 hours. The XRD peak was consistent with TiNb 24 O 62 . The specific surface area according to the BET method by N 2 adsorption was 0.20 m 2 / g. Using this powder, the negative electrode and coin battery were prepared and evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[実施例8]
(固相反応)
実施例1において、坩堝を白金に、酸化チタン粉末と五酸化ニオブ粉末のモル比を1:7、1400℃・24時間熱処理した以外は同様の操作を行った。XRDピークは、TiNb2462に一致した。N吸着によるBET法での比表面積は0.66m/gであった。この粉末を用いて実施例1と同様にして、負極及びコイン電池の作成、並びに評価を行いその結果を表−1に示した。
[Example 8]
(Solid phase reaction)
In Example 1, the same operation was performed except that the crucible was made of platinum and the molar ratio of titanium oxide powder to niobium pentoxide powder was heat-treated at 1: 7, 1400 ° C. for 24 hours. The XRD peak was consistent with TiNb 24 O 62 . The specific surface area according to the BET method by N 2 adsorption was 0.66 m 2 / g. Using this powder, the negative electrode and coin battery were prepared and evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[比較例2]
(固相反応)
比較例1において、酸化チタン粉末と五酸化ニオブ粉末のモル比を1:12とした以外は同様の操作を行った。XRDピークは、TiNb2462に一致した。N吸着によるBET法での比表面積は0.16m/gであった。この粉末を用いて実施例1と同様にして、負極及びコイン電池の作成、並びに評価を行いその結果を表−1に示した。
[Comparative Example 2]
(Solid phase reaction)
In Comparative Example 1, the same operation was performed except that the molar ratio of the titanium oxide powder and the niobium pentoxide powder was 1:12. The XRD peak was consistent with TiNb 24 O 62 . The specific surface area according to the BET method by N 2 adsorption was 0.16 m 2 / g. Using this powder, the negative electrode and coin battery were prepared and evaluated in the same manner as in Example 1, and the results are shown in Table 1.

Figure 2010287496
Figure 2010287496

表1より次のことがわかる。
比較例1、2の負極材粉末は、BET法による比表面積が本発明の規定よりも小さいチタン、ニオブ含有する複合酸化物である。これらの放電容量および3rdの充放電効率は低く、レート特性も悪かった。
これらに対して、実施例1〜8の本発明の負極材粉末は、BET法による比表面積が本発明の規定範囲内のチタン、ニオブを含有する複合酸化物負極材であり、本発明の規定範囲を満たすものである。このような負極材粉末を用いると、放電容量、3rdの充放電効率が高く、レート特性に優れた高性能の電池が得られる。
Table 1 shows the following.
The negative electrode material powders of Comparative Examples 1 and 2 are composite oxides containing titanium and niobium whose specific surface area by the BET method is smaller than that of the present invention. These discharge capacities and charge / discharge efficiencies of 3rd were low, and the rate characteristics were also poor.
On the other hand, the negative electrode material powders of the present invention of Examples 1 to 8 are composite oxide negative electrode materials containing titanium and niobium whose specific surface area by the BET method is within the specified range of the present invention. It satisfies the range. When such a negative electrode material powder is used, a high-performance battery having high discharge capacity, 3rd charge / discharge efficiency, and excellent rate characteristics can be obtained.

本発明の負極材を用いることにより、放電容量、充放電効率が高く、レート特性に優れた非水電解質二次電池を実現することができるため、本発明の非水電解質二次電池用負極及び非水電解質二次電池は、大型の高入出力特性が必要とされる非水電解質二次電池が適用される分野において好適に利用可能である。   By using the negative electrode material of the present invention, it is possible to realize a non-aqueous electrolyte secondary battery having high discharge capacity, high charge / discharge efficiency, and excellent rate characteristics. Therefore, the negative electrode for a non-aqueous electrolyte secondary battery of the present invention and The non-aqueous electrolyte secondary battery can be suitably used in a field where a non-aqueous electrolyte secondary battery requiring a large and high input / output characteristic is applied.

Claims (5)

チタン(Ti)およびニオブ(Nb)を含有する複合酸化物を含有する負極材であって、BET法による比表面積が0.18m/g以上であることを特徴とする非水電解質二次電池用負極材。 A non-aqueous electrolyte secondary battery comprising a composite oxide containing titanium (Ti) and niobium (Nb), wherein the specific surface area by the BET method is 0.18 m 2 / g or more Negative electrode material. 充電状態において、Nb(+V価)の3d 5/2ピークを207.5eVとしたXP
S分析において結合エネルギー=204.3±1eVの位置にピークaを有することを特
徴とする請求項1に記載の非水電解質二次電池用負極材。
XP in which the 3d 5/2 peak of Nb (+ V valence) is 207.5 eV in the charged state
2. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, which has a peak a at a position of binding energy = 204.3 ± 1 eV in S analysis.
チタン(Ti)およびニオブ(Nb)を含有する複合酸化物が、TiNb、TiNb1029およびTiNb2462の少なくともいずれかと同構造であることを特徴とする請求項1または2に記載の非水電解質二次電池用負極材。 The composite oxide containing titanium (Ti) and niobium (Nb) has the same structure as at least one of TiNb 2 O 7 , Ti 2 Nb 10 O 29, and TiNb 24 O 62 , 2. The negative electrode material for a nonaqueous electrolyte secondary battery according to 2. 負極活物質として、請求項1ないし3のいずれか一項に記載の負極材を含むことを特徴とする非水電解質二次電池用負極。   A negative electrode for a nonaqueous electrolyte secondary battery comprising the negative electrode material according to any one of claims 1 to 3 as a negative electrode active material. リチウムイオンを吸蔵・放出可能な正極及び負極並びに電解質を備える非水電解質二次電池において、該負極が、請求項4に記載の非水電解質二次電池用負極であることを特徴とする非水電解質二次電池。



A nonaqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and an electrolyte, wherein the negative electrode is a negative electrode for a nonaqueous electrolyte secondary battery according to claim 4. Electrolyte secondary battery.



JP2009141396A 2009-06-12 2009-06-12 Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using it Pending JP2010287496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009141396A JP2010287496A (en) 2009-06-12 2009-06-12 Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009141396A JP2010287496A (en) 2009-06-12 2009-06-12 Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using it

Publications (1)

Publication Number Publication Date
JP2010287496A true JP2010287496A (en) 2010-12-24

Family

ID=43543042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009141396A Pending JP2010287496A (en) 2009-06-12 2009-06-12 Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using it

Country Status (1)

Country Link
JP (1) JP2010287496A (en)

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2448054A1 (en) * 2010-10-29 2012-05-02 Kabushiki Kaisha Toshiba Battery active material, nonaqueous electrolyte battery and battery pack
CN102694160A (en) * 2011-03-22 2012-09-26 株式会社东芝 Battery active material, nonaqueous electrolyte battery and battery pack
CN102983316A (en) * 2012-11-05 2013-03-20 华中科技大学 Electrode material of secondary lithium ion battery, and its preparation method
JP2013131432A (en) * 2011-12-22 2013-07-04 Panasonic Corp Nonaqueous electrolyte secondary battery
JP2013145759A (en) * 2013-03-18 2013-07-25 Toshiba Corp Negative electrode for battery, nonaqueous electrolyte battery, and battery pack
JP2013535787A (en) * 2010-07-30 2013-09-12 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Niobium oxide composition and method of use thereof
FR2996838A1 (en) * 2012-10-17 2014-04-18 Commissariat Energie Atomique PROCESS FOR THE PREPARATION OF A TITANIUM AND NIOBIUM MIXED OXIDE BY SOLVOTHERMAL TREATMENT; ELECTRODE AND LITHIUM ACCUMULATOR COMPRISING SAID MIXED OXIDE
US20140120404A1 (en) * 2012-10-26 2014-05-01 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack, and method of producing active material
EP2784026A1 (en) 2013-03-26 2014-10-01 Kabushiki Kaisha Toshiba Active substance
KR20140118762A (en) * 2013-03-27 2014-10-08 가부시끼가이샤 도시바 Active material for battery, nonaqueous electrolyte battery and battery pack
EP2784858A3 (en) * 2013-03-27 2014-10-08 Kabushiki Kaisha Toshiba Battery active material, nonaqueous electrolyte battery, and battery pack
JP2014209443A (en) * 2013-03-25 2014-11-06 株式会社東芝 Active material for battery use, nonaqueous electrolyte battery, and battery pack
JP2014225474A (en) * 2014-08-08 2014-12-04 株式会社東芝 Active material for battery, nonaqueous electrolyte battery, and battery pack
JP2015046400A (en) * 2014-10-20 2015-03-12 株式会社東芝 Active material for battery, nonaqueous electrolyte battery, and battery pack
WO2015040709A1 (en) * 2013-09-18 2015-03-26 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
JP2015135770A (en) * 2014-01-17 2015-07-27 株式会社東芝 Negative electrode and nonaqueous electrolyte battery
EP2911223A1 (en) 2014-02-24 2015-08-26 Titan Kogyo Kabushiki Kaisha Titanium-niobium composite oxide-based electrode active material and lithium secondary battery using the same
US9136532B2 (en) 2012-02-09 2015-09-15 Kabushiki Kaisha Toshiba Active material for battery, nonaqueous electrolyte battery, and battery pack
WO2015140915A1 (en) * 2014-03-18 2015-09-24 株式会社 東芝 Active material for batteries, non-aqueous electrolyte battery, and battery pack
WO2015140934A1 (en) * 2014-03-18 2015-09-24 株式会社 東芝 Active material for batteries, non-aqueous electrolyte battery, and battery pack
KR20150131800A (en) * 2014-05-16 2015-11-25 부산대학교 산학협력단 Active material for anode, method of fabricating the same and battery having the same
CN105304887A (en) * 2015-12-09 2016-02-03 南阳师范学院 Mesoporous microspherical titanium niobate/carbon composite material and preparation method thereof
CN105322143A (en) * 2014-07-04 2016-02-10 中信国安盟固利动力科技有限公司 Nano microsphere niobium-based composite oxide and preparation method thereof
CN105428635A (en) * 2014-09-16 2016-03-23 株式会社东芝 Active material, nonaqueous electrolyte battery and battery pack
CN105428619A (en) * 2015-11-12 2016-03-23 南阳师范学院 Preparation method of high-performance Ti2Nb10O29/C composite electrode material
CN105470477A (en) * 2015-11-12 2016-04-06 南阳师范学院 Preparation method of high-performance nitrogen-doped and carbon-coated Ti<2>Nb<10>O<29> composite electrode material
JP2016510304A (en) * 2013-02-06 2016-04-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Mixed oxides of titanium and niobium containing trivalent metals
US9325002B2 (en) 2013-11-01 2016-04-26 Kabushiki Kaisha Toshiba Battery active material, nonaqueous electrolyte battery and battery pack
JP2016066592A (en) * 2014-09-19 2016-04-28 トヨタ自動車株式会社 Negative electrode active material, sodium ion battery and lithium ion battery
CN105552346A (en) * 2016-02-26 2016-05-04 南阳师范学院 Titanium niobate/carbon composite electrode material and preparation method thereof
KR101617964B1 (en) * 2014-11-28 2016-05-04 한양대학교 산학협력단 Metal Oxide Fiber, Energy Storage Device Having the Same, and Method for Fabricating the Metal Oxide Fiber
JP2016131158A (en) * 2016-03-17 2016-07-21 株式会社東芝 Battery pack and motor vehicle
US9431657B2 (en) 2012-08-07 2016-08-30 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, and battery pack
CN106082338A (en) * 2016-06-13 2016-11-09 东北大学 A kind of nano-oxide Ti2nb10o29preparation method
EP3144278A1 (en) * 2015-09-16 2017-03-22 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack, and vehicle
JP2017059307A (en) * 2015-09-14 2017-03-23 太平洋セメント株式会社 Method for producing negative electrode active material for secondary battery
JP2017059398A (en) * 2015-09-16 2017-03-23 株式会社東芝 Active material for battery, nonaqueous electrolyte battery, and battery pack
JP2017128462A (en) * 2016-01-19 2017-07-27 太平洋セメント株式会社 Manufacturing method of titanium niobium oxide, manufacturing method of titanium niobium oxide anode active material using the obtained titanium niobium oxide
JP2017134972A (en) * 2016-01-27 2017-08-03 太平洋セメント株式会社 Method for producing negative electrode active material for secondary battery
US9735417B2 (en) 2015-03-18 2017-08-15 Kabushiki Kaisha Toshiba Method of manufacturing active material
JP2017152217A (en) * 2016-02-25 2017-08-31 太平洋セメント株式会社 Method of manufacturing negative electrode active material for secondary battery
CN107204454A (en) * 2016-03-17 2017-09-26 株式会社东芝 Electrode, nonaqueous electrolyte battery, battery bag and vehicle
US9774032B2 (en) 2013-09-24 2017-09-26 Kabushiki Kaisha Toshiba Active substance
US9893349B2 (en) 2015-09-16 2018-02-13 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack, and vehicle
US10084180B2 (en) 2015-09-14 2018-09-25 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack, and vehicle
US10170761B2 (en) 2015-03-19 2019-01-01 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack and battery module
US10236501B2 (en) 2013-07-08 2019-03-19 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, and battery pack
EP3457476A1 (en) 2017-09-19 2019-03-20 Kabushiki Kaisha Toshiba Active material, electrode, secondary battery, battery pack, and vehicle
CN109904441A (en) * 2018-12-29 2019-06-18 瑞声科技(新加坡)有限公司 A kind of lithium ion battery negative material, lithium ion battery with nonaqueous electrolyte and preparation method thereof
US20190296343A1 (en) * 2018-03-23 2019-09-26 Kabushiki Kaisha Toshiba Active material, electrode, secondary battery, battery pack, and vehicle
CN110400923A (en) * 2019-07-29 2019-11-01 珠海格力电器股份有限公司 Cell negative electrode material, negative electrode material slurry, cathode pole piece and electrochemical cell
CN110776008A (en) * 2019-11-04 2020-02-11 南京航空航天大学 Micron spherical titanium niobate and preparation method and application thereof
US10629901B2 (en) 2013-11-08 2020-04-21 Kabushiki Kaisha Toshiba Production method of battery active material, battery active material, nonaqueous electrolyte battery and battery pack
US10741830B2 (en) 2017-03-24 2020-08-11 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
US10749169B2 (en) 2018-09-18 2020-08-18 Kabushiki Kaisha Toshiba Active material, electrode, secondary battery, battery pack, and vehicle
CN111646510A (en) * 2020-05-27 2020-09-11 武汉工程大学 High-rate titanium niobium oxide microsphere and preparation method and application thereof
CN111924879A (en) * 2020-08-31 2020-11-13 福州大学 Method for preparing titanium niobate by using titanate as precursor
US10910648B2 (en) 2018-03-16 2021-02-02 Kabushiki Kaisha Toshiba Active material, electrode, secondary battery, battery pack, and vehicle
US10930930B2 (en) 2018-09-14 2021-02-23 Kabushiki Kaisha Toshiba Active material, electrode, secondary battery, battery pack, and vehicle
US10944104B2 (en) 2018-03-23 2021-03-09 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
WO2021049665A1 (en) 2019-09-13 2021-03-18 三井金属鉱業株式会社 Electrode mixture and electrode layer and solid-state battery employing same
US10957906B2 (en) 2018-03-23 2021-03-23 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
WO2021132542A1 (en) 2019-12-26 2021-07-01 株式会社クボタ Titanium-niobium compound oxide, and electrode and lithium ion secondary battery using said oxide
US11063256B2 (en) 2018-03-26 2021-07-13 Kabushiki Kaisha Toshiba Active material, active material composite material, electrode, secondary battery, battery pack, and vehicle
EP3883015A1 (en) * 2020-03-19 2021-09-22 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
JP2022047875A (en) * 2020-09-14 2022-03-25 株式会社東芝 Electrode, secondary battery, battery pack, and vehicle
CN114388772A (en) * 2021-12-09 2022-04-22 格力钛新能源股份有限公司 Molybdenum vanadium titanium niobium composite oxide negative electrode material, preparation method thereof and lithium ion battery
US11322742B2 (en) 2019-03-13 2022-05-03 Kabushiki Kaisha Toshiba Active material, electrode, secondary battery, battery pack and vehicle
CN114477284A (en) * 2022-03-16 2022-05-13 中物院成都科学技术发展中心 Method for preparing titanium niobium oxide
CN114614018A (en) * 2022-03-25 2022-06-10 宁波梅山保税港区锂泰企业管理合伙企业(有限合伙) Lithium ion battery negative electrode material, preparation method thereof and lithium ion secondary battery
US11368136B2 (en) * 2017-12-01 2022-06-21 Skyworks Solutions, Inc. Alternative temperature compensating materials to amorphous silica in acoustic wave resonators
KR20230011945A (en) 2020-05-19 2023-01-25 가부시끼 가이샤 구보다 Manufacturing method of titanium niobium composite oxide

Cited By (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535787A (en) * 2010-07-30 2013-09-12 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Niobium oxide composition and method of use thereof
JP2012099287A (en) * 2010-10-29 2012-05-24 Toshiba Corp Active material for battery, nonaqueous electrolyte battery, and battery pack
EP2448054A1 (en) * 2010-10-29 2012-05-02 Kabushiki Kaisha Toshiba Battery active material, nonaqueous electrolyte battery and battery pack
US10490813B2 (en) 2010-10-29 2019-11-26 Kabushiki Kaisha Toshiba Battery active material, nonaqueous electrolyte battery and battery pack
US9515319B2 (en) 2010-10-29 2016-12-06 Kabushiki Kaisha Toshiba Battery active material, nonaqueous electrolyte battery and battery pack
EP2696430A1 (en) * 2010-10-29 2014-02-12 Kabushiki Kaisha Toshiba Negative electrode for battery, nonaqueous electrolyte battery and battery pack
EP2503625A2 (en) 2011-03-22 2012-09-26 Kabushiki Kaisha Toshiba Battery active material, nonaqueous electrolyte battery and battery pack
EP2503625A3 (en) * 2011-03-22 2015-07-01 Kabushiki Kaisha Toshiba Battery active material, nonaqueous electrolyte battery and battery pack
JP2012199146A (en) * 2011-03-22 2012-10-18 Toshiba Corp Active material for battery, nonaqueous electrolyte battery, and battery pack
CN102694160A (en) * 2011-03-22 2012-09-26 株式会社东芝 Battery active material, nonaqueous electrolyte battery and battery pack
US9240590B2 (en) 2011-03-22 2016-01-19 Kabushiki Kaisha Toshiba Battery active material, nonaqueous electrolyte battery and battery pack
US10193149B2 (en) 2011-03-22 2019-01-29 Kabushiki Kaisha Toshiba Battery active material, nonaqueous electrolyte battery and battery pack
JP2013131432A (en) * 2011-12-22 2013-07-04 Panasonic Corp Nonaqueous electrolyte secondary battery
US9136532B2 (en) 2012-02-09 2015-09-15 Kabushiki Kaisha Toshiba Active material for battery, nonaqueous electrolyte battery, and battery pack
US9431657B2 (en) 2012-08-07 2016-08-30 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, and battery pack
FR2996838A1 (en) * 2012-10-17 2014-04-18 Commissariat Energie Atomique PROCESS FOR THE PREPARATION OF A TITANIUM AND NIOBIUM MIXED OXIDE BY SOLVOTHERMAL TREATMENT; ELECTRODE AND LITHIUM ACCUMULATOR COMPRISING SAID MIXED OXIDE
US20150221939A1 (en) * 2012-10-17 2015-08-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for preparing a titanium and niobium mixed oxide by solvothermal treatment; electrode and lithium accumulator comprising said mixed oxide
US9559357B2 (en) 2012-10-17 2017-01-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for preparing a titanium and niobium mixed oxide by solvothermal treatment; electrode and lithium accumulator comprising said mixed oxide
WO2014060662A1 (en) * 2012-10-17 2014-04-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for preparing a titanium and niobium mixed oxide by solvothermal treatment; electrode and lithium accumulator comprising said mixed oxide
JP2016500635A (en) * 2012-10-17 2016-01-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for preparing titanium and niobium mixed oxide by solvothermal treatment, and electrode and lithium storage battery containing the mixed oxide
US10096826B2 (en) 2012-10-26 2018-10-09 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack, and method of producing active material
US20140120404A1 (en) * 2012-10-26 2014-05-01 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack, and method of producing active material
CN102983316A (en) * 2012-11-05 2013-03-20 华中科技大学 Electrode material of secondary lithium ion battery, and its preparation method
JP2019052088A (en) * 2013-02-06 2019-04-04 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Trivalent metal-containing mixture oxide of titanium and niobium
JP2016510304A (en) * 2013-02-06 2016-04-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Mixed oxides of titanium and niobium containing trivalent metals
US9698417B2 (en) 2013-02-06 2017-07-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Mixed oxide of titanium and niobium comprising a trivalent metal
JP2013145759A (en) * 2013-03-18 2013-07-25 Toshiba Corp Negative electrode for battery, nonaqueous electrolyte battery, and battery pack
JP2014209443A (en) * 2013-03-25 2014-11-06 株式会社東芝 Active material for battery use, nonaqueous electrolyte battery, and battery pack
US9240591B2 (en) 2013-03-25 2016-01-19 Kabushiki Kaisha Toshiba Active material for battery, nonaqueous electrolyte battery, and battery pack
US10020503B2 (en) 2013-03-25 2018-07-10 Kabushiki Kaisha Toshiba Active material for battery, nonaqueous electrolyte battery, and battery pack
JP2014209445A (en) * 2013-03-26 2014-11-06 株式会社東芝 Active material for battery use, nonaqueous electrolyte battery and battery pack
US10361429B2 (en) 2013-03-26 2019-07-23 Kabushiki Kaisha Toshiba Active substance used for nonaqueous electrolyte battery
EP2784026A1 (en) 2013-03-26 2014-10-01 Kabushiki Kaisha Toshiba Active substance
KR20140118762A (en) * 2013-03-27 2014-10-08 가부시끼가이샤 도시바 Active material for battery, nonaqueous electrolyte battery and battery pack
EP2784858A3 (en) * 2013-03-27 2014-10-08 Kabushiki Kaisha Toshiba Battery active material, nonaqueous electrolyte battery, and battery pack
JP2014209449A (en) * 2013-03-27 2014-11-06 株式会社東芝 Active material for battery, nonaqueous electrolyte battery, and battery pack
EP2975679A1 (en) * 2013-03-27 2016-01-20 Kabushiki Kaisha Toshiba Battery active material, nonaqueous electrolyte battery, and battery pack
KR101649023B1 (en) 2013-03-27 2016-08-17 가부시끼가이샤 도시바 Active material for battery, nonaqueous electrolyte battery and battery pack
US9373841B2 (en) 2013-03-27 2016-06-21 Kabushiki Kaisha Toshiba Battery active material, nonaqueous electrolyte battery, and battery pack
US10236501B2 (en) 2013-07-08 2019-03-19 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, and battery pack
WO2015040709A1 (en) * 2013-09-18 2015-03-26 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
US9774032B2 (en) 2013-09-24 2017-09-26 Kabushiki Kaisha Toshiba Active substance
US9325002B2 (en) 2013-11-01 2016-04-26 Kabushiki Kaisha Toshiba Battery active material, nonaqueous electrolyte battery and battery pack
US10629901B2 (en) 2013-11-08 2020-04-21 Kabushiki Kaisha Toshiba Production method of battery active material, battery active material, nonaqueous electrolyte battery and battery pack
JP2015135770A (en) * 2014-01-17 2015-07-27 株式会社東芝 Negative electrode and nonaqueous electrolyte battery
US9806339B2 (en) 2014-02-24 2017-10-31 Titan Kogyo Kabushiki Kaisha Titanium-niobium composite oxide-based electrode active material and lithium secondary battery using the same
CN104868108A (en) * 2014-02-24 2015-08-26 钛工业株式会社 Titanium-niobium composite oxide-based electrode active material and lithium secondary battery using the same
EP2911223A1 (en) 2014-02-24 2015-08-26 Titan Kogyo Kabushiki Kaisha Titanium-niobium composite oxide-based electrode active material and lithium secondary battery using the same
JP2015159010A (en) * 2014-02-24 2015-09-03 チタン工業株式会社 Active material for titanium-niobium complex oxide electrode and lithium secondary battery using the same
KR20150100528A (en) 2014-02-24 2015-09-02 타이탄 고교 가부시키가이샤 Titanium-niobium composite oxide-based electrode active material and lithium secondary battery using the same
US9601769B2 (en) 2014-03-18 2017-03-21 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, and battery pack
JP5908649B2 (en) * 2014-03-18 2016-04-26 株式会社東芝 Battery active material, non-aqueous electrolyte battery and battery pack
US9391324B2 (en) 2014-03-18 2016-07-12 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, and battery pack
CN105190962A (en) * 2014-03-18 2015-12-23 株式会社东芝 Active material for batteries, non-aqueous electrolyte battery, and battery pack
US10312511B2 (en) 2014-03-18 2019-06-04 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, and battery pack
JPWO2015140934A1 (en) * 2014-03-18 2017-04-06 株式会社東芝 Battery active material, non-aqueous electrolyte battery and battery pack
JPWO2015140915A1 (en) * 2014-03-18 2017-04-06 株式会社東芝 Battery active material, non-aqueous electrolyte battery and battery pack
WO2015140915A1 (en) * 2014-03-18 2015-09-24 株式会社 東芝 Active material for batteries, non-aqueous electrolyte battery, and battery pack
JP5908650B2 (en) * 2014-03-18 2016-04-26 株式会社東芝 Battery active material, non-aqueous electrolyte battery and battery pack
WO2015140934A1 (en) * 2014-03-18 2015-09-24 株式会社 東芝 Active material for batteries, non-aqueous electrolyte battery, and battery pack
KR101581876B1 (en) 2014-05-16 2015-12-31 부산대학교 산학협력단 Active material for anode, method of fabricating the same and battery having the same
KR20150131800A (en) * 2014-05-16 2015-11-25 부산대학교 산학협력단 Active material for anode, method of fabricating the same and battery having the same
CN105322143A (en) * 2014-07-04 2016-02-10 中信国安盟固利动力科技有限公司 Nano microsphere niobium-based composite oxide and preparation method thereof
JP2014225474A (en) * 2014-08-08 2014-12-04 株式会社東芝 Active material for battery, nonaqueous electrolyte battery, and battery pack
CN105428635A (en) * 2014-09-16 2016-03-23 株式会社东芝 Active material, nonaqueous electrolyte battery and battery pack
US10651466B2 (en) 2014-09-16 2020-05-12 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, and battery pack
EP2999035A3 (en) * 2014-09-16 2016-07-13 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, and battery pack
JP2016066592A (en) * 2014-09-19 2016-04-28 トヨタ自動車株式会社 Negative electrode active material, sodium ion battery and lithium ion battery
JP2015046400A (en) * 2014-10-20 2015-03-12 株式会社東芝 Active material for battery, nonaqueous electrolyte battery, and battery pack
KR101617964B1 (en) * 2014-11-28 2016-05-04 한양대학교 산학협력단 Metal Oxide Fiber, Energy Storage Device Having the Same, and Method for Fabricating the Metal Oxide Fiber
US9735417B2 (en) 2015-03-18 2017-08-15 Kabushiki Kaisha Toshiba Method of manufacturing active material
US10170761B2 (en) 2015-03-19 2019-01-01 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack and battery module
US10084180B2 (en) 2015-09-14 2018-09-25 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack, and vehicle
JP2017059307A (en) * 2015-09-14 2017-03-23 太平洋セメント株式会社 Method for producing negative electrode active material for secondary battery
EP3144278A1 (en) * 2015-09-16 2017-03-22 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack, and vehicle
JP2017059399A (en) * 2015-09-16 2017-03-23 株式会社東芝 Active material for battery, nonaqueous electrolyte battery, and battery pack
US9893349B2 (en) 2015-09-16 2018-02-13 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack, and vehicle
US10020504B2 (en) 2015-09-16 2018-07-10 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack, and vehicle
JP2017059398A (en) * 2015-09-16 2017-03-23 株式会社東芝 Active material for battery, nonaqueous electrolyte battery, and battery pack
CN106887582A (en) * 2015-09-16 2017-06-23 株式会社东芝 Active material, nonaqueous electrolyte battery, battery bag and vehicle
CN105428619A (en) * 2015-11-12 2016-03-23 南阳师范学院 Preparation method of high-performance Ti2Nb10O29/C composite electrode material
CN105470477A (en) * 2015-11-12 2016-04-06 南阳师范学院 Preparation method of high-performance nitrogen-doped and carbon-coated Ti<2>Nb<10>O<29> composite electrode material
CN105304887A (en) * 2015-12-09 2016-02-03 南阳师范学院 Mesoporous microspherical titanium niobate/carbon composite material and preparation method thereof
JP2017128462A (en) * 2016-01-19 2017-07-27 太平洋セメント株式会社 Manufacturing method of titanium niobium oxide, manufacturing method of titanium niobium oxide anode active material using the obtained titanium niobium oxide
JP2017134972A (en) * 2016-01-27 2017-08-03 太平洋セメント株式会社 Method for producing negative electrode active material for secondary battery
JP2017152217A (en) * 2016-02-25 2017-08-31 太平洋セメント株式会社 Method of manufacturing negative electrode active material for secondary battery
CN105552346A (en) * 2016-02-26 2016-05-04 南阳师范学院 Titanium niobate/carbon composite electrode material and preparation method thereof
US10355274B2 (en) 2016-03-17 2019-07-16 Kabushiki Kaisha Toshiba Electrode, nonaqueous electrolyte battery, battery pack and vehicle
JP2016131158A (en) * 2016-03-17 2016-07-21 株式会社東芝 Battery pack and motor vehicle
CN107204454B (en) * 2016-03-17 2020-09-01 株式会社东芝 Electrode, nonaqueous electrolyte battery, battery pack, and vehicle
CN107204454A (en) * 2016-03-17 2017-09-26 株式会社东芝 Electrode, nonaqueous electrolyte battery, battery bag and vehicle
CN106082338A (en) * 2016-06-13 2016-11-09 东北大学 A kind of nano-oxide Ti2nb10o29preparation method
US10741830B2 (en) 2017-03-24 2020-08-11 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
EP3457476A1 (en) 2017-09-19 2019-03-20 Kabushiki Kaisha Toshiba Active material, electrode, secondary battery, battery pack, and vehicle
US11368136B2 (en) * 2017-12-01 2022-06-21 Skyworks Solutions, Inc. Alternative temperature compensating materials to amorphous silica in acoustic wave resonators
US10910648B2 (en) 2018-03-16 2021-02-02 Kabushiki Kaisha Toshiba Active material, electrode, secondary battery, battery pack, and vehicle
CN110299536A (en) * 2018-03-23 2019-10-01 株式会社东芝 Active material, electrode, secondary cell, battery pack and vehicle
US10957906B2 (en) 2018-03-23 2021-03-23 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
US20190296343A1 (en) * 2018-03-23 2019-09-26 Kabushiki Kaisha Toshiba Active material, electrode, secondary battery, battery pack, and vehicle
US10944104B2 (en) 2018-03-23 2021-03-09 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
US10862118B2 (en) 2018-03-23 2020-12-08 Kabushiki Kaisha Toshiba Active material containing an Nb2TiO7 phase, electrode, secondary battery, battery pack, and vehicle
US11063256B2 (en) 2018-03-26 2021-07-13 Kabushiki Kaisha Toshiba Active material, active material composite material, electrode, secondary battery, battery pack, and vehicle
US10930930B2 (en) 2018-09-14 2021-02-23 Kabushiki Kaisha Toshiba Active material, electrode, secondary battery, battery pack, and vehicle
US10749169B2 (en) 2018-09-18 2020-08-18 Kabushiki Kaisha Toshiba Active material, electrode, secondary battery, battery pack, and vehicle
CN109904441A (en) * 2018-12-29 2019-06-18 瑞声科技(新加坡)有限公司 A kind of lithium ion battery negative material, lithium ion battery with nonaqueous electrolyte and preparation method thereof
US11322742B2 (en) 2019-03-13 2022-05-03 Kabushiki Kaisha Toshiba Active material, electrode, secondary battery, battery pack and vehicle
CN110400923A (en) * 2019-07-29 2019-11-01 珠海格力电器股份有限公司 Cell negative electrode material, negative electrode material slurry, cathode pole piece and electrochemical cell
KR20220048990A (en) 2019-09-13 2022-04-20 미쓰이금속광업주식회사 Electrode composite and electrode layer and solid battery using same
WO2021049665A1 (en) 2019-09-13 2021-03-18 三井金属鉱業株式会社 Electrode mixture and electrode layer and solid-state battery employing same
CN110776008A (en) * 2019-11-04 2020-02-11 南京航空航天大学 Micron spherical titanium niobate and preparation method and application thereof
CN110776008B (en) * 2019-11-04 2020-12-25 南京航空航天大学 Micron spherical titanium niobate and preparation method and application thereof
WO2021132542A1 (en) 2019-12-26 2021-07-01 株式会社クボタ Titanium-niobium compound oxide, and electrode and lithium ion secondary battery using said oxide
KR20220002651A (en) 2019-12-26 2022-01-06 가부시끼 가이샤 구보다 Titanium niobium composite oxide and electrode and lithium ion secondary battery using the same
EP3883015A1 (en) * 2020-03-19 2021-09-22 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
KR20230011945A (en) 2020-05-19 2023-01-25 가부시끼 가이샤 구보다 Manufacturing method of titanium niobium composite oxide
CN111646510A (en) * 2020-05-27 2020-09-11 武汉工程大学 High-rate titanium niobium oxide microsphere and preparation method and application thereof
CN111924879A (en) * 2020-08-31 2020-11-13 福州大学 Method for preparing titanium niobate by using titanate as precursor
CN111924879B (en) * 2020-08-31 2022-12-09 福州大学 Method for preparing titanium niobate by using titanate as precursor
JP2022047875A (en) * 2020-09-14 2022-03-25 株式会社東芝 Electrode, secondary battery, battery pack, and vehicle
JP7330150B2 (en) 2020-09-14 2023-08-21 株式会社東芝 Electrodes, secondary batteries, battery packs and vehicles
US11894553B2 (en) 2020-09-14 2024-02-06 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack and vehicle
CN114388772A (en) * 2021-12-09 2022-04-22 格力钛新能源股份有限公司 Molybdenum vanadium titanium niobium composite oxide negative electrode material, preparation method thereof and lithium ion battery
CN114477284A (en) * 2022-03-16 2022-05-13 中物院成都科学技术发展中心 Method for preparing titanium niobium oxide
CN114477284B (en) * 2022-03-16 2023-12-05 中物院成都科学技术发展中心 Method for preparing titanium niobium oxide
CN114614018A (en) * 2022-03-25 2022-06-10 宁波梅山保税港区锂泰企业管理合伙企业(有限合伙) Lithium ion battery negative electrode material, preparation method thereof and lithium ion secondary battery
CN114614018B (en) * 2022-03-25 2022-11-25 宁波梅山保税港区锂泰企业管理合伙企业(有限合伙) Lithium ion battery negative electrode material, preparation method thereof and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP2010287496A (en) Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using it
JP5205923B2 (en) Non-aqueous electrolyte secondary battery electrode material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery using the same
JP6193184B2 (en) Negative electrode active material for nonaqueous electrolyte secondary battery, method for producing negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery pack and vehicle
US10593992B2 (en) Negative electrode for potassium ion secondary batteries, negative electrode for potassium ion capacitors, potassium ion secondary battery, potassium ion capacitor, and binder for negative electrodes of potassium ion secondary batteries or negative electrodes of potassium ion capacitors
JP2010055855A (en) Electrode material electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using same
JP5348170B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP5897971B2 (en) Electrode active material, electrode for non-aqueous secondary battery, non-aqueous secondary battery and method for producing electrode for non-aqueous secondary battery
JP2010123401A (en) Electrode material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using it
KR20200045018A (en) Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP5665896B2 (en) Active material and lithium ion battery
JP2012234772A (en) Lithium-transition metal-based compound powder for lithium secondary battery positive electrode material, and manufacturing method thereof, positive electrode for lithium secondary battery using the same, and lithium secondary battery
JP2009176669A (en) Positive electrode active material, positive electrode, and nonaqueous secondary battery
WO2011118302A1 (en) Active material for battery, and battery
JP7363747B2 (en) Method for manufacturing positive electrode active material, method for manufacturing positive electrode active material and lithium ion battery
JP5451671B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
JP5548523B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP4650774B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP6346733B2 (en) Electrode, non-aqueous secondary battery and electrode manufacturing method
JP5847204B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
WO2013084840A1 (en) Nonaqueous electrolyte secondary battery and assembled battery using same
JP2002128526A (en) Lithium transition metal compound oxide for positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP6252553B2 (en) Negative electrode active material, sodium ion battery and lithium ion battery
JP2015187929A (en) Nonaqueous electrolyte secondary battery
JP5333658B2 (en) Battery active material and battery
JP2021002432A (en) Non-aqueous electrolyte power storage element, usage method thereof, and manufacturing method thereof