JP2685547B2 - Control device for arc welding power supply - Google Patents
Control device for arc welding power supplyInfo
- Publication number
- JP2685547B2 JP2685547B2 JP29000588A JP29000588A JP2685547B2 JP 2685547 B2 JP2685547 B2 JP 2685547B2 JP 29000588 A JP29000588 A JP 29000588A JP 29000588 A JP29000588 A JP 29000588A JP 2685547 B2 JP2685547 B2 JP 2685547B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- value
- output
- rectangular wave
- setting device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Arc Welding Control (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアーク溶接用電源、特にインバータ制御形の
交流TIG溶接用電源において、過大な過渡電圧を発生す
ることなく、出力電流の極性反転を安定、確実に行なう
制御装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a power source for arc welding, particularly an AC power source for AC TIG welding of an inverter control type, which can reverse the polarity of the output current without generating an excessive transient voltage. The present invention relates to a stable and reliable control device.
近年、インバータ制御の採用により小形軽量化を図つ
た交直両用アーク溶接電源が実用化されている。第7図
にその回路構成を、第8図にその動作波形を示す。In recent years, an AC / DC dual-purpose arc welding power source has been put into practical use, which has been made smaller and lighter by adopting inverter control. FIG. 7 shows the circuit configuration, and FIG. 8 shows the operation waveform.
第7図において、商用電源から入力端子1に印加され
た交流電圧を入力側整流部2によつて直流とし、これを
入力側インバータ部3で高周波交流(例えば20kHz)に
変換して主変圧器4に印加する。In FIG. 7, the AC voltage applied from the commercial power source to the input terminal 1 is converted into a direct current by the input side rectification unit 2, and this is converted into a high frequency AC (for example, 20 kHz) by the input side inverter unit 3 to convert it into a main transformer. 4 is applied.
主変圧器4により溶接に適した電圧に降圧された交流
電圧を電流検出器5を介して出力側整流部6、リアクタ
7、コンデンサ8により平滑な直流とし、これを出力側
インバータ部9で再度交流に変換して、出力端子10から
アーク負荷(図示せず)に供給する。The AC voltage stepped down to a voltage suitable for welding by the main transformer 4 is made smooth via the current detector 5 by the output side rectification section 6, the reactor 7, and the capacitor 8, and the output side inverter section 9 again makes this smooth DC. It is converted into alternating current and supplied from an output terminal 10 to an arc load (not shown).
ここで、出力電流設定器14の設定値は電流制御回路13
を経て誤差増幅器12で電流検出器5の検出値と比較さ
れ、両者が等しくなるようパルス幅制御回路11で入力側
インバータ部3の出力パルス幅が制御される。一方、矩
形波発生器16からは反転周波数設定器17・正極性逆極性
比率設定器18の設定値に対応した繰返し周波数とデユー
テイ比を持つ基準矩形波信号が発生し、この基準矩形波
信号の立上り・立下り時に駆動回路24を介して出力側イ
ンバータ部9が出力電流の極性反転を行なう。Here, the set value of the output current setter 14 is the current control circuit 13
After that, the error amplifier 12 compares the detected value with the detection value of the current detector 5, and the pulse width control circuit 11 controls the output pulse width of the input side inverter unit 3 so that they are equal. On the other hand, the rectangular wave generator 16 generates a reference rectangular wave signal having a repetition frequency and a duty ratio corresponding to the set values of the inversion frequency setting device 17 and the positive polarity reverse polarity ratio setting device 18, and the reference rectangular wave signal The output side inverter unit 9 reverses the polarity of the output current via the drive circuit 24 at the time of rising and falling.
この関係を示したのが第8図である。なお、出力側イン
バータ部9は、第2図に示すように反転用トランジスタ
T1〜T4・ダイオードD1〜D4をブリツジ接続して構成さ
れ、上記のように基準矩形波信号の立上り・立下りに同
期してT1,T2とT3,T4の2組のトランジスタを交互にオ
ンオフさせれば、出力は交流となり、矩形波発生器16の
出力を“0"または“1"に保つて、いずれか1組のトラン
ジスタをオンし続ければ、出力は直流となる。This relationship is shown in FIG. In addition, the output side inverter unit 9 includes an inversion transistor as shown in FIG.
T 1 through T 4, the diode D 1 to D 4 is configured by Buritsuji connection, 2 of T 1, T 2 and T 3, T 4 in synchronization with the rise and fall of the reference square wave signal as described above If a pair of transistors is turned on and off alternately, the output will be AC, and if the output of the rectangular wave generator 16 is kept at "0" or "1" and one of the transistors is kept on, the output will be DC. Becomes
第7図において、出力電流の極性反転時に主変圧器4
から供給される電圧だけではアークを再点弧させること
ができない場合、負荷電流の急激な減少により出力回路
のリアクタ7に過渡電圧が発生し、その過渡電圧の大き
さはリアクタ7のインダクタンス値と極性反転時に流れ
ている電流値によつて決まる。第7図の回路では、極性
反転時の電流値は、例えば300Aから100A以下までの広範
囲にわたり変化し、これに対応して極性反転時にリアク
タ7に発生する過渡電圧も広範囲にわたつて変化する。
このため、過度電圧が過大な場合、これを吸収して出力
側インバータ部9のトランジスタ等の破壊を防止するた
めの大容量のコンデンサ8と、過渡電圧が過小でコンデ
ンサ8の電圧が再点弧電圧に達しない場合、アークの再
点弧に必要な電圧(ほぼ200V以上)を供給する大容量の
点弧補助回路25を必要とし、装置が高価になる。また、
過大な過渡電圧の発生を避けるためにリアクタ7のイン
ダクタンス値に制限を受け、電流リツプルの平滑化が充
分にできなかつたり、コンデンサ8の容量を大きくした
ことで出力制御の応答性が損なわれることもある。In Fig. 7, when the polarity of the output current is reversed, the main transformer 4
When it is not possible to re-ignite the arc with only the voltage supplied from, a transient decrease in the load current causes a transient voltage in the reactor 7 of the output circuit, and the magnitude of the transient voltage is equal to the inductance value of the reactor 7. It is determined by the current value flowing at the time of polarity reversal. In the circuit of FIG. 7, the current value at the time of polarity reversal changes over a wide range from 300 A to 100 A or less, for example, and the transient voltage generated in the reactor 7 at the time of polarity reversal also changes over a wide range.
Therefore, when the excessive voltage is excessive, the capacitor 8 having a large capacity for absorbing the excessive voltage to prevent the destruction of the transistor or the like of the output side inverter unit 9 and the transient voltage being too small to re-ignite the voltage of the capacitor 8 If the voltage is not reached, a large-capacity ignition auxiliary circuit 25 that supplies the voltage (approximately 200 V or more) necessary for re-ignition of the arc is required, which makes the device expensive. Also,
In order to avoid the generation of excessive transient voltage, the inductance value of the reactor 7 is limited, the current ripple cannot be sufficiently smoothed, and the response of output control is impaired by increasing the capacity of the capacitor 8. There is also.
本発明の目的は、過大な過渡電圧を発生することな
く、小電流から大電流まで安定で確実な極性反転動作を
行ない、しかも経済的なインバータ制御形のアーク溶接
用電源を提供することにある。An object of the present invention is to provide an economical inverter-controlled power source for arc welding, which can perform a stable and reliable polarity reversal operation from a small current to a large current without generating an excessive transient voltage and which is economical. .
本願の第1の発明は、所定の位相差を持つ2つの制御
用矩形波信号を発生する手段と、定常の出力電流値を設
定する第1の電流設定器と、極性反転時の出力電流値を
設定する第2の電流設定器と、前記両矩形波信号のうち
進み位相の矩形波信号の立上り、立下りに同期して電流
制御系の出力電流設定値を前記第1の電流設定器の設定
値から前記第2の電流設定器の設定値に移行させる電流
制御回路と、前記両矩形波信号のうち遅れ位相の矩形波
信号の立上り・立下りに同期して出力側インバータ部を
反転動作させる駆動回路を備え、第1の電流設定値が第
2の電流設定値より低いときは、正極性の期間のみ第1
の電流設定器から第2の電流設定器へ移行させて電流を
増加させ、逆極性の期間は第1の電流設定器の値で反転
させるようにしたことを特徴とするアーク溶接用電源の
制御装置である。A first invention of the present application is a means for generating two control rectangular wave signals having a predetermined phase difference, a first current setting device for setting a steady output current value, and an output current value at the time of polarity reversal. And a second current setting device for setting the output current setting value of the current control system in synchronization with the rising and falling of the rectangular wave signal of the leading phase of the both rectangular wave signals. A current control circuit for shifting the set value to the set value of the second current setter, and an inversion operation of the output side inverter unit in synchronization with the rising and falling of the rectangular wave signal of the delay phase of the two rectangular wave signals. When the first current setting value is lower than the second current setting value, the driving circuit for
Control of the arc welding power supply, characterized in that the current is increased from the current setter of No. 2 to the second current setter and the current is increased, and the value of the first current setter is reversed during the reverse polarity period. It is a device.
また第2の発明は、前記第1の発明の構成要素に加え
て、前記第2の電流設定器の設定値より高い極性反転時
の上限電流値を設定する第3の電流設定器と、前記両矩
形波信号の位相差に相当する遅れ時間が経過したことを
示す信号と出力電流値が前記第3の電流設定器の設定値
以下であることを示す信号との一致を条件として前記遅
相矩形波信号を発生させ、出力電流の極性反転を可能と
する極性反転規制手段を備え、出力電流値が前記第3の
電流設定器で設定された上限電流値以下でなければ極性
反転を行なわないようにしたことを特徴とするアーク溶
接用電源の制御装置である。A second invention is, in addition to the constituent elements of the first invention, a third current setting device for setting an upper limit current value at the time of polarity reversal higher than a setting value of the second current setting device; The delay phase is provided on the condition that the signal indicating that the delay time corresponding to the phase difference between the two rectangular wave signals has elapsed and the signal indicating that the output current value is less than or equal to the set value of the third current setting device are matched. A polarity reversal restricting unit that generates a rectangular wave signal and enables the polarity reversal of the output current is provided, and the polarity reversal is not performed unless the output current value is less than or equal to the upper limit current value set by the third current setting device. This is a control device for a power source for arc welding.
本発明の対象とするアーク溶接用電源は、出力回路に
電流リツプルを平滑化するためのリアクタを挿入してあ
り、出力電流の極性反転時には、そのとき流れている電
流値に応じた過渡電圧がリアクタに発生する。The arc welding power source of the present invention has a reactor for smoothing current ripples inserted in the output circuit, and when the polarity of the output current is reversed, a transient voltage corresponding to the current value flowing at that time is generated. It occurs in the reactor.
第1の発明では、所定の位相差を持つ2つの矩形波信
号を用い、このうち進み位相の矩形波信号の立上り・立
下り時に出力電流設定値の切替を行ない、遅れ位相の矩
形波信号の立上り・立下り時に出力電流の極性反転を行
なつており、両矩形波信号の位相差に相当する遅延時間
は反転直前の出力電流値の変化に十分な時間を与える。
これによつて上記遅延時間内に出力電流値を定常の出力
電流設定値から極性反転時の電流設定値へ所定の時定数
に従つて円滑に移行させることができる。In the first invention, two rectangular wave signals having a predetermined phase difference are used, and the output current setting value is switched at the time of rising and falling of the rectangular wave signal of the leading phase, and the rectangular wave signal of the lagging phase is changed. The polarity of the output current is inverted at the rising and falling edges, and the delay time corresponding to the phase difference between the two rectangular wave signals gives sufficient time for the change in the output current value immediately before the inversion.
As a result, the output current value can be smoothly shifted from the steady output current setting value to the current setting value at the time of polarity reversal within the delay time according to a predetermined time constant.
したがつて、出力電流の極性反転の直前に出力電流値
を変化させ、ほぼ所定の電流値で極性反転を行なわせる
ことにより、極性反転時に発生する過渡電圧を平準化し
て、大電流溶接時に過大な過渡電流を発生することな
く、小電流溶接時にも極性反転時の過渡電圧で出力回路
のコンデンサを再点弧電圧以上に充電し、その電圧をア
ーク負荷に印加することによつてアークを安定に持続さ
せることができる。Therefore, by changing the output current value immediately before the polarity reversal of the output current and performing the polarity reversal at an almost predetermined current value, the transient voltage generated at the time of the polarity reversal is leveled and becomes excessive when welding large currents. A stable arc is achieved by charging the output circuit capacitor to the re-ignition voltage or higher with the transient voltage at the time of polarity reversal even when welding a small current, and applying that voltage to the arc load without generating a large transient current. Can be sustained.
このとき、溶接電流が逆極性から正極性に反転する瞬
間に、高い電圧がなくてもアークを容易に持続させるこ
とができる。At this time, at the moment when the welding current reverses from the reverse polarity to the positive polarity, the arc can be easily maintained without a high voltage.
第2の発生では、さらに極性反転時の上限電流値を設
定し、極性反転規制手段により進み位相の矩形波信号の
立上り・立下りから両矩形波信号の位相差に相当する遅
延時間が経過した時の出力電流値が極性反転時の上限電
流値以下であることを条件として遅れ位相の矩形波信号
を発生させ、出力側インバータ部を反転動作させるよう
にしている。このようにすれば、アーク長の変化等によ
り電流が過渡的に急増したときには、定常状態に戻るま
で反転動作は行なわれず、上記のような非定常時にも過
大な過渡電圧を発生することが避けられる。In the second generation, the upper limit current value at the time of polarity reversal is further set, and the delay time corresponding to the phase difference between both rectangular wave signals elapses from the rising / falling of the rectangular wave signal of the leading phase by the polarity reversal restricting means. When the output current value at this time is less than or equal to the upper limit current value at the time of polarity reversal, a rectangular wave signal with a delayed phase is generated and the output side inverter section is inverted. In this way, when the current suddenly increases transiently due to a change in the arc length or the like, the reversal operation is not performed until it returns to the steady state, and it is possible to avoid generating an excessive transient voltage even in the non-steady state as described above. To be
以下、本発明の実施例を第1図〜第5図により説明す
る。Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
第1図において、商用電源から入力端子1に印加され
た交流電圧を入力側整流部2により直流とし、これを入
力側インバータ部3で高周波交流(例えば20KHz)に変
換して主変圧器4に印加し、主変圧器4により溶接に適
した電圧に降圧された交流電圧を電流検出器5を介して
出力側整流部6、リアクタ7、コンデンサ8により平滑
な直流とし、これを出力側インバータ部9で再度交流に
変換して出力端子10からアーク負荷(図示せず)に供給
する。以上は第7図に示した従来例と同様である。In FIG. 1, the AC voltage applied from the commercial power source to the input terminal 1 is converted to DC by the input side rectification unit 2, and this is converted into high frequency AC (for example, 20 KHz) by the input side inverter unit 3 and converted into the main transformer 4. The AC voltage applied and reduced to a voltage suitable for welding by the main transformer 4 is made into a smooth DC by the output side rectification section 6, the reactor 7 and the capacitor 8 via the current detector 5, and this is output side inverter section. It is converted into alternating current again at 9 and supplied from an output terminal 10 to an arc load (not shown). The above is the same as the conventional example shown in FIG.
ここで、第1の電流設定器14は定常の出力電流値を設
定するためのもので、溶接条件により、例えば300Aから
100A以下までの任意の電流値が選択可能である。これに
対し、第2の電流設定器15は極性反転時の電流値(以
下、反転電流値とする)を設定するためのもので、その
設定値は溶接機の仕様によつて決まるある所定の電流値
(例えば100A)であり、可変とする必要はない。上記各
電流設定器14,15の設定値は電圧信号として電流制御回
路13に伝達され、電流制御回路13で選択された設定値が
誤差増幅器12で電流検出器5の検出値と比較され、両者
が等しくなるようパルス幅制御回路11により入力側イン
バータ部3の出力パルス幅が制御される。Here, the first current setting device 14 is for setting a steady output current value.
Any current value up to 100A can be selected. On the other hand, the second current setting device 15 is for setting the current value at the time of polarity reversal (hereinafter referred to as the reversal current value), and the set value is determined according to the specifications of the welding machine. It is a current value (for example, 100A) and does not need to be variable. The set values of the current setters 14 and 15 are transmitted to the current control circuit 13 as voltage signals, and the set value selected by the current control circuit 13 is compared with the detected value of the current detector 5 by the error amplifier 12, and both are set. The output pulse width of the input side inverter unit 3 is controlled by the pulse width control circuit 11 so that they become equal.
一方、矩形波発生器16からは反転周波数設定器17・正
極性逆極性比率設定器18の設定値に対応した繰返し周波
数とデユーテイ比を持つ進み位相の矩形波信号(以下、
基準矩形波信号とする)が発生する。この矩形波発生器
16はフアンクシヨンゼネレータとして周知のものであ
る。電流制御回路13は、基準矩形波信号の立上り・立下
り時に前述した電流検出器5の検出値と比較される出力
電流設定値を第1の電流設定器14の設定値から第2の電
流設定器15の設定値へ所定の時定数をもつて切替える。
また、基準矩形波信号の立上り・立下り時から出力電流
値の変化に十分な遅延時間tDを与える遅延回路21があ
り、この遅延回路21から遅延時間tDの経過したことを示
す信号が出力されると、これを受けて矩形波発生器23か
ら遅れ位相の矩形波信号(以下、遅相矩形波信号とす
る)が発生する。矩形波発生器23は、遅延回路21からの
信号によつてセツト・リセツトするフリツプフロツプ等
で構成されている。この遅相矩形波信号の立上り・立下
り時に駆動回路24を介して第2図に示す出力側インバー
タ部9のT1,T2とT3,T4の2組のトランジスタを交互に
オンオフさせ、出力電流の極性反転を行なう。設定値比
較回路26は、上記各電流設定器14、15に設定された値を
比較し、その結果を電流制御回路13に伝達する。On the other hand, from the rectangular wave generator 16, a rectangular wave signal of a lead phase having a repetition frequency and a duty ratio corresponding to the set values of the inversion frequency setting device 17 and the positive polarity reverse polarity ratio setting device 18 (hereinafter,
The reference rectangular wave signal) is generated. This square wave generator
Reference numeral 16 is a well-known function generator. The current control circuit 13 sets the output current setting value, which is compared with the detection value of the current detector 5 described above at the rising and falling edges of the reference rectangular wave signal, from the setting value of the first current setting unit 14 to the second current setting value. Switch to the set value of the device 15 with a predetermined time constant.
In addition, there is a delay circuit 21 that gives a delay time t D sufficient for the change of the output current value from the rising / falling of the reference rectangular wave signal, and a signal indicating that the delay time t D has elapsed is output from this delay circuit 21. When output, the rectangular wave generator 23 receives the signal and outputs a rectangular wave signal with a delayed phase (hereinafter, referred to as a delayed rectangular wave signal). The rectangular wave generator 23 is composed of a flip-flop or the like that is set and reset by the signal from the delay circuit 21. At the rising and falling edges of this slow-phase rectangular wave signal, two sets of transistors T 1 , T 2 and T 3 , T 4 of the output side inverter section 9 shown in FIG. , Reverses the polarity of the output current. The set value comparison circuit 26 compares the values set in the current setters 14 and 15 and transmits the result to the current control circuit 13.
正極性検出器27は、矩形波発生器16で発生された基準矩
形波信号の立下りを検出し、電流制御回路13に伝達す
る。電流制御回路13は、駆動回路24の動作信号を受けて
電流検出器5の検出値と比較される出力電流設定値を第
1の電流検出器14の設定値に戻す。The positive polarity detector 27 detects the falling edge of the reference rectangular wave signal generated by the rectangular wave generator 16 and transmits it to the current control circuit 13. The current control circuit 13 receives the operation signal of the drive circuit 24 and returns the output current setting value compared with the detection value of the current detector 5 to the setting value of the first current detector 14.
第3図に電流制御回路13の構成例を示す。本回路は、
基準矩形波信号の立上り・立下り時にセツトされ、駆動
回路24の動作時(遅相矩形波信号の立上り・立下り時)
にリセツトされるフリツプフロツプ30、フリツプフロツ
プ30のQ出力によりオンオフされるアナログスイツチ3
1、フリツプフロツプ30のQ出力によりオンオフされる
アナログスイツチ32、33、抵抗34、35、コンデンサ36に
より構成されており、基準矩形波信号の立上り・立下り
時にアナログスイツチ31がオン、アナログスイツチ32、
33がオフすることによつて、第1の電流設定器14の設定
値に対応する電圧から第2の電流設定器15の設定値に対
応する電圧へ抵抗34とコンデンサ36の時定数に従つて変
化する電圧が抵抗35を介し出力電流設定値に対応する信
号として出力され、駆動回路24の動作時にアナログスイ
ツチ32、33がオン、アナログスイツチ31がオフすること
によつて、抵抗34、35、コンデンサ36が短絡され、出力
電流設定値は即時に第1の電流設定器14の設定値に戻
る。FIG. 3 shows a configuration example of the current control circuit 13. This circuit is
Set when the reference rectangular wave signal rises and falls, and when the drive circuit 24 is operating (when the slow rectangular wave signal rises and falls)
Flip-flop 30 reset to 0, analog switch 3 turned on / off by Q output of flip-flop 30
1. It is composed of analog switches 32 and 33, resistors 34 and 35, and a capacitor 36 which are turned on and off by the Q output of the flip-flop 30, and the analog switch 31 is turned on and the analog switch 32 is turned on and off when the reference rectangular wave signal rises and falls.
By turning off 33, the voltage corresponding to the setting value of the first current setting device 14 is changed to the voltage corresponding to the setting value of the second current setting device 15 according to the time constants of the resistor 34 and the capacitor 36. The changing voltage is output as a signal corresponding to the output current set value through the resistor 35, and the analog switches 32 and 33 are turned on and the analog switch 31 is turned off during the operation of the drive circuit 24, whereby the resistors 34 and 35, The capacitor 36 is short-circuited, and the output current setting value immediately returns to the setting value of the first current setting device 14.
以上述べた実施例の動作を図示したのが第4図で、図
中、出力電流波形の実線は定常の出力電流設定値が反転
電流値より大きい場合、点線は定常の出力電流設定値が
反転電流値より小さい場合を示している。いずれの場合
にも反転動作時にリアクタ7に発生する過渡電圧はほぼ
同一で、コンデンサ8を再点弧に必要な電圧まで充電す
ることができ、コンデンサ8を過渡に充電して出力側イ
ンバータ部9のトランジスタ等を破壊することもない。The operation of the embodiment described above is illustrated in FIG. 4. In the figure, the solid line of the output current waveform indicates that the steady output current set value is larger than the reversal current value, and the dotted line indicates that the steady output current set value is reversed. The case where it is smaller than the current value is shown. In any case, the transient voltage generated in the reactor 7 during the reversing operation is almost the same, and the capacitor 8 can be charged to the voltage required for re-ignition, and the capacitor 8 is transiently charged to output the inverter unit 9 on the output side. It does not destroy the transistor, etc.
また、第1の電流設定器14に設定された電流値が、第
2の電流設定器15に設定された電流値より小さいとき、
電流制御回路13を、基準矩形波信号が正極から逆極に移
行する立下り時にのみ作動させると、第5図に示すよう
な出力電流波形を得ることができる。When the current value set in the first current setting device 14 is smaller than the current value set in the second current setting device 15,
If the current control circuit 13 is operated only at the falling edge when the reference rectangular wave signal shifts from the positive pole to the reverse pole, the output current waveform as shown in FIG. 5 can be obtained.
なお、上記説明では正極性と逆極性の出力電流値が等
しい場合について述べたが、極性により出力電流値を変
えることも、駆動回路24の動作時に戻す出力電流設定値
を切替えることによつて容易に実現できる。また、矩形
波発生器16、23の出力を共に“0"または“1"に保てば、
出力端子10からの出力は直流となる。すなわち、第1図
に示すアーク溶接用電源は交直両用電源として使用可能
である。In the above description, the case where the output current values of the positive polarity and the reverse polarity are equal is described, but it is easy to change the output current value depending on the polarity and by switching the output current set value returned when the drive circuit 24 operates. Can be realized. Moreover, if both outputs of the rectangular wave generators 16 and 23 are kept at “0” or “1”,
The output from the output terminal 10 is DC. That is, the arc welding power source shown in FIG. 1 can be used as an AC / DC power source.
第6図は第2の発明を具体化した実施例の回路構成を
ブロツク図で示したもので、図中、第1図と対応する部
分には同一符号を付し、重複する説明は省略する。FIG. 6 is a block diagram showing a circuit configuration of an embodiment embodying the second invention. In the figure, portions corresponding to those in FIG. 1 are designated by the same reference numerals, and duplicated description will be omitted. .
第6図において、第3の電流設定器19には第2の電流
設定器15の反転電流設定値より高い上限反転電流値が設
定されており、比較器20はこの設定された上限反転電流
値と電流検出器5の検出値とを比較し、電流検出値が上
限反転電流値以下であるときに“1"の信号を出す。ゲー
ト回路22は、基準矩形波信号の立上り・立下り時から所
定の遅延時間tDが経過したことを示す遅延回路21の出力
信号と電流検出値が上限反転電流値以下であることを示
す比較器20の出力信号とが一致した時のみ矩形波発生器
23へ信号を送り、遅相矩形波信号を発生させる。これに
より、第1図の説明で述べたように駆動回路24を介して
出力側インバータ部9を反転動作させることを可能とす
る。この比較器20、ゲート回路22で構成される極性反転
規制手段の作用により、上限反転電流値を超える大電流
が流れている非定常状態で極性反転を行なつたときの過
大な過渡電圧の発生が避けられる。In FIG. 6, the upper limit reverse current value higher than the reverse current set value of the second current setter 15 is set in the third current setter 19, and the comparator 20 sets the set upper limit reverse current value. And the detected value of the current detector 5 are compared, and when the detected current value is less than or equal to the upper limit inversion current value, a signal of "1" is output. The gate circuit 22 compares the output signal of the delay circuit 21 indicating that a predetermined delay time t D has elapsed from the rising and falling edges of the reference rectangular wave signal with the current detection value being equal to or less than the upper limit inversion current value. Square wave generator only when the output signal of the generator 20 matches
The signal is sent to 23 to generate a slow-phase rectangular wave signal. As a result, it becomes possible to invert the output side inverter unit 9 via the drive circuit 24 as described in the explanation of FIG. Due to the action of the polarity reversal control means composed of the comparator 20 and the gate circuit 22, excessive transient voltage is generated when polarity reversal is performed in an unsteady state in which a large current exceeding the upper limit reversal current value is flowing. Can be avoided.
また、第1の電流設定器14に設定された電流値が、第
2の電流設定器15に設定された電流値より小さいとき、
電流制御回路13を、基準矩形波信号の正極性の期間のみ
作動させると、平均電流を下げることができる。When the current value set in the first current setting device 14 is smaller than the current value set in the second current setting device 15,
If the current control circuit 13 is operated only during the positive polarity period of the reference rectangular wave signal, the average current can be reduced.
第1、第2の発明は、それぞれ以下述べるような特有
の効果を有する。The first and second aspects of the invention each have the following unique effects.
すなわち、第1の発明によれば、 (1)過大な過渡電圧を発生することなく、安定で確実
な出力電流の極性反転を行なうことができる。実験によ
れば、定格300A機で反転電流値は100A程度でよく、発生
する過渡電圧は半減する。That is, according to the first aspect of the invention, (1) it is possible to perform stable and reliable polarity reversal of the output current without generating an excessive transient voltage. According to experiments, a rated current of about 300A and a reverse current value of about 100A are sufficient, and the transient voltage generated is halved.
(2)定常の出力電流設定値が反転電流値より大きい場
合、極性反転時の電流変化幅が小さくなるので、アーク
圧力の急激な変化が抑制され、アークがより安定にな
る。(2) When the steady output current setting value is larger than the reversing current value, the current change width at the time of reversing the polarity becomes small, so that the rapid change in the arc pressure is suppressed and the arc becomes more stable.
(3)出力回路に挿入するリアクタ、コンデンサの選択
幅が広くなり、従来例に比べリアクタのインダクタンス
値を大きく、コンデンサ容量を小さくすることができる
ので、電流リツプルの平滑機能、制御応答性が向上す
る。(3) The selection range of the reactor and the capacitor to be inserted in the output circuit is widened, and the inductance value of the reactor can be increased and the capacitance of the capacitor can be reduced as compared with the conventional example, so that the smoothing function of the current ripple and the control response are improved. To do.
(4)第7図に示す再点弧補助回路25を不要とすること
ができ、溶接用電源の価格および寸法・重量の低減が図
れる。(4) The re-ignition auxiliary circuit 25 shown in FIG. 7 can be eliminated, and the price, size and weight of the welding power source can be reduced.
(5)回路構成が簡単で、信頼性が高く、かつ安価な装
置によつて第1の発明の機能を実現することができる。(5) The function of the first invention can be realized by a device having a simple circuit configuration, high reliability, and low cost.
(6)出力電流値の変化に十分な遅延時間がとれ、定常
の出力電流設定値から反転電流値への移行が円滑に行な
える。(6) A sufficient delay time can be taken for the change of the output current value, and the steady transition of the output current set value to the reversal current value can be performed smoothly.
また、第2の発明によれば、さらに、 (7)溶接回路に流れる実電流が所定値以下でなければ
極性反転が行なわれず、アーク長の変化に伴う電流急激
などの非定常状態での不測の過渡電圧による回路素子の
破壊を防止することができる。According to the second aspect of the invention, further, (7) polarity reversal is not performed unless the actual current flowing in the welding circuit is less than or equal to a predetermined value, and an unexpected state occurs in an unsteady state such as a rapid current due to a change in arc length. It is possible to prevent the destruction of the circuit element due to the transient voltage.
(8)出力電流設定値が反転電流値より小さいとき、正
極性から逆極性に反転するときのみ電流が増加するの
で、出力側の平均電流を低くした場合、出力電流の設定
値を大幅に下げることなく、所望の平均電流を得ること
ができ、小電流時のアークの安定性を増すことができ
る。(8) When the output current setting value is smaller than the reversing current value, the current increases only when the polarity is reversed from the positive polarity. Therefore, when the average current on the output side is lowered, the setting value of the output current is significantly reduced. The desired average current can be obtained without increasing the stability of the arc at a small current.
第1図は本願の第1の発明の実施例を示すブロツク、第
2図は第1図中の出力側インバータ部の回路構成図、第
3図は第1図中の電流制御回路の回路構成図、第4図お
よび第5図は第1図および第6図は、本願の第2の発明
の実施例を示すブロック線図、第7図は従来例のブロツ
ク線図、第8図は従来例の動作波形図である。 3……入力側インバータ部、4……主変圧器、6……出
力側整流部、7……リアクタ、8……コンデンサ、9…
…出力側インバータ部、5、11、12……電流制御系、13
……電流制御回路、14……第1の電流設定器、15……第
2の電流設定器、16、21、23……矩形波信号発生手段、
19……第3の電流設定器、20、22……極性反転規制手
段、24……駆動回路、26……設定値比較器、27……正極
性検出器。FIG. 1 is a block diagram showing an embodiment of the first invention of the present application, FIG. 2 is a circuit configuration diagram of an output side inverter section in FIG. 1, and FIG. 3 is a circuit configuration of a current control circuit in FIG. FIGS. 4 and 5 are block diagrams showing an embodiment of the second invention of the present application, FIG. 7 is a block diagram of a conventional example, and FIG. 8 is a conventional diagram. It is an operation | movement waveform diagram of an example. 3 ... Input side inverter section, 4 ... Main transformer, 6 ... Output side rectification section, 7 ... Reactor, 8 ... Capacitor, 9 ...
Output side inverter section 5, 11, 12 Current control system, 13
... current control circuit, 14 ... first current setting device, 15 ... second current setting device, 16, 21, 23 ... rectangular wave signal generating means,
19 ... Third current setting device, 20,22 ... Polarity reversal control means, 24 ... Drive circuit, 26 ... Set value comparator, 27 ... Positive polarity detector.
Claims (2)
圧、整流しリアクタとコンデンサにより平滑にした直流
を出力側インバータ部で極性反転させ再度交流に変換し
てアーク負荷に供給し、入力側インバータ部で出力電流
を制御するアーク溶接用電源において、所定の位相差を
持つ2つの制御用矩形波信号を発生する手段と、定常の
出力電流値を設定する第1の電流設定器と、極性反転時
の出力電流値を設定する第2の電流設定器と、前記両矩
形波信号のうち進み位相の矩形波信号の立上り・立下り
に同期して電流制御系の出力電流設定値を前記第1の電
流設定器の設定値から前記第2の電流設定器の設定値へ
移行させる電流制御回路と、前記両矩形波信号のうち遅
れ位相の矩形波信号の立上り・立下りに同期して出力側
インバータ部を反転動作させる駆動回路を備え、第1の
電流設定値が第2の電流設定値よりも低いときは、正極
性の期間のみ第1の電流設定器から第2の電流設定器へ
移行させて電流を増加させ、逆極性の期間は第1の電流
設定器の値で反転させることを特徴とするアーク溶接用
電源の制御装置。1. A high-frequency AC output of an input-side inverter section is stepped down, rectified, and smoothed by a reactor and a capacitor. The polarity of the direct-current is inverted by the output-side inverter section, converted into AC again, and supplied to an arc load. In an arc welding power source for controlling an output current in a section, a means for generating two control rectangular wave signals having a predetermined phase difference, a first current setting device for setting a steady output current value, and a polarity reversal A second current setting device for setting an output current value at the time, and an output current setting value of the current control system for the output current setting value of the first control device in synchronization with rising and falling of a rectangular wave signal of a lead phase of the rectangular wave signals. Current control circuit for shifting from the setting value of the current setting device to the setting value of the second current setting device, and the output side in synchronization with the rising and falling of the rectangular wave signal of the delayed phase of the both rectangular wave signals. Invert the inverter When the first current setting value is lower than the second current setting value, a drive circuit for operating is provided, and the current is shifted from the first current setting device to the second current setting device only during the positive polarity period. A control device for a power source for arc welding, which is increased and reversed during a period of reverse polarity with a value of a first current setting device.
圧、整流しリアクタとコンデンサにより平滑にした直流
を出力側インバータ部で極性反転させ再度交流に変換し
てアーク負荷に供給し、入力側インバータ部で出力電流
を制御するアーク溶接用電源において、所定の位相差を
持つ2つの制御用矩形波信号を発生する手段と、定常の
出力電流値を設定する第1の電流設定器と、極性反転時
の出力電流値を設定する第2の電流設定器と、前記第2
の電流設定器の設定値より高い極性反転時の上限電流値
を設定する第3の電流設定器と、前記両矩形波信号のう
ち進み位相の矩形波信号の立上り・立下りに同期して電
流制御系の出力電流設定値を前記第1の電流設定器の設
定値から前記第2の電流設定器の設定値へ移行させる電
流制御回路と、前記両矩形波信号のうち遅れ位相の矩形
波信号の立上り・立下りに同期して出力側インバータ部
を反転動作させる駆動回路と、前記両矩形波信号の位相
差に相当する遅れ時間が経過したことを示す信号と出力
電流値が前記第3の電流設定器で設定された上限電流値
以下であることを示す信号との一致を条件として前記遅
相矩形波信号を発生させ、出力電流の極性反転を可能と
する極性反転規制手段を備え、第1の電流設定値が第2
の電流設定値より低いときは、正極性の期間のみ第1の
電流設定器から第2の電流設定器へ移行させて反転動作
させ、逆極性の期間は第1の電流設定器の値で反転動作
させるようにしたことを特徴とするアーク溶接電源の制
御装置。2. A high-frequency AC output of an input-side inverter section is stepped down, rectified, and smoothed by a reactor and a capacitor, and then the output-side inverter section inverts the polarity of the direct-current again to convert it into an alternating current and supplies it to an arc load. In an arc welding power source for controlling an output current in a section, a means for generating two control rectangular wave signals having a predetermined phase difference, a first current setting device for setting a steady output current value, and a polarity reversal A second current setting device for setting an output current value at the time of
A current setting device for setting an upper limit current value at the time of polarity reversal that is higher than the setting value of the current setting device, and the current in synchronization with the rising and falling edges of the rectangular wave signal of the leading phase of the two rectangular wave signals. A current control circuit for shifting the output current set value of the control system from the set value of the first current setter to the set value of the second current setter, and a rectangular wave signal of a delayed phase of the two rectangular wave signals. Drive circuit for inverting the output-side inverter section in synchronism with the rising and falling edges of the signal, a signal indicating that a delay time corresponding to the phase difference between the rectangular wave signals has elapsed, and the output current value is the third current value. A polarity reversal restricting means for generating the lagging rectangular wave signal on condition that the signal is equal to or less than the upper limit current value set by the current setting device, and reversing the polarity of the output current; The current setting value of 1 is the second
When it is lower than the current setting value of, the current is transferred from the first current setting device to the second current setting device only for the positive polarity period to perform the reversing operation, and the reverse polarity period is inverted by the value of the first current setting device. A control device for an arc welding power source characterized by being operated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29000588A JP2685547B2 (en) | 1988-11-18 | 1988-11-18 | Control device for arc welding power supply |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29000588A JP2685547B2 (en) | 1988-11-18 | 1988-11-18 | Control device for arc welding power supply |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02137673A JPH02137673A (en) | 1990-05-25 |
JP2685547B2 true JP2685547B2 (en) | 1997-12-03 |
Family
ID=17750548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29000588A Expired - Lifetime JP2685547B2 (en) | 1988-11-18 | 1988-11-18 | Control device for arc welding power supply |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2685547B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2652251B2 (en) * | 1989-10-09 | 1997-09-10 | 松下電器産業株式会社 | AC arc welding power supply |
JP5375389B2 (en) * | 2009-07-15 | 2013-12-25 | パナソニック株式会社 | Welding apparatus and welding method |
-
1988
- 1988-11-18 JP JP29000588A patent/JP2685547B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02137673A (en) | 1990-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4876433A (en) | Inverter controlled-type power source for arc welding | |
JP2760666B2 (en) | Method and apparatus for controlling PWM converter | |
JPS59502051A (en) | High output, high frequency inverter device combined with digital and analog control section | |
JP2685547B2 (en) | Control device for arc welding power supply | |
JP2001128462A (en) | Inverter device control method | |
JP2537516B2 (en) | Control method and apparatus for arc welding power source | |
JP2704519B2 (en) | DC power supply | |
JP2777892B2 (en) | Resonant inverter type X-ray device | |
JP3825870B2 (en) | Arc machining power supply | |
JPS6345913B2 (en) | ||
JPH1052754A (en) | Power source device for arc working | |
JPS61216859A (en) | Power source for arc welding | |
JP2760582B2 (en) | Constant voltage and constant frequency power supply | |
JP2663535B2 (en) | Power supply for arc machining | |
JP2005278304A (en) | Power supply apparatus | |
JP3161037B2 (en) | Power supply for arc welding | |
JPS63206165A (en) | Uninterruptible power supply | |
JP2732428B2 (en) | Chopper device | |
JPS61121773A (en) | Control system of ac/dc power converter | |
JP2770454B2 (en) | Power supply for arc machining | |
JPH02151371A (en) | Arc welding power source for ac and dc | |
JPH069596Y2 (en) | Synchronous control circuit for inverter device | |
JP3332046B2 (en) | Discharge lamp circuit device | |
JPH0353796Y2 (en) | ||
JPS634429B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080815 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090815 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090815 Year of fee payment: 12 |