JPH0898562A - Control device of resistance welding machine - Google Patents

Control device of resistance welding machine

Info

Publication number
JPH0898562A
JPH0898562A JP6226149A JP22614994A JPH0898562A JP H0898562 A JPH0898562 A JP H0898562A JP 6226149 A JP6226149 A JP 6226149A JP 22614994 A JP22614994 A JP 22614994A JP H0898562 A JPH0898562 A JP H0898562A
Authority
JP
Japan
Prior art keywords
signal
current
output
inverter
welding machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6226149A
Other languages
Japanese (ja)
Other versions
JP3190791B2 (en
Inventor
Chihiro Okatsuchi
千尋 岡土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba FA Systems Engineering Corp
Original Assignee
Toshiba Corp
Toshiba FA Systems Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba FA Systems Engineering Corp filed Critical Toshiba Corp
Priority to JP22614994A priority Critical patent/JP3190791B2/en
Priority to DE69515083T priority patent/DE69515083T2/en
Priority to EP95303563A priority patent/EP0688626B1/en
Priority to CN95108592A priority patent/CN1101293C/en
Priority to US08/452,338 priority patent/US5844193A/en
Priority to KR1019950013580A priority patent/KR100186890B1/en
Publication of JPH0898562A publication Critical patent/JPH0898562A/en
Priority to US08/925,316 priority patent/US5965038A/en
Application granted granted Critical
Publication of JP3190791B2 publication Critical patent/JP3190791B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Generation Of Surge Voltage And Current (AREA)

Abstract

PURPOSE: To obtain a control device by which the erosion of an electrode is reduced by using an AC welding current, which enhances a current control characteristic and by which a high quality welding operation is performed. CONSTITUTION: An inverter 4 by which a DC voltage is converted into a square wave AC voltage to supply to the primary side of a transformer and by which an AC welding current is supplied from the secondary side, control parts 32 to 34 in which a current criterion is compared with the output current of the inverter 4 and by which control signal to reduce its error are output, pulse width modulation parts 35 to 38 by which continuity PWM signals are output at a constant modulation cycle and by which noncontinuity PWM signals are output according to the control signals, square wave generation parts 27, 28 which output square wave signals to decide the polarity and the frequency of the square wave AC voltage and drive parts 39 to 41 which drive the inverter 4 according to the PWM signals and the square wave signals are installed in a control device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は抵抗溶接機の制御装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance welding machine controller.

【0002】[0002]

【従来の技術】抵抗溶接機の制御装置としてインバ―タ
を用いるものがあり、この種の従来の装置を図8に示
す。交流電源1の交流電圧は整流器2で直流に変換さ
れ、コンデンサ3で平滑された後、IGBT(スイッチ
素子)41〜44で成るインバ―タ4により、1kHz程度
の高周波の交流に変換され、変圧器5により低い交流電
圧に変換した後、整流器7で直流に変換して溶接電極9
に直流の溶接電流を供給する。溶接電極への配線部には
浮遊インダクタンス8が存在し、直流の溶接電流の平滑
化に有効に作用している。
2. Description of the Related Art Some control devices for resistance welding machines use an inverter, and a conventional device of this type is shown in FIG. The AC voltage of the AC power supply 1 is converted to DC by the rectifier 2, smoothed by the capacitor 3, and then converted to high-frequency AC of about 1 kHz by the inverter 4 composed of IGBTs (switch elements) 41 to 44, and transformed. After converting to a low AC voltage by the converter 5, it is converted to DC by the rectifier 7 and the welding electrode 9
DC welding current is supplied to. A stray inductance 8 is present in the wiring portion to the welding electrode and effectively acts to smooth the DC welding current.

【0003】溶接電流の大きさは電流基準I* により制
御される。すなわち、溶接電流は変流器6を介して変圧
器5の一次電流を検出した後、溶接電流シミュレ―タ回
路12で直流溶接電流を模擬(変圧器5の一次側には溶接
電流の内整流器7の還流電流は流れない)して検出し、
電流基準I* と比較し電流制御器13でその誤差を減少さ
せるように電流制御信号aを出力する。この信号aは比
較器15でキャリア発生器14から出力される三角波bと比
較されPWM信号cとなる。キャリア発生器14は三角波
bの周期に同期した信号dを出力し、分配回路16は信号
dに応じて出力信号e,fのいずれか一方をアクティブ
にする。これによりアンド回路17と18を介して駆動回路
21と22に交互にPWM信号cが与えられる。
The magnitude of the welding current is controlled by the current reference I * . That is, the welding current detects the primary current of the transformer 5 through the current transformer 6, and then simulates the DC welding current in the welding current simulator circuit 12 (the primary side of the transformer 5 has an internal rectifier of the welding current). The reflux current of 7 does not flow)
The current controller 13 outputs the current control signal a so as to reduce the error compared with the current reference I * . This signal a is compared with the triangular wave b output from the carrier generator 14 in the comparator 15, and becomes the PWM signal c. The carrier generator 14 outputs a signal d synchronized with the cycle of the triangular wave b, and the distribution circuit 16 activates one of the output signals e and f according to the signal d. This will drive the drive circuit through AND circuits 17 and 18.
The PWM signal c is alternately applied to 21 and 22.

【0004】一方、起動回路19から駆動信号gが入力さ
れるとタイマ―20が動作し設定時間のみ通電信号hが出
力され駆動回路21,22を動作状態にすることによりスイ
ッチング信号j,kが交互に出力され、IGBT41,I
GBT44のグル―プとIGBT43,IGBT42のグル―
プが交互にオンして高周波の交流電圧が変圧器5の一次
側に与えられ、溶接電流と溶接時間の制御が行われる。
On the other hand, when the drive signal g is input from the start-up circuit 19, the timer-20 operates and the energizing signal h is output only for the set time, and the drive circuits 21 and 22 are put into the operating state so that the switching signals j and k are changed. Alternately output, IGBT 41 , I
Guru of GBT 44 - flops and IGBT 43, IGBT 42 of the guru -
Turns on alternately and a high-frequency AC voltage is applied to the primary side of the transformer 5, and the welding current and welding time are controlled.

【0005】[0005]

【発明が解決しようとする課題】上記従来の装置では電
流の制御の応答が早く電流のリップルが少なく、インバ
―タ周波数が高いので変圧器を小形化できる利点があ
る。しかし、直流の溶接電流を流すので溶接電極が電気
分解作用により摩耗が激しく、溶接工程をロボット化し
た場合、頻繁に電極交換が必要となり、そのためライン
を一時停止しなければならず稼動率低下の要因となって
いる。
In the above-mentioned conventional device, the response of the current control is fast, the ripple of the current is small, and the inverter frequency is high, so that there is an advantage that the transformer can be miniaturized. However, because a welding current of direct current is applied, the welding electrode is subject to severe wear due to the electrolysis action, and when the welding process is robotized, frequent electrode replacement is required, so the line must be temporarily stopped and the operating rate decreases. It is a factor.

【0006】さらに数万アンペアの電流を整流する整流
器7の電力損失が10%から20%も発生しその分電力損失
が発生して冷却水量の増加等も問題となっている。本発
明は上記問題を解消するためになされたもので、その目
的は、交流の方形波状の溶接電流を供給するようにして
溶接電極の摩耗を少なくして稼動率を向上させると共に
電力損失を少なくして効率を向上させ、溶接電流の極性
反転時における発生熱の変動を少なくして溶接品質を向
上させ、溶接電流のリップルを少なくする高精度の電流
制御機能を有する抵抗溶接機の制御装置を提供すること
にある。
Further, a power loss of 10% to 20% occurs in the rectifier 7 for rectifying a current of tens of thousands of amperes, and the power loss occurs correspondingly, which causes a problem such as an increase in the amount of cooling water. The present invention has been made to solve the above problems, and an object thereof is to supply an alternating square-wave welding current to reduce wear of the welding electrode to improve the operating rate and reduce power loss. To improve efficiency, reduce fluctuations in heat generated when the polarity of welding current is reversed, improve welding quality, and reduce the ripple of welding current. To provide.

【0007】[0007]

【課題を解決するための手段】請求項1の発明として、
直流電圧を方形波状の交流電圧に変換して変圧器の一次
側に供給し二次側から交流の溶接電流を供給するインバ
―タと、電流基準と前記インバ―タの出力電流を比較し
てその誤差を減少させる制御信号を出力する制御部と、
一定の変調周期で導通のPWM信号を出力すると共に、
前記制御信号と前記インバ―タの出力電流との比較結果
に応じて非導通のPWM信号を出力するパルス幅変調部
と、前記方形波状の交流電圧の極性及び周波数を定める
方形波信号を出力する方形波発生部と、前記PWM信号
と方形波信号に応じて前記インバ―タを制御する駆動部
を設ける。
According to the invention of claim 1,
Comparing the output current of the inverter with a current reference, which is an inverter that converts a DC voltage into a square wave AC voltage and supplies it to the primary side of the transformer and supplies an AC welding current from the secondary side. A control unit for outputting a control signal for reducing the error,
While outputting a PWM signal of conduction at a constant modulation cycle,
A pulse width modulator that outputs a non-conducting PWM signal according to the result of comparison between the control signal and the output current of the inverter, and a square wave signal that determines the polarity and frequency of the square wave AC voltage. A square wave generator and a driver for controlling the inverter according to the PWM signal and the square wave signal are provided.

【0008】請求項2の発明として、更に、前記インバ
―タは、それぞれダイオ―ドが逆並列接続された2個の
スイッチ素子を直流電圧源の正負間に直列接続し、その
中間点を交流出力端とする2組のハ―フブリッジ回路で
成り、前記駆動部は、前記導通のPWM信号に応じて一
方のハ―フブリッジ回路の一方のスイッチ素子と他方の
ハ―フブリッジ回路の他方のスイッチ素子を導通させて
前記方形波信号に応じた極性の電圧を出力させると共
に、前記非導通のPWM信号に応じて一方のハ―フブリ
ッジ回路の一方のスイッチ素子のみを非導通とし、一方
のハ―フブリッジ回路の他方のスイッチ素子に逆並列接
続されたダイオ―ドを介して変圧器に流れる電流を還流
させる。
According to a second aspect of the present invention, in the inverter, two switch elements each having a diode connected in anti-parallel are connected in series between the positive and negative sides of a DC voltage source, and an intermediate point thereof is an AC. It is composed of two sets of half bridge circuits as output terminals, and the drive section is configured so that one switching element of one half bridge circuit and the other switching element of the other half bridge circuit according to the PWM signal of conduction. Is turned on to output a voltage having a polarity corresponding to the square wave signal, and only one switch element of one half bridge circuit is made non-conductive according to the non-conductive PWM signal, and one half bridge is connected. The current flowing in the transformer is circulated through the diode connected in anti-parallel to the other switching element of the circuit.

【0009】請求項3の発明として、更に、前記電流制
御部は、直流量の電流基準と電流検出器を介して検出さ
れる前記インバ―タの出力電流の絶体値との誤差を積分
する積分器を備え、前記電流基準に前記積分器の出力を
加算した値を前記制御信号として出力する。
According to a third aspect of the present invention, the current control section further integrates an error between the current reference of the amount of direct current and the absolute value of the output current of the inverter detected through the current detector. An integrator is provided, and a value obtained by adding the output of the integrator to the current reference is output as the control signal.

【0010】請求項4の発明として、更に、前記パルス
幅変調部は、一定の変調周期でパルスを出力するパルス
発生部と、前記変調周期に同期したのこぎり波状のディ
ザ信号を出力する関数発生部と、前記パルスの発生時点
で導通のPWM信号を出力すると共に、前記制御信号と
前記インバ―タの出力電流にディザ信号を加えた値との
差分値に応じて、非導通のPWM信号を出力する信号保
持部を備える。
According to a fourth aspect of the present invention, the pulse width modulation section further includes a pulse generation section that outputs pulses at a constant modulation cycle, and a function generation section that outputs a sawtooth wave dither signal synchronized with the modulation cycle. And a PWM signal that is conductive when the pulse is generated, and a PWM signal that is non-conductive according to a difference value between the control signal and a value obtained by adding a dither signal to the output current of the inverter. And a signal holding unit for

【0011】請求項5の発明として、更に、前記変圧器
の一次側に並列接続され、前記変圧器の磁束密度の飽和
特性に近似した特性を持つリアクトルと、このリアクト
ルに流れる励磁電流を検出して補正信号として出力する
電流基準補正部を設け、この補正信号を電流基準に加算
して電流基準を補正する。
According to a fifth aspect of the present invention, a reactor connected in parallel with the primary side of the transformer and having a characteristic close to the saturation characteristic of the magnetic flux density of the transformer, and an exciting current flowing through the reactor are detected. A current reference correction unit that outputs as a correction signal is provided, and the correction signal is added to the current reference to correct the current reference.

【0012】請求項6の発明として、請求項3の構成
に、更に、前記インバ―タの出力電流の実効値を求める
演算部と、前記電流基準と実効値との誤差を増幅する増
幅器を設け、前記電流基準に増幅器の出力を加算して電
流基準を補正する。
According to a sixth aspect of the present invention, the configuration of the third aspect further includes an arithmetic unit for obtaining an effective value of the output current of the inverter, and an amplifier for amplifying an error between the current reference and the effective value. , The output of the amplifier is added to the current reference to correct the current reference.

【0013】請求項7の発明として、請求項2の構成に
おいて、前記駆動部は、更に、前記方形波信号が変化し
た時点から所定期間だけその直前の導通のPWM信号に
よって導通状態とされた他方のハ―フブリッジ回路の他
方のスイッチ素子と一方のハ―フブリッジ回路の他方の
スイッチ素子に逆並列接続されたダオ―ドを介して変圧
器に流れる電流を還流させる極性切換制御部を設ける。
According to a seventh aspect of the present invention, in the configuration of the second aspect, the drive unit is further brought into a conducting state by a conducting PWM signal immediately before the square wave signal for a predetermined period from the time when the square wave signal changes. Of the half bridge circuit and the other switch element of the one half bridge circuit are provided with a polarity switching control unit for circulating a current flowing through the transformer through a diode connected in anti-parallel.

【0014】請求項8の発明として、請求項4の構成に
おいて、前記パルス幅変調部は、パルス発生部から出力
されるパルスによってセットされ導通のPWM信号を出
力するフリップフロップと、前記導通のPWM信号によ
って出力が所定値にリセットされる比較器と、前記比較
器の出力が所定値にリセットされることにより、のこぎ
り波状のディザ信号を出力する前記変調周期より長い時
定数を持つ微分回路を備え、前記制御信号と前記インバ
―タの出力電流に前記ディザ信号を加えた値との差分値
に応じて前記比較器の出力をセットして前記フリップフ
ロップをリセットし非導通のPWM信号を出力する。
According to an eighth aspect of the present invention, in the configuration of the fourth aspect, the pulse width modulation section outputs a conduction PWM signal which is set by the pulse output from the pulse generation section, and the conduction PWM. A comparator, the output of which is reset to a predetermined value by a signal, and a differentiation circuit having a time constant longer than the modulation period, which outputs a sawtooth dither signal by resetting the output of the comparator to a predetermined value, are provided. , The output of the comparator is set according to the difference value between the control signal and the value obtained by adding the dither signal to the output current of the inverter, and the flip-flop is reset to output a non-conducting PWM signal. .

【0015】[0015]

【作用】請求項1の発明において、方形波発生部は所定
周波数の2値の状態を持つ方形波信号を出力する。電流
制御部は電流基準とインバ―タの出力電流との誤差に応
じて変化する電流制御信号を出力する。パルス幅変調部
は一定の変調周期で導通のPWM信号を出力し、上記電
流制御信号に応じて変調周期内で非導通のPWM信号を
出力する。駆動部は上記PWM信号と方形波信号に応じ
てインバ―タを制御し、方形波状の交流の溶接電流を供
給する。
According to the first aspect of the invention, the square wave generating section outputs a square wave signal having a binary state of a predetermined frequency. The current control unit outputs a current control signal that changes according to an error between the current reference and the output current of the inverter. The pulse width modulator outputs a PWM signal that is conductive at a constant modulation cycle, and outputs a PWM signal that is non-conductive within the modulation cycle according to the current control signal. The drive unit controls the inverter according to the PWM signal and the square wave signal, and supplies a square wave AC welding current.

【0016】請求項2の発明において、駆動部は、導通
のPWM信号が与えられたとき、方形波信号の値に応じ
た極性の電圧を出力するように、一方のハ―フブリッジ
回路の一方のスイッチ素子と他方のハ―フブリッジ回路
の他方のスイッチ素子を導通させ、非導通のPWM信号
が与えられたとき、一方のハ―フブリッジ回路の一方の
スイッチ素子のみを非導通とし、一方のハ―フブリッジ
回路の他方のスイッチ素子に逆並列接続されたタイオ―
ドと他方のハ―フブリッジ回路の他方のスイッチ素子を
介して変圧器の一次側に流れる電流を還流させる。
In a second aspect of the present invention, the drive section of one of the half bridge circuits outputs the voltage having the polarity corresponding to the value of the square wave signal when the PWM signal for conduction is applied. When the switch element and the other switch element of the other half bridge circuit are made conductive and a non-conducting PWM signal is given, only one switch element of the one half bridge circuit is made non-conductive and the one half bridge circuit is made non-conductive. A thyroid connected in anti-parallel to the other switching element of the bridge circuit.
The current flowing to the primary side of the transformer is circulated through the switch and the other switching element of the other half bridge circuit.

【0017】請求項3の発明において、電流制御部は、
積分器により直流量の電流基準と電流検出器を介して検
出されるインバ―タの出力電流の絶体値との誤差を積分
し、誤差の値に応じて変化率が変化する信号を出力し、
この信号を前記電流基準に加算して電流制御信号として
出力する。
In the invention of claim 3, the current control section is
The integrator integrates the error between the current reference of the DC amount and the absolute value of the output current of the inverter detected through the current detector, and outputs a signal whose change rate changes according to the error value. ,
This signal is added to the current reference and output as a current control signal.

【0018】請求項4の発明において、パルス幅変調部
は、パルス発生部により一定の変調周期でパルスを出力
し、関数発生部によりパルスの出力時点から変調周期内
で単調増加あるいは減少するのこぎり波状のディザ信号
を出力させ、信号保持部により上記パルスの出力時点で
導通のPWM信号を出力すると共に、前記電流制御信号
とディザ信号の差分値に応じ変調周期内で非導通のPW
M信号を出力する。
In the invention of claim 4, the pulse width modulator outputs a pulse at a constant modulation cycle by the pulse generator, and the sawtooth wave pattern monotonically increases or decreases within the modulation cycle from the output time of the pulse by the function generator. The dither signal is output, and the signal holding unit outputs the PWM signal that is conductive at the time of outputting the pulse, and the PW that is non-conductive within the modulation cycle according to the difference value between the current control signal and the dither signal.
Output M signal.

【0019】請求項5の発明において、リアクトルに流
れる励磁電流は変圧器の一次側に流れる励磁電流を模擬
し、電流基準補正部は、リアクトルに流れる励磁電流を
検出して補正信号として出力し、電流基準に加算して電
流基準を補正する。
In the invention of claim 5, the exciting current flowing in the reactor simulates the exciting current flowing in the primary side of the transformer, and the current reference correction section detects the exciting current flowing in the reactor and outputs it as a correction signal. Correct the current reference by adding it to the current reference.

【0020】請求項6の発明において、演算部はインバ
―タの出力電流の実効値を出力し、増幅器は電流基準と
実効値との誤差を増幅し、その出力を電流基準に加算し
て補正した電流基準を得る。
In the invention of claim 6, the arithmetic unit outputs the effective value of the output current of the inverter, the amplifier amplifies the error between the current reference and the effective value, and adds the output to the current reference for correction. Get the current reference that you made.

【0021】請求項7の発明において、駆動部は、極性
切換制御部により方形波信号の値が変化したとき、その
時点から所定期間だけ、その直前の導通のPWM信号に
よって導通状態とされた他方のハ―フブリッジ回路の他
方のスイッチ素子と一方のハ―フブリッジ回路の他方の
スイッチ素子に逆並列接続されたダイオ―ドを介して変
圧器の一次側に流れる電流を還流させ、所定期間が経過
したとき、方形波信号の値に応じた極性の電圧を出力す
るようにインバ―タを制御する。
According to another aspect of the invention, when the polarity switching control unit changes the value of the square wave signal, the drive unit is made conductive by the immediately preceding PWM signal for a predetermined period from that time. The other switching element of the half bridge circuit and the other switching element of the one half bridge circuit are caused to flow back the current flowing to the primary side of the transformer through the diode connected in anti-parallel, and the predetermined period has elapsed. At that time, the inverter is controlled so as to output a voltage having a polarity corresponding to the value of the square wave signal.

【0022】請求項8の発明において、比較器の出力が
導通のPWM信号によって所定値にリセットされると、
微分回路の時定数で単調減少するのこぎり波状のディザ
信号が得られ、このディザ信号がインバ―タの出力電流
に加えられるように作用する。前記制御信号とインバ―
タの出力電流にディザ信号を加えた値との差分値によっ
て比較器が動作し、その出力がセットされ変化するとフ
リップフロップがリセットされ非導通のPWM信号を出
力する。
In the invention of claim 8, when the output of the comparator is reset to a predetermined value by the PWM signal of conduction,
A sawtooth dither signal monotonically decreasing with the time constant of the differentiating circuit is obtained, and this dither signal acts so as to be added to the output current of the inverter. The control signal and the inverter
The comparator operates according to the difference value between the output current of the inverter and the value obtained by adding the dither signal. When the output is set and changed, the flip-flop is reset and the non-conducting PWM signal is output.

【0023】[0023]

【実施例】本発明の請求項1〜5に対応する実施例を図
1に示す。図1において、23は変圧器5の励磁電流を模
擬する小容量のリアクトルで、鉄心の磁束飽和特性を変
圧器5の特性に近似したものとする。24は変流器、25は
リアクトル23に流れる励磁電流i0 の絶体値が所定値を
越えるとき信号s1 を出力するレベル検出器、26は励磁
電流i0 の極性を判別して極性信号POLを出力する極
性検出器、27は一定周波数のクロックパルス発生器を含
み、通電信号hがアクティブの間、一定のクロックパル
スを計数する度にパルス信号s2 を出力すると共に零ク
リアしてカウントを繰り返すカウンタで、信号s1 によ
り強制的にパルス信号s2 を出力すると共に零クリアさ
れ、信号s4 により所定のカウント数にプリセットされ
る。28は通電信号hがアクティブの間、パルス信号s2
が入力される度に2値(1,0)の値が反転して所定周
波数の2値の方形波信号s3 を出力する方形波回路で、
最初に出力する方形波の値はプリセット回路からの信号
5 によって決定される。29はラッチ回路で、通電信号
hがイナクテブになったとき、その時点の極性信号PO
Lを保持する。30はプリセット回路で、ラッチ回路29に
保持された極性信号POLの値に応じてカウンタ27と方
形波回路28の初期設定を行う信号s4 ,s5 を出力す
る。31は方形波信号s3 の値に応じて入力信号i0 の極
性を反転した補償信号i01を出力する補償回路、32は
(溶接)電流基準I* と補償信号i01を加算して補償さ
れた(インバ―タの出力)電流基準I1 * を出力する加
算器、33は電流基準I1 * と電流検出器11を介して検出
されるインバ―タの出力電流i1 の絶体値i1dとの誤差
を積分して制御信号aを出力する積分器、34は電流基準
1 * と制御信号aを加算して電流制御信号bを出力す
る加算器、35は一定の変調周期でパルス信号cを出力す
ると共にデュ―ティ50%の矩形波状の同期信号dを出力
するパルス発生器、36は同期信号dに同期して変調周期
内で単調増加するのこぎり波状のディザ信号eを出力す
るディザ回路、37は制御信号bとインバ―タの出力電流
の絶体値i1dにディザ信号eを加えた値とを比較し、そ
の差分値の極性が反転したときパルス信号fを出力する
比較器、38はパルス信号cでセットされ導通のPWM信
号jを出力すると共に、パルス信号fでリセットされ非
導通のPWM信号jを出力するフリップフロップ、39は
方形波信号s3 とPWM信号jに応じてインバ―タ4を
制御するために駆動回路40,41を制御する信号k,lを
出力する分配回路である。他は従来と同じもので同符号
で示している。
FIG. 1 shows an embodiment corresponding to claims 1 to 5 of the present invention. In FIG. 1, 23 is a small capacity reactor simulating the exciting current of the transformer 5, and the magnetic flux saturation characteristic of the iron core is approximated to the characteristic of the transformer 5. 24 is a current transformer, 25 is a level detector that outputs a signal s 1 when the absolute value of the exciting current i 0 flowing in the reactor 23 exceeds a predetermined value, and 26 is a polarity signal that determines the polarity of the exciting current i 0. POL output polarity detector, 27 includes a constant frequency clock pulse generator, outputs a pulse signal s 2 each time a constant clock pulse is counted while the energization signal h is active, and clears and counts to zero. The pulse signal s 2 is forcibly output by the signal s 1 and is cleared to zero by the signal s 1 , and is preset to a predetermined count number by the signal s 4 . 28 is a pulse signal s 2 while the energization signal h is active.
Is a square wave circuit that inverts the value of binary (1,0) every time is input and outputs a binary square wave signal s 3 of a predetermined frequency.
The value of the square wave to be output first is determined by the signal s 5 from the preset circuit. 29 is a latch circuit, which is a polarity signal PO at that time when the energizing signal h becomes inactive.
Hold L. A preset circuit 30 outputs signals s 4 and s 5 for initializing the counter 27 and the square wave circuit 28 according to the value of the polarity signal POL held in the latch circuit 29. Reference numeral 31 is a compensation circuit that outputs a compensation signal i 01, which is the polarity of the input signal i 0 inverted according to the value of the square wave signal s 3 , and 32 is compensated by adding the (welding) current reference I * and the compensation signal i 01. The adder for outputting the current reference I 1 * (output of the inverter), 33 is the absolute value of the output current i 1 of the inverter detected via the current reference I 1 * and the current detector 11. An integrator that integrates the error from i 1d and outputs the control signal a, 34 is an adder that adds the current reference I 1 * and the control signal a and outputs the current control signal b, and 35 is a constant modulation cycle. A pulse generator that outputs a pulse signal c and a rectangular-wave-shaped synchronizing signal d with a duty of 50%, and 36 outputs a sawtooth-shaped dither signal e that monotonically increases within the modulation cycle in synchronization with the synchronizing signal d. dither circuit, 37 is a control signal b and the inverter - plus dither signal e in absolute body value i 1d of data of the output current And a comparator that outputs a pulse signal f when the polarity of the difference value is inverted, 38 outputs a PWM signal j that is set and conductive with the pulse signal c, and is reset with the pulse signal f and is non-conductive. A flip-flop 39 that outputs the PWM signal j, and 39 is a distribution circuit that outputs the signals k and l that control the drive circuits 40 and 41 to control the inverter 4 according to the square wave signal s 3 and the PWM signal j. is there. Others are the same as the conventional ones and are indicated by the same symbols.

【0024】なお、レベル検出器25、極性検出器26、カ
ウンタ27、方形波回路28、ラッチ回路29、プリセット回
路30の作用については、先に提案した(特願平6-14372
9)明細書に詳しく述べているので参照されたい。ここ
では、本発明の作用に関わる部分について説明する。
The actions of the level detector 25, the polarity detector 26, the counter 27, the square wave circuit 28, the latch circuit 29, and the preset circuit 30 have been previously proposed (Japanese Patent Application No. 6-14372).
9) See the description for details. Here, parts related to the operation of the present invention will be described.

【0025】上記構成において、起動回路19から通電開
始の起動信号gが入力されるとタイマ―20は設定された
溶接時間だけ通電信号hをアクテブにする。これにより
カウンタ27は内部のクロックパルスのカウントを開始し
所定の周期でパルス信号s2を出力し、パルス信号s2
が入力される度に方形波回路28は2値を反転して方形波
信号s3 を出力する。この方形波信号s3 の値はインバ
―タ4の交流出力電圧の極性を決定する信号として作用
し、分配回路39は方形波信号s3 の値に応じてインバ―
タ4の該当スイッチ素子を導通させる制御信号k,lを
出力する。駆動回路40,41は、通電信号hがアクテイブ
の間、その機能が有効となり、制御信号k,lに応じて
該当スイッチ素子を導通させ、インバ―タ4は方形波信
号s3 の値に対応した極性の電圧v1 を出力し、変圧器
5の一次側に電流i1 を供給する。
In the above structure, when the activation signal g for starting energization is input from the activation circuit 19, the timer 20 activates the energization signal h for the set welding time. As a result, the counter 27 starts counting internal clock pulses, outputs the pulse signal s 2 at a predetermined cycle, and outputs the pulse signal s 2
Is input, the square wave circuit 28 inverts the binary value and outputs a square wave signal s 3 . The value of the square wave signal s 3 acts as a signal that determines the polarity of the AC output voltage of the inverter 4, and the distribution circuit 39 operates according to the value of the square wave signal s 3.
The control signal k, l for turning on the corresponding switch element of the switch 4 is output. The functions of the drive circuits 40 and 41 are valid while the energization signal h is active, and the corresponding switch elements are made conductive in accordance with the control signals k and l, and the inverter 4 corresponds to the value of the square wave signal s 3. The voltage v 1 having the above polarity is output, and the current i 1 is supplied to the primary side of the transformer 5.

【0026】一方、パルス発生器35は一定の変調周期T
1 でパルス信号cを出力しており、フリップフロップ38
はパルス信号cによりセットされ導通のPWM信号を出
力しているが、インバ―タの出力電流i1 が増大すると
電流検出器11を介して検出されるその絶体値信号、i1d
が増大し、目標の値に達すると比較器37からパルス信号
fが出力され、フリップフロップ38はリセットされて非
導通のPWM信号jを出力し、インバ―タ4から電力の
供給を中止させる。これにより、変圧器5の一次側の電
流i1 は減少し始める。フリップフロップ38は変調周期
毎にセットされ、インバ―タ4を元の導通状態に戻すの
で、図2(a)に示すように、所謂、瞬時値制御による
PWM制御が行われる。
On the other hand, the pulse generator 35 has a constant modulation period T
The pulse signal c is output at 1 and the flip-flop 38
Outputs a PWM signal of conduction set by the pulse signal c, and its absolute value signal i 1d detected by the current detector 11 when the output current i 1 of the inverter increases, i 1d
When the target value is increased, the pulse signal f is output from the comparator 37, the flip-flop 38 is reset and the non-conducting PWM signal j is output, and the power supply from the inverter 4 is stopped. As a result, the current i 1 on the primary side of the transformer 5 starts to decrease. The flip-flop 38 is set at each modulation cycle and returns the inverter 4 to the original conductive state, so that so-called PWM control by so-called instantaneous value control is performed as shown in FIG.

【0027】溶接電流の目標値が電流基準I* として与
えられると、インバ―タの出力電流i1 の目標値は加算
器34から出力される信号bで定められる。すなわち、溶
接電流に対応する一次側電流基準I* に補償回路31から
出力される補償信号i01を加えて、変圧器5の励磁電流
相当分を補償した電流基準I1 * が加算器32から出力さ
れる。また、この積分器33からこの電流基準I1 * とイ
ンバ―タの出力電流の絶体値i1dとの誤差を積分した信
号aが出力され、加算器34は電流基準I1 * と信号aを
加算して、インバ―タの出力電流i1 の目標値として出
力する。
When the target value of the welding current is given as the current reference I * , the target value of the output current i 1 of the inverter is determined by the signal b output from the adder 34. That is, the current reference I 1 * obtained by adding the compensation signal i 01 output from the compensation circuit 31 to the primary side current reference I * corresponding to the welding current and compensating for the exciting current of the transformer 5 is added from the adder 32. Is output. Further, the integrator 33 outputs a signal a obtained by integrating the error between the current reference I 1 * and the absolute value i 1d of the output current of the inverter, and the adder 34 outputs the current reference I 1 * and the signal a. Is added and output as the target value of the output current i 1 of the inverter.

【0028】方形波信号s3 とPWM信号jに応じて分
配回路39は、図2(a)に示すようにインバ―タ4の各
スイッチ素子41〜44を制御して、方形波信号s3 が1の
とき、スイッチ素子41と44を動作させ正の電圧レベルv
1 を出力し、方形波信号s3が0のとき、スイッチ素子4
3と42を動作させ負の電圧v1 を出力させる。また、P
WM信号jが導通指令(1)のとき、t1 −t2 ,t3
−t4 あるいはt6 −t7 ,t8 −t9 に示すように、
スイッチ素子41と44あるいは43と42の両方共導通させ、
PWM信号jが非導通指令(0)のとき、t2 −t3
45 あるいはt7 −t8 ,t9 −t10に示すように
スイッチ素子41と44あるいは43と42のいずれか一方のス
イッチ素子のみを交互に非導通とさせる。このようにス
イッチング制御を行うことにより、PWM信号jが非導
通指令のとき、変圧器5の一次側に流れる電流i1 が直
流電源側へ回生されずインバ―タ4を介して還流し、電
流i1 の減少が少なくなりリップルを少なくすることが
でき、スイッチ素子のスイッチング周波数を等価的に1
/2とすることができる。なお、方形波信号s3 が1か
ら0に変化したとき、スイッチ素子44の動作遅れにより
直流短絡が生じないようにスイッチ素子42の導通はデッ
トタイムと称する数μsの遅れをもって行っている。し
かし、このようにスイッチング制御を行うと、インバ―
タの出力電流i1 が目標値に達して安定して流れると
き、信号bとi1dとの偏差値の変動幅が小さくなり、図
2(b)に示すように僅かなノイズの侵入により比較器
37の判定時点がt2A,t2Bのように影響を受け、PWM
信号jのパルス幅が大幅に変化し、インバ―タの出力電
流i1 が不安定になる場合がある。本実施例では、この
ノイズの影響を緩和するためにディザ回路36を設けてい
る。ディザ回路36は、変調周期T1 に同期して出力され
る信号dにより図2(c)に示すようなのこぎり波状の
ディザ信号eを出力し、比較器37は、この信号eをイン
バ―タの出力電流の絶体値i1dに加えて信号bと比較す
るように作用する。これにより、PWM信号jを非導通
とする目標時点t2 から離れた時点の見かけ上の偏差値
が拡大されノイズの影響をt2A,t2Bのように緩和する
ことができる。なお、このディザ信号eの導入によって
生じる電流基準I1 * とインバ―タの出力電流の絶体値
1dとの誤差は積分器33から出力される信号aによって
補償される。
The square wave signal s 3 and the PWM signal j distributed according to the circuit 39, inverter as shown in FIG. 2 (a) - by controlling the switch elements of the motor 4 41-44, the square wave signal s 3 When is 1, the switch elements 41 and 44 are operated and the positive voltage level v
When 1 is output and the square wave signal s 3 is 0, the switch element 4
3 and 42 are operated to output the negative voltage v 1 . Also, P
When the WM signal j is the conduction command (1), t 1 -t 2 , t 3
-T 4 or t 6 -t 7 , t 8 -t 9
Both switch elements 41 and 44 or 43 and 42 are made conductive,
When the PWM signal j is the non-conduction command (0), t 2 −t 3 ,
t 4 - 5 or t 7 -t 8, t 9 switching element 41 as shown in -t 10 and 44 or 43 and 42 one of the switching element only to the non-conductive alternately. By performing the switching control in this way, when the PWM signal j is a non-conduction command, the current i 1 flowing in the primary side of the transformer 5 is not regenerated to the DC power supply side and is recirculated through the inverter 4, The decrease of i 1 is reduced and the ripple can be reduced, and the switching frequency of the switch element is equivalently 1
It can be / 2. When the square wave signal s 3 changes from 1 to 0, the switch element 42 is conducted with a delay of several μs called dead time so that a DC short circuit does not occur due to an operation delay of the switch element 44. However, if switching control is performed in this way,
When the output current i 1 of the controller reaches the target value and flows steadily, the fluctuation range of the deviation value between the signals b and i 1d becomes small, and as shown in FIG. vessel
The judgment time of 37 is affected by t 2A and t 2B , and PWM
The pulse width of the signal j may change significantly and the output current i 1 of the inverter may become unstable. In this embodiment, the dither circuit 36 is provided in order to reduce the influence of this noise. The dither circuit 36 outputs a sawtooth-shaped dither signal e as shown in FIG. 2 (c) by the signal d output in synchronization with the modulation period T 1 , and the comparator 37 outputs this signal e. In addition to the absolute value i 1d of the output current of the above, it acts to compare with the signal b. As a result, the apparent deviation value at a time point away from the target time point t 2 at which the PWM signal j is made non-conductive is enlarged, and the influence of noise can be mitigated as t 2A and t 2B . The error between the current reference I 1 * caused by the introduction of the dither signal e and the absolute value i 1d of the output current of the inverter is compensated by the signal a output from the integrator 33.

【0029】方形波信号s3 の周期T2 に応じてインバ
―タ4は図3に示すような交流電圧v1 を出力して変圧
器5の一次側に印加し、二次側から交流の方形波状の溶
接電流i2 が供給される。変圧器5の一次側には溶接電
流i2 に対応した電流と変圧器5の励磁電流の加算値の
電流i1 が流れる。リアクトル23には変圧器5の励磁電
流に相似した励磁電流i0 が流れる。変流器24を介して
検出されるリアクトル23の励磁電流i0 は補償回路31に
より方形波信号s3 の値に応じて半周期毎に極性反転さ
れた補償信号i01を生成し、溶接電流を定める電流基準
* に加えられ、インバ―タの出力電流i1 を定める電
流基準I1 * となる。
The inverter 4 outputs an AC voltage v 1 as shown in FIG. 3 according to the period T 2 of the square wave signal s 3 and applies it to the primary side of the transformer 5 to generate an AC voltage from the secondary side. A square wave welding current i 2 is supplied. On the primary side of the transformer 5, a current corresponding to the welding current i 2 and a current i 1 which is the sum of the exciting current of the transformer 5 flow. An exciting current i 0 similar to the exciting current of the transformer 5 flows through the reactor 23. The exciting current i 0 of the reactor 23 detected through the current transformer 24 is generated by the compensating circuit 31 in accordance with the value of the square wave signal s 3 to generate the compensating signal i 01 whose polarity is inverted every half cycle, and the welding current i 0 is generated. Is added to the current reference I * that determines the output current i 1 of the inverter to become the current reference I 1 * .

【0030】溶接電流i2 が大きい( 100%に近い)場
合、変圧器5の励磁電流は無視できるが、溶接電流が小
さい(20%以下)の場合、変圧器5の励磁電流が溶接電
流に対して5〜10%以上となり誤差が大きくなるが、本
実施例によれば、この誤差をなくして精度良く溶接電流
を供給することができる。
When the welding current i 2 is large (close to 100%), the exciting current of the transformer 5 can be ignored, but when the welding current is small (20% or less), the exciting current of the transformer 5 becomes the welding current. On the other hand, the error becomes large by 5 to 10% or more, but according to the present embodiment, it is possible to eliminate this error and supply the welding current with high accuracy.

【0031】積分器33は、溶接電流i2 の極性が反転す
る過渡期間の溶接電力の減少を補償する作用をも行う。
すなわち、積分器33が無い場合、図4(a)に示すよう
に、極性が反転する過渡期間T3 において、溶接電流i
2 は回路定数で定まる所定の電流変化率で変化し、目標
の溶接電流に達すると一定となるように制御される。従
って、溶接電力P(i2 の2乗)は過渡期間T3 の斜線
で示した分だけ減少し、溶接部の温度が低下する。積分
器33を設けた場合、溶接電流i2 は図4(b)に示すよ
うに過渡期間T3 の直後に期間T4 だけオ―バ―シュ―
トして一定値に安定する。このオ―バ―シュ―トの作用
は、過渡期間T3 中における電流基準I1 * とインバ―
タの出力電流の絶体値i1dとの誤差が積分器33によって
積分されその積分値(信号a)が電流基準I1 * に加算
されることによって行われる。これによって、溶接電力
Pは期間T3 で減少した分が期間T4 で直ちに補なわれ
溶接部の温度低下を早期に回復させることができる。
The integrator 33 also serves to compensate for the decrease in welding power during the transitional period when the polarity of the welding current i 2 is reversed.
That is, when the integrator 33 is not provided, as shown in FIG. 4A, in the transition period T 3 when the polarity is reversed, the welding current i
2 changes at a predetermined current change rate determined by the circuit constant, and is controlled to be constant when the target welding current is reached. Accordingly, the welding power P (i 2 squared) is reduced by the shaded portion of the transition period T 3 , and the temperature of the welded portion is reduced. When the integrator 33 is provided, the welding current i 2 is overshot for the period T 4 immediately after the transient period T 3 as shown in FIG. 4B.
And stabilizes at a constant value. The effect of this overshoot is that the current reference I 1 * and the inverter during the transient period T 3
This is done by integrating the error of the output current of the controller with the absolute value i 1d by the integrator 33 and adding the integrated value (signal a) to the current reference I 1 * . As a result, the amount of decrease in the welding power P in the period T 3 is immediately compensated for in the period T 4 , and the temperature decrease of the welded portion can be recovered early.

【0032】本発明の請求項6に対応する実施例を図5
に示す。この実施例は、電流検出器11を介して検出され
るインバ―タの出力電流i01から実効値演算回路51によ
りインバ―タの出力電流の実効値irms を求め、溶接電
流の基準I* と実効値irmsとの誤差を増幅器52で増幅
してI* に加え、インバ―タの出力電流の基準I1 *
したものである。この実施例によれば、溶接電流の極性
が反転する過渡期間の実効値の低下分を補償して溶接部
の発熱量を一定に制御することができる。
An embodiment corresponding to claim 6 of the present invention is shown in FIG.
Shown in. In this embodiment, the effective value calculation circuit 51 calculates the effective value i rms of the output current of the inverter from the output current i 01 of the inverter detected by the current detector 11 to obtain the welding current reference I *. The difference between the effective value i rms and the effective value i rms is amplified by the amplifier 52 and added to I * to be used as the reference I 1 * of the output current of the inverter. According to this embodiment, it is possible to compensate the decrease in the effective value during the transitional period when the polarity of the welding current is reversed, and to control the heat generation amount of the welded portion to be constant.

【0033】本発明の請求項7に対応する実施例を図6
(a)に示す。この実施例は、溶接電流の極性が反転す
る過渡期間において、極性反転後の変圧器5の磁束密度
を下げるため工夫を加えている。すなわち、方形波信号
3 の値が変化する度にワンショット回路45から所定幅
(T5 )のパルス信号Pを出力させ、この信号Pにより
遅れ回路46から方形波信号s3 より所定期間(T5 )だ
け遅れて変化する方形波信号s3Aを出力させると共に、
アンド回路47のゲ―トを閉じて強制的に非導通のPWM
信号を生成する。これにより分配回路39はt1 〜t2
は方形波信号s3 の値が変化する前の値(図では1の
値)で零電圧出力モ―ド(変圧器5の一次側電流がイン
バ―タを介して還流する状態)となるようにインバ―タ
4のスイッチ素子を制御し、インバ―タ5の出力電圧は
図6(b)のv1 (2)に示すように零電圧となる。パ
ルス信号Pが時点t2 で消滅すると遅れ回路46から出力
される方形波信号s3Aは正規の方形波信号s3 と同じ値
(図では0の状態)に変化すると共にアンド回路47のゲ
―トが開かれ通常のPWM信号jが出力され、分配回路
39は通常のスイッチング制御を行う。従って、インバ―
タ4の出力電圧はv1(2)に示すように、方形波信号
3Aの値に応じた負の電圧を出力し、目標値に達するt
2 〜t4 の間フォ―シング電圧を出力した後溶接電流を
供給する値で一定となる。なお、比較のため、出力電圧
の極性を反転させる場合に、零電圧出力モ―ドを設けな
いときの出力電圧と溶接電流をv1 (1)とi2 (1)
に示した。
An embodiment corresponding to claim 7 of the present invention is shown in FIG.
(A). In this embodiment, a device is added to reduce the magnetic flux density of the transformer 5 after the polarity reversal in the transition period in which the polarity of the welding current is reversed. That is, to output the pulse signal P of the square wave signal s 3 values one-shot circuit 45 from a predetermined width every time changes (T 5), a predetermined time period from the square wave signal s 3 from the delay circuit 46 by the signal P ( While outputting a square wave signal s 3A that changes with a delay of T 5 ),
PWM of non-conducting by closing the gate of AND circuit 47
Generate a signal. As a result, the distribution circuit 39 operates in the zero voltage output mode (the primary side current of the transformer 5 is the inverter when the value of the square wave signal s 3 is the value before the change of the value of the square wave signal s 3 (the value of 1 in the figure) between t 1 and t 2 . -The state in which the current flows through the inverter) is controlled so that the output voltage of the inverter 5 becomes zero voltage as shown in v 1 (2) of Fig. 6 (b). Become. When the pulse signal P disappears at time t 2 , the square wave signal s 3A output from the delay circuit 46 changes to the same value as the normal square wave signal s 3 (state 0 in the figure), and the gate of the AND circuit 47 Is opened and the normal PWM signal j is output.
39 performs normal switching control. Therefore, the Inver
As shown in v 1 (2), the output voltage of the output signal of the output signal of the input signal 4 is a negative voltage corresponding to the value of the square wave signal s 3A and reaches the target value t.
It is constant at a value that supplies the welding current after outputting the forcing voltage between 2 and t 4 . For comparison, when inverting the polarity of the output voltage, the output voltage and welding current without the zero-voltage output mode are v 1 (1) and i 2 (1).
It was shown to.

【0034】本実施例によれば、溶接電流i2 (2)が
反転する時間がやや長くなるが、変圧器5に印加される
電圧の時間積はt1 〜t2 間が零となるのでt1 〜t4
間で比較すると小さくなる。これは磁束密度が低いこと
を示し、変圧器5を小形化できることを示している。
According to this embodiment, the time for the welding current i 2 (2) to reverse is slightly longer, but the time product of the voltage applied to the transformer 5 is zero between t 1 and t 2, and t 1 to t 4
It becomes small when comparing between. This indicates that the magnetic flux density is low and that the transformer 5 can be miniaturized.

【0035】本発明の請求項8に対応する実施例を図7
(a)に示す。この実施例は、ディザ信号の生成を簡略
化したものである。すなわち、導通のPWM信号jが出
力されたとき、反転回路63、抵抗62を介して比較器37の
入力に加えていたバイアス量を零とし、比較器37の出力
nを所定値(図7では高レベル状態)にリセットする。
出力nが高レベルに変化することによりコンデンサ64、
抵抗65,66で成る微分回路を介して変位電流が流れのこ
ぎり波状のディザ信号eを得るようにしている。このデ
ィザ信号eは比較器37の同相入力端子に加えられ、結果
としてインバ―タの出力電流の絶体値i1dに加算される
ことになる。そして、制御信号bとインバ―タの出力電
流i1dにディザ信号eを加えた値の差分値によって比較
器37の出力nが低レベル(−15V)に変化すると反転回
路68を介してフリップフロップ38がリセットされ非導通
のPWM信号jが出力され、比較器37には再びバイアス
量が加えられ、コンデンサ64は図示の極性の電圧で充電
される。
An embodiment corresponding to claim 8 of the present invention is shown in FIG.
(A). This embodiment simplifies the generation of the dither signal. That is, when the conduction PWM signal j is output, the bias amount applied to the input of the comparator 37 via the inverting circuit 63 and the resistor 62 is set to zero, and the output n of the comparator 37 is set to a predetermined value (in FIG. 7). Reset to high level).
When the output n changes to high level, the capacitor 64,
A displacement current flows through a differentiation circuit composed of resistors 65 and 66 to obtain a saw-toothed dither signal e. This dither signal e is applied to the in-phase input terminal of the comparator 37, and as a result, it is added to the absolute value i 1d of the output current of the inverter. Then, when the output n of the comparator 37 changes to a low level (-15 V) due to the difference value between the control signal b and the output current i 1d of the inverter plus the dither signal e, the flip-flop is provided via the inverting circuit 68. 38 is reset, the non-conducting PWM signal j is output, the bias amount is again applied to the comparator 37, and the capacitor 64 is charged with the voltage of the polarity shown.

【0036】[0036]

【発明の効果】本発明によれば、交流の方形波状の溶接
電流を供給するので溶接電極の摩耗が少なくなり、電極
交換の頻度が少なくなるので稼動率を向上させることが
できる。また、電流制御の応答特性を向上させると共
に、耐ノイズ特性を向上させ、溶接電流のリップルを小
さくすることができる。また、溶接電流の極性反転時に
おける溶接部の温度の低下を補償することができると共
に、変圧器の励磁電流分を補償することができ、高精度
の溶接電流を供給することができ、品質の良い溶接を行
うことができる。また、変圧器の磁束利用率を向上させ
小型化することのできる抵抗溶接機の制御装置を提供す
ることができる。
According to the present invention, since an alternating square-wave welding current is supplied, wear of the welding electrode is reduced and the frequency of electrode replacement is reduced, so that the operating rate can be improved. Further, it is possible to improve the response characteristics of the current control, improve the noise resistance characteristics, and reduce the ripple of the welding current. In addition, it is possible to compensate for the decrease in the temperature of the welded part when the polarity of the welding current is reversed, as well as to compensate the exciting current of the transformer, and it is possible to supply a highly accurate welding current and Good welding can be done. Further, it is possible to provide a control device for a resistance welding machine that can improve the magnetic flux utilization rate of the transformer and reduce the size thereof.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1〜5に対応する実施例の構成図FIG. 1 is a configuration diagram of an embodiment corresponding to claims 1 to 5.

【図2】上記実施例の作用を説明するための波形図FIG. 2 is a waveform diagram for explaining the operation of the above embodiment.

【図3】上記実施例の励磁電流補償の作用を説明するた
めの波形図
FIG. 3 is a waveform diagram for explaining the function of the excitation current compensation of the above embodiment.

【図4】上記実施例の積分器33の作用を説明するための
波形図
FIG. 4 is a waveform diagram for explaining the operation of the integrator 33 of the above embodiment.

【図5】請求項6に対応する実施例の要部構成図FIG. 5 is a configuration diagram of essential parts of an embodiment corresponding to claim 6;

【図6】請求項7に対応する実施例で、(a)は要部構
成図、(b)は波形図
FIG. 6 is an embodiment corresponding to claim 7, (a) is a main part configuration diagram, and (b) is a waveform diagram.

【図7】請求項8に対応する実施例で、(a)は要部構
成図、(b)は波形図
FIG. 7 is an embodiment corresponding to claim 8, (a) is a configuration diagram of a main part, and (b) is a waveform diagram.

【図8】従来装置の構成図FIG. 8 is a block diagram of a conventional device

【符号の説明】[Explanation of symbols]

1…交流電源 2…整流器 3…コンデンサ 4…イン
バ―タ 5…変圧器 6…変流器 8…浮遊インダクタンス 9…溶接電極
11…電流検出器 19…起動回路 20…タイマ― 23…リ
アクトル 24…変流器 25…レベル検出器 26…極性検
出器 27…カウンタ 28…方形波回路 29…ラッチ回路
30…プリセット回路 31…補償回路 32,34…加算器
33…積分器 35…パルス発生器 36…ディザ回路 37
…比較器 38…フリップフロップ 39…分配回路 40,
41…駆動回路 45…ワンショット回路 46…遅れ回路
47…アンド回路 51…実効値演算回路 52…増幅器 60
〜62,65,66,69…抵抗 63,68…反転回路 64…コン
デンサ 67…ダイオ―ド
1 ... AC power supply 2 ... Rectifier 3 ... Capacitor 4 ... Inverter 5 ... Transformer 6 ... Current transformer 8 ... Stray inductance 9 ... Welding electrode
11 ... Current detector 19 ... Starting circuit 20 ... Timer-23 ... Reactor 24 ... Current transformer 25 ... Level detector 26 ... Polarity detector 27 ... Counter 28 ... Square wave circuit 29 ... Latch circuit
30 ... Preset circuit 31 ... Compensation circuit 32, 34 ... Adder
33 ... Integrator 35 ... Pulse generator 36 ... Dither circuit 37
Comparator 38 Flip-flop 39 Distribution circuit 40
41 ... Drive circuit 45 ... One-shot circuit 46 ... Delay circuit
47 ... AND circuit 51 ... RMS value calculation circuit 52 ... Amplifier 60
~ 62, 65, 66, 69 ... Resistor 63, 68 ... Inversion circuit 64 ... Capacitor 67 ... Diode

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 直流電圧を方形波状の交流電圧に変換し
て変圧器の一次側に供給し二次側から交流の溶接電流を
供給するインバ―タと、電流基準と前記インバ―タの出
力電流を比較してその誤差を減少させる制御信号を出力
する制御部と、一定の変調周期で導通のPWM信号を出
力すると共に、前記制御信号と前記インバ―タの出力電
流との比較結果に応じて非導通のPWM信号を出力する
パルス幅変調部と、前記方形波状の交流電圧の極性及び
周波数を定める方形波信号を出力する方形波発生部と、
前記PWM信号と方形波信号に応じて前記インバ―タを
制御する駆動部を設けたことを特徴とする抵抗溶接機の
制御装置。
1. An inverter for converting a DC voltage into a square wave AC voltage and supplying it to the primary side of a transformer and supplying an AC welding current from the secondary side, a current reference and the output of the inverter. A control unit for comparing currents and outputting a control signal for reducing the error, and outputting a conduction PWM signal at a constant modulation cycle, and depending on the comparison result of the control signal and the output current of the inverter. A pulse width modulator that outputs a non-conducting PWM signal, and a square wave generator that outputs a square wave signal that determines the polarity and frequency of the square wave AC voltage.
A controller for a resistance welding machine, comprising a drive unit for controlling the inverter according to the PWM signal and the square wave signal.
【請求項2】 請求項1に記載の抵抗溶接機の制御装置
において、前記インバ―タは、それぞれダイオ―ドが逆
並列接続された2個のスイッチ素子を直流電圧源の正負
間に直列接続し、その中間点を交流出力端とする2組の
ハ―フブリッジ回路で成り、前記駆動部は、前記導通の
PWM信号に応じて一方のハ―フブリッジ回路の一方の
スイッチ素子と他方のハ―フブリッジ回路の他方のスイ
ッチ素子を導通させて前記方形波信号に応じた極性の電
圧を出力させると共に、前記非導通のPWM信号に応じ
て一方のハ―フブリッジ回路の一方のスイッチ素子のみ
を非導通とし、一方のハ―フブリッジ回路の他方のスイ
ッチ素子に逆並列接続されたダイオ―ドを介して変圧器
に流れる電流を還流させることを特徴とする抵抗溶接機
の制御装置。
2. The control device for a resistance welding machine according to claim 1, wherein the inverter has two switch elements, each of which has diodes connected in antiparallel, connected in series between positive and negative of a DC voltage source. However, it is composed of two sets of half bridge circuits having an AC output terminal at an intermediate point thereof, and the drive section responds to the PWM signal of the conduction, one switch element of one half bridge circuit and the other half bridge circuit. The other switch element of the half bridge circuit is turned on to output a voltage having a polarity corresponding to the square wave signal, and only one switch element of the one half bridge circuit is turned off according to the non-conducting PWM signal. A control device for a resistance welding machine, characterized in that a current flowing in a transformer is circulated through a diode connected in anti-parallel to the other switching element of one half bridge circuit.
【請求項3】 請求項1に記載の抵抗溶接機の制御装置
において、前記制御部は、直流量の電流基準と電流検出
器を介して検出される前記インバ―タの出力電流の絶体
値との誤差を積分する積分器を備え、前記電流基準に前
記積分器の出力を加算した値を前記制御信号として出力
することを特徴とする抵抗溶接機の制御装置。
3. The control device for the resistance welding machine according to claim 1, wherein the control unit has an absolute value of an output current of the inverter detected through a current reference of a direct current amount and a current detector. A controller for a resistance welding machine, comprising: an integrator that integrates an error between and, and outputting a value obtained by adding the output of the integrator to the current reference as the control signal.
【請求項4】 請求項1に記載の抵抗溶接機の制御装置
において、前記パルス幅変調部は、一定の変調周期でパ
ルスを出力するパルス発生部と、前記変調周期に同期し
たのこぎり波状のディザ信号を出力する関数発生部と、
前記パルスの発生時点で導通のPWM信号を出力すると
共に、前記制御信号と前記インバ―タの出力電流にディ
ザ信号を加えた値との差分値に応じて、非導通のPWM
信号を出力する信号保持部を備えたことを特徴とする抵
抗溶接機の制御装置。
4. The resistance welding machine control device according to claim 1, wherein the pulse width modulation section outputs a pulse at a constant modulation cycle, and a sawtooth wave dither synchronized with the modulation cycle. A function generator that outputs a signal,
A PWM signal for conduction is output when the pulse is generated, and a PWM signal for non-conduction is output according to a difference value between the control signal and a value obtained by adding a dither signal to the output current of the inverter.
A control device for a resistance welding machine, comprising a signal holding section for outputting a signal.
【請求項5】 請求項1に記載の抵抗溶接機の制御装置
において、更に、前記変圧器の一次側に並列接続され、
前記変圧器の磁束密度の飽和特性に近似した特性を持つ
リアクトルと、このリアクトルに流れる励磁電流を検出
して補正信号として出力する電流基準補正部を設け、こ
の補正信号を電流基準に加算して電流基準を補正するこ
とを特徴とする抵抗溶接機の制御装置。
5. The control device for the resistance welding machine according to claim 1, further comprising a parallel connection to the primary side of the transformer,
A reactor having a characteristic close to the saturation characteristic of the magnetic flux density of the transformer, and a current reference correction unit that detects the exciting current flowing in this reactor and outputs it as a correction signal are added, and this correction signal is added to the current reference. A controller for a resistance welding machine characterized by correcting a current reference.
【請求項6】 請求項3に記載の抵抗溶接機の制御装置
において、更に、前記インバ―タの出力電流の実効値を
求める演算部と、前記電流基準と実効値との誤差を増幅
する増幅器を設け、前記電流基準に増幅器の出力を加算
して電流基準を補正することを特徴とする抵抗溶接機の
制御装置。
6. The resistance welding machine control device according to claim 3, further comprising: an arithmetic unit for obtaining an effective value of the output current of the inverter, and an amplifier for amplifying an error between the current reference and the effective value. The resistance welding machine control device is characterized in that the current reference is corrected by adding the output of the amplifier to the current reference.
【請求項7】 請求項2に記載の抵抗溶接機の制御装置
において、前記駆動部は、更に、前記方形波信号が変化
した時点から所定期間だけその直前の導通のPWM信号
によって導通状態とされた他方のハ―フブリッジ回路の
他方のスイッチ素子と一方のハ―フブリッジ回路の他方
のスイッチ素子に逆並列接続されたダオ―ドを介して変
圧器に流れる電流を還流させる極性切換制御部を設けた
ことを特徴とする抵抗溶接機の制御装置。
7. The control device for the resistance welding machine according to claim 2, wherein the drive section is further brought into a conduction state by a conduction PWM signal immediately before the square wave signal changes for a predetermined period. A polarity switching control unit is provided to recirculate the current flowing through the transformer through the diode connected in anti-parallel to the other switching element of the other half bridge circuit and the other switching element of the one half bridge circuit. A control device for a resistance welding machine, which is characterized in that
【請求項8】 請求項4に記載の抵抗溶接機の制御装置
において、前記パルス幅変調部は、パルス発生部から出
力されるパルスによってセットされ導通のPWM信号を
出力するフリップフロップと、前記導通のPWM信号に
よって出力が所定値にリセットされる比較器と、前記比
較器の出力が所定値にリセットされることにより、のこ
ぎり波状のディザ信号を出力する前記変調周期より長い
時定数を持つ微分回路を備え、前記制御信号と前記イン
バ―タの出力電流に前記ディザ信号を加えた値との差分
値に応じて前記比較器の出力をセットして前記フリップ
フロップをリセットし非導通のPWM信号を出力するこ
とを特徴とする抵抗溶接機の制御装置。
8. The control device for the resistance welding machine according to claim 4, wherein the pulse width modulation section includes a flip-flop that outputs a PWM signal for conduction set by a pulse output from a pulse generation section, and the conduction. And a differentiating circuit having a time constant longer than the modulation period for outputting a sawtooth-shaped dither signal by resetting the output of the comparator to a predetermined value. The output of the comparator is set according to a difference value between the control signal and a value obtained by adding the dither signal to the output current of the inverter, and the flip-flop is reset to output a non-conducting PWM signal. A resistance welding machine control device characterized by outputting.
JP22614994A 1994-05-27 1994-09-21 Control device of resistance welding machine Expired - Lifetime JP3190791B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP22614994A JP3190791B2 (en) 1994-09-21 1994-09-21 Control device of resistance welding machine
EP95303563A EP0688626B1 (en) 1994-05-27 1995-05-25 Control equipment for resistance welding machine
DE69515083T DE69515083T2 (en) 1994-05-27 1995-05-25 Control system for resistance welding machine
US08/452,338 US5844193A (en) 1994-05-27 1995-05-26 Control equipment for resistance welding machine
CN95108592A CN1101293C (en) 1994-05-27 1995-05-26 Control equipment for resistance welding machine
KR1019950013580A KR100186890B1 (en) 1994-05-27 1995-05-27 Control equipment for resistance welding machine
US08/925,316 US5965038A (en) 1994-05-27 1997-09-08 Control equipment for resistance welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22614994A JP3190791B2 (en) 1994-09-21 1994-09-21 Control device of resistance welding machine

Publications (2)

Publication Number Publication Date
JPH0898562A true JPH0898562A (en) 1996-04-12
JP3190791B2 JP3190791B2 (en) 2001-07-23

Family

ID=16840631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22614994A Expired - Lifetime JP3190791B2 (en) 1994-05-27 1994-09-21 Control device of resistance welding machine

Country Status (1)

Country Link
JP (1) JP3190791B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647848B1 (en) * 1998-08-10 2006-11-24 미야치 테크노스 가부시키가이샤 Controller for resistance welding a method inverter
JP2013128941A (en) * 2011-12-20 2013-07-04 Dengensha Mfg Co Ltd Resistance welding machine and control method thereof
CN109317804A (en) * 2018-12-07 2019-02-12 中正智控(江苏)智能科技有限公司 In conjunction with the medium-frequency inverting resistance welding machine control device and control method of PLC
JP2019505982A (en) * 2015-11-20 2019-02-28 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag Current monitoring at the load

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647848B1 (en) * 1998-08-10 2006-11-24 미야치 테크노스 가부시키가이샤 Controller for resistance welding a method inverter
JP2013128941A (en) * 2011-12-20 2013-07-04 Dengensha Mfg Co Ltd Resistance welding machine and control method thereof
JP2019505982A (en) * 2015-11-20 2019-02-28 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag Current monitoring at the load
CN109317804A (en) * 2018-12-07 2019-02-12 中正智控(江苏)智能科技有限公司 In conjunction with the medium-frequency inverting resistance welding machine control device and control method of PLC
CN109317804B (en) * 2018-12-07 2023-09-26 中正智控(江苏)智能科技有限公司 Control device and control method for medium-frequency inverter resistance welder combined with PLC

Also Published As

Publication number Publication date
JP3190791B2 (en) 2001-07-23

Similar Documents

Publication Publication Date Title
KR100186890B1 (en) Control equipment for resistance welding machine
JP4513079B2 (en) Converter circuit
CA2152625C (en) Closed loop pulse width modulator inverter with volt-seconds feedback control
JPH0634594B2 (en) Voltage source inverter
JPS62207173A (en) Power converter
US4878163A (en) Pulse width modulated inverter with high-to-low frequency output converter
JPH09131075A (en) Inverter equipment
JP4599694B2 (en) Voltage type PWM inverter dead time compensation method
JPH0898562A (en) Control device of resistance welding machine
JPH07131984A (en) Dc power supply equipment
JP2000253663A (en) Dc power supply apparatus
JP3253822B2 (en) Welding machine control device
CN107370350B (en) A kind of accurate prediction technique of current ripples based on unipolarity one circle control
JP3070314B2 (en) Inverter output voltage compensation circuit
JP3501548B2 (en) Demagnetization prevention circuit of high frequency transformer
JP2784951B2 (en) Power supply
JP2783721B2 (en) Inverter controlled electric resistance welding machine
JPH05333077A (en) Switching type simulated load device
JPH06237577A (en) Capacitor charging power supply
JPH0353796Y2 (en)
JP2685547B2 (en) Control device for arc welding power supply
JPH0828978B2 (en) PWM inverter
JP2000042751A (en) Controller for resistance welding machine
KR100526952B1 (en) Predictive current control apparatus for phase-controlled rectifier using on-line parameter estimation and method thereof
JP2632587B2 (en) Power supply

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term