JP2013128941A - Resistance welding machine and control method thereof - Google Patents
Resistance welding machine and control method thereof Download PDFInfo
- Publication number
- JP2013128941A JP2013128941A JP2011278689A JP2011278689A JP2013128941A JP 2013128941 A JP2013128941 A JP 2013128941A JP 2011278689 A JP2011278689 A JP 2011278689A JP 2011278689 A JP2011278689 A JP 2011278689A JP 2013128941 A JP2013128941 A JP 2013128941A
- Authority
- JP
- Japan
- Prior art keywords
- current
- current value
- inverter
- value
- basic target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims description 20
- 230000000630 rising effect Effects 0.000 abstract description 12
- 238000009499 grossing Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 230000002950 deficient Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Landscapes
- Inverter Devices (AREA)
Abstract
Description
本発明は、直流を交流に変換し交流電流を出力するインバータを備えた抵抗溶接機、およびその制御方法に関する。 The present invention relates to a resistance welding machine including an inverter that converts direct current into alternating current and outputs alternating current, and a control method thereof.
抵抗溶接機は、商用の三相電源に接続され、三相交流を直流に変換し、直流をさらに交流に変換して、被溶接物を溶接する。三相交流を直流に変換するために、全波整流回路と平滑回路が設けられ、直流を交流に変換するために、インバータが設けられる。インバータは、直流から任意の波形、任意の周波数の交流電流を出力することができる。 The resistance welder is connected to a commercial three-phase power source, converts three-phase alternating current into direct current, further converts direct current into alternating current, and welds the workpieces. A full-wave rectifier circuit and a smoothing circuit are provided to convert three-phase alternating current into direct current, and an inverter is provided to convert direct current into alternating current. The inverter can output an alternating current having an arbitrary waveform and an arbitrary frequency from direct current.
抵抗溶接機としては、たとえば特許文献1に、溶接に必要な交流電源周波数を被溶接物の板厚及び/又は材質、溶接速度等の溶接条件に応じて変化させる周波数切替え手段を有するものが開示されている。 As a resistance welding machine, for example, Patent Document 1 discloses one having a frequency switching means for changing an AC power supply frequency necessary for welding according to welding conditions such as a plate thickness and / or material of a workpiece and a welding speed. Has been.
特許文献1の抵抗溶接機によれば、交流電源の交流電流が整流回路で整流され、整流された直流電流が平滑回路で平滑な直流電流とされる。整流回路および平滑回路を経て得られた直流電流は、複数のスイッチング素子を備えたインバータで高周波変換されるとともに、所望の交流波形が再現される。交流波形の電流は溶接トランスで増幅されて、二次側の溶接電極へと供給される。このため、溶接に必要な電源周波数の三角波、正弦波又は矩形波、台形波等の交流波形の溶接電流が溶接電極に供給されて、被溶接物は加圧されながら溶接される。 According to the resistance welding machine of Patent Document 1, the alternating current of the alternating current power source is rectified by the rectifier circuit, and the rectified direct current is converted into a smooth direct current by the smoothing circuit. The direct current obtained through the rectifier circuit and the smoothing circuit is high-frequency converted by an inverter having a plurality of switching elements, and a desired alternating current waveform is reproduced. The AC waveform current is amplified by the welding transformer and supplied to the secondary welding electrode. For this reason, a welding current having an AC waveform such as a triangular wave, a sine wave, a rectangular wave, or a trapezoidal wave having a power supply frequency necessary for welding is supplied to the welding electrode, and the workpiece is welded while being pressurized.
ところで、特許文献1の抵抗溶接機によれば、インバータはPWM制御により三角波、正弦波又は矩形波、台形波等の交流波形を再現している。そしてPWM制御は、交流電流の瞬時電流値を基本目標電流値としている。 By the way, according to the resistance welding machine of Patent Document 1, the inverter reproduces an alternating current waveform such as a triangular wave, a sine wave, a rectangular wave, or a trapezoidal wave by PWM control. The PWM control uses the instantaneous current value of the alternating current as the basic target current value.
しかし、インバータの二次側には負荷が接続されるため、基本目標電流値に達するまでに負荷の時定数に依存する交流電流の立ち上がり遅れが生じ、目標とした交流波形が得られない。負荷の時定数の大きさは機器や被溶接物によって変動するため、交流電流の立ち上がり遅れは一定ではない。 However, since a load is connected to the secondary side of the inverter, the AC current rise delay depending on the time constant of the load occurs until the basic target current value is reached, and the target AC waveform cannot be obtained. Since the magnitude of the time constant of the load varies depending on the equipment and the workpiece, the rising delay of the alternating current is not constant.
また交流電流は、矩形波のように交流波形の立ち上がりが急峻なほど、基本目標電流値と実測実効電流値とに差異が生じて立ち上がり遅れが生じる。したがって、瞬時電流値からの電流補正を利点とするインバータの特徴が希薄となってしまう。 Further, as the AC waveform rises more steeply like a rectangular wave, the difference between the basic target current value and the actually measured effective current value occurs, and the rise delay occurs. Therefore, the feature of the inverter that has the advantage of current correction from the instantaneous current value becomes sparse.
本発明は、上記の事情に鑑みて創案されたものであり、インバータが再現する交流波形の立ち上がり遅れによる不足分電流を補正電流として基本目標電流値に補償して、負荷に対して理想的な通電が可能な抵抗溶接機およびその制御方法の提供を目的とする。 The present invention was devised in view of the above circumstances, and compensates the shortage current due to the rising delay of the AC waveform reproduced by the inverter as a correction current to the basic target current value, which is ideal for the load. An object of the present invention is to provide a resistance welding machine capable of energization and a control method thereof.
上記目的を達成するための抵抗溶接機は、インバータ、電流センサおよび制御部を有する。インバータは、直流を交流に変換し交流電流を出力する。電流センサは、インバータが出力する交流電流の電流値を検出する。 A resistance welding machine for achieving the above object includes an inverter, a current sensor, and a control unit. The inverter converts direct current to alternating current and outputs an alternating current. The current sensor detects the current value of the alternating current output from the inverter.
制御部は、上記電流センサが検出した電流値とあらかじめ設定した基本目標電流値とを用いて基本目標電流値に対する不足分電流を演算し、基本目標電流値を不足分電流で補償した補正目標電流値を演算し、補正目標電流値の電流を上記インバータから出力させる。 The control unit calculates a deficient current with respect to the basic target current value using the current value detected by the current sensor and a preset basic target current value, and compensates the basic target current value with the deficient current. The value is calculated and the current of the corrected target current value is output from the inverter.
本発明に係る抵抗溶接機によれば、制御部は、電流センサが検出した電流値とあらかじめ設定した基本目標電流値とを用いて、基本目標電流値に対する不足分電流を演算する。さらに制御部は、基本目標電流値を不足分電流で補償した補正目標電流値を演算し、補正目標電流値の電流を上記インバータから出力させる。 According to the resistance welding machine according to the present invention, the control unit calculates an insufficient current with respect to the basic target current value using the current value detected by the current sensor and the preset basic target current value. Further, the control unit calculates a corrected target current value obtained by compensating the basic target current value with the insufficient current, and outputs the current of the corrected target current value from the inverter.
これにより、インバータに接続された負荷の時定数に依存する交流電流の立ち上がり遅れを瞬時に補正することができ、負荷に対して理想的な通電が可能な抵抗溶接機を提供することができる。 Thereby, the rising delay of the alternating current depending on the time constant of the load connected to the inverter can be instantaneously corrected, and a resistance welder capable of ideally energizing the load can be provided.
以下、図面を参照して、本実施形態に係る抵抗溶接機を説明する。 Hereinafter, the resistance welding machine according to the present embodiment will be described with reference to the drawings.
図1は本実施形態に係る抵抗溶接機のブロック図である。図2は本実施形態に係る抵抗溶接機のインバータを示す回路図である。 FIG. 1 is a block diagram of a resistance welder according to this embodiment. FIG. 2 is a circuit diagram showing an inverter of the resistance welding machine according to the present embodiment.
本発明に係る抵抗溶接機は、制御部が、電流センサが検出した電流値とあらかじめ設定した基本目標電流値とを用いて、基本目標電流値に対する不足分電流を演算する。さらに制御部が、基本目標電流値を不足分電流で補償した補正目標電流値を演算する。制御部は、補正目標電流値の電流をインバータから出力させることにより、負荷に対して理想的な通電が可能な抵抗溶接機を提供できるようになる。 In the resistance welding machine according to the present invention, the control unit calculates a shortage current with respect to the basic target current value by using the current value detected by the current sensor and the preset basic target current value. Further, the control unit calculates a corrected target current value obtained by compensating the basic target current value with the insufficient current. The control unit can provide a resistance welding machine capable of ideally energizing the load by causing the inverter to output the current of the corrected target current value.
本実施形態の抵抗溶接機100は、三相交流を整流して得た直流をインバータ40で高周波変換し、PWM制御にて矩形波や台形波等の交流波形を再現し、トランス80を用いて負荷90を溶接する装置である。
The
本実施形態の抵抗溶接機100は、図1に示すように、整流回路20、平滑回路30、インバータ40、電流センサ60、制御部70およびトランス80を有する。
As shown in FIG. 1, the
整流回路20は、商用の三相交流電源10に接続され、三相交流電流を直流電流に整流する回路である。整流回路20は、たとえば、ダイオード等の整流素子によって構成されている。
The
商用の三相交流電流を直流電流に整流する整流回路20としては、たとえば、整流素子3個で三相交流電源10の全相を半波整流し、三相整流する三相半波整流回路が挙げられる。その他の整流回路20としては、整流素子6個で三相交流電源10の全相を全波整流する六相整流回路が挙げられるが、本実施形態では三相全波整流回路を用いる。
As a
平滑回路30は、上記整流回路20の二次側に接続され、整流回路20で整流化された交流電流の脈流を平滑化してより平滑な直流電流に近づける回路である。平滑回路30としては、たとえば、一定の電圧値以上で充電し、一定の電圧値未満で放電する性質を有するコンデンサを利用した平滑回路が挙げられる。
The
インバータ40は、上記平滑回路30の二次側に接続され、平滑回路30から入力される直流電流を高周波変換するとともに、PWM制御にて直流電流から矩形波や台形波、三角波、正弦波等の交流波形を再現する電源回路である。インバータ40には、あらかじめ交流電流の基本目標電流値が設定されおり、矩形波や台形波等の電流波形は基本目標電流値の経時的変化を表している。
The
インバータ40は、図2に示すように、通電経路を切り替える複数のスイッチング素子51−54を備えている。本実施形態のインバータ40は、スイッチング素子として、二対のIGBT51、52と53、54を備えており、各対のIGBT51、52と53、54をある一定周期ごとに交互にスイッチング制御して、通電経路を切り替えることにより矩形波や台形波等の交流波形を出力する。
As shown in FIG. 2, the
スイッチング素子としては、たとえば、IGBT(Insulated Gate Bipolar Transistor)や、ダイオード、GTO(Gate Turn Off Thyristor)、MOSFET(Metal−Oxide−Semiconductor Field−Effect Transistor)等が挙げられる。 Examples of the switching element include an IGBT (Insulated Gate Bipolar Transistor), a diode, a GTO (Gate Turn Off Thyristor), and a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).
電流センサ60は、インバータ40の二次側であって後述するトランス80の一次側(入力側)に接続され、インバータ40とトランス80との間に流れる交流電流の電流値を検出するセンサである。電流センサ50としては、たとえば、CT(Current Transformer)等の交流電流計測用のセンサが用いられる。
The
制御部70は、電流センサ60の二次側に接続され、電流センサ60の検出した電流値に基づいて演算処理を行い、IGBT51−54の開閉タイミングおよび開閉時間を変化させてインバータ40のオン/オフ比率を制御する装置である。
The
制御部70は、電流センサ60が検出した電流値とあらかじめ設定した基本目標電流値とを用いて、この基本目標電流値に対する不足分電流を演算する。さらに制御部70は、基本目標電流値を不足分電流で補償した補正目標電流値を演算し、補正目標電流値の電流をインバータ40から出力させる。
The
不足分電流は、交流電流の半サイクルにおいて、インバータ40に接続された負荷の時定数に依存する交流電流の立上がり時の基本目標電流値に対する追従遅れによる不足分を補償するための電流である。
The shortage current is a current for compensating for a shortage due to a follow-up delay with respect to the basic target current value when the alternating current rises depending on the time constant of the load connected to the
トランス80は溶接用の大電流が出力できる溶接トランスであって、インバータ40の二次側に接続され、インバータ40から出力される交流電流の大きさを増幅して負荷90へと供給する装置である。
The
次に、図3から図5を参照して、以上のように構成された本実施形態の抵抗溶接機100の制御方法をその作用とともに説明する。図3は、本実施形態の抵抗溶接機の制御方法を示すフローチャートである。図4は、本実施形態の抵抗溶接機の制御方法による補正前の交流電流を示す説明図である。図5は、本実施形態の抵抗溶接機の制御方法による補正後の交流電流を示す説明図である。
Next, with reference to FIGS. 3 to 5, a control method of the
抵抗溶接機100の制御方法は、インバータ40、電流センサ60および制御部70を備えた抵抗溶接機100において、電流センサ60が検出した電流値とあらかじめ設定した基本目標電流値とを用いて、制御部70がインバータ40の出力電流を制御する方法である。
The
抵抗溶接機100の制御方法は、まず、電流センサ60によって交流電流の電流値を検出する段階を含んでいる。具体的には、図3に示すように、本実施形態の抵抗溶接機100の電源をオンして通電を開始すると、制御部70が、インバータ40で再現する交流波形の半サイクルについて通電を開始する(S1)。
The control method of the
通電を開始すると、図4に示すように、交流電流が立ち上がり、たとえば台形波の電流波形が負荷90に供給される。インバータ40には、あらかじめ矩形状の交流電流の基本目標電流値Pが設定されているが、負荷90に実際に流れる電流は矩形波にはならない。図4の台形波は負荷90に実際に流れる電流の経時的変化を表している。
When energization is started, as shown in FIG. 4, an alternating current rises, and for example, a trapezoidal current waveform is supplied to the
上述したように、インバータ40の二次側には負荷90が接続されるため、基本目標電流値Pに達するまでに負荷90の時定数に依存する交流電流の立ち上がり遅れが生じ、目標とした交流波形が得られない。負荷の時定数の大きさは、機器や被溶接物によって変動するため、交流電流の立ち上がり遅れは一定ではない。また交流電流は、矩形波のように交流波形の立ち上がりが急峻なほど、基本目標電流値Pと実測実効電流値とに差異が生じて立ち上がり遅れが生じる。なお、図4中のTは立ち上がり遅れ時間である。
As described above, since the
そこで、本実施形態の抵抗溶接機100の制御方法では、制御部70が、交流波形の立ち上がり中(S2/YES)において、電流センサ60によって検出される電流値の実測実効値を累積処理し(S3)、交流電流の立ち上がり遅れの不足分電流を求める。すなわち、本実施形態の抵抗溶接機100の制御方法は、電流センサ6で検出した電流値とインバータ40にあらかじめ設定した基本目標電流値とを用いて、基本目標電流値に対する不足分電流を演算する段階を含んでいる。
Therefore, in the control method of the
具体的には、制御部70は、交流波形の立ち上がりが完了すると(S2/NO)、累積した実測実効値電流から立ち上がり遅れの不足分電流(図4の斜線三角形の面積)を演算する(S4)。ここで、不足分電流=目標実効値電流−実測実効値電流を時間積分した値である。
Specifically, when the rising of the AC waveform is completed (S2 / NO), the
次に、本実施形態の抵抗溶接機100の制御方法は、上記基本目標電流値を不足分電流で補償した補正目標電流値を演算する段階を含んでいる。すなわち制御部70は、ステップ4で演算した不足分電流に基づいて、基本目標電流値を不足分電流で補償した補正目標電流値を演算し、図5に示すように、当該基本目標電流値Pを補正する(S5)。
Next, the control method of the
制御部70による補正目標電流値Rの演算は、インバータ40により再現される矩形波または台形波等の電流波形の平坦部Fの波高値を不足分電流Uの大きさに応じて上昇させて行う。電流波形の平坦部Fの波高値を不足分電流Uに応じて上昇させる補正区間Sは、電流センサ60が検出した電流値が基本目標電流値に達した後、基本目標電流値が立下がるまでの区間である。図5において、電流波形の平坦部Fの波高値の上昇幅Dの部分が、交流電流の立ち上がり遅れによる不足分電流Uに相当する。したがって、不足分電流U=(R−P)×Sで表すことができる。
The calculation of the corrected target current value R by the
そして、本実施形態の抵抗溶接機100の制御方法は、補正目標電流値の電流をインバータ70から出力させる段階を含んでいる。すなわち制御部70は、ピーク制御を続行し(S6)、補正目標電流値の電流をインバータ70から出力させる。このピーク制御は、半サイクルの通流中(S7/NO)において行う。このように電流センサ60が検出した電流値が基本目標電流値に達した後、基本目標電流値が立下がるまでの区間において、基本目標電流値に対して不足分電流を補償することにより、負荷90に対して理想的な通電が可能となる。
And the control method of the
以上の半サイクルが終了すると(S7/YES)、制御部70は、次の半サイクルがあるか否かを判断する(S8)。次の半サイクルがある場合(S8/YES)はステップ1からの一連の処理を行い、次の半サイクルがない場合(S8/NO)は通電を終了する。
When the above half cycle is completed (S7 / YES), the
なお、図5に示すように、次の半サイクルでは、前の半サイクルの平坦部Fの波高値を過ぎた後次の半サイクルの平坦部Fの波高値に到達するまでの2つ分の傾斜区間Lの立ち上がり遅れについて不足分電流Uを演算し、次の半サイクルの基本目標電流値Pに対して補償することになる。 As shown in FIG. 5, in the next half cycle, after the peak value of the flat part F of the previous half cycle is passed, the peak value of the flat part F of the next half cycle is reached. The shortage current U is calculated for the rising delay of the slope section L and compensated for the basic target current value P of the next half cycle.
以上のように、本実施形態の抵抗溶接機100では、制御部70が、電流センサ60が検出した電流値とインバータ40にあらかじめ設定した基本目標電流値とを用いて、基本目標電流値に対する不足分電流を演算する。さらに制御部70は、基本目標電流値を不足分電流で補償した補正目標電流値を演算し、補正目標電流値の電流をインバータ40から出力させるピーク制御を行う。
As described above, in the
したがって、本実施形態の抵抗溶接機100およびその制御方法は、インバータ40の二次側に接続された負荷90の時定数に依存する交流電流の立ち上がり遅れを、半サイクルごとに補正することができ、負荷に対して当初予定していた熱量を生じさせるための理想的な通電が可能であるという有利な効果を奏する。また、本実施形態の抵抗溶接機100およびその制御方法は、インバータ40の二次側に接続される負荷90の状況を考慮する必要がなくなり、幅広い機器や被溶接物に対応することが可能となる。
Therefore, the
以上、本発明の好適な実施形態を説明したが、これらは本発明の説明のための例示であり、本発明の範囲をこれらの実施形態にのみ限定する趣旨ではない。本発明は、その要旨を逸脱しない範囲で、上記実施形態とは異なる種々の態様で実施することができる。 The preferred embodiments of the present invention have been described above, but these are examples for explaining the present invention, and the scope of the present invention is not intended to be limited to these embodiments. The present invention can be implemented in various modes different from the above-described embodiments without departing from the gist thereof.
10 三相交流電源、
20 整流回路、
30 平滑回路、
40 インバータ、
50 スイッチング素子、
60 電流センサ、
70 制御部、
80 トランス、
90 負荷、
100 抵抗溶接機、
F 半サイクルの平坦部。
10 Three-phase AC power supply,
20 rectifier circuit,
30 smoothing circuit,
40 inverter,
50 switching elements,
60 current sensor,
70 control unit,
80 transformer,
90 load,
100 resistance welding machine,
F Flat part of half cycle.
Claims (8)
前記インバータが出力する交流電流の電流値を検出する電流センサと、
前記電流センサが検出した電流値とあらかじめ設定した基本目標電流値とを用いて前記基本目標電流値に対する不足分電流を演算し、前記基本目標電流値を前記不足分電流で補償した補正目標電流値を演算し、前記補正目標電流値の電流を前記インバータから出力させる制御部と、
を有することを特徴とする抵抗溶接機。 An inverter that converts direct current to alternating current and outputs alternating current;
A current sensor for detecting a current value of an alternating current output from the inverter;
A corrected target current value obtained by calculating an insufficient current with respect to the basic target current value using a current value detected by the current sensor and a preset basic target current value, and compensating the basic target current value with the insufficient current. A control unit that outputs the current of the corrected target current value from the inverter;
A resistance welding machine comprising:
前記電流センサによって前記交流電流の電流値を検出する段階と、
検出した電流値とあらかじめ設定した基本目標電流値とを用いて前記基本目標電流値に対する不足分電流を演算する段階と、
前記基本目標電流値を前記不足分電流で補償した補正目標電流値を演算する段階と、
前記補正目標電流値の電流を前記インバータから出力させる段階と、
を含むことを特徴とする抵抗溶接機の制御方法。
A control method for a resistance welding machine comprising: an inverter that converts direct current into alternating current and outputs alternating current; and a current sensor that detects a current value of alternating current output from the inverter,
Detecting a current value of the alternating current by the current sensor;
Calculating a shortage current for the basic target current value using the detected current value and a preset basic target current value;
Calculating a corrected target current value obtained by compensating the basic target current value with the shortage current;
Outputting the current of the corrected target current value from the inverter;
A control method for a resistance welder comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011278689A JP5871603B2 (en) | 2011-12-20 | 2011-12-20 | Resistance welding machine and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011278689A JP5871603B2 (en) | 2011-12-20 | 2011-12-20 | Resistance welding machine and control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013128941A true JP2013128941A (en) | 2013-07-04 |
JP5871603B2 JP5871603B2 (en) | 2016-03-01 |
Family
ID=48906976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011278689A Active JP5871603B2 (en) | 2011-12-20 | 2011-12-20 | Resistance welding machine and control method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5871603B2 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4076974A (en) * | 1975-12-17 | 1978-02-28 | Technitron, Inc. | Current control device and method |
JPS6264483A (en) * | 1985-09-10 | 1987-03-23 | エルパトロ−ニク・アクチエンゲゼルシヤフト | Method and device for adjusting welding current |
US4849601A (en) * | 1988-08-08 | 1989-07-18 | General Electric Company | Current-loop feedback of spot welding machines |
JPH0898562A (en) * | 1994-09-21 | 1996-04-12 | Toshiba Fa Syst Eng Kk | Control device of resistance welding machine |
JPH10211584A (en) * | 1997-01-28 | 1998-08-11 | Honda Motor Co Ltd | Welding control method |
JPH11285852A (en) * | 1998-04-02 | 1999-10-19 | Miyachi Technos Corp | Resistance welding controller |
JP2001105155A (en) * | 1999-10-01 | 2001-04-17 | Dengensha Mfg Co Ltd | Inverter ac resistance welding method and controller |
-
2011
- 2011-12-20 JP JP2011278689A patent/JP5871603B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4076974A (en) * | 1975-12-17 | 1978-02-28 | Technitron, Inc. | Current control device and method |
JPS6264483A (en) * | 1985-09-10 | 1987-03-23 | エルパトロ−ニク・アクチエンゲゼルシヤフト | Method and device for adjusting welding current |
US4849601A (en) * | 1988-08-08 | 1989-07-18 | General Electric Company | Current-loop feedback of spot welding machines |
JPH0898562A (en) * | 1994-09-21 | 1996-04-12 | Toshiba Fa Syst Eng Kk | Control device of resistance welding machine |
JPH10211584A (en) * | 1997-01-28 | 1998-08-11 | Honda Motor Co Ltd | Welding control method |
JPH11285852A (en) * | 1998-04-02 | 1999-10-19 | Miyachi Technos Corp | Resistance welding controller |
JP2001105155A (en) * | 1999-10-01 | 2001-04-17 | Dengensha Mfg Co Ltd | Inverter ac resistance welding method and controller |
Also Published As
Publication number | Publication date |
---|---|
JP5871603B2 (en) | 2016-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI610054B (en) | Apparatus and method to electrically power an electric arc furnace | |
US11404962B2 (en) | Switched mode power converter that is switched using current thresholds | |
CN1180599A (en) | Method and apparatus for controlling resistance welding | |
JP2019104040A (en) | Coated electrode welding system and welding power supply device for coated electrode welding | |
US20140175065A1 (en) | Welding-Current Control Method of the Resistance Welding Machine and Welding-Current Control Device | |
JP6366543B2 (en) | DC / DC converter | |
US10239144B2 (en) | Welding device | |
CN112654454B (en) | Spot welding method | |
JP2009273241A (en) | Power supply unit | |
JP2009124859A (en) | Power supply device for arc apparatus | |
JP5871603B2 (en) | Resistance welding machine and control method thereof | |
KR101858741B1 (en) | Method of controlling power of spot weldng system and spot weldng system using thereof | |
JP2011088160A (en) | Power unit for resistance welding and resistance welding equipment using the same, and method for controlling power unit | |
GB2464514A (en) | Capacitor discharge welding apparatus and method | |
WO2019026729A1 (en) | Power supply device, driving device, control method, and program | |
JP7065464B2 (en) | Power supply and welding power supply | |
KR102171316B1 (en) | Inverter-high frequency transformer type power conversion apparatus for heat treatment | |
KR102043216B1 (en) | Power transforming apparatus, Method for controlling the same and Air conditioner including the power transforming apparatus | |
KR102486589B1 (en) | Power conversion device and power conversion method for heat treatment | |
JP5732161B2 (en) | Power supply device and power supply control method | |
JP6510972B2 (en) | Inverter control circuit and power supply | |
JP2015193020A (en) | Control method and control device of resistance welder | |
JPH1024377A (en) | Welding power unit for parallel gap welding | |
KR20200102880A (en) | Inverter type argon gas welding apparatus | |
JP2017011960A (en) | Ac output inverter welder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140616 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150602 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150728 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160112 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5871603 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |