WO2013084840A1 - Nonaqueous electrolyte secondary battery and assembled battery using same - Google Patents

Nonaqueous electrolyte secondary battery and assembled battery using same Download PDF

Info

Publication number
WO2013084840A1
WO2013084840A1 PCT/JP2012/081265 JP2012081265W WO2013084840A1 WO 2013084840 A1 WO2013084840 A1 WO 2013084840A1 JP 2012081265 W JP2012081265 W JP 2012081265W WO 2013084840 A1 WO2013084840 A1 WO 2013084840A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrolyte secondary
secondary battery
nonaqueous electrolyte
positive electrode
Prior art date
Application number
PCT/JP2012/081265
Other languages
French (fr)
Japanese (ja)
Inventor
立石 和幸
孝洋 大石
裕樹 澤田
充康 今▲崎▼
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2013084840A1 publication Critical patent/WO2013084840A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nonaqueous electrolyte secondary battery and an assembled battery using the same. This application claims priority based on Japanese Patent Application No. 2011-268309.
  • non-aqueous electrolyte secondary batteries have been actively researched and developed for portable devices, hybrid vehicles, electric vehicles, and household power storage applications.
  • charge and discharge cycles are repeated over a long period of time during actual use.
  • the negative electrode made of carbon-based material deteriorates due to the volume change of the negative electrode material accompanying the insertion / extraction of lithium, and the capacity of the battery decreases. .
  • a non-patent document 1 such as a non-patent document 1 using a “lithium titanate having a spinel structure”, which is a robust material that hardly changes in volume due to insertion / extraction of lithium, is used.
  • a water electrolyte secondary battery has been proposed.
  • Patent Documents 1 to 7 exemplify various materials such as a lithium cobalt compound, a lithium nickel compound, and a lithium manganese compound for use as a positive electrode in a non-aqueous electrolyte secondary battery in which the negative electrode includes lithium titanate.
  • Various materials such as cellulose, polyethylene terephthalate, and polypropylene are exemplified for use as an electrically separating separator.
  • Patent Documents 1 to 7 what kind of specific compound is used as the positive electrode, and what kind of specific material and structure is used as the separator can maximize cycle stability. There is no document verified.
  • the subject of this invention is providing the non-aqueous electrolyte secondary battery which expresses the outstanding cycle stability, and an assembled battery using the same.
  • the present inventor achieved the most cycle stability by using a lithium manganese compound for the positive electrode, lithium titanate for the negative electrode, and a polyethylene terephthalate fiber-containing cellulose nonwoven fabric having a porosity of less than 50% by volume for the separator.
  • the present inventors have found that an excellent nonaqueous electrolyte secondary battery can be obtained and have completed the present invention. That is, the present invention is a lithium ion battery having a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, wherein the positive electrode includes a lithium manganese compound, the negative electrode includes lithium titanate, and the separator has a porosity of 50% by volume.
  • the present invention provides a nonaqueous electrolyte secondary battery which is a cellulose nonwoven fabric containing less than polyethylene terephthalate fibers.
  • the lithium manganese compound Li 1 + x M y Mn 2 - x - y O 4 (0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.6, M is It is preferably a compound represented by the compound represented by the formula (1) selected from Al and Ni, and the lithium manganese compound is Li 1 .
  • a compound represented by 1Al 0.1 Mn 1.8 O 4 or LiNi 0.5 Mn 1.5 O 4 is particularly preferable.
  • the lithium titanate preferably has a spinel structure.
  • the polyethylene terephthalate fiber-containing cellulose nonwoven fabric preferably has a polyethylene terephthalate fiber content of 20 wt% to 80 wt%, preferably 30 wt% to 70 wt%. More preferably, it is as follows.
  • the thickness of the polyethylene terephthalate fiber-containing cellulose nonwoven fabric is preferably 15 ⁇ m or more and 35 ⁇ m or less, and more preferably 20 ⁇ m or more and 30 ⁇ m or less.
  • the nonaqueous electrolyte secondary battery of the present invention is excellent in cycle stability.
  • the nonaqueous electrolyte secondary battery of the present invention uses a negative electrode containing “lithium titanate having a spinel structure” as a negative electrode active material.
  • lithium titanate examples include those represented by the molecular formula Li 4 Ti 5 O 12 is preferred.
  • the spinel structure is particularly preferable because the expansion and contraction of the active material in the lithium ion insertion / extraction reaction is small.
  • Lithium titanate may contain a small amount of elements other than lithium such as Nb and titanium, for example.
  • Lithium titanate preferably has a half width of (400) plane of powder X-ray diffraction by CuK ⁇ of 0.5 ° or less. If it is larger than 0.5 °, the crystallinity of lithium titanate is low, and the stability of the electrode may be lowered.
  • the lithium titanate preferably has a lithium content of 90% or more in the 8a site according to the Rietveld analysis by X-ray diffraction. If it is less than 90%, since there are many defects in the crystal of lithium titanate, the stability of the electrode may be lowered.
  • Lithium titanate can be prepared by heat-treating a lithium compound and a titanium compound at 500 ° C. or higher and 1500 ° C. or lower. When the temperature is lower than 500 ° C. or higher than 1500 ° C., lithium titanate having a desired structure tends to be difficult to obtain. In order to improve the crystallinity of lithium titanate, after the heat treatment, the heat treatment may be performed again at a temperature of 500 ° C. or higher and 1500 ° C. or lower.
  • the temperature of the reheating treatment may be the same as or different from the initial temperature.
  • the heat treatment atmosphere may be in the presence of air or in the presence of an inert gas such as nitrogen or argon.
  • the heat treatment furnace is not particularly limited, and for example, a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln, or the like can be used.
  • lithium compound for example, lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate, lithium oxalate, lithium halide and the like can be used. These lithium compounds may be used alone or in combination of two or more. Although it does not specifically limit as a titanium compound, For example, titanium oxides, such as titanium dioxide and a titanium monoxide, can be used.
  • the particle size of the prepared lithium titanate is preferably 0.5 ⁇ m or more and 50 ⁇ m or less, and more preferably 1 ⁇ m or more and 30 ⁇ m or less from the viewpoint of handling.
  • the particle diameter is a value obtained by measuring the size of each particle from SEM and TEM images and calculating the average particle diameter.
  • the specific surface area of lithium titanate is preferably 0.1 m 2 / g or more and 50 m 2 / g or less because a desired output density is easily obtained.
  • the specific surface area may be calculated by measurement using a mercury porosimeter or BET method.
  • the bulk density of lithium titanate is preferably 0.2 g / cm 3 or more and 1.5 g / cm 3 or less. 0.2 g / cm in the case of less than 3 tend to be economically disadvantageous because it requires a large amount of solvent in the step of preparing the slurry described below, 1.5 g / cm 3 greater than the later of conductive agent, and a binder Tend to be difficult to mix.
  • the positive electrode of the nonaqueous electrolyte secondary battery of the present invention contains a lithium manganese compound as a positive electrode active material.
  • the lithium manganese compound for example, Li 2 MnO 3, Li a M b Mn 1-b N c O 4 (0 ⁇ a ⁇ 2,0 ⁇ b ⁇ 0.5,1 ⁇ c ⁇ 2, M 2 to 13 and a group elements belonging to third to fourth period, N is the element belonging to a and the third period 14-16 group), Li 1 + x M y Mn 2-xy O 4 (0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.6, and M is at least one selected from the group consisting of elements belonging to groups 2 to 13 and belonging to the third to fourth periods.
  • M is at least one selected from elements belonging to the groups 2 to 13 and belonging to the 3rd to 4th periods, but Al, Mg, Zn, Ni, Co, Fe and Cr are preferred, Al, Mg, Zn, Ni and Cr are more preferred, and Al, Mg, Zn and Ni are even more preferred.
  • N is preferably Si, P, or S because the effect of improving the stability is large.
  • Li 1 + x M y Mn 2 - x - y O 4 (0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.6, M is Al, and Ni It is particularly preferable that the lithium manganese compound be at least one selected.
  • x ⁇ 0 the capacity of the positive electrode active material tends to decrease.
  • x> 0.2 there is a tendency that many impurities such as lithium carbonate are included.
  • y 0, the stability of the positive electrode active material tends to be low.
  • y> 0.6 a large amount of impurities such as M oxide tends to be contained.
  • a material in which M is Al or Ni and Li 1.1 Al 0.1 Mn 1.8 O 4 or LiNi 0.5 Mn 1.5 O 4 is the most preferable material from the viewpoint of the stability of the positive electrode active material.
  • the lithium manganese compound preferably has a spinel structure. This is because in the case of the spinel structure, the expansion and contraction of the active material in the reaction of insertion / extraction of lithium ions is small.
  • the lithium manganese compound preferably has a half width of 0.5 ° or less on the (400) plane of powder X-ray diffraction by CuK ⁇ . When it is larger than 0.5 °, the crystallinity of the positive electrode active material is low, and thus the stability of the electrode may be lowered.
  • the lithium manganese compound preferably has a lithium content of 90% or more in the 8a site according to the Rietveld analysis by X-ray diffraction. If it is less than 90%, there are many defects in the crystal of the positive electrode active material, and the stability of the electrode may be lowered.
  • the particle size of the lithium manganese compound is preferably 0.5 ⁇ m or more and 50 ⁇ m or less, and more preferably 1 ⁇ m or more and 30 ⁇ m or less from the viewpoint of handling.
  • the particle diameter here is a value obtained by measuring the size of each particle from the SEM and TEM images and calculating the average particle diameter.
  • the specific surface area of the lithium manganese compound is preferably 0.1 m 2 / g or more and 50 m 2 / g or less because a desired output density is easily obtained.
  • the specific surface area can be calculated by measurement by the BET method.
  • the bulk density of the lithium manganese compound is preferably 0.2 g / cm 3 or more and 2.0 g / cm 3 or less. 0.2 g / cm economically be disadvantageous because it requires a large amount of solvent in the step of preparing the slurry below in the case of less than 3, 2.0 g / cm 3 conductive agent described later is greater than, it is mixed with a binder It tends to be difficult.
  • Lithium manganese compounds such, Li 1 + x M y Mn 2 - x - y O 4 (0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.6, preferably at least one M is Al, are selected from Ni )
  • the temperature is lower than 500 ° C. or higher than 1500 ° C., a positive electrode active material having a desired structure may not be obtained.
  • the heat treatment may be performed by mixing a lithium compound, a manganese compound, and a compound of M, or may be heat-treated with a lithium compound after the manganese compound and the M compound are heat-treated.
  • the heat treatment may be performed again at 500 ° C. or more and 1500 ° C. or less.
  • the temperature of the reheating treatment may be the same as or different from the initial temperature.
  • the heat treatment atmosphere may be in the presence of air or in the presence of an inert gas such as nitrogen or argon.
  • a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln etc. can be used.
  • lithium compound for example, lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate, lithium oxalate, lithium halide and the like can be used. These lithium compounds may be used alone or in combination of two or more.
  • manganese compound for example, manganese oxide such as manganese dioxide, manganese carbonate, manganese nitrate, manganese hydroxide and the like can be used. These manganese compounds may be used alone or in combination of two or more.
  • the compound of M for example, carbonate, oxide, nitrate, hydroxide, sulfate and the like can be used.
  • M included in Li 1 + x M y Mn 2 -xy O 4 is, Al, be selected from at least one selected from Ni particularly preferred.
  • the compounding ratio of the lithium compound, the manganese compound, and the compound of M is 1 + x (lithium), 2-xy (manganese), and y (M), respectively, where 0 ⁇ x ⁇ It is selected in a range satisfying 0.2, 0 ⁇ y ⁇ 0.6.
  • a positive electrode active material having an atomic ratio of 1.5 of Mn / Li is produced, a slight width may be provided around the blending ratio of 1.5 depending on the properties of the raw materials and heating conditions.
  • Conductive aid, binder The surface of the lithium titanate or lithium manganese compound used in the present invention may be covered with a carbon material, metal oxide, polymer, or the like in order to improve conductivity or stability.
  • a conductive additive may be used for the negative electrode and / or the positive electrode (hereinafter sometimes simply referred to as “electrode”) of the present invention.
  • electrode the positive electrode
  • a carbon material is preferable. Examples thereof include natural graphite, artificial graphite, vapor grown carbon fiber, carbon nanotube, acetylene black, ketjen black, and furnace black. These carbon materials may be used alone or in combination of two or more.
  • the amount of the conductive additive contained in each electrode is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 2 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the active material. If it is the said range, the electroconductivity of an electrode will be ensured. Moreover, adhesiveness with the below-mentioned binder is maintained, and adhesiveness with a collector can fully be obtained.
  • the binder that can be used in the electrode of the present invention is not particularly limited. For example, at least selected from the group consisting of polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber, polyimide, and derivatives thereof.
  • the binder is preferably dissolved or dispersed in a non-aqueous solvent or water from the viewpoint of ease of production of the electrode.
  • the non-aqueous solvent is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, ethyl acetate, and tetrahydrofuran. You may add a dispersing agent and a thickener to these.
  • the amount of the binder contained in each electrode is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 2 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the active material. If it is the said range, the adhesiveness of an active material and a conductive support material will be maintained, and adhesiveness with a collector can fully be acquired.
  • Electrode> The electrode of the present invention is produced by applying a mixture of an active material, a conductive additive and a binder onto a current collector. From the ease of the production method, a slurry is produced by using the mixture and a solvent. A method is preferred in which the electrode is prepared by removing the solvent after coating the resulting slurry on the current collector.
  • the current collector that can be used for the electrode of the present invention is a metal material that is stable at 0.3 V (vs. Li + / Li) or higher and 2.0 V (vs. Li + / Li) or lower, such as copper, SUS, Nickel, titanium, aluminum, and alloys thereof are preferable, and aluminum is particularly preferable because of high stability.
  • Aluminum is not particularly limited because it is stable in the electrode reaction atmosphere of the positive electrode and the negative electrode, but is preferably high-purity aluminum represented by JIS standards 1030, 1050, 1085, 1N90, 1N99 and the like.
  • the current collector a metal material other than aluminum (copper, SUS, nickel, titanium, and alloys thereof) coated with aluminum can also be used.
  • the surface roughness Ra of the current collector is preferably 0.05 ⁇ m or more and 0.5 ⁇ m or less. If it is less than 0.05 ⁇ m, the adhesion to the electrode may be reduced, and if it is more than 0.5 ⁇ m, it may be difficult to form the electrode uniformly.
  • the surface roughness Ra can be measured using a light wave interference type surface roughness measuring instrument.
  • the electrical resistance of the current collector is preferably 5 ⁇ ⁇ cm or less. If it is higher than 5 ⁇ ⁇ cm, the battery performance may be reduced. Electrical resistance can be measured by the four probe method.
  • the thickness of the current collector is not particularly limited, but is preferably 10 ⁇ m or more and 100 ⁇ m or less. If it is less than 10 ⁇ m, it may be difficult to handle from the viewpoint of production, and if it is thicker than 100 ⁇ m, it may be disadvantageous from an economic viewpoint.
  • the method for preparing the slurry is not particularly limited, but it is preferable to use a ball mill, a planetary mixer, a jet mill, or a thin-film swirl mixer because the active material, the conductive additive, the binder, and the solvent can be mixed uniformly.
  • the slurry may be prepared by mixing the active material, the conductive additive, and the binder and then adding a solvent, or may be prepared by mixing the active material, the conductive additive, the binder, and the solvent together.
  • the solid content concentration of the slurry is preferably 30 wt% or more and 80 wt% or less. If it is less than 30 wt%, the viscosity of the slurry tends to be too low, whereas if it is higher than 80 wt%, the viscosity of the slurry tends to be too high, and it may be difficult to form an electrode described later.
  • the solvent used for the slurry is preferably a non-aqueous solvent or water.
  • the non-aqueous solvent is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, ethyl acetate, and tetrahydrofuran. Moreover, you may add a dispersing agent and a thickener to these.
  • the method for forming the electrode on the current collector is not particularly limited.
  • the slurry is applied to the current collector with a doctor blade, die coater, comma coater, etc., and then the solvent is removed, or the solvent is applied after spraying.
  • the method of removing is preferable.
  • the method for removing the solvent is preferable because it is easy to dry using an oven or a vacuum oven.
  • Examples of the atmosphere for removing the solvent include room temperature or high temperature air, an inert gas, and a vacuum state.
  • the temperature which removes a solvent is not specifically limited, It is preferable that they are 60 degreeC or more and 250 degrees C or less. If it is less than 60 ° C., it may take time to remove the solvent, and if it is higher than 250 ° C., the binder may be deteriorated.
  • the electrode may be compressed using a roll press or the like.
  • the thickness of the electrode is preferably 10 ⁇ m or more and 200 ⁇ m or less. If it is less than 10 ⁇ m, it may be difficult to obtain a desired capacity, and if it is thicker than 200 ⁇ m, it may be difficult to obtain a desired output density.
  • the density of the electrode is preferably 1.0 g / cm 3 or more and 4.0 g / cm 3 or less. If it is less than 1.0 g / cm ⁇ 3 >, the contact with an active material and a conductive support material may become inadequate, and electronic conductivity may fall. When it is larger than 4.0 g / cm 3 , an electrolyte solution described later is less likely to penetrate into the electrode, and lithium conductivity may decrease.
  • the electrode may be compressed to a desired thickness and density. Although compression is not specifically limited, For example, it can carry out using a roll press, a hydraulic press, etc.
  • the electric capacity per 1 cm 2 of the negative electrode is preferably 0.5 mAh or more and 3.6 mAh or less. If it is less than 0.5 mAh, the size of the battery having a desired capacity may be increased. On the other hand, if it is more than 3.6 mAh, it may be difficult to obtain a desired output density. In the present invention, it is preferable that the electric capacity per 1 cm 2 of the positive electrode is 0.5 mAh or more and 3.0 mAh or less. When it is less than 0.5 mAh, the size of a battery having a desired capacity tends to increase, whereas when it exceeds 3.0 mAh, it tends to be difficult to obtain a desired output density.
  • the electric capacity calculation per 1 cm 2 of each of the negative electrode and the positive electrode can be calculated by measuring charge / discharge characteristics after preparing each electrode and then preparing a half-cell using lithium metal as a counter electrode, as in the examples described later.
  • the electric capacity per 1 cm 2 of the electrode is not particularly limited, but can be controlled by a method of controlling by the weight of the electrode formed per unit area of the current collector, for example, the coating thickness at the time of electrode coating described above.
  • Non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, but a polymer is impregnated with an electrolytic solution in which a solute is dissolved in a non-aqueous solvent, or an electrolytic solution in which a solute is dissolved in a non-aqueous solvent.
  • a gel electrolyte can be used.
  • the non-aqueous solvent preferably includes a cyclic aprotic solvent and / or a chain aprotic solvent. Examples of the cyclic aprotic solvent include cyclic carbonates, cyclic esters, cyclic sulfones and cyclic ethers.
  • chain aprotic solvent examples include chain carbonates, chain carboxylic acid esters and chain ethers.
  • a solvent generally used as a solvent for nonaqueous electrolytes such as acetonitrile may be used. More specifically, dimethyl carbonate, methyl ethyl carbonate, dimethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, ⁇ -butyl lactone, 1,2-dimethoxyethane, sulfolane, dioxolane, propion For example, methyl acid can be used.
  • These solvents may be used alone or as a mixture of two or more.
  • a mixture of two or more of these solvents is preferably used.
  • dimethyl carbonate and ethylene carbonate are exemplified as a preferred combination.
  • a gel electrolyte in which an electrolyte is impregnated in a polymer can also be used.
  • the solute is not particularly limited.
  • LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiBOB (Lithium Bis (Oxalato) Borate), LiN (SO 2 CF 3 ) 2, etc. are dissolved in the solvent. It is preferable because it is easy to.
  • the concentration of the solute contained in the electrolytic solution is preferably 0.5 mol / L or more and 2.0 mol / L or less. If it is less than 0.5 mol / L, the desired lithium ion conductivity may not be exhibited. On the other hand, if it is higher than 2.0 mol / L, the solute may not be dissolved any more.
  • the non-aqueous electrolyte may contain a trace amount of additives such as a flame retardant and a stabilizer.
  • the separator is a substance that is placed between the positive electrode and the negative electrode, has no electronic conductivity, and has lithium ion conductivity.
  • “Polyethylene terephthalate fiber-containing cellulose nonwoven fabric” is used in the nonaqueous electrolyte secondary battery of the present invention. In the present invention, it is necessary to use a separator having a porosity of less than 50% by volume from the viewpoint of improving cycle characteristics.
  • the present invention makes use of a cellulose nonwoven fabric containing polyethylene terephthalate fibers in a predetermined blending ratio, thereby dramatically improving cycle characteristics without sacrificing current load characteristics. Can be improved.
  • Examples of the type of cellulose that is an essential material for the present invention include organic fibers such as natural cellulose fibers, regenerated cellulose fibers, and solvent-spun cellulose fibers from the viewpoint of affinity with the electrolyte.
  • Cellulose fibers are advantageous in that the selectivity of the electrolytic solution is widened compared to microporous separators limited to PP and PE, and are superior to conventional microporous separators from the viewpoint of heat resistance.
  • the cellulose fibers contain polyethylene terephthalate fibers that can secure a certain level of strength and have heat resistance, thereby improving the strength deficiencies compared to using separators made only of cellulose fibers and improving the strength of the separators. be able to.
  • Polyethylene terephthalate fiber can be added in any amount, but in order to ensure a certain level of strength, polyethylene terephthalate fiber needs to be 20% by weight or more based on the total weight of the separator, so that the electrolyte retainability In consideration, the proportion of the polyethylene terephthalate fiber needs to be 80% by weight or less. 30% by weight or more and 70% by weight or less are more preferable from the viewpoints of strength and electrolyte solution retention, and 50% by weight is the most balanced blend, and shows good battery characteristics.
  • the method of adding the polyethylene terephthalate fiber is not limited, but for example, it can be produced by mixing polyethylene terephthalate fiber and cellulose fiber and using paper making such as wet paper making or dry paper making.
  • Wet papermaking can be performed by a conventional method.
  • the paper may be made using a wet paper machine equipped with a hand-made paper machine or a perforated plate. Dry papermaking can also be made using conventional methods such as airlaid and card manufacturing.
  • the separator may contain various plasticizers, antioxidants, flame retardants, and may be coated with a metal oxide or the like.
  • the thickness of the separator is preferably 10 ⁇ m or more and 100 ⁇ m or less. When the thickness is less than 10 ⁇ m, the positive electrode and the negative electrode may contact each other, and when the thickness is more than 100 ⁇ m, the internal resistance of the battery may increase.
  • the thickness of the separator is particularly preferably 15 ⁇ m or more from the viewpoint of strength, and particularly preferably 35 ⁇ m or less from the viewpoint of battery characteristics. Most preferably, it is 20 ⁇ m or more and 30 ⁇ m or less.
  • Non-aqueous electrolyte secondary battery may be in the form in which the same electrode is formed on both sides of the current collector, and the positive electrode is formed on one side of the current collector and the negative electrode is formed on one side.
  • it may be a bipolar electrode.
  • a separator is disposed between the positive electrode side and the negative electrode side of the adjacent bipolar electrode, and the positive electrode and An insulating material is disposed around the negative electrode.
  • the nonaqueous electrolyte secondary battery of the present invention may be one obtained by winding or laminating a separator disposed between the positive electrode side and the negative electrode side.
  • the positive electrode, the negative electrode, and the separator contain a nonaqueous electrolyte that is responsible for lithium ion conduction.
  • the ratio of the electric capacity of the positive electrode and the electric capacity of the negative electrode in the nonaqueous electrolyte secondary battery of the present invention preferably satisfies the following formula (a).
  • A shows the electrical capacity per 1 cm ⁇ 2 > of positive electrodes
  • B shows the electrical capacity per 1 cm ⁇ 2 > of negative electrodes.
  • B / A is less than 1, the potential of the negative electrode may become the deposition potential of lithium during overcharge.
  • B / A is greater than 1.2, a negative electrode active material that does not participate in the battery reaction is present. Side reactions may occur due to the large amount.
  • the area ratio between the positive electrode and the negative electrode in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, but preferably satisfies the following formula (b). 1 ⁇ D / C ⁇ 1.2 (b) (However, C represents the area of the positive electrode, and D represents the area of the negative electrode.)
  • control of the area of a positive electrode and a negative electrode is not specifically limited, For example, in the case of slurry coating, it can carry out by controlling the coating width.
  • the area ratio between the separator and the negative electrode used in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, but preferably satisfies the following formula (c). 1 ⁇ F / E ⁇ 1.5 (c) (However, E represents the area of the negative electrode, and F represents the area of the separator.) When F / E is less than 1, the positive electrode and the negative electrode are in contact with each other, and when F / E is greater than 1.5, the volume required for the exterior increases, and the output density of the battery may decrease.
  • the amount of the nonaqueous electrolyte used in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, but is preferably 0.1 mL or more per 1 Ah of battery capacity. If it is less than 0.1 mL, the conduction of lithium ions accompanying the electrode reaction may not catch up, and the desired battery performance may not be exhibited.
  • the nonaqueous electrolyte may be added to the positive electrode, the negative electrode, and the separator in advance, or may be added after winding or laminating a separator disposed between the positive electrode side and the negative electrode side.
  • the non-aqueous electrolyte secondary battery of the present invention may be wound or laminated with a laminate film after the laminate is wound, or may be rectangular, elliptical, cylindrical, coin-shaped, button-shaped, or sheet-shaped. It may be packaged with a metal can. The exterior may be provided with a mechanism for releasing the generated gas. The number of stacked layers can be stacked until a desired voltage value and battery capacity are exhibited.
  • the non-aqueous electrolyte secondary battery of the present invention can be an assembled battery by connecting a plurality of the non-aqueous electrolyte secondary batteries.
  • the assembled battery of the present invention can be produced by appropriately connecting in series or in parallel according to a desired size, capacity, and voltage.
  • a control circuit is attached to the assembled battery in order to confirm the state of charge of each battery and improve safety.
  • an aqueous dispersion of manganese dioxide, lithium carbonate, aluminum hydroxide, and boric acid was prepared, and a mixed powder was prepared by a spray drying method.
  • each amount of manganese dioxide, lithium carbonate, and aluminum hydroxide was prepared such that the molar ratio of lithium, aluminum, and manganese was 1.1: 0.1: 1.8.
  • the mixed powder was heated at 900 ° C. for 12 hours in an air atmosphere, and then again heated at 650 ° C. for 24 hours. Finally, the powder was washed with water at 95 ° C. and dried to prepare a powdery positive electrode active material.
  • a positive electrode coated on one surface of an aluminum foil was punched into a 16 mm ⁇ disk shape, and a Li metal was punched into a 16 mm ⁇ disk shape as a counter electrode.
  • the capacity of the positive electrode was 1.0 mAh / cm 2 .
  • the negative electrode active material Li 4 Ti 5 O 12 can be found in the literature ("Zero-Strain Insertion Material of Li [Li1 / 3Ti5 / 3] O4 for Rechargeable Lithium Cells" J. Electrochem. Soc., Volume 142, Issue 5, pp. 1431-1435 (1995)). That is, first, titanium dioxide and lithium hydroxide are mixed so that the molar ratio of titanium and lithium is 5: 4, and then this mixture is heated and pulverized at 800 ° C. for 12 hours in a nitrogen atmosphere. A negative electrode active material was prepared.
  • Separator As the separator, a polyethylene terephthalate fiber-containing cellulose nonwoven fabric (separator having a thickness of 25 ⁇ m, a porosity of 47 vol%, and 55 cm 2 containing the same amount of polyethylene terephthalate fiber and cellulose fiber) was used. (Manufacture of non-aqueous electrolyte secondary batteries) A non-aqueous electrolyte secondary battery was produced as follows.
  • the produced positive electrode (single-sided coating; 50 cm 2 ), negative electrode (single-sided coating; 50 cm 2 ), and separator were laminated in the order of positive electrode (single-sided coating) / separator / negative electrode (single-sided coating).
  • aluminum tabs 1 a and 3 a were vibration welded to the positive electrode 1 and the negative electrode 3 at both ends, and then put into a bag-like aluminum laminate sheet 4.
  • FIG. 1 shows the produced nonaqueous electrolyte secondary battery (cross-sectional view).
  • LiNi 0.5 Mn 1.5 O 4 as a positive electrode active material (Tsutomu Ohzuku, Sachio Takeda, Masato Iwanaga “Solid-state redox potentials for Li [Me1 / 2Mn3 / 2] O4 (Me: 3d-transition metal) having spinel-framework It was made by the method described in "structure: a series of 5 volt materials for advanced lithium-ion batteries” Journal of Powersources, Vol. 81-82, pp. 90-94 (1999)). That is, lithium hydroxide, manganese oxide hydroxide, and nickel hydroxide were first mixed so that the molar ratio of lithium, manganese, and nickel was 1: 1.5: 0.5. Next, this mixture was heated at 550 ° C. in an air atmosphere, and then heated again at 750 ° C. to prepare LiNi 0.5 Mn 1.5 O 4 .
  • a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the produced LiNi 0.5 Mn 1.5 O 4 was used as the positive electrode active material.
  • LiCoO 2 has been described in literature (AR Armstrong, et al., “The layered intercalation compounds Li (Mn 1-y Co y ) O 2 : Positive electrode materials for lithium-ion batteries.” J. Electrochem. Soc. , 1994. Vol. 141 (11): pp. 2972-2977). That is, lithium carbonate and cobalt oxide were mixed so that the molar ratio of lithium to cobalt was 1: 1. Next, this mixture was heated at 650 ° C. in an air atmosphere, and then heated again at 850 ° C. to prepare LiCoO 2 .
  • a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the produced LiCoO 2 was used as the positive electrode active material.
  • ⁇ Comparative example 2> A nonaqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 1 except that polyethylene terephthalate fiber (25 ⁇ m, porosity 48 volume%, 55 cm 2 ) was used for the separator.
  • ⁇ Comparative Example 3> A nonaqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 1 except that a cellulose nonwoven fabric (25 ⁇ m, porosity 70 volume%, 55 cm 2 ) was used as the separator.
  • LiNiO 2 is used as a positive electrode active material in the literature (T. Ohzuku, A. Ueda, and M. Nagayama, “Electrochemistry and structural chemistry of LiNiO 2 (R 3 m) for 4 volt secondary lithium cells,” Journal of the Electrochemical Society, vol. 140, no. 7, pp. 1862-1870, (1993)). That is, lithium hydroxide and nickel carbonate were mixed so that the molar ratio of lithium to nickel was 1: 1. Next, this mixture was heated at 600 ° C. in an oxygen atmosphere, and then heated again at 750 ° C. to prepare LiNiO 2 . A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the produced LiNiO 2 was used as the positive electrode active material.
  • ⁇ Comparative Example 5> A nonaqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 4 except that polyethylene terephthalate fiber (25 ⁇ m, porosity 48 volume%, 55 cm 2 ) was used for the separator.
  • ⁇ Comparative Example 6> A nonaqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 4 except that a cellulose nonwoven fabric (25 ⁇ m, porosity 70 volume%, 55 cm 2 ) was used as the separator.
  • ⁇ Comparative Example 7> A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a polypropylene microporous membrane (Celgard # 2500) was used as the separator.
  • ⁇ Comparative Example 8> A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Comparative Example 7, except that polyethylene terephthalate fiber (25 ⁇ m, porosity 48 volume%, 55 cm 2 ) was used as the separator.
  • ⁇ Comparative Example 9> A nonaqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 7, except that a cellulose non-woven fabric (25 ⁇ m, porosity 70 volume%, 55 cm 2 ) was used as the separator.
  • ⁇ Comparative Example 10> A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that a polypropylene microporous membrane (Celgard # 2500) was used as the separator.
  • ⁇ Comparative Example 11> A nonaqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 10 except that polyethylene terephthalate fiber (25 ⁇ m, porosity 48 volume%, 55 cm 2 ) was used as the separator.
  • ⁇ Comparative Example 12> A nonaqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 10 except that a cellulose nonwoven fabric (25 ⁇ m, porosity 70 volume%, 55 cm 2 ) was used as the separator.
  • the nonaqueous electrolyte secondary batteries produced in the examples and comparative examples were connected to a charge / discharge device (HJ1005SD8, manufactured by Hokuto Denko), and 55 ° C., 50 mA constant current charge, and 50 mA constant current discharge were repeated 100 times.
  • the charge end voltage and discharge end voltage at this time were 3 V and 2 V, respectively.
  • Table 1 shows the 100th discharge capacity when the first discharge capacity is 100.
  • the nonaqueous electrolyte secondary batteries of Examples 1 and 2 of the present invention have improved cycle stability as compared with the nonaqueous electrolyte secondary batteries of Comparative Examples 1 to 12.
  • the battery using the polyethylene terephthalate fiber-containing cellulose nonwoven fabric (Example 1) as the separator is a polypropylene microporous membrane (Comparative Example 7), polyethylene terephthalate fiber ( The cycle stability is superior to the battery using Comparative Example 8) and cellulose (Comparative Example 9).
  • the battery using the polyethylene terephthalate fiber-containing cellulose nonwoven fabric (Example 2) as the separator is a polypropylene microporous membrane (Comparative Example 10), polyethylene terephthalate fiber (Comparative).
  • the cycle stability is superior to the battery using Example 11) and cellulose (Comparative Example 12).
  • the positive electrode active material is LiCoO 2
  • a battery using polyethylene terephthalate fiber-containing cellulose nonwoven fabric (Comparative Example 1) as a separator is a battery using polyethylene terephthalate fiber (Comparative Example 2) and cellulose (Comparative Example 3). Compared to, the cycle stability is not greatly superior.
  • the battery using the polyethylene terephthalate fiber-containing cellulose nonwoven fabric (Comparative Example 4) as the separator is the same as the battery using the polyethylene terephthalate fiber (Comparative Example 5) and cellulose (Comparative Example 6).
  • the cycle characteristics are not greatly superior. Therefore, the combination of using Li 1.1 Al 0.1 Mn 1.8 O 4 or LiNi 0.5 Mn 1.5 O 4 as the positive electrode active material and using the cellulose non-woven fabric containing polyethylene terephthalate fiber as the separator greatly improves the cycle stability of the battery. I understand that
  • the cause of the synergistic effect between the specific positive electrode active material and the specific structure / specific material separator is presumed.
  • the inventor assumes that free radicals generated at the interface between the electrolyte and the positive electrode pass through the separator and cause a precipitation reaction on the negative electrode surface as a mechanism for causing cycle deterioration of the battery. Therefore, the combination of the specific positive electrode active material and the specific structure / specific material separator suppresses free radical generation, promotes trapping of the generated free radical by the separator, and suppresses the precipitation reaction on the negative electrode surface. And so on.

Abstract

A lithium-ion battery having a positive electrode, a negative electrode, a separator, and an organic electrolyte; wherein the positive electrode contains a lithium-manganese compound having a spinel structure, the negative electrode contains a complex oxide containing lithium titanate having a spinel structure, and the separator is a "polyethylene-terephthalate-fiber-containing cellulose nonwoven cloth" having a porosity of less than 50% by volume. Using a combination of such description makes it possible to obtain a nonaqueous electrolyte secondary battery having superior cycle stability.

Description

非水電解質二次電池及びそれを用いた組電池Nonaqueous electrolyte secondary battery and assembled battery using the same
 本発明は、非水電解質二次電池(nonaqueous electrolyte secondary battery)、及びそれを用いた組電池に関するものである。
 本願は日本国特許出願:特願2011-268309号に基づく優先権を主張する。
The present invention relates to a nonaqueous electrolyte secondary battery and an assembled battery using the same.
This application claims priority based on Japanese Patent Application No. 2011-268309.
 近年、携帯機器、ハイブリッド自動車、電気自動車、家庭用蓄電用途に非水電解質二次電池の研究開発が盛んに行われている。これらの分野に用いられる非水電解質二次電池は、実使用時、長期間にわたり充放電サイクルが繰り返される。
 従来の非水電解質二次電池では、充放電サイクルを繰り返すとリチウムの挿入・脱離に伴う負極材料の体積変化により、カーボン系材料から成る負極が劣化し、電池の容量が低下する問題がある。この問題点を解決するために、非特許文献1のような、負極材料としてリチウムの挿入・脱離による体積変化のほとんどない堅牢な材料である「スピネル構造を有するチタン酸リチウム」を用いた非水電解質二次電池が提案されている。
In recent years, non-aqueous electrolyte secondary batteries have been actively researched and developed for portable devices, hybrid vehicles, electric vehicles, and household power storage applications. In non-aqueous electrolyte secondary batteries used in these fields, charge and discharge cycles are repeated over a long period of time during actual use.
In a conventional nonaqueous electrolyte secondary battery, there is a problem in that when the charge / discharge cycle is repeated, the negative electrode made of carbon-based material deteriorates due to the volume change of the negative electrode material accompanying the insertion / extraction of lithium, and the capacity of the battery decreases. . In order to solve this problem, a non-patent document 1, such as a non-patent document 1 using a “lithium titanate having a spinel structure”, which is a robust material that hardly changes in volume due to insertion / extraction of lithium, is used. A water electrolyte secondary battery has been proposed.
 現在、使用する材料・構造の組み合わせによりさらなるサイクル安定性の向上が望まれている。
 特許文献1~7は、負極がチタン酸リチウムを含む非水電解質二次電池において、正極として用いるためリチウムコバルト化合物、リチウムニッケル化合物、リチウムマンガン化合物など種々の材料を例示し、正極と負極とを電気的に隔てるセパレータとして用いるためセルロース、ポリエチレンテレフタレート、ポリプロピレンなど種々の材料を例示する。
Currently, further improvement in cycle stability is desired depending on the combination of materials and structures used.
Patent Documents 1 to 7 exemplify various materials such as a lithium cobalt compound, a lithium nickel compound, and a lithium manganese compound for use as a positive electrode in a non-aqueous electrolyte secondary battery in which the negative electrode includes lithium titanate. Various materials such as cellulose, polyethylene terephthalate, and polypropylene are exemplified for use as an electrically separating separator.
国際公開第2003/081698号パンフレットInternational Publication No. 2003/081698 Pamphlet 特開2009-158396号公報JP 2009-158396 A 特開2009-205864号公報JP 2009-205864 JP 特開2010-009898号公報JP 2010-009898 A 特開2010-153258号公報JP 2010-153258 JP 特開平06-060867号公報Japanese Patent Laid-Open No. 06-060867 特開2009-038017号公報JP 2009-038017
 しかしながら、特許文献1~7においては、正極として、どのような特定の化合物を使用し、セパレータとして、どのような特定の材質・構造のものを採用すればサイクル安定性の最大化が望めるか、実証した文献はない。
 本発明の課題は、優れたサイクル安定性を発現する非水電解質二次電池及びそれを用いた組電池を提供することである。
However, in Patent Documents 1 to 7, what kind of specific compound is used as the positive electrode, and what kind of specific material and structure is used as the separator can maximize cycle stability. There is no document verified.
The subject of this invention is providing the non-aqueous electrolyte secondary battery which expresses the outstanding cycle stability, and an assembled battery using the same.
 前記事情に鑑み、本発明者は、正極にリチウムマンガン化合物を、負極にチタン酸リチウムを、セパレータに空孔率50体積%未満のポリエチレンテレフタレート繊維含有セルロース不織布を用いることによって、サイクル安定性に最も優れる非水電解質二次電池が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は正極、負極、セパレータ及び非水電解質を有するリチウムイオン電池であって、前記正極がリチウムマンガン化合物を含み、前記負極がチタン酸リチウムを含み、前記セパレータが空孔率50体積%未満のポリエチレンテレフタレート繊維含有セルロース不織布である、非水電解質二次電池を提供するものである。
In view of the above circumstances, the present inventor achieved the most cycle stability by using a lithium manganese compound for the positive electrode, lithium titanate for the negative electrode, and a polyethylene terephthalate fiber-containing cellulose nonwoven fabric having a porosity of less than 50% by volume for the separator. The present inventors have found that an excellent nonaqueous electrolyte secondary battery can be obtained and have completed the present invention.
That is, the present invention is a lithium ion battery having a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, wherein the positive electrode includes a lithium manganese compound, the negative electrode includes lithium titanate, and the separator has a porosity of 50% by volume. The present invention provides a nonaqueous electrolyte secondary battery which is a cellulose nonwoven fabric containing less than polyethylene terephthalate fibers.
 本発明の非水電解質二次電池においては、前記リチウムマンガン化合物がLi1+xyMn2xy4(0≦x≦0.2, 0<y≦0.6、MがAl、Niから選ばれる少なくとも1種である)で表される化合物で表される化合物であることが好ましく、前記リチウムマンガン化合物が、Li1。1Al0.1Mn1.84、又はLiNi0.5Mn1.54で表される化合物であることが特に好ましい。
本発明の非水電解質二次電池においては、前記チタン酸リチウムがスピネル構造を有することが好ましい。
本発明の非水電解質二次電池においては、前記ポリエチレンテレフタレート繊維含有セルロース不織布の、ポリエチレンテレフタレート繊維の含有割合が、20重量%以上80重量%以下であることが好ましく、30重量%以上70重量%以下であることがさらに好ましい。前記ポリエチレンテレフタレート繊維含有セルロース不織布の厚みは、15μm以上35μm以下であることが好ましく、20μm以上30μm以下であることがさらに好ましい。
In the non-aqueous electrolyte secondary battery of the present invention, the lithium manganese compound Li 1 + x M y Mn 2 - x - y O 4 (0 ≦ x ≦ 0.2, 0 <y ≦ 0.6, M is It is preferably a compound represented by the compound represented by the formula (1) selected from Al and Ni, and the lithium manganese compound is Li 1 . A compound represented by 1Al 0.1 Mn 1.8 O 4 or LiNi 0.5 Mn 1.5 O 4 is particularly preferable.
In the nonaqueous electrolyte secondary battery of the present invention, the lithium titanate preferably has a spinel structure.
In the non-aqueous electrolyte secondary battery of the present invention, the polyethylene terephthalate fiber-containing cellulose nonwoven fabric preferably has a polyethylene terephthalate fiber content of 20 wt% to 80 wt%, preferably 30 wt% to 70 wt%. More preferably, it is as follows. The thickness of the polyethylene terephthalate fiber-containing cellulose nonwoven fabric is preferably 15 μm or more and 35 μm or less, and more preferably 20 μm or more and 30 μm or less.
 本発明の非水電解質二次電池は、サイクル安定性に優れる。 The nonaqueous electrolyte secondary battery of the present invention is excellent in cycle stability.
本発明の実施例に係る非水電解質二次電池を、袋状のシートに封入した状態を示す断面図である。It is sectional drawing which shows the state which enclosed the nonaqueous electrolyte secondary battery which concerns on the Example of this invention in the bag-shaped sheet | seat.
 本発明における上述の、又はさらに他の利点、特徴及び効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。なお、本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図されている。
 <1.負極>
 本発明の非水電解質二次電池は、負極活物質として「スピネル構造を有するチタン酸リチウム」を含む負極を用いる。
The above-described or further advantages, features, and effects of the present invention will be made clear by the following description of embodiments with reference to the accompanying drawings. The scope of the present invention is defined by the scope of the claims, and is intended to include any modifications within the scope and meaning equivalent to the scope of the claims.
<1. Negative electrode>
The nonaqueous electrolyte secondary battery of the present invention uses a negative electrode containing “lithium titanate having a spinel structure” as a negative electrode active material.
 チタン酸リチウムとしては、分子式Li4Ti512で表されるものが好ましい。スピネル構造の場合、リチウムイオンの挿入・脱離の反応における活物質の膨張収縮が小さいので特に好ましい。チタン酸リチウムには、たとえばNbなどのリチウム、チタン以外の元素が微量含まれていてもよい。
 チタン酸リチウムは、CuKαによる粉末X線回折の(400)面の半値幅が0.5°以下であることが好ましい。0.5°より大きいと、チタン酸リチウムの結晶性が低いため、電極の安定性が低下する場合がある。
Examples of the lithium titanate include those represented by the molecular formula Li 4 Ti 5 O 12 is preferred. The spinel structure is particularly preferable because the expansion and contraction of the active material in the lithium ion insertion / extraction reaction is small. Lithium titanate may contain a small amount of elements other than lithium such as Nb and titanium, for example.
Lithium titanate preferably has a half width of (400) plane of powder X-ray diffraction by CuKα of 0.5 ° or less. If it is larger than 0.5 °, the crystallinity of lithium titanate is low, and the stability of the electrode may be lowered.
 チタン酸リチウムは、X線回折によるリートベルト解析法による8aサイトに占めるリチウム含有率が90%以上であることが好ましい。90%未満であると、チタン酸リチウムの結晶中の欠陥が多いため、電極の安定性が低下する場合がある。
 チタン酸リチウムは、リチウム化合物及びチタン化合物を500℃以上1500℃以下で加熱処理することによって作成することができる。500℃未満、又は1500℃より高いと、所望の構造をしたチタン酸リチウムを得ることができにくい傾向がある。チタン酸リチウムの結晶性を向上させるため、加熱処理後、再び500℃以上1500℃以下で再加熱処理してもよい。再加熱処理の温度は、最初におこなった温度と同じでもよいし、違っていてもよい。加熱処理雰囲気は、空気存在下でもよいし、窒素あるいはアルゴンなどの不活性ガスの存在下でおこなってもよい。加熱処理炉は、特に限定されないが、例えば、箱型炉、管状炉、トンネル炉、ロータリーキルン等を用いることができる。
The lithium titanate preferably has a lithium content of 90% or more in the 8a site according to the Rietveld analysis by X-ray diffraction. If it is less than 90%, since there are many defects in the crystal of lithium titanate, the stability of the electrode may be lowered.
Lithium titanate can be prepared by heat-treating a lithium compound and a titanium compound at 500 ° C. or higher and 1500 ° C. or lower. When the temperature is lower than 500 ° C. or higher than 1500 ° C., lithium titanate having a desired structure tends to be difficult to obtain. In order to improve the crystallinity of lithium titanate, after the heat treatment, the heat treatment may be performed again at a temperature of 500 ° C. or higher and 1500 ° C. or lower. The temperature of the reheating treatment may be the same as or different from the initial temperature. The heat treatment atmosphere may be in the presence of air or in the presence of an inert gas such as nitrogen or argon. The heat treatment furnace is not particularly limited, and for example, a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln, or the like can be used.
 リチウム化合物としては、例えば、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウム、シュウ酸リチウム、ハロゲン化リチウムなどを用いることができる。これらリチウム化合物は、1種類でもよいし、2種類以上用いてもよい。
 チタン化合物としては、特に限定されないが、例えば、二酸化チタン、一酸化チタンなどのチタン酸化物を用いることができる。
As the lithium compound, for example, lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate, lithium oxalate, lithium halide and the like can be used. These lithium compounds may be used alone or in combination of two or more.
Although it does not specifically limit as a titanium compound, For example, titanium oxides, such as titanium dioxide and a titanium monoxide, can be used.
 リチウム化合物及びチタン化合物の配合比は、リチウム、及びチタンの原子比、Ti/Li=1.25前後がよく、原料の性状や加熱条件によって多少の幅をもたせてもよい。
 作製されたチタン酸リチウムの粒子径は、0.5μm以上50μm以下であることが好ましく、1μm以上30μm以下であることが取り扱いの観点からさらに好ましい。前記粒子径はSEM、TEM像から各粒子の大きさを測定し、平均粒子径を算出した値である。
The compounding ratio of the lithium compound and the titanium compound is preferably an atomic ratio of lithium and titanium, around Ti / Li = 1.25, and may have some width depending on the properties of the raw materials and heating conditions.
The particle size of the prepared lithium titanate is preferably 0.5 μm or more and 50 μm or less, and more preferably 1 μm or more and 30 μm or less from the viewpoint of handling. The particle diameter is a value obtained by measuring the size of each particle from SEM and TEM images and calculating the average particle diameter.
 チタン酸リチウムの比表面積は、0.1m2/g以上50m2/g以下であることは所望の出力密度を得やすいことから好ましい。前記比表面積は、水銀ポロシメータ、BET法での測定により算出するのがよい。
 チタン酸リチウムの嵩密度は、0.2g/cm3以上1.5g/cm3以下であることが好ましい。0.2g/cm3未満の場合では後述のスラリー作製時に多量の溶媒が必要となるため経済的に不利となる傾向があり、1.5g/cm3より大きいと後述の導電助材、バインダーとの混合が困難となる傾向がある。
The specific surface area of lithium titanate is preferably 0.1 m 2 / g or more and 50 m 2 / g or less because a desired output density is easily obtained. The specific surface area may be calculated by measurement using a mercury porosimeter or BET method.
The bulk density of lithium titanate is preferably 0.2 g / cm 3 or more and 1.5 g / cm 3 or less. 0.2 g / cm in the case of less than 3 tend to be economically disadvantageous because it requires a large amount of solvent in the step of preparing the slurry described below, 1.5 g / cm 3 greater than the later of conductive agent, and a binder Tend to be difficult to mix.
 <2.正極>
 本発明の非水電解質二次電池の正極は、正極活物質としてリチウムマンガン化合物を含む。
 リチウムマンガン化合物としては、例えば、Li2MnO3、LiabMn1-bc4(0<a≦2、0≦b≦0.5、1≦c≦2、Mは2~13族でかつ第3~4周期に属する元素、Nは14~16族でかつ第3周期に属する元素)、Li1+xyMn2-x-y4(0≦x≦0.2, 0<y≦0.6、Mは2~13族でかつ第3~4周期に属する元素からなる群から選ばれる少なくとも1種)で表されるリチウムマンガン化合物が挙げられる。ここでのMは、2~13族でかつ第3~4周期に属する元素から選ばれる少なくとも1種であるが、安定性向上の効果が大きい点から、Al、Mg、Zn、Ni、Co、Fe及びCrが好ましく、Al、Mg、Zn、Ni及びCrがより好ましく、Al、Mg、Zn及びNiがさらに好ましい。また、ここでのNは安定性向上の効果が大きい点から、Si、P及びSが好ましい。
<2. Positive electrode>
The positive electrode of the nonaqueous electrolyte secondary battery of the present invention contains a lithium manganese compound as a positive electrode active material.
The lithium manganese compound, for example, Li 2 MnO 3, Li a M b Mn 1-b N c O 4 (0 <a ≦ 2,0 ≦ b ≦ 0.5,1 ≦ c ≦ 2, M 2 to 13 and a group elements belonging to third to fourth period, N is the element belonging to a and the third period 14-16 group), Li 1 + x M y Mn 2-xy O 4 (0 ≦ x ≦ 0.2, 0 <y ≦ 0.6, and M is at least one selected from the group consisting of elements belonging to groups 2 to 13 and belonging to the third to fourth periods. Here, M is at least one selected from elements belonging to the groups 2 to 13 and belonging to the 3rd to 4th periods, but Al, Mg, Zn, Ni, Co, Fe and Cr are preferred, Al, Mg, Zn, Ni and Cr are more preferred, and Al, Mg, Zn and Ni are even more preferred. Further, N here is preferably Si, P, or S because the effect of improving the stability is large.
 中でも、正極活物質の安定性が高いことから、Li1+xyMn2xy4(0≦x≦0.2, 0<y≦0.6、MがAl、Niから選ばれる少なくとも1種である)で表されるリチウムマンガン化合物であることが特に好ましい。x<0の場合は、正極活物質の容量が減少する傾向がある。また、x>0.2の場合は炭酸リチウムなどの不純物が多く含まれるようになる傾向がある。y=0の場合は、正極活物質の安定性が低くなる傾向がある。また、y>0.6の場合はMの酸化物などの不純物が多く含まれるようになる傾向がある。 Among these, because of high stability of the cathode active material, Li 1 + x M y Mn 2 - x - y O 4 (0 ≦ x ≦ 0.2, 0 <y ≦ 0.6, M is Al, and Ni It is particularly preferable that the lithium manganese compound be at least one selected. When x <0, the capacity of the positive electrode active material tends to decrease. Further, when x> 0.2, there is a tendency that many impurities such as lithium carbonate are included. When y = 0, the stability of the positive electrode active material tends to be low. Further, when y> 0.6, a large amount of impurities such as M oxide tends to be contained.
 MがAl又はNiであり、Li1.1Al0.1Mn1.84又はLiNi0.5Mn1.54で表される材料は、正極活物質の安定性の観点から最も好ましい材料である。
 リチウムマンガン化合物は、スピネル構造であることが好ましい。スピネル構造の場合、リチウムイオンの挿入・脱離の反応における活物質の膨張収縮が小さいからである。
 リチウムマンガン化合物は、CuKαによる粉末X線回折の(400)面の半値幅が0.5°以下であることが好ましい。0.5°より大きいと、正極活物質の結晶性が低いため、電極の安定性が低下する場合がある。
A material in which M is Al or Ni and Li 1.1 Al 0.1 Mn 1.8 O 4 or LiNi 0.5 Mn 1.5 O 4 is the most preferable material from the viewpoint of the stability of the positive electrode active material.
The lithium manganese compound preferably has a spinel structure. This is because in the case of the spinel structure, the expansion and contraction of the active material in the reaction of insertion / extraction of lithium ions is small.
The lithium manganese compound preferably has a half width of 0.5 ° or less on the (400) plane of powder X-ray diffraction by CuKα. When it is larger than 0.5 °, the crystallinity of the positive electrode active material is low, and thus the stability of the electrode may be lowered.
 リチウムマンガン化合物は、X線回折によるリートベルト解析法による8aサイトに占めるリチウム含有率は、90%以上であることが好ましい。90%未満であると、正極活物質の結晶中の欠陥が多いため、電極の安定性が低下する場合がある。
 リチウムマンガン化合物の粒子径は、0.5μm以上50μm以下であることが好ましく、1μm以上30μm以下であることが、取り扱いの観点からさらに好ましい。ここでの粒子径はSEM、TEM像から各粒子の大きさを測定し、平均粒子径を算出した値である。
The lithium manganese compound preferably has a lithium content of 90% or more in the 8a site according to the Rietveld analysis by X-ray diffraction. If it is less than 90%, there are many defects in the crystal of the positive electrode active material, and the stability of the electrode may be lowered.
The particle size of the lithium manganese compound is preferably 0.5 μm or more and 50 μm or less, and more preferably 1 μm or more and 30 μm or less from the viewpoint of handling. The particle diameter here is a value obtained by measuring the size of each particle from the SEM and TEM images and calculating the average particle diameter.
 リチウムマンガン化合物の比表面積は、0.1m2/g以上50m2/g以下であることが、所望の出力密度を得やすいことから好ましい。比表面積はBET法での測定により算出できる。
 リチウムマンガン化合物の嵩密度は、0.2g/cm3以上2.0g/cm3以下であることが好ましい。0.2g/cm3未満の場合では後述のスラリー作製時に多量の溶媒が必要となるため経済的に不利となり、2.0g/cm3より大きい場合では後述の導電助材、バインダーとの混合が困難となる傾向がある。
The specific surface area of the lithium manganese compound is preferably 0.1 m 2 / g or more and 50 m 2 / g or less because a desired output density is easily obtained. The specific surface area can be calculated by measurement by the BET method.
The bulk density of the lithium manganese compound is preferably 0.2 g / cm 3 or more and 2.0 g / cm 3 or less. 0.2 g / cm economically be disadvantageous because it requires a large amount of solvent in the step of preparing the slurry below in the case of less than 3, 2.0 g / cm 3 conductive agent described later is greater than, it is mixed with a binder It tends to be difficult.
 リチウムマンガン化合物、例えば、Li1+xyMn2xy4(0≦x≦0.2, 0<y≦0.6、MがAl、Niから選ばれる少なくとも1種である)は、リチウム化合物、マンガン化合物、Mの化合物を500℃以上、1500℃以下で加熱処理することによって作製することができる。500℃未満、又は1500℃より高いと、所望の構造をした正極活物質を得ることができない場合がある。加熱処理は、リチウム化合物、マンガン化合物、及びMの化合物を混合して加熱処理してもよいし、マンガン化合物とMの化合物とを加熱処理した後に、リチウム化合物と加熱処理してもよい。正極活物質の結晶性を向上させるため、加熱処理後、再び500℃以上、1500℃以下で再加熱処理してもよい。再加熱処理の温度は、最初におこなった温度と同じでもよいし、違っていてもよい。加熱処理雰囲気は、空気存在下でもよいし、窒素あるいはアルゴンなどの不活性ガスの存在下でおこなってもよい。加熱処理炉には、特に限定されないが、例えば、箱型炉、管状炉、トンネル炉、ロータリーキルン等を用いることができる。 Lithium manganese compounds such, Li 1 + x M y Mn 2 - x - y O 4 (0 ≦ x ≦ 0.2, 0 <y ≦ 0.6, preferably at least one M is Al, are selected from Ni ) Can be produced by heat-treating a lithium compound, a manganese compound, and a compound of M at 500 ° C. or higher and 1500 ° C. or lower. When the temperature is lower than 500 ° C. or higher than 1500 ° C., a positive electrode active material having a desired structure may not be obtained. The heat treatment may be performed by mixing a lithium compound, a manganese compound, and a compound of M, or may be heat-treated with a lithium compound after the manganese compound and the M compound are heat-treated. In order to improve the crystallinity of the positive electrode active material, after the heat treatment, the heat treatment may be performed again at 500 ° C. or more and 1500 ° C. or less. The temperature of the reheating treatment may be the same as or different from the initial temperature. The heat treatment atmosphere may be in the presence of air or in the presence of an inert gas such as nitrogen or argon. Although it does not specifically limit in a heat treatment furnace, For example, a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln etc. can be used.
 リチウム化合物としては、例えば、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウム、シュウ酸リチウム、ハロゲン化リチウムなどを用いることができる。これらリチウム化合物は、1種類でもよいし、2種類以上用いてもよい。
 マンガン化合物としては、例えば、二酸化マンガン等のマンガン酸化物、炭酸マンガン、硝酸マンガン、マンガン水酸化物などを用いることができる。これらマンガン化合物は、1種類でもよいし、2種類以上用いてもよい。
As the lithium compound, for example, lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate, lithium oxalate, lithium halide and the like can be used. These lithium compounds may be used alone or in combination of two or more.
As the manganese compound, for example, manganese oxide such as manganese dioxide, manganese carbonate, manganese nitrate, manganese hydroxide and the like can be used. These manganese compounds may be used alone or in combination of two or more.
 Mの化合物としては、例えば、炭酸化物、酸化物、硝酸化物、水酸化物、硫酸化物などを用いることができる。Li1+xyMn2-x-y4に含まれるMは、Al、Niから選ばれる少なくとも1種から選択されることが特に好ましい。
 リチウム化合物、マンガン化合物及びMの化合物の配合比は、リチウム、マンガン及びMの原子比をそれぞれ1+x(リチウム)、2-x-y(マンガン)、及びy(M)、但し、0≦x≦0.2, 0<y≦0.6を満たす範囲で選択される。例えば、Mn/Liの原子比1.5の正極活物質を作製する場合、原料の性状や加熱条件によって前記配合比1.5前後で多少の幅をもたせてもよい。
As the compound of M, for example, carbonate, oxide, nitrate, hydroxide, sulfate and the like can be used. M included in Li 1 + x M y Mn 2 -xy O 4 is, Al, be selected from at least one selected from Ni particularly preferred.
The compounding ratio of the lithium compound, the manganese compound, and the compound of M is 1 + x (lithium), 2-xy (manganese), and y (M), respectively, where 0 ≦ x ≦ It is selected in a range satisfying 0.2, 0 <y ≦ 0.6. For example, when a positive electrode active material having an atomic ratio of 1.5 of Mn / Li is produced, a slight width may be provided around the blending ratio of 1.5 depending on the properties of the raw materials and heating conditions.
 <3.導電助材、バインダー>
 本発明で使用されるチタン酸リチウム、リチウムマンガン化合物の表面は、導電性向上、あるいは安定性向上のため、炭素材料、金属酸化物、あるいは高分子等で覆われてもよい。
 本発明の負極及び/又は正極(以下、単に「電極」と称することがある。)には、導電助材を使用してもよい。導電助材としては、特に限定されないが、炭素材料が好ましい。例えば、天然黒鉛、人造黒鉛、気相成長炭素繊維、カーボンナノチューブ、アセチレンブラック、ケッチェンブラック、及びファーネスブラックなどが挙げられる。これら炭素材料は1種類でもよいし、2種類以上用いてもよい。
<3. Conductive aid, binder>
The surface of the lithium titanate or lithium manganese compound used in the present invention may be covered with a carbon material, metal oxide, polymer, or the like in order to improve conductivity or stability.
A conductive additive may be used for the negative electrode and / or the positive electrode (hereinafter sometimes simply referred to as “electrode”) of the present invention. Although it does not specifically limit as a conductive support material, A carbon material is preferable. Examples thereof include natural graphite, artificial graphite, vapor grown carbon fiber, carbon nanotube, acetylene black, ketjen black, and furnace black. These carbon materials may be used alone or in combination of two or more.
 本発明において、各電極に含まれる導電助材の量は、活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは2重量部以上15重量部以下である。前記範囲であれば、電極の導電性が確保される。また、後述のバインダーとの接着性が維持され、集電体との接着性が十分に得ることができる。
 本発明の電極に使用できるバインダーとしては、特に限定されないが、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム、ポリイミド及びそれらの誘導体からなる群から選ばれる少なくとも1種を用いることができる。バインダーは電極の作製しやすさから、非水溶媒又は水に、溶解若しくは分散されていることが好ましい。非水溶媒は、特に限定されないが、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、酢酸エチル、及びテトラヒドロフランなどを挙げることができる。これらに分散剤、増粘剤を加えてもよい。
In the present invention, the amount of the conductive additive contained in each electrode is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 2 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the active material. If it is the said range, the electroconductivity of an electrode will be ensured. Moreover, adhesiveness with the below-mentioned binder is maintained, and adhesiveness with a collector can fully be obtained.
The binder that can be used in the electrode of the present invention is not particularly limited. For example, at least selected from the group consisting of polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber, polyimide, and derivatives thereof. One type can be used. The binder is preferably dissolved or dispersed in a non-aqueous solvent or water from the viewpoint of ease of production of the electrode. The non-aqueous solvent is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, ethyl acetate, and tetrahydrofuran. You may add a dispersing agent and a thickener to these.
 本発明において、各電極に含まれるバインダーの量は、活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは2重量部以上15重量部以下である。前記範囲であれば、活物質と導電助材との接着性が維持され、集電体との接着性が十分に得ることができる。
 <4.電極>
 本発明の電極は、活物質、導電助材及びバインダーの混合物を集電体上に塗工することによって作製されるが、作製方法の容易さから、前記混合物及び溶媒でスラリーを作製し、得られたスラリーを集電体上に塗工した後に、溶媒を除去することによって電極を作製する方法が好ましい。
In the present invention, the amount of the binder contained in each electrode is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 2 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the active material. If it is the said range, the adhesiveness of an active material and a conductive support material will be maintained, and adhesiveness with a collector can fully be acquired.
<4. Electrode>
The electrode of the present invention is produced by applying a mixture of an active material, a conductive additive and a binder onto a current collector. From the ease of the production method, a slurry is produced by using the mixture and a solvent. A method is preferred in which the electrode is prepared by removing the solvent after coating the resulting slurry on the current collector.
 本発明の電極に用いることのできる集電体は、0.3V(vs.Li+/Li)以上2.0V(vs.Li+/Li)以下で安定な金属材料、例えば、銅、SUS、ニッケル、チタン、アルミニウム及びそれらの合金が好ましく、安定性が高いことからアルミニウムであることが特に好ましい。アルミニウムは、正極及び負極の電極反応雰囲気下で安定であることから、特に限定されないが、JIS規格1030、1050、1085、1N90、1N99等に代表される高純度アルミニウムであることが好ましい。 The current collector that can be used for the electrode of the present invention is a metal material that is stable at 0.3 V (vs. Li + / Li) or higher and 2.0 V (vs. Li + / Li) or lower, such as copper, SUS, Nickel, titanium, aluminum, and alloys thereof are preferable, and aluminum is particularly preferable because of high stability. Aluminum is not particularly limited because it is stable in the electrode reaction atmosphere of the positive electrode and the negative electrode, but is preferably high-purity aluminum represented by JIS standards 1030, 1050, 1085, 1N90, 1N99 and the like.
 集電体は、アルミニウム以外の金属材料(銅、SUS、ニッケル、チタン、及びそれらの合金)の表面にアルミニウムを被覆したものも用いることもできる。
 集電体の表面粗度Raは、0.05μm以上0.5μm以下であることが好ましい。0.05μm未満であると、電極との接着性が低下する場合があり、0.5μmより大きいと、電極を均一に形成することが困難となる場合がある。なお、表面粗度Raは、光波干渉式表面粗さ測定器を用いて測定できる。
As the current collector, a metal material other than aluminum (copper, SUS, nickel, titanium, and alloys thereof) coated with aluminum can also be used.
The surface roughness Ra of the current collector is preferably 0.05 μm or more and 0.5 μm or less. If it is less than 0.05 μm, the adhesion to the electrode may be reduced, and if it is more than 0.5 μm, it may be difficult to form the electrode uniformly. The surface roughness Ra can be measured using a light wave interference type surface roughness measuring instrument.
 集電体の電気抵抗は、5μΩ・cm以下であることが好ましい。5μΩ・cmより高い場合は、電池の性能が低下する恐れがある。電気抵抗は、四端子法で測定することができる。
 集電体の厚みは、特に限定されないが、10μm以上100μm以下であることが好ましい。10μm未満では作製の観点から取り扱いが困難となる場合があり、100μmより厚い場合は経済的観点から不利になる場合がある。
The electrical resistance of the current collector is preferably 5 μΩ · cm or less. If it is higher than 5 μΩ · cm, the battery performance may be reduced. Electrical resistance can be measured by the four probe method.
The thickness of the current collector is not particularly limited, but is preferably 10 μm or more and 100 μm or less. If it is less than 10 μm, it may be difficult to handle from the viewpoint of production, and if it is thicker than 100 μm, it may be disadvantageous from an economic viewpoint.
 スラリーの作製方法は、特に限定されないが、活物質、導電助材、バインダー及び溶媒を均一に混合できることから、ボールミル、プラネタリミキサ、ジェットミル、薄膜旋回型ミキサーを用いることが好ましい。スラリーは、活物質、導電助材、及びバインダーを混合した後に溶媒を加えて作製してもよいし、活物質、導電助材、バインダー、及び溶媒を一緒に混合して作製してもよい。 The method for preparing the slurry is not particularly limited, but it is preferable to use a ball mill, a planetary mixer, a jet mill, or a thin-film swirl mixer because the active material, the conductive additive, the binder, and the solvent can be mixed uniformly. The slurry may be prepared by mixing the active material, the conductive additive, and the binder and then adding a solvent, or may be prepared by mixing the active material, the conductive additive, the binder, and the solvent together.
 スラリーの固形分濃度は、30wt%以上80wt%以下であることが好ましい。30wt%未満の場合、スラリーの粘度が低すぎる傾向があり、一方、80wt%より高い場合は、スラリーの粘度が高すぎる傾向があるため、後述の電極の形成が困難となる場合がある。
 スラリーに用いる溶媒は、非水溶媒、あるいは水であることが好ましい。非水溶媒は、特に限定されないが、例えば、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、酢酸エチル、及びテトラヒドロフランなどを挙げることができる。また、これらに分散剤、増粘剤を加えてもよい。
The solid content concentration of the slurry is preferably 30 wt% or more and 80 wt% or less. If it is less than 30 wt%, the viscosity of the slurry tends to be too low, whereas if it is higher than 80 wt%, the viscosity of the slurry tends to be too high, and it may be difficult to form an electrode described later.
The solvent used for the slurry is preferably a non-aqueous solvent or water. The non-aqueous solvent is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, ethyl acetate, and tetrahydrofuran. Moreover, you may add a dispersing agent and a thickener to these.
 集電体上への電極の形成方法は、特に限定されないが、例えば前記スラリーをドクターブレード、ダイコータ、コンマコータ等により集電体に塗布した後に、溶剤を除去する方法、あるいはスプレーにより塗布した後に溶剤を除去する方法が好ましい。溶媒を除去する方法は、オーブンや真空オーブンを用いた乾燥が簡単であり好ましい。溶媒を除去する雰囲気としては室温、あるいは高温の空気、不活性ガス、真空状態などが挙げられる。溶媒を除去する温度は、特に限定されないが、60℃以上250℃以下であることが好ましい。60℃未満では溶媒の除去に時間を要する場合があり、250℃より高いと、バインダーが劣化する場合がある。電極作製後、ロールプレス機などを用いて電極を圧縮させてもよい。 The method for forming the electrode on the current collector is not particularly limited. For example, the slurry is applied to the current collector with a doctor blade, die coater, comma coater, etc., and then the solvent is removed, or the solvent is applied after spraying. The method of removing is preferable. The method for removing the solvent is preferable because it is easy to dry using an oven or a vacuum oven. Examples of the atmosphere for removing the solvent include room temperature or high temperature air, an inert gas, and a vacuum state. Although the temperature which removes a solvent is not specifically limited, It is preferable that they are 60 degreeC or more and 250 degrees C or less. If it is less than 60 ° C., it may take time to remove the solvent, and if it is higher than 250 ° C., the binder may be deteriorated. After producing the electrode, the electrode may be compressed using a roll press or the like.
 本発明において、電極の厚みは、10μm以上200μm以下であることが好ましい。10μm未満では、所望の容量を得ることが難しい場合があり、200μmより厚い場合は、所望の出力密度を得ることが難しい場合がある。
 本発明において、電極の密度は、1.0g/cm3以上4.0g/cm3以下であることが好ましい。1.0g/cm3未満であれば、活物質、導電助材との接触が不十分となり電子伝導性が低下する場合がある。4.0g/cm3より大きい場合は、後述の電解液が電極内に浸透しにくくなり、リチウム伝導性が低下する場合がある。電極は、所望の厚み、密度まで圧縮させてもよい。圧縮は、特に限定されないが、例えば、ロールプレス、油圧プレス等を用いておこなうことができる。
In the present invention, the thickness of the electrode is preferably 10 μm or more and 200 μm or less. If it is less than 10 μm, it may be difficult to obtain a desired capacity, and if it is thicker than 200 μm, it may be difficult to obtain a desired output density.
In the present invention, the density of the electrode is preferably 1.0 g / cm 3 or more and 4.0 g / cm 3 or less. If it is less than 1.0 g / cm < 3 >, the contact with an active material and a conductive support material may become inadequate, and electronic conductivity may fall. When it is larger than 4.0 g / cm 3 , an electrolyte solution described later is less likely to penetrate into the electrode, and lithium conductivity may decrease. The electrode may be compressed to a desired thickness and density. Although compression is not specifically limited, For example, it can carry out using a roll press, a hydraulic press, etc.
 本発明において、負極の1cm2あたりの電気容量は、0.5mAh以上3.6mAh以下であることが好ましい。0.5mAh未満である場合は所望する容量の電池の大きさが大きくなる場合があり、一方、3.6mAhより多い場合は所望の出力密度を得ることが難しい場合がある。
 本発明において、正極の1cm2あたりの電気容量が0.5mAh以上3.0mAh以下であることが好ましい。0.5mAh未満である場合は所望する容量の電池の大きさが大きくなる傾向があり、一方、3.0mAhより多い場合は所望の出力密度を得ることが難しくなる傾向がある。
In the present invention, the electric capacity per 1 cm 2 of the negative electrode is preferably 0.5 mAh or more and 3.6 mAh or less. If it is less than 0.5 mAh, the size of the battery having a desired capacity may be increased. On the other hand, if it is more than 3.6 mAh, it may be difficult to obtain a desired output density.
In the present invention, it is preferable that the electric capacity per 1 cm 2 of the positive electrode is 0.5 mAh or more and 3.0 mAh or less. When it is less than 0.5 mAh, the size of a battery having a desired capacity tends to increase, whereas when it exceeds 3.0 mAh, it tends to be difficult to obtain a desired output density.
 負極及び正極各1cm2あたりの電気容量算出は、後述の実施例のように、各電極作製後、リチウム金属を対極とした半電池を作製した後に、充放電特性を測定することで算出できる。
 電極1cm2あたりの電気容量は、特に限定されないが、集電体単位面積あたりに形成させる電極の重量で制御する方法、例えば、前述の電極塗工時の塗工厚みで制御することができる。
The electric capacity calculation per 1 cm 2 of each of the negative electrode and the positive electrode can be calculated by measuring charge / discharge characteristics after preparing each electrode and then preparing a half-cell using lithium metal as a counter electrode, as in the examples described later.
The electric capacity per 1 cm 2 of the electrode is not particularly limited, but can be controlled by a method of controlling by the weight of the electrode formed per unit area of the current collector, for example, the coating thickness at the time of electrode coating described above.
 <5.非水電解質>
 本発明の非水電解質二次電池に用いる非水電解質は、特に限定されないが、非水溶媒に溶質を溶解させた電解液、非水溶媒に溶質を溶解させた電解液を高分子に含浸させたゲル電解質を用いることができる。
 非水溶媒としては、環状の非プロトン性溶媒及び/又は鎖状の非プロトン性溶媒を含むことが好ましい。環状の非プロトン性溶媒としては、環状カーボネート、環状エステル、環状スルホン及び環状エーテルなどが例示される。鎖状の非プロトン性溶媒としては、鎖状カーボネート、鎖状カルボン酸エステル及び鎖状エーテルなどが例示される。また、前記に加えアセトニトリルなどの一般的に非水電解質の溶媒として用いられる溶媒を用いても良い。より具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジメチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ-ブチルラクトン、1,2-ジメトキシエタン、スルホラン、ジオキソラン、プロピオン酸メチルなどを用いることができる。これら溶媒は1種類で用いてもよいし、2種類以上混合しても用いてもよいが、後述の溶質を溶解させやすさ、リチウムイオンの伝導性の高さから、2種類以上混合した溶媒を用いることが好ましい。例えばジメチルカーボネートとエチレンカーボネートが、好ましい組み合わせとして例示される。また、高分子に電解液をしみこませたゲル状電解質も用いることができる。
<5. Non-aqueous electrolyte>
The non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, but a polymer is impregnated with an electrolytic solution in which a solute is dissolved in a non-aqueous solvent, or an electrolytic solution in which a solute is dissolved in a non-aqueous solvent. A gel electrolyte can be used.
The non-aqueous solvent preferably includes a cyclic aprotic solvent and / or a chain aprotic solvent. Examples of the cyclic aprotic solvent include cyclic carbonates, cyclic esters, cyclic sulfones and cyclic ethers. Examples of the chain aprotic solvent include chain carbonates, chain carboxylic acid esters and chain ethers. In addition to the above, a solvent generally used as a solvent for nonaqueous electrolytes such as acetonitrile may be used. More specifically, dimethyl carbonate, methyl ethyl carbonate, dimethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyl lactone, 1,2-dimethoxyethane, sulfolane, dioxolane, propion For example, methyl acid can be used. These solvents may be used alone or as a mixture of two or more. However, in view of the ease of dissolving the solute described below and the high conductivity of lithium ions, a mixture of two or more of these solvents. Is preferably used. For example, dimethyl carbonate and ethylene carbonate are exemplified as a preferred combination. A gel electrolyte in which an electrolyte is impregnated in a polymer can also be used.
 溶質は、特に限定されないが、例えば、LiClO4、LiBF4、LiPF6、LiAsF6、LiCF3SO3、LiBOB(Lithium Bis (Oxalato) Borate)、LiN(SO2CF32などは溶媒に溶解しやすいことから好ましい。電解液に含まれる溶質の濃度は、0.5mol/L以上2.0mol/L以下であることが好ましい。0.5mol/L未満では所望のリチウムイオン伝導性が発現しない場合があり、一方、2.0mol/Lより高いと、溶質がそれ以上溶解しない場合がある。非水電解質には、難燃剤、安定化剤などの添加剤が微量含まれてもよい。 The solute is not particularly limited. For example, LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiBOB (Lithium Bis (Oxalato) Borate), LiN (SO 2 CF 3 ) 2, etc. are dissolved in the solvent. It is preferable because it is easy to. The concentration of the solute contained in the electrolytic solution is preferably 0.5 mol / L or more and 2.0 mol / L or less. If it is less than 0.5 mol / L, the desired lithium ion conductivity may not be exhibited. On the other hand, if it is higher than 2.0 mol / L, the solute may not be dissolved any more. The non-aqueous electrolyte may contain a trace amount of additives such as a flame retardant and a stabilizer.
 <6.セパレータ>
 セパレータは、前述の正極と負極との間に設置され、電子伝導性がなく、かつリチウムイオンの伝導性を有する物質である。本発明の非水電解質二次電池には、「ポリエチレンテレフタレート繊維含有セルロース不織布」が用いられる。
 本発明ではサイクル特性向上の観点より、空孔率50体積%未満のセパレータを用いる事が必要となる。ここで「空孔率」とは、「空孔率=(1-セパレータを構成する繊維の総体積/セパレータ体積)」と定義する。
<6. Separator>
The separator is a substance that is placed between the positive electrode and the negative electrode, has no electronic conductivity, and has lithium ion conductivity. “Polyethylene terephthalate fiber-containing cellulose nonwoven fabric” is used in the nonaqueous electrolyte secondary battery of the present invention.
In the present invention, it is necessary to use a separator having a porosity of less than 50% by volume from the viewpoint of improving cycle characteristics. Here, “porosity” is defined as “porosity = (1−total volume of fibers constituting separator / volume of separator)”.
 従来、50体積%未満の空孔率のセパレータを用いると、50体積%以上の空孔率のセパレータを用いる場合と比べて、電池内の正負電極間の内部抵抗値がより上昇し、負荷が重くなった場合に、良好な電流負荷特性は期待できなかった。しかし、本発明は、空孔率50体積%未満であっても、ポリエチレンテレフタレート繊維を所定の配合割合で含有するセルロース不織布を用いることで、電流負荷特性を犠牲にすることなく、サイクル特性を飛躍的に向上することができる。 Conventionally, when a separator having a porosity of less than 50% by volume is used, the internal resistance between the positive and negative electrodes in the battery is further increased and the load is increased as compared with the case of using a separator having a porosity of 50% by volume or more. When it became heavy, good current load characteristics could not be expected. However, even if the porosity is less than 50% by volume, the present invention makes use of a cellulose nonwoven fabric containing polyethylene terephthalate fibers in a predetermined blending ratio, thereby dramatically improving cycle characteristics without sacrificing current load characteristics. Can be improved.
 本発明に必須材料であるセルロースの種類としては、電解液との親和性の観点より、天然セルロース繊維、再生セルロース繊維、溶剤紡糸セルロース繊維などの有機繊維が挙げられる。セルロース繊維は、PPやPEに限定されている微多孔セパレータと比較して、電解液の選択性が広がる点で有利であり、耐熱性の観点からも従来の微多孔セパレータよりも優れる。 Examples of the type of cellulose that is an essential material for the present invention include organic fibers such as natural cellulose fibers, regenerated cellulose fibers, and solvent-spun cellulose fibers from the viewpoint of affinity with the electrolyte. Cellulose fibers are advantageous in that the selectivity of the electrolytic solution is widened compared to microporous separators limited to PP and PE, and are superior to conventional microporous separators from the viewpoint of heat resistance.
 さらにセルロース繊維の中に、一定レベルの強度を確保でき耐熱性を有するポリエチレンテレフタレート繊維が含まれることで、セルロース繊維のみのセパレータを用いるよりも強度不足を改善し、セパレータの強度の向上を実現することができる。
 ポリエチレンテレフタレート繊維は任意量加える事ができるが、一定レベルの強度確保のためにはポリエチレンテレフタレート繊維は、セパレータ全体の重量に対して、20重量%以上が必要であり、電解液の保液性を考慮するとポリエチレンテレフタレート繊維の割合は80重量%以下である必要がある。強度と電解液保液性の観点より30重量%以上70重量%以下がより好ましく、50重量%が最もバランスのとれた配合となり、良好な電池特性を示す。
In addition, the cellulose fibers contain polyethylene terephthalate fibers that can secure a certain level of strength and have heat resistance, thereby improving the strength deficiencies compared to using separators made only of cellulose fibers and improving the strength of the separators. be able to.
Polyethylene terephthalate fiber can be added in any amount, but in order to ensure a certain level of strength, polyethylene terephthalate fiber needs to be 20% by weight or more based on the total weight of the separator, so that the electrolyte retainability In consideration, the proportion of the polyethylene terephthalate fiber needs to be 80% by weight or less. 30% by weight or more and 70% by weight or less are more preferable from the viewpoints of strength and electrolyte solution retention, and 50% by weight is the most balanced blend, and shows good battery characteristics.
 ポリエチレンテレフタレート繊維を加える方法は、限定されないが、例えばポリエチレンテレフタレート繊維とセルロース繊維を混合し、湿式抄紙又は乾式抄紙などの抄紙を用いて製造できる。湿式抄紙は、慣用の方法で行うことができる。例えば、手抄き抄紙器や多孔板などを備えた湿式抄紙機などを用いて抄紙してもよい。乾式抄紙も、慣用の方法、例えば、エアレイド製法、カード製法などを用いて抄紙することができる。 The method of adding the polyethylene terephthalate fiber is not limited, but for example, it can be produced by mixing polyethylene terephthalate fiber and cellulose fiber and using paper making such as wet paper making or dry paper making. Wet papermaking can be performed by a conventional method. For example, the paper may be made using a wet paper machine equipped with a hand-made paper machine or a perforated plate. Dry papermaking can also be made using conventional methods such as airlaid and card manufacturing.
 なおセパレータには、各種可塑剤、酸化防止剤、難燃剤が含まれてもよいし、金属酸化物等で被覆されていてもよい。
 セパレータの厚みは、10μm以上100μm以下であることが好ましい。10μm未満であると正極と負極との接触する場合があり、100μmより厚いと電池の内部抵抗が高くなる場合がある。セパレータの厚みは、強度の観点より15μm以上が特に好ましく、電池特性の観点より35μm以下が特に好ましい。20μm以上30μm以下が最も好ましい。
The separator may contain various plasticizers, antioxidants, flame retardants, and may be coated with a metal oxide or the like.
The thickness of the separator is preferably 10 μm or more and 100 μm or less. When the thickness is less than 10 μm, the positive electrode and the negative electrode may contact each other, and when the thickness is more than 100 μm, the internal resistance of the battery may increase. The thickness of the separator is particularly preferably 15 μm or more from the viewpoint of strength, and particularly preferably 35 μm or less from the viewpoint of battery characteristics. Most preferably, it is 20 μm or more and 30 μm or less.
 本発明によれば、セパレータの強度が向上することで、同じ厚さのセルロース不織布と比べ薄膜化が可能となり、電流特性の向上に繋がる。また空孔体積が低減し、使用電解液量の低減化が可能となり、電池のエネルギー密度向上にも繋がる。
 <7.非水電解質二次電池>
 本発明の非水電解質二次電池の正極及び負極は、集電体の両面に同じ電極を形成させた形態であってもよく、集電体の片面に正極、一方の面に負極を形成させた形態、すなわち、バイポーラ電極であってもよい。例えば、バイポーラ電極である場合は、隣り合うバイポーラ電極の正極側と負極側との間にセパレータを配置し、各正極側と負極側とが対向した層内は、液絡を防止するため正極及び負極の周辺部に絶縁材料が配置されている。
According to the present invention, by improving the strength of the separator, it is possible to reduce the thickness of the separator as compared with a cellulose nonwoven fabric having the same thickness, which leads to improvement of current characteristics. In addition, the pore volume is reduced, the amount of electrolyte used can be reduced, and the energy density of the battery is improved.
<7. Non-aqueous electrolyte secondary battery>
The positive electrode and the negative electrode of the nonaqueous electrolyte secondary battery of the present invention may be in the form in which the same electrode is formed on both sides of the current collector, and the positive electrode is formed on one side of the current collector and the negative electrode is formed on one side. Alternatively, it may be a bipolar electrode. For example, in the case of a bipolar electrode, a separator is disposed between the positive electrode side and the negative electrode side of the adjacent bipolar electrode, and the positive electrode and An insulating material is disposed around the negative electrode.
 本発明の非水電解質二次電池は、正極側と負極側との間にセパレータを配置したものを倦回したものであってもよいし、積層したものであってもよい。正極、負極、及びセパレータには、リチウムイオン伝導を担う非水電解質が含まれている。
 本発明の非水電解質二次電池における正極の電気容量と負極の電気容量との比は、下記式(a)を満たすことが好ましい。
The nonaqueous electrolyte secondary battery of the present invention may be one obtained by winding or laminating a separator disposed between the positive electrode side and the negative electrode side. The positive electrode, the negative electrode, and the separator contain a nonaqueous electrolyte that is responsible for lithium ion conduction.
The ratio of the electric capacity of the positive electrode and the electric capacity of the negative electrode in the nonaqueous electrolyte secondary battery of the present invention preferably satisfies the following formula (a).
 1≦B/A≦1.2         (a)
但し、前記式(1)中、Aは正極1cm2あたりの電気容量を示し、Bは負極1cm2あたりの電気容量を示す。
 B/Aが1未満である場合は、過充電時に負極の電位がリチウムの析出電位になる場合があり、一方、B/Aが1.2より大きい場合は電池反応に関与しない負極活物質が多いために副反応が起こる場合がある。
1 ≦ B / A ≦ 1.2 (a)
However, in said Formula (1), A shows the electrical capacity per 1 cm < 2 > of positive electrodes, B shows the electrical capacity per 1 cm < 2 > of negative electrodes.
When B / A is less than 1, the potential of the negative electrode may become the deposition potential of lithium during overcharge. On the other hand, when B / A is greater than 1.2, a negative electrode active material that does not participate in the battery reaction is present. Side reactions may occur due to the large amount.
 本発明の非水電解質二次電池における正極と負極との面積比は、特に限定されないが、下記式(b)を満たすことが好ましい。
 1≦D/C≦1.2          (b)
(但し、Cは正極の面積、Dは負極の面積を示す。)
 D/Cが1未満である場合は、例えば先述のB/A=1の場合、負極の容量が正極よりも小さくなるため、過充電時に負極の電位がリチウムの析出電位になる恐れがある。一方、D/Cが1.2より大きい場合は、正極と接していない部分の負極が大きいため、電池反応に関与しない負極活物質が副反応を起こす場合がある。正極及び負極の面積の制御は特に限定されないが、例えば、スラリー塗工の際、塗工幅を制御することによって行うことができる。
The area ratio between the positive electrode and the negative electrode in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, but preferably satisfies the following formula (b).
1 ≦ D / C ≦ 1.2 (b)
(However, C represents the area of the positive electrode, and D represents the area of the negative electrode.)
When D / C is less than 1, for example, when B / A = 1 as described above, the capacity of the negative electrode is smaller than that of the positive electrode, so that the potential of the negative electrode may become a lithium deposition potential during overcharge. On the other hand, if D / C is greater than 1.2, the negative electrode active material not involved in the battery reaction may cause a side reaction because the portion of the negative electrode that is not in contact with the positive electrode is large. Although control of the area of a positive electrode and a negative electrode is not specifically limited, For example, in the case of slurry coating, it can carry out by controlling the coating width.
 本発明の非水電解質二次電池に用いるセパレータと負極との面積比は特に限定されないが、下記式(c)を満たすことが好ましい。
 1≦F/E≦1.5         (c)
(但し、Eは負極の面積、Fはセパレータの面積を示す。)
 F/Eが1未満である場合は、正極と負極とが接触し、1.5より大きい場合は外装に要する体積が大きくなり、電池の出力密度が低下する場合がある。
The area ratio between the separator and the negative electrode used in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, but preferably satisfies the following formula (c).
1 ≦ F / E ≦ 1.5 (c)
(However, E represents the area of the negative electrode, and F represents the area of the separator.)
When F / E is less than 1, the positive electrode and the negative electrode are in contact with each other, and when F / E is greater than 1.5, the volume required for the exterior increases, and the output density of the battery may decrease.
 本発明の非水電解質二次電池に用いる非水電解質の量は、特に限定されないが、電池容量1Ahあたり、0.1mL以上であることが好ましい。0.1mL未満の場合、電極反応に伴うリチウムイオンの伝導が追いつかず、所望の電池性能が発現しない場合がある。
 非水電解質は、あらかじめ正極、負極及びセパレータに含ませてもよいし、正極側と負極側との間にセパレータを配置したものを倦回、あるいは積層した後に添加してもよい。
The amount of the nonaqueous electrolyte used in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, but is preferably 0.1 mL or more per 1 Ah of battery capacity. If it is less than 0.1 mL, the conduction of lithium ions accompanying the electrode reaction may not catch up, and the desired battery performance may not be exhibited.
The nonaqueous electrolyte may be added to the positive electrode, the negative electrode, and the separator in advance, or may be added after winding or laminating a separator disposed between the positive electrode side and the negative electrode side.
 本発明の非水電解質二次電池は、前記積層体を倦回、あるいは複数積層した後にラミネートフィルムで外装してもよいし、角形、楕円形、円筒形、コイン形、ボタン形、シート形の金属缶で外装してもよい。外装には発生したガスを放出するための機構が備わっていてもよい。積層体の積層数は、所望の電圧値、電池容量を発現するまで積層させることができる。 The non-aqueous electrolyte secondary battery of the present invention may be wound or laminated with a laminate film after the laminate is wound, or may be rectangular, elliptical, cylindrical, coin-shaped, button-shaped, or sheet-shaped. It may be packaged with a metal can. The exterior may be provided with a mechanism for releasing the generated gas. The number of stacked layers can be stacked until a desired voltage value and battery capacity are exhibited.
 本発明の非水電解質二次電池は、複数接続することによって組電池とすることができる。本発明の組電池は、所望の大きさ、容量、電圧によって適宜直列、並列に接続することによって作製することができる。また、各電池の充電状態の確認、安全性向上のため、前記組電池に制御回路が付属されていることが好ましい。 The non-aqueous electrolyte secondary battery of the present invention can be an assembled battery by connecting a plurality of the non-aqueous electrolyte secondary batteries. The assembled battery of the present invention can be produced by appropriately connecting in series or in parallel according to a desired size, capacity, and voltage. Moreover, it is preferable that a control circuit is attached to the assembled battery in order to confirm the state of charge of each battery and improve safety.
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更可能である。
 <実施例1>
 (正極の製造)
 正極活物質のLi1.1Al0.1Mn1.84は、文献("Lithium Aluminum Manganese Oxide Having Spinel-Framework Structure for Long-Life Lithium-Ion Batteries" Electrochemical and Solid-State Letters Volume9, Issue12, Pages A557 (2006))に記載されている方法で作製した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited at all by these Examples, In the range which does not change the summary, it can change suitably.
<Example 1>
(Manufacture of positive electrode)
The positive electrode active material Li 1.1 Al 0.1 Mn 1.8 O 4 has been published in the literature ("Lithium Aluminum Manganese Oxide Having Spinel-Framework Structure for Long-Life Lithium-Ion Batteries" Electrochemical and Solid-State Letters Volume 9, Issue 12, Pages A557 (2006). ).
 すなわち、二酸化マンガン、炭酸リチウム、水酸化アルミニウム、及びホウ酸の水分散液を調製し、スプレードライ法で混合粉末を作製した。このとき、二酸化マンガン、炭酸リチウム及び水酸化アルミニウムの各量は、リチウム、アルミニウム及びマンガンのモル比が1.1:0.1:1.8となるように調製した。次に、この混合粉末を空気雰囲気下900℃で12時間加熱した後、再度650℃で24時間加熱した。最後に、この粉末を95℃の水で洗浄後、乾燥させることによって粉末状の正極活物質を作製した。 That is, an aqueous dispersion of manganese dioxide, lithium carbonate, aluminum hydroxide, and boric acid was prepared, and a mixed powder was prepared by a spray drying method. At this time, each amount of manganese dioxide, lithium carbonate, and aluminum hydroxide was prepared such that the molar ratio of lithium, aluminum, and manganese was 1.1: 0.1: 1.8. Next, the mixed powder was heated at 900 ° C. for 12 hours in an air atmosphere, and then again heated at 650 ° C. for 24 hours. Finally, the powder was washed with water at 95 ° C. and dried to prepare a powdery positive electrode active material.
 作製された正極活物質を100重量部、導電助材(アセチレンブラック)を6.8重量部、及びバインダーとしてPVdF(固形分濃度12wt%、NMP溶液)を6.8重量部混合してスラリーを作製した。このスラリーをアルミニウム箔(20μm)に塗工した後に、150℃で真空乾燥することによって正極(50cm2)を作製した。
 正極の容量は次の充放電試験装置で測定した。
100 parts by weight of the prepared positive electrode active material, 6.8 parts by weight of conductive additive (acetylene black), and 6.8 parts by weight of PVdF (solid content concentration 12 wt%, NMP solution) as a binder were mixed to prepare a slurry. Produced. The slurry was applied to an aluminum foil (20 μm) and then vacuum dried at 150 ° C. to produce a positive electrode (50 cm 2 ).
The capacity of the positive electrode was measured with the following charge / discharge test apparatus.
 前述と同様にアルミニウム箔の片面に塗工した正極を16mmΦの円板状に打ち抜き動作極、Li金属を16mmΦの円板状に打ち抜き対極とした。これらの電極を用いて、動作極(片面塗工)/セパレータ(セルガード社製#2500)/Li金属の順に試験セル(HSセル、宝泉社製)内に積層し、非水電解質(エチレンカーボネート/ジメチルカーボネート=3/7vol%、LiPF6 1mol/L)を0.15mL満たし、半電池を作製した。この半電池を25℃で一日放置した後、充放電試験装置(HJ1005SD8、北斗電工社製)に接続した。この半電池を25℃、0.4mAで定電流充電(終止電圧:4.5V)及び定電流放電(終止電圧:3.5V)を5回繰り返し、5回目の結果を正極の容量とした。その結果、正極の容量は、1.0mAh/cm2であった。 In the same manner as described above, a positive electrode coated on one surface of an aluminum foil was punched into a 16 mmφ disk shape, and a Li metal was punched into a 16 mmφ disk shape as a counter electrode. Using these electrodes, the working electrode (single-sided coating) / separator (# 2500 manufactured by Celgard) / Li metal were laminated in this order in the test cell (HS cell, manufactured by Hosen Co., Ltd.), and a non-aqueous electrolyte (ethylene carbonate) / Dimethyl carbonate = 3/7 vol%, LiPF 6 1 mol / L) was filled to 0.15 mL to prepare a half-cell. The half-cell was allowed to stand at 25 ° C. for one day, and then connected to a charge / discharge test apparatus (HJ1005SD8, manufactured by Hokuto Denko). The half-cell was subjected to constant current charging (end voltage: 4.5 V) and constant current discharge (end voltage: 3.5 V) at 25 ° C. and 0.4 mA five times, and the fifth result was taken as the positive electrode capacity. As a result, the capacity of the positive electrode was 1.0 mAh / cm 2 .
 (負極の製造)
 負極活物質のLi4Ti512を、文献("Zero-Strain Insertion Material of Li [Li1/3Ti5/3] O4 for Rechargeable Lithium Cells" J. Electrochem. Soc., Volume 142, Issue 5, pp. 1431-1435 (1995))に記載されている方法で作製した。
 すなわち、まず二酸化チタンと水酸化リチウムを、チタンとリチウムとのモル比を5:4となるように混合し、次にこの混合物を窒素雰囲気下800℃で12時間加熱し粉砕することによって粉末状の負極活物質を作製した。
(Manufacture of negative electrode)
The negative electrode active material Li 4 Ti 5 O 12 can be found in the literature ("Zero-Strain Insertion Material of Li [Li1 / 3Ti5 / 3] O4 for Rechargeable Lithium Cells" J. Electrochem. Soc., Volume 142, Issue 5, pp. 1431-1435 (1995)).
That is, first, titanium dioxide and lithium hydroxide are mixed so that the molar ratio of titanium and lithium is 5: 4, and then this mixture is heated and pulverized at 800 ° C. for 12 hours in a nitrogen atmosphere. A negative electrode active material was prepared.
 作製された負極活物質を100重量部、導電助材(アセチレンブラック)を6.8重量部、及びバインダーとしてPVdF(固形分濃度12wt%、NMP溶液)を固形分6.8重量部混合してスラリーを作製した。このスラリーをアルミニウム箔(20μm)に塗工した後に、150℃で真空乾燥することによって負極(50cm2)を作製した。
 負極の容量は次の充放電試験で測定した。
100 parts by weight of the prepared negative electrode active material, 6.8 parts by weight of conductive additive (acetylene black), and 6.8 parts by weight of PVdF (solid content concentration 12 wt%, NMP solution) as a binder were mixed. A slurry was prepared. The slurry was applied to an aluminum foil (20 μm) and then vacuum dried at 150 ° C. to prepare a negative electrode (50 cm 2 ).
The capacity of the negative electrode was measured by the following charge / discharge test.
 前述と同様の条件でアルミニウム箔の片面に負極を塗工し、16mmΦの円板状に打ち抜き動作極を作製した。Li金属を16mmΦの円板状に打ち抜き対極とした。これらの電極を用いて、動作極(片面塗工)/セパレータ(セルガード社製#2500)/Li金属の順に試験セル(HSセル、宝泉社製)内に積層し、非水電解質(エチレンカーボネート/ジメチルカーボネート=3/7vol%、LiPF6 1mol/L)を0.15mL入れ、半電池を作製した。この半電池を25℃で一日放置した後、充放電試験装置(HJ1005SD8、北斗電工社製)に接続した。この半電池を25℃、0.4mAで定電流放電(終止電圧:1.0V)及び定電流充電(終止電圧:2.0V)を5回繰り返し、5回目の結果を負極の容量とした。その結果、負極の容量は、1.2mAh/cm2であった。 A negative electrode was applied to one side of an aluminum foil under the same conditions as described above, and a punching working electrode was produced in a 16 mmφ disk shape. Li metal was punched into a disk shape of 16 mmΦ and used as a counter electrode. Using these electrodes, the working electrode (single-sided coating) / separator (# 2500 manufactured by Celgard) / Li metal were laminated in this order in the test cell (HS cell, manufactured by Hosen Co., Ltd.), and a non-aqueous electrolyte (ethylene carbonate) / Dimethyl carbonate = 3/7 vol%, LiPF 6 1 mol / L) was added in an amount of 0.15 mL to prepare a half-cell. The half-cell was allowed to stand at 25 ° C. for one day, and then connected to a charge / discharge test apparatus (HJ1005SD8, manufactured by Hokuto Denko). This half-cell was subjected to constant current discharge (end voltage: 1.0 V) and constant current charge (end voltage: 2.0 V) at 25 ° C. and 0.4 mA five times, and the fifth result was defined as the negative electrode capacity. As a result, the capacity of the negative electrode was 1.2 mAh / cm 2 .
 (セパレータ)
 セパレータには、ポリエチレンテレフタレート繊維含有セルロース不織布(ポリエチレンテレフタレート繊維とセルロース繊維が同量含まれる厚さ25μm、空孔率47体積%、55cm2のセパレータ)を使用した。
 (非水電解質二次電池の製造)
 非水電解質二次電池を次のとおりに作製した。
(Separator)
As the separator, a polyethylene terephthalate fiber-containing cellulose nonwoven fabric (separator having a thickness of 25 μm, a porosity of 47 vol%, and 55 cm 2 containing the same amount of polyethylene terephthalate fiber and cellulose fiber) was used.
(Manufacture of non-aqueous electrolyte secondary batteries)
A non-aqueous electrolyte secondary battery was produced as follows.
 最初に、前記作製した正極(片面塗工;50cm2)、負極(片面塗工;50cm2)、及びセパレータを、正極(片面塗工)/セパレータ/負極(片面塗工)の順に積層した。
 次に、両端の正極1及び負極3にアルミニウムタブ1a,3aを振動溶着させた後に、袋状のアルミラミネートシート4に入れた。非水電解質5はエチレンカーボネート/ジメチルカーボネート=3:7(vol比)の混合非水溶媒とLiPF6 を1mol/Lの濃度で溶解させて調製した。得られた非水電解質5を2mL入れた後に、減圧しながら封止することによって非水電解質二次電池を作製した。図1に作製した非水電解質二次電池(断面図)を示す。
First, the produced positive electrode (single-sided coating; 50 cm 2 ), negative electrode (single-sided coating; 50 cm 2 ), and separator were laminated in the order of positive electrode (single-sided coating) / separator / negative electrode (single-sided coating).
Next, aluminum tabs 1 a and 3 a were vibration welded to the positive electrode 1 and the negative electrode 3 at both ends, and then put into a bag-like aluminum laminate sheet 4. The nonaqueous electrolyte 5 was prepared by dissolving a mixed nonaqueous solvent of ethylene carbonate / dimethyl carbonate = 3: 7 (vol ratio) and LiPF 6 at a concentration of 1 mol / L. After 2 mL of the obtained nonaqueous electrolyte 5 was added, the nonaqueous electrolyte secondary battery was produced by sealing while reducing the pressure. FIG. 1 shows the produced nonaqueous electrolyte secondary battery (cross-sectional view).
 <実施例2>
 正極活物質として、LiNi0.5Mn1.54を文献(Tsutomu Ohzuku, Sachio Takeda, Masato Iwanaga "Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries"Journal of Powersources,Vol.81-82, pp. 90-94 (1999))に記載されている方法で作製した。すなわち、まず水酸化リチウム、酸化水酸化マンガン、及び水酸化ニッケルをリチウム、マンガン及びニッケルのモル比が1:1.5:0.5となるように混合した。次に、この混合物を空気雰囲気下550℃で加熱した後に、再度750℃で加熱することによってLiNi0.5Mn1.54を作製した。
<Example 2>
LiNi 0.5 Mn 1.5 O 4 as a positive electrode active material (Tsutomu Ohzuku, Sachio Takeda, Masato Iwanaga "Solid-state redox potentials for Li [Me1 / 2Mn3 / 2] O4 (Me: 3d-transition metal) having spinel-framework It was made by the method described in "structure: a series of 5 volt materials for advanced lithium-ion batteries" Journal of Powersources, Vol. 81-82, pp. 90-94 (1999)). That is, lithium hydroxide, manganese oxide hydroxide, and nickel hydroxide were first mixed so that the molar ratio of lithium, manganese, and nickel was 1: 1.5: 0.5. Next, this mixture was heated at 550 ° C. in an air atmosphere, and then heated again at 750 ° C. to prepare LiNi 0.5 Mn 1.5 O 4 .
 作製されたLiNi0.5Mn1.54を正極活物質に用いたこと以外は、実施例1と同様に非水電解質二次電池を作製した。
 <比較例1>
 正極活物質として、LiCoO2を文献( A.R. Armstrong, et al., "The layered intercalation compounds Li(Mn1-yCoy)O2: Positive electrode materials for lithium-ion batteries."J. Electrochem. Soc., 1994. Vol. 141(11): pp. 2972 - 2977)に記載されている方法で作製した。すなわち、炭酸リチウム、酸化コバルトをリチウムとコバルトのモル比が1:1となるように混合した。次に、この混合物を空気雰囲気下650℃で加熱した後に、再度850℃で加熱することによってLiCoO2を作製した。作製されたLiCoO2を正極活物質に用いたこと以外は、実施例1と同様に非水電解質二次電池を作製した。
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the produced LiNi 0.5 Mn 1.5 O 4 was used as the positive electrode active material.
<Comparative Example 1>
As a positive electrode active material, LiCoO 2 has been described in literature (AR Armstrong, et al., “The layered intercalation compounds Li (Mn 1-y Co y ) O 2 : Positive electrode materials for lithium-ion batteries.” J. Electrochem. Soc. , 1994. Vol. 141 (11): pp. 2972-2977). That is, lithium carbonate and cobalt oxide were mixed so that the molar ratio of lithium to cobalt was 1: 1. Next, this mixture was heated at 650 ° C. in an air atmosphere, and then heated again at 850 ° C. to prepare LiCoO 2 . A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the produced LiCoO 2 was used as the positive electrode active material.
 <比較例2>
 セパレータにポリエチレンテレフタレート繊維(25μm、空孔率48体積%、55cm2)を用いたこと以外は比較例1と同様に非水電解質二次電池を作製した。
 <比較例3>
 セパレータにセルロース不織布(25μm、空孔率70体積%、55cm2)を用いたこと以外は比較例1と同様に非水電解質二次電池を作製した。
<Comparative example 2>
A nonaqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 1 except that polyethylene terephthalate fiber (25 μm, porosity 48 volume%, 55 cm 2 ) was used for the separator.
<Comparative Example 3>
A nonaqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 1 except that a cellulose nonwoven fabric (25 μm, porosity 70 volume%, 55 cm 2 ) was used as the separator.
 <比較例4>
 正極活物質として、LiNiO2を文献(T. Ohzuku, A. Ueda, and M. Nagayama, "Electrochemistry and structural chemistry of LiNiO2 ( R 3  m ) for 4 volt secondary lithium cells," Journal of the Electrochemical Society, vol. 140, no. 7, pp. 1862-1870, (1993))に記載されている方法で作製した。すなわち、水酸化リチウム、炭酸ニッケルをリチウムとニッケルのモル比が1:1となるように混合した。次に、この混合物を酸素雰囲気下600℃で加熱した後に、再度750℃で加熱することによってLiNiO2を作製した。作製されたLiNiO2を正極活物質に用いたこと以外は、実施例1と同様に非水電解質二次電池を作製した。
<Comparative Example 4>
LiNiO 2 is used as a positive electrode active material in the literature (T. Ohzuku, A. Ueda, and M. Nagayama, “Electrochemistry and structural chemistry of LiNiO 2 (R 3 m) for 4 volt secondary lithium cells,” Journal of the Electrochemical Society, vol. 140, no. 7, pp. 1862-1870, (1993)). That is, lithium hydroxide and nickel carbonate were mixed so that the molar ratio of lithium to nickel was 1: 1. Next, this mixture was heated at 600 ° C. in an oxygen atmosphere, and then heated again at 750 ° C. to prepare LiNiO 2 . A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the produced LiNiO 2 was used as the positive electrode active material.
 <比較例5>
 セパレータにポリエチレンテレフタレート繊維(25μm、空孔率48体積%、55cm2)を用いたこと以外は比較例4と同様に非水電解質二次電池を作製した。
 <比較例6>
 セパレータにセルロース不織布(25μm、空孔率70体積%、55cm2)を用いたこと以外は比較例4と同様に非水電解質二次電池を作製した。
<Comparative Example 5>
A nonaqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 4 except that polyethylene terephthalate fiber (25 μm, porosity 48 volume%, 55 cm 2 ) was used for the separator.
<Comparative Example 6>
A nonaqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 4 except that a cellulose nonwoven fabric (25 μm, porosity 70 volume%, 55 cm 2 ) was used as the separator.
 <比較例7>
 セパレータとして、ポリプロピレン製の微多孔膜(セルガード社#2500)を用いたこと以外は、実施例1と同様に非水電解質二次電池を作製した。
 <比較例8>
 セパレータにポリエチレンテレフタレート繊維(25μm、空孔率48体積%、55cm2)を用いたこと以外は比較例7と同様に非水電解質二次電池を作製した。
<Comparative Example 7>
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a polypropylene microporous membrane (Celgard # 2500) was used as the separator.
<Comparative Example 8>
A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Comparative Example 7, except that polyethylene terephthalate fiber (25 μm, porosity 48 volume%, 55 cm 2 ) was used as the separator.
 <比較例9>
 セパレータにセルロース不織布(25μm、空孔率70体積%、55cm2)を用いたこと以外は比較例7と同様に非水電解質二次電池を作製した。
 <比較例10>
セパレータとして、ポリプロピレン製の微多孔膜(セルガード社#2500)を用いたこと以外は、実施例2と同様に非水電解質二次電池を作製した。
<Comparative Example 9>
A nonaqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 7, except that a cellulose non-woven fabric (25 μm, porosity 70 volume%, 55 cm 2 ) was used as the separator.
<Comparative Example 10>
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that a polypropylene microporous membrane (Celgard # 2500) was used as the separator.
 <比較例11>
 セパレータにポリエチレンテレフタレート繊維(25μm、空孔率48体積%、55cm2)を用いたこと以外は比較例10と同様に非水電解質二次電池を作製した。
 <比較例12>
 セパレータにセルロース不織布(25μm、空孔率70体積%、55cm2)を用いたこと以外は比較例10と同様に非水電解質二次電池を作製した。
<Comparative Example 11>
A nonaqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 10 except that polyethylene terephthalate fiber (25 μm, porosity 48 volume%, 55 cm 2 ) was used as the separator.
<Comparative Example 12>
A nonaqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 10 except that a cellulose nonwoven fabric (25 μm, porosity 70 volume%, 55 cm 2 ) was used as the separator.
 (サイクル特性の測定)
 実施例及び比較例で作製された非水電解質二次電池を、充放電装置(HJ1005SD8、北斗電工社製)に接続し、55℃、50mA定電流充電、50mA定電流放電を100回繰り返した。このときの充電終止電圧及び放電終止電圧は、それぞれ3V及び2Vとした。1回目の放電容量を100としたときの、100回目の放電容量を表1に示す。
(Measurement of cycle characteristics)
The nonaqueous electrolyte secondary batteries produced in the examples and comparative examples were connected to a charge / discharge device (HJ1005SD8, manufactured by Hokuto Denko), and 55 ° C., 50 mA constant current charge, and 50 mA constant current discharge were repeated 100 times. The charge end voltage and discharge end voltage at this time were 3 V and 2 V, respectively. Table 1 shows the 100th discharge capacity when the first discharge capacity is 100.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなとおり、本発明の実施例1、2の非水電解質二次電池は、比較例1~12の非水電解質二次電池よりもサイクル安定性が向上している。
 正極活物質としてLi1.1Al0.1Mn1.84を採用した場合、セパレータとしてポリエチレンテレフタレート繊維含有セルロース不織布(実施例1)を用いた電池は、ポリプロピレン微多孔膜(比較例7)、ポリエチレンテレフタレート繊維(比較例8)、セルロース(比較例9)を用いた電池よりも、サイクル安定性が優れている。
As is apparent from Table 1, the nonaqueous electrolyte secondary batteries of Examples 1 and 2 of the present invention have improved cycle stability as compared with the nonaqueous electrolyte secondary batteries of Comparative Examples 1 to 12.
When Li 1.1 Al 0.1 Mn 1.8 O 4 is employed as the positive electrode active material, the battery using the polyethylene terephthalate fiber-containing cellulose nonwoven fabric (Example 1) as the separator is a polypropylene microporous membrane (Comparative Example 7), polyethylene terephthalate fiber ( The cycle stability is superior to the battery using Comparative Example 8) and cellulose (Comparative Example 9).
 また正極活物質としてLiNi0.5Mn1.54を採用した場合、セパレータとしてポリエチレンテレフタレート繊維含有セルロース不織布(実施例2)を用いた電池は、ポリプロピレン微多孔膜(比較例10)、ポリエチレンテレフタレート繊維(比較例11)、セルロース(比較例12)を用いた電池よりも、サイクル安定性が優れている。
 しかし、正極活物質をLiCoO2とした場合、セパレータとしてポリエチレンテレフタレート繊維含有セルロース不織布(比較例1)を用いた電池は、ポリエチレンテレフタレート繊維(比較例2)、セルロース(比較例3)を用いた電池と比べて、サイクル安定性が大きく優れているわけではない。
When LiNi 0.5 Mn 1.5 O 4 is used as the positive electrode active material, the battery using the polyethylene terephthalate fiber-containing cellulose nonwoven fabric (Example 2) as the separator is a polypropylene microporous membrane (Comparative Example 10), polyethylene terephthalate fiber (Comparative). The cycle stability is superior to the battery using Example 11) and cellulose (Comparative Example 12).
However, when the positive electrode active material is LiCoO 2 , a battery using polyethylene terephthalate fiber-containing cellulose nonwoven fabric (Comparative Example 1) as a separator is a battery using polyethylene terephthalate fiber (Comparative Example 2) and cellulose (Comparative Example 3). Compared to, the cycle stability is not greatly superior.
 正極活物質をLiNiO2とした場合も、セパレータとしてポリエチレンテレフタレート繊維含有セルロース不織布(比較例4)を用いた電池は、ポリエチレンテレフタレート繊維(比較例5)、セルロース(比較例6)を用いた電池と比べて、サイクル特性が大きく優れているわけではない。
 これらのことから、正極活物質としてLi1.1Al0.1Mn1.84又はLiNi0.5Mn1.54を採用し、セパレータとしてポリエチレンテレフタレート繊維含有セルロース不織布を用いた組み合わせが、電池のサイクル安定性を大きく向上させることが分かる。
Even when the positive electrode active material is LiNiO 2 , the battery using the polyethylene terephthalate fiber-containing cellulose nonwoven fabric (Comparative Example 4) as the separator is the same as the battery using the polyethylene terephthalate fiber (Comparative Example 5) and cellulose (Comparative Example 6). In comparison, the cycle characteristics are not greatly superior.
Therefore, the combination of using Li 1.1 Al 0.1 Mn 1.8 O 4 or LiNi 0.5 Mn 1.5 O 4 as the positive electrode active material and using the cellulose non-woven fabric containing polyethylene terephthalate fiber as the separator greatly improves the cycle stability of the battery. I understand that
 このような特定の正極活物質と特定構造・特定物質のセパレータとの相乗効果が生じた原因を推測する。発明者は、電池のサイクル劣化を起こす機構として、電解液と正極界面で発生したフリーラジカルがセパレータを貫通し負極表面上で析出反応を起こさせることを想定している。そこで前記特定の正極活物質と特定構造・特定物質のセパレータとの組み合わせが、フリーラジカル発生の抑制し、発生したフリーラジカルのセパレータによるトラップを促進し、負極表面上での析出反応を抑制する、等の現象が起こっていると推測している。 The cause of the synergistic effect between the specific positive electrode active material and the specific structure / specific material separator is presumed. The inventor assumes that free radicals generated at the interface between the electrolyte and the positive electrode pass through the separator and cause a precipitation reaction on the negative electrode surface as a mechanism for causing cycle deterioration of the battery. Therefore, the combination of the specific positive electrode active material and the specific structure / specific material separator suppresses free radical generation, promotes trapping of the generated free radical by the separator, and suppresses the precipitation reaction on the negative electrode surface. And so on.

Claims (10)

  1.  正極、負極、セパレータ及び非水電解質を有するリチウムイオン電池であって、
     前記正極がリチウムマンガン化合物を含み、
     前記負極がチタン酸リチウムを含み、
     前記セパレータがポリエチレンテレフタレート繊維含有セルロース不織布であって、その空孔率が50体積%未満である、非水電解質二次電池。
    A lithium ion battery having a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte,
    The positive electrode includes a lithium manganese compound;
    The negative electrode comprises lithium titanate;
    A nonaqueous electrolyte secondary battery, wherein the separator is a polyethylene terephthalate fiber-containing cellulose nonwoven fabric, and the porosity thereof is less than 50% by volume.
  2.  前記リチウムマンガン化合物が、Li1+xyMn2xy4(0≦x≦0.2, 0<y≦0.6、MがAl、Niから選ばれる少なくとも1種である)で表される化合物である、請求項1に記載の非水電解質二次電池。 The lithium manganese compound, Li 1 + x M y Mn 2 - x - y O 4 (0 ≦ x ≦ 0.2, 0 <y ≦ 0.6, preferably at least one M is Al, are selected from Ni The nonaqueous electrolyte secondary battery of Claim 1 which is a compound represented by this.
  3.  前記リチウムマンガン化合物が、Li1.1Al0.1Mn1.84(0≦x≦0.2, 0<y≦0.6)で表される請求項1に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the lithium manganese compound is represented by Li 1.1 Al 0.1 Mn 1.8 O 4 (0 ≦ x ≦ 0.2, 0 <y ≦ 0.6).
  4.  前記リチウムマンガン化合物が、LiNi0.5Mn1.54(0≦x≦0.2, 0<y≦0.6)で表される請求項1に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the lithium manganese compound is represented by LiNi 0.5 Mn 1.5 O 4 (0 ≦ x ≦ 0.2, 0 <y ≦ 0.6).
  5.  前記チタン酸リチウムがスピネル構造を有する、請求項1に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the lithium titanate has a spinel structure.
  6.  前記ポリエチレンテレフタレート繊維含有セルロース不織布のポリエチレンテレフタレート繊維の含有割合が20重量%以上80重量%以下である、請求項1に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the polyethylene terephthalate fiber content of the polyethylene terephthalate fiber-containing cellulose nonwoven fabric is 20 wt% or more and 80 wt% or less.
  7.  前記ポリエチレンテレフタレート繊維含有セルロース不織布のポリエチレンテレフタレート繊維の含有割合が30重量%以上70重量%以下である、請求項1に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the polyethylene terephthalate fiber-containing cellulose nonwoven fabric has a polyethylene terephthalate fiber content of 30 wt% or more and 70 wt% or less.
  8.  前記ポリエチレンテレフタレート繊維含有セルロース不織布の厚みが15μm以上35μm以下である、請求項1に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the polyethylene terephthalate fiber-containing cellulose nonwoven fabric has a thickness of 15 μm or more and 35 μm or less.
  9.  前記ポリエチレンテレフタレート繊維含有セルロース不織布の厚みが20μm以上30μm以下である、請求項1に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the polyethylene terephthalate fiber-containing cellulose nonwoven fabric has a thickness of 20 μm or more and 30 μm or less.
  10.  請求項1に記載の非水電解質二次電池を、複数接続してなる組電池。 An assembled battery formed by connecting a plurality of the nonaqueous electrolyte secondary batteries according to claim 1.
PCT/JP2012/081265 2011-12-07 2012-12-03 Nonaqueous electrolyte secondary battery and assembled battery using same WO2013084840A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011268309 2011-12-07
JP2011-268309 2011-12-07

Publications (1)

Publication Number Publication Date
WO2013084840A1 true WO2013084840A1 (en) 2013-06-13

Family

ID=48574207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081265 WO2013084840A1 (en) 2011-12-07 2012-12-03 Nonaqueous electrolyte secondary battery and assembled battery using same

Country Status (3)

Country Link
JP (1) JPWO2013084840A1 (en)
TW (1) TWI600195B (en)
WO (1) WO2013084840A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514284A (en) * 2012-04-18 2015-05-18 エルジー・ケム・リミテッド Secondary battery electrode and secondary battery including the same
WO2018139524A1 (en) * 2017-01-26 2018-08-02 日本電気株式会社 Secondary cell
JP2020053163A (en) * 2018-09-25 2020-04-02 三菱製紙株式会社 Manufacturing method of lithium ion battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7377401B2 (en) * 2019-04-25 2023-11-10 株式会社日本製鋼所 Non-woven fabric, non-woven fabric manufacturing method, solid electrolyte membrane, solid electrolyte membrane manufacturing method, all-solid-state battery and all-solid-state battery manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067389A (en) * 2005-08-03 2007-03-15 Mitsubishi Paper Mills Ltd Separator for electrochemical element
JP2007294164A (en) * 2006-04-24 2007-11-08 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2010098074A (en) * 2008-10-15 2010-04-30 Tomoegawa Paper Co Ltd Separator for electric storage device
JP2011210680A (en) * 2010-03-30 2011-10-20 Tomoegawa Paper Co Ltd Separator for battery
JP2011238427A (en) * 2010-05-10 2011-11-24 Hitachi Maxell Energy Ltd Nonaqueous electrolyte battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067389A (en) * 2005-08-03 2007-03-15 Mitsubishi Paper Mills Ltd Separator for electrochemical element
JP2007294164A (en) * 2006-04-24 2007-11-08 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2010098074A (en) * 2008-10-15 2010-04-30 Tomoegawa Paper Co Ltd Separator for electric storage device
JP2011210680A (en) * 2010-03-30 2011-10-20 Tomoegawa Paper Co Ltd Separator for battery
JP2011238427A (en) * 2010-05-10 2011-11-24 Hitachi Maxell Energy Ltd Nonaqueous electrolyte battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514284A (en) * 2012-04-18 2015-05-18 エルジー・ケム・リミテッド Secondary battery electrode and secondary battery including the same
US9508993B2 (en) 2012-04-18 2016-11-29 Lg Chem, Ltd. Electrode for secondary battery and secondary battery including the same
US10153480B2 (en) 2012-04-18 2018-12-11 Lg Chem, Ltd. Electrode for secondary battery and secondary battery including the same
WO2018139524A1 (en) * 2017-01-26 2018-08-02 日本電気株式会社 Secondary cell
JPWO2018139524A1 (en) * 2017-01-26 2019-11-14 日本電気株式会社 Secondary battery
JP7103234B2 (en) 2017-01-26 2022-07-20 日本電気株式会社 Secondary battery
JP2020053163A (en) * 2018-09-25 2020-04-02 三菱製紙株式会社 Manufacturing method of lithium ion battery

Also Published As

Publication number Publication date
TWI600195B (en) 2017-09-21
TW201332184A (en) 2013-08-01
JPWO2013084840A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
CN107112584B (en) Nonaqueous electrolyte secondary battery and positive electrode for nonaqueous electrolyte secondary battery
JP6304774B2 (en) Method for producing paste for negative electrode production, method for producing negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JPWO2016098708A1 (en) Lithium ion secondary battery
JP6581981B2 (en) Non-aqueous electrolyte secondary battery and assembled battery formed by connecting a plurality thereof
JP2012174546A (en) Nonaqueous electrolyte secondary battery
JP2020123460A (en) Pre-doping material, positive electrode including pre-doping material, and method for producing non-aqueous electrolyte secondary battery including positive electrode thereof, and method for producing metal oxide
JP2015118742A (en) Nonaqueous electrolyte secondary battery
JP2014006971A (en) Nonaqueous electrolyte secondary battery and battery pack including the same
JP2013098034A (en) Nonaqueous electrolyte secondary battery
JP2012129095A (en) Bipolar electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2012156087A (en) Nonaqueous electrolyte secondary battery
WO2013084840A1 (en) Nonaqueous electrolyte secondary battery and assembled battery using same
JP2015215947A (en) Electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery
JP7142301B2 (en) POSITIVE ACTIVE MATERIAL AND BATTERY INCLUDING SAME
JP2017188424A (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery positive electrode using the same, and lithium ion secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2017204334A (en) Method for manufacturing electrode, nonaqueous electrolyte secondary battery, and power storage unit
JP2013191484A (en) Negative electrode active material layer, manufacturing method therefor and nonaqueous electrolyte secondary cell
JP2015187929A (en) Nonaqueous electrolyte secondary battery
JP2014022321A (en) Nonaqueous electrolyte secondary battery including scavenger
JP5758731B2 (en) Nonaqueous electrolyte secondary battery
JP6244604B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5726603B2 (en) Nonaqueous electrolyte secondary battery
JP2014238946A (en) Method for manufacturing nonaqueous electrolyte secondary battery, and battery manufactured thereby
JP2014072062A (en) Nonaqueous electrolyte secondary battery and battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548223

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855980

Country of ref document: EP

Kind code of ref document: A1