JP2537516B2 - Control method and apparatus for arc welding power source - Google Patents
Control method and apparatus for arc welding power sourceInfo
- Publication number
- JP2537516B2 JP2537516B2 JP62146952A JP14695287A JP2537516B2 JP 2537516 B2 JP2537516 B2 JP 2537516B2 JP 62146952 A JP62146952 A JP 62146952A JP 14695287 A JP14695287 A JP 14695287A JP 2537516 B2 JP2537516 B2 JP 2537516B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- output
- value
- rectangular wave
- polarity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/06—Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
- B23K9/073—Stabilising the arc
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/09—Arrangements or circuits for arc welding with pulsed current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Arc Welding Control (AREA)
- Inverter Devices (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアーク溶接用電源、特にインバータ制御形の
交流TIG溶接用電源において、過大な過渡電圧を発生す
ることなく、出力電流の極性反転を安定、確実に行なう
制御方法および装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a power source for arc welding, particularly an AC power source for AC TIG welding of an inverter control type, which can reverse the polarity of the output current without generating an excessive transient voltage. The present invention relates to a stable and reliable control method and device.
近年、インバータ制御の採用により小形軽量化を図っ
た交流両用アーク溶接電源が実用化されている。第6図
はその回路構成を、第7図にその動作波形を示す。In recent years, an AC dual-purpose arc welding power source has been put into practical use, which has been made smaller and lighter by adopting inverter control. FIG. 6 shows the circuit configuration, and FIG. 7 shows the operation waveform.
第6図において、商用電源から入力端子1に印加され
た200Vの交流電圧を入力側整流部2によって約280Vの直
流とし、これを入力側インバータ部3で高周波交流(例
えば20KHz)に変換して主変圧器4に印加する。そし
て、主変圧器4により溶接に適した電圧に降圧された70
V程度の交流電圧を電流検出器5を介して出力側整流部
6、リアクタ7、コンデンサ8により平滑な直流とし、
これを出力側インバータ部9で再度交流に変換して、出
力端子10からアーク負荷(図示せず)に供給する。In FIG. 6, an AC voltage of 200V applied from the commercial power source to the input terminal 1 is converted into a DC of about 280V by the input side rectification unit 2, and this is converted into a high frequency AC (for example, 20KHz) by the input side inverter unit 3. Apply to main transformer 4. Then, it is stepped down to a voltage suitable for welding by the main transformer 70
An AC voltage of about V is made into a smooth DC by the output side rectification unit 6, the reactor 7, and the capacitor 8 via the current detector 5,
This is converted into alternating current again in the output side inverter unit 9 and supplied from the output terminal 10 to an arc load (not shown).
ここで、出力電流設定器14の設定値は電流制御回路13
を経て誤差増幅器12で電流検出器5の検出値と比較さ
れ、両者が等しくなるようパルス幅制御回路11で入力側
インバータ部3の出力パルス幅が制御される。Here, the set value of the output current setter 14 is the current control circuit 13
After that, the error amplifier 12 compares the detected value with the detection value of the current detector 5, and the pulse width control circuit 11 controls the output pulse width of the input side inverter unit 3 so that they are equal.
すなわち、例えば作業者の手振れによりアーク長が長
くなると、アーク電圧が増加する結果、溶接電流すなわ
ち電流検出器5の検出値が小さくなる。すると、パルス
幅制御回路11は、溶接電流を出力電流設定器14の設定値
に等しくなるように入力側インバータ部3の出力パルス
幅を広げる。この結果、アーク電圧が変動しても、溶接
電流はほぼ一定に制御される。That is, for example, when the arc length increases due to the shaking of the hand of the operator, the arc voltage increases, and as a result, the welding current, that is, the detection value of the current detector 5 decreases. Then, the pulse width control circuit 11 widens the output pulse width of the input side inverter unit 3 so that the welding current becomes equal to the set value of the output current setter 14. As a result, the welding current is controlled to be substantially constant even if the arc voltage fluctuates.
一方、矩形波発生器16からは反転周波数設定器17・正
極性逆極性比率設定器18の設定値に対応した繰返し周波
数とデユーティ比を持つ基準矩形波信号が発生し、この
基準矩形波信号の立上り・立下り時に駆動回路24を介し
て出力側インバータ部9が出力電流の極性反転を行な
う。この関係を示したのが第7図である。なお、出力側
インバータ部9は、第2図に示すように反転用トランジ
スタT1〜T4、ダイオードD1〜D4をブリッジ接続して構成
され、上記のように基準矩形波信号の立上り・立下りに
同期してT1、T2とT3、T4の2組のトランジスタを交互に
オンオフさせれば、出力は交流となり、矩形波発生器16
の出力を“0"または“1"に保って、いずれか1組のトラ
ンジスタをオンし続ければ、出力は直流となる。そし
て、被溶接物の材質や溶接目的に応じて正極性逆極性比
率を設定する。On the other hand, the rectangular wave generator 16 generates a reference rectangular wave signal having a repetition frequency and a duty ratio corresponding to the set values of the inversion frequency setting device 17 and the positive polarity reverse polarity ratio setting device 18, and the reference rectangular wave signal The output side inverter unit 9 reverses the polarity of the output current via the drive circuit 24 at the time of rising and falling. This relationship is shown in FIG. As shown in FIG. 2, the output side inverter unit 9 is configured by bridge-connecting inversion transistors T 1 to T 4 and diodes D 1 to D 4 , and as described above, the rising edge of the reference rectangular wave signal If the two transistors T 1 , T 2 and T 3 , T 4 are turned on and off alternately in synchronization with the falling edge, the output becomes AC and the rectangular wave generator 16
If the output of is maintained at "0" or "1" and any one set of transistors is kept on, the output becomes DC. Then, the positive polarity reverse polarity ratio is set according to the material of the object to be welded and the purpose of welding.
第6図において、出力電流の極性反転時に主変圧器4
から供給される電圧だけではアークを再点弧させること
ができない場合、負荷電流の急激な減少により出力回路
のリアクタ7に過渡電圧が発生し、その過渡電圧の大き
さはリアクタ7のインダクタンス値と極性反転時に流れ
ている電流値によって決まる。第6図の回路では、極性
反転時の電流値は溶接電流に等しく、300Aから100A以下
までの広範囲にわたり変化し、これに対応して極性反転
時にリアクタ7に発生する過渡電圧も広範囲にわたって
変化する。このため、過渡電圧が過大な場合、これを吸
収して出力側インバータ部9のトランジスタ等の破壊を
防止するための大容量のコンデンサ8と、過渡電圧が過
小でコンデンサ8の電圧が再点弧電圧に達しない場合、
アークの再点弧に必要な電圧(200V以上)を供給する大
容量の再点弧補助回路25を必要とし、装置が高価にな
る。また、過大な過渡電圧の発生を避けるためにリアク
タ7のインダクタンス値に制限を受け、電流リップルの
平滑化が十分にできなかったり、コンデンサ8の容量を
大きくしたことで出力制御の応答性が損なわれることも
ある。In FIG. 6, when the polarity of the output current is reversed, the main transformer 4
When it is not possible to re-ignite the arc with only the voltage supplied from, a transient voltage is generated in the reactor 7 of the output circuit due to the rapid decrease in the load current, and the magnitude of the transient voltage depends on the inductance value of the reactor 7. It depends on the value of the current flowing when the polarity is reversed. In the circuit of FIG. 6, the current value at the time of polarity reversal is equal to the welding current and changes over a wide range from 300 A to 100 A or less, and in response to this, the transient voltage generated in the reactor 7 also changes over a wide range. . Therefore, when the transient voltage is excessive, the capacitor 8 having a large capacity for absorbing the transient voltage to prevent the transistor of the output side inverter unit 9 from being destroyed, and the transient voltage being too small and the voltage of the capacitor 8 being re-ignited. If the voltage is not reached,
A large-capacity re-ignition auxiliary circuit 25 that supplies a voltage (200 V or more) necessary for re-ignition of the arc is required, which makes the device expensive. In addition, the inductance value of the reactor 7 is limited in order to avoid the generation of an excessive transient voltage, and the current ripple cannot be sufficiently smoothed, or the responsiveness of the output control is impaired by increasing the capacity of the capacitor 8. Sometimes it is.
また、特開昭58−112657号公報には極性を反転させる
とき、負荷側の回路を接続したままの状態で先ず電源の
供給を停止して回路に蓄えられたエネルギーを放出さ
せ、予め定めた休止期間後に負荷側の回路を接続すると
ともに電源の供給を開始する技術が開示されている。こ
の場合、極性反転時に発生する過渡電圧により制御素子
が破壊されることを防止することができる。しかし、過
渡電圧としては、常に負荷側に流れる電流が最大のとき
すなわち定格電流時に発生する大きさとしなければなら
ないから、リアクタのインダクタンスを大きくせざるを
得ず、かつリアクタも2個必要になる。Further, in Japanese Patent Laid-Open No. 58-112657, when the polarity is reversed, the power supply is first stopped while the circuit on the load side is still connected to release the energy stored in the circuit, which is set in advance. A technique is disclosed in which a circuit on the load side is connected after the suspension period and power supply is started. In this case, it is possible to prevent the control element from being destroyed by the transient voltage generated when the polarity is reversed. However, the transient voltage must always have a magnitude that occurs when the current flowing to the load side is maximum, that is, at the rated current. Therefore, the inductance of the reactor must be increased and two reactors are required.
また、負荷側に流れる電流が小さいときには、休止期
間に電極と母材間の空間の温度が低下し、イオンの数が
減少する結果、電流の立上りを急峻にしたとしても再点
弧が困難で、再点弧助回路を必要としていた。Also, when the current flowing to the load side is small, the temperature of the space between the electrode and the base material decreases during the rest period, and the number of ions decreases.As a result, re-ignition is difficult even when the current rises sharply. , Needed a re-ignition assistance circuit.
本発明の目的は、過大な過渡電圧を発生することな
く、安定で確実な極性反転動作を行ない、しかも経済的
なインバータ制御形のアーク溶接用電源を提供すること
にある。An object of the present invention is to provide an inverter-controlled power source for arc welding, which is capable of performing stable and reliable polarity reversal operation without generating an excessive transient voltage and is economical.
本願の第1の発明は、入力側インバータ部の高周波交
流出力を降圧、整流しリアクタとコンデンサにより平滑
にした直流を出力側インバータ部で極性反転させ再度交
流に変換してアーク負荷に供給し、入力側インバータ部
で出力電流を定電流制御するアーク溶接用電源におい
て、出力電流の極性反転の直前に電流制御系の電流設定
値を定常の出力電流値から極性反転時の出力電流値に切
替えるように制御することを特徴とするアーク溶接用電
源の制御方法である。The first invention of the present application, the high-frequency AC output of the input side inverter unit is stepped down, rectified, smoothed by the reactor and the capacitor, the polarity is inverted in the output side inverter unit, is converted again to AC, and is supplied to the arc load, In an arc welding power source that controls the output current with a constant current in the input side inverter unit, the current setting value of the current control system is switched from the steady output current value to the output current value at the time of polarity reversal immediately before the polarity reversal of the output current The method for controlling an arc welding power source is characterized in that
第2の発明は、上記方法を実施するための装置に関す
るもので、所定の位相差を持つ2つの制御用矩形波信号
を発生する手段と、定常の出力電流値を設定する第1の
電流設定器と、極性反転時の出力電流値を設定する第2
の電流設定器と、前記両矩形波信号のうち進み位相の矩
形波信号の立上り・立下りに同期して電流制御系の出力
電流設定値を前記第1の電流設定器の設定値から前記第
2の電流設定器の設定値に移行させる電流制御回路と、
前記両矩形波信号のうち遅れ位相の矩形波信号の立上り
・立下りに同期して出力側インバータ部を反転動作させ
る駆動回路を備え、出力電流値が前記第2の電流設定器
の設定値とほぼ等しくなったときに出力電流の極性反転
を行なうようにしたことを特徴するアーク溶接用電源の
制御装置である。A second invention relates to an apparatus for carrying out the above method, which comprises means for generating two control rectangular wave signals having a predetermined phase difference, and a first current setting for setting a steady output current value. And the second to set the output current value when the polarity is reversed
Of the current setting device and the output current setting value of the current control system from the setting values of the first current setting device in synchronization with the rising / falling of the rectangular wave signal of the leading phase of the both rectangular wave signals. A current control circuit for shifting to the setting value of the current setting device of No. 2,
A drive circuit for inverting the output-side inverter unit in synchronism with the rising and falling edges of a rectangular wave signal having a delay phase of the two rectangular wave signals is provided, and the output current value is equal to the setting value of the second current setting device. This is a control device for an arc welding power source, which is characterized in that the polarity of the output current is reversed when they become substantially equal.
本発明の対象とするアーク溶接用電源は、出力回路に
電流リップルを平滑化するためのリアクタを挿入してあ
り、出力電流の極性反転時には、そのとき流れている電
流値を応じた過渡電圧がリアクタに発生するが、出力電
流の極性反転の直前に出力電流値を変化させ、予め設定
する電流値で極性反転を行なわせる。これにより、極性
反転時に発生する過渡電圧は平準化され、大電流溶接時
に過大な過渡電圧を発生することなく、小電流溶接時に
もアークを安定に持続させることができる。The power source for arc welding of the present invention has a reactor for smoothing current ripples inserted in the output circuit, and when the polarity of the output current is reversed, a transient voltage corresponding to the current value flowing at that time is generated. Although generated in the reactor, the output current value is changed immediately before the polarity reversal of the output current, and the polarity reversal is performed at a preset current value. As a result, the transient voltage generated during polarity reversal is leveled, and the arc can be stably maintained even during small current welding without generating excessive transient voltage during large current welding.
第2の発明では、所定の位相差を持つ2つの矩形波信
号を用い、このうち進み位相の矩形波信号の立上り・立
下り時に出力電流設定値の切替を行ない、遅れ位相の矩
形波信号の立上り・立下り時に出力電流の極性反転を行
なっており、両矩形波信号の位相差に相当する遅延時間
は反転直前の出力電流値の変化に十分な時間を与える。
これによって第1の発明の機能を容易に実現することが
でき、また上記遅延時間内に出力電流値を定常の出力電
流設置値から極性反転時の電流設定値へ所定の時定数に
従って円滑に移行させることができる。In the second invention, two rectangular wave signals having a predetermined phase difference are used, and the output current set value is switched at the time of rising and falling of the rectangular wave signal of the leading phase, and the rectangular wave signal of the lagging phase is changed. The polarity of the output current is inverted at the rising and falling edges, and the delay time corresponding to the phase difference between both rectangular wave signals gives sufficient time for the change in the output current value immediately before the inversion.
As a result, the function of the first invention can be easily realized, and the output current value smoothly shifts from the steady output current setting value to the current setting value at the time of polarity reversal according to a predetermined time constant within the delay time. Can be made.
以下、本発明の実施例を第1図〜第5図により説明す
る。An embodiment of the present invention will be described below with reference to FIGS.
第1図は第2の発明を具体化した実施例の回路構成を
ブロック図で示したものである。第1図において、商用
電源から入力端子1に印加された交流電圧を入力側整流
部2により直流とし、これを入力側インバータ部3で高
周波交流(例えば20KHz)に変換して主変圧器4に印加
し、主変圧器4により溶接に適した電圧に降圧された交
流電圧を電流検出器5を介して出力側整流部6、リアク
タ7、コンデンサ8により平滑な直流とし、これを出力
側インバータ部9で再度交流に変換して出力端子10から
アーク負荷(図示せず)に供給する。以上は第6図に示
した従来例と同様である。FIG. 1 is a block diagram showing a circuit configuration of an embodiment embodying the second invention. In FIG. 1, the AC voltage applied from the commercial power source to the input terminal 1 is converted to DC by the input side rectification unit 2, and this is converted into high frequency AC (for example, 20 KHz) by the input side inverter unit 3 and converted into the main transformer 4. The AC voltage applied and reduced to a voltage suitable for welding by the main transformer 4 is made into a smooth DC by the output side rectification section 6, the reactor 7 and the capacitor 8 via the current detector 5, and this is output side inverter section. It is converted into alternating current again at 9 and supplied from an output terminal 10 to an arc load (not shown). The above is the same as the conventional example shown in FIG.
ここで、第1の電流設定器14は定常の出力電流値を設
定するためのもので、溶接条件により、例えば300Aから
100A以下までの任意の電流値が選択可能である。これに
対し、第2の電流設定器15は極性反転時の電流値(以
下、反転電流値とする)を設定するためのもので、その
設定値は溶接機の仕様によって決まるある所定の電流値
(例えば100A)であり、可変とする必要はない。上記各
電流設定器14、15の設定値は電圧信号として電流制御回
路13に伝達され、電流制御回路13で選択された設定値が
誤差増幅器12で電流検出器5の検出値と比較され、両者
が等しくなるようパルス幅制御回路11により入力側イン
バータ部3の出力パルス幅が制御される。Here, the first current setting device 14 is for setting a steady output current value.
Any current value up to 100A can be selected. On the other hand, the second current setting device 15 is for setting a current value at the time of polarity reversal (hereinafter referred to as reversal current value), and the set value is a predetermined current value determined by the specifications of the welding machine. (Eg, 100A), and does not need to be variable. The set values of the respective current setters 14 and 15 are transmitted to the current control circuit 13 as voltage signals, and the set value selected by the current control circuit 13 is compared with the detected value of the current detector 5 by the error amplifier 12, and both are set. The output pulse width of the input side inverter unit 3 is controlled by the pulse width control circuit 11 so that they become equal.
一方、矩形波発生器16からは、反転周波数設定器17・
正極性逆極性比率設定器18の設定値に対応した繰返し周
波数とデューティ比を持つ進み位相の矩形波信号(以
下、基準矩形波信号とする)が発生する。この矩形波発
生器16はファンクションゼネレータとして周知のもので
ある。電流制御回路13は、基準矩形波信号の立上り・立
下り時に前述した電流検出器5の検出値と比較される出
力電流設定値を第1の電流設定器14の設定値から第2の
電流設定器15の設定値へ所定の時定数をもって切替え
る。また、基準矩形波信号の立上り・立下り時から出力
電流値の変化に十分な遅延時間tDを与える遅延回路21が
あり、この遅延回路21から遅延時間tDの経過したことを
示す信号が出力されると、これを受けて矩形波発生器23
から遅れ位相の矩形波信号(以下、遅相矩形波信号とす
る)が発生する。矩形波発生器23は、遅延回路21からの
信号によってセット・リセットするフリップフロップ等
で構成されている。この遅相矩形波信号の立上り・立下
り時に駆動回路24を介して第2図に示す出力側インバー
タ部9のT1、T2とT3、T4の2組のトランジスタを交互に
オンオフさせ、出力電流の極性反転を行なう。電流制御
回路13は、駆動回路24の動作信号を受けて電流検出器5
の検出値と比較される出力電流設定値を第1の電流設定
器14の設定値に戻す。On the other hand, from the square wave generator 16, the inversion frequency setting device 17
A rectangular wave signal (hereinafter referred to as a reference rectangular wave signal) having a lead phase having a repetition frequency and a duty ratio corresponding to the set value of the positive polarity reverse polarity ratio setting unit 18 is generated. This rectangular wave generator 16 is known as a function generator. The current control circuit 13 sets the output current setting value, which is compared with the detection value of the current detector 5 described above at the rising and falling edges of the reference rectangular wave signal, from the setting value of the first current setting unit 14 to the second current setting value. Switch to the set value of the device 15 with a predetermined time constant. Further, there is a delay circuit 21 that gives a delay time t D sufficient for the change of the output current value from the rising and falling edges of the reference rectangular wave signal, and the signal indicating that the delay time t D has elapsed is output from this delay circuit 21. When it is output, it receives it and the rectangular wave generator 23
Then, a rectangular wave signal having a delayed phase (hereinafter referred to as a delayed rectangular wave signal) is generated. The rectangular wave generator 23 is composed of a flip-flop or the like that is set / reset by a signal from the delay circuit 21. At the rising and falling edges of this slow-phase rectangular wave signal, two sets of transistors T 1 , T 2 and T 3 , T 4 of the output side inverter unit 9 shown in FIG. , Reverses the polarity of the output current. The current control circuit 13 receives the operation signal from the drive circuit 24 and receives the current detector 5
The output current set value compared with the detected value of 1 is returned to the set value of the first current setter 14.
以下、第3図と第5図を用いて動作をさらに説明す
る。なお、第3図に示す回路は、基準矩形波信号の立上
り・立下り時にセットされ、駆動回路24の動作時(遅相
矩形波信号の立上り・立下り時)にリセットされるフリ
ップフロップ30、フリップフロップ30のQ出力によりオ
ンオフされるアナログスイッチ31、フリップフロップ30
のQ出力によりオンオフされるアナログスイッチ32、3
3、抵抗34、35、コンデンサ36により構成されている。
また第5図は基準矩形波信号および遅相矩形波信号と出
力電流との関係を示す図である。The operation will be further described below with reference to FIGS. 3 and 5. The circuit shown in FIG. 3 is a flip-flop 30 which is set when the reference rectangular wave signal rises and falls and is reset when the drive circuit 24 operates (when the slow phase rectangular wave signal rises and falls). An analog switch 31, which is turned on / off by the Q output of the flip-flop 30, a flip-flop 30
Analog switches 32 and 3 that are turned on and off by the Q output of
3, the resistors 34 and 35, and the capacitor 36.
FIG. 5 is a diagram showing the relationship between the reference rectangular wave signal, the delayed rectangular wave signal, and the output current.
いま、第5図の遅相矩形波信号が立上った直後(以
下、時刻tという)において、アナログスイッチ32、33
がオン、アナログスイッチ31がオフ、第2図に示す出力
側インバータ部9のT1、T2がオン、T3、T4がオフである
として時間の経過にしたがって説明する。Immediately after the slow rectangular wave signal in FIG. 5 rises (hereinafter, referred to as time t), the analog switches 32 and 33 are
Is on, the analog switch 31 is off, T 1 and T 2 of the output side inverter unit 9 shown in FIG. 2 are on, and T 3 and T 4 are off.
時刻tから基準矩形波信号が立下るまで: 電流設定器14の設定値が電圧信号として出力され、電
流設定器14で設定された出力電流が流れると共に、この
電圧によりコンデンサ36が充電される。From time t until the reference rectangular wave signal falls: The set value of the current setter 14 is output as a voltage signal, the output current set by the current setter 14 flows, and the capacitor 36 is charged by this voltage.
基準矩形波信号が立下る: 基準矩形波信号の立下りによりアナログスイッチ31が
オン、アナログスイッチ32、33がオフする。Fall of the reference rectangular wave signal: The analog switch 31 is turned on and the analog switches 32 and 33 are turned off by the fall of the reference rectangular wave signal.
基準矩形波信号の立下りから遅相矩形波信号が立下る
まで: 抵抗35を介しコンデンサ36に充電されていた電荷が抵
抗34とコンデンサ36で決まる所定の時定数に従って変化
する電圧として出力され、この信号電圧が出力電流設定
値に対応する信号として出力される結果、出力電流は第
2の電流設定器15の設定値に徐々に切換わる。From the falling of the reference rectangular wave signal to the falling of the slow rectangular wave signal: The electric charge charged in the capacitor 36 via the resistor 35 is output as a voltage that changes according to a predetermined time constant determined by the resistor 34 and the capacitor 36, As a result of outputting this signal voltage as a signal corresponding to the set value of the output current, the output current gradually switches to the set value of the second current setter 15.
遅相矩形波信号が立下る: 第2図に示す出力側インバータ部9のT1、T2がオフ、
T3、T4がオフとなり、溶接部に流れる電流の向きが反転
する。The delayed rectangular wave signal falls: T 1 and T 2 of the output side inverter unit 9 shown in FIG. 2 are turned off,
T 3, T 4 is turned off, the direction of the current flowing through the weld is inverted.
遅相矩形波信号の立下りから基準矩形波信号の立上り
まで: の場合と同様に、電流設定器14の設定値が電圧信号
として出力され、電流設定器14で設定された出力電流が
流れると共に、この電圧によりコンデンサ36が充電され
る。アナグロスイッチ32、33がオン、アナログスイッチ
31がオフで、コンデンサ36が充電される。From the falling edge of the slow-phase rectangular wave signal to the rising edge of the reference rectangular wave signal: As in the case of, the set value of the current setter 14 is output as a voltage signal, and the output current set by the current setter 14 flows The voltage charges the capacitor 36. Anaguro switch 32, 33 is on, analog switch
31 is off and capacitor 36 is charged.
基準矩形波信号が立上る: 基準矩形波信号の立下りによりアナログスイッチ31が
オン、アナログスイッチ32、33がオフする。The reference rectangular wave signal rises: The analog switch 31 turns on and the analog switches 32 and 33 turn off due to the fall of the reference rectangular wave signal.
基準矩形波信号が立上りから遅相矩形波信号の立上り
まで: の場合と同様に抵抗35を介しコンデンサ36に充電さ
れていた電荷が抵抗34とコンデンサ36で決まる所定の時
定数に従って変化する電圧として出力され、この信号電
圧が出力電流設定値に対応する信号として出力される結
果、出力電流は第2の電流設定器15の設定値に徐々に切
換わる。From the rising edge of the reference rectangular wave signal to the rising edge of the delayed rectangular wave signal: As in the case of, the voltage charged in the capacitor 36 via the resistor 35 changes as a voltage that changes according to a predetermined time constant determined by the resistor 34 and the capacitor 36. As a result of being output and the signal voltage being output as a signal corresponding to the output current setting value, the output current gradually switches to the setting value of the second current setting device 15.
遅相矩形波信号が立上る。Slow rectangular wave signal rises.
第2図に示す出力側インバータ部9のT1、T2がオン、
T3、T4がオフとなり、溶接部に流れる電流の方向が反転
する。T 1 and T 2 of the output side inverter unit 9 shown in FIG. 2 are turned on,
T 3, T 4 is turned off, the direction of the current flowing through the weld is inverted.
以下、溶接終了まで上記〜をくり返す。 The above steps are repeated until the welding is completed.
なお、第5図において、出力電流波形の実線は、定常
の出力電流設定値が反転電流値より大きい場合の動作を
示している。また、出力電流波形の点線は、定常の出力
電流設定値が反転電流値より小さい場合を示している。
いずれの場合にも反転動作時にリアクタ7に発生する過
渡電圧はほぼ同一で、コンデンサ8を再点弧に必要な電
圧まで充電することができ、出力側インバータ部9のト
ランジスタ等を破壊するほどコンデンサ8を過度に充電
することもない。In FIG. 5, the solid line of the output current waveform shows the operation when the steady output current set value is larger than the reversal current value. The dotted line of the output current waveform shows the case where the steady output current set value is smaller than the reversal current value.
In either case, the transient voltage generated in the reactor 7 during the reversing operation is almost the same, the capacitor 8 can be charged to the voltage required for re-ignition, and the capacitor and the like in the output side inverter unit 9 are destroyed. It does not overcharge the 8.
なお、上記説明では正極性と逆極性の出力電流値が等
しい場合について述べたが、極性により出力電流値を変
えることも、駆動回路24の動作時に出力電流設定値を切
替えることによって容易に実現できる。また、矩形波発
生器16、23の出力を共に“0"または“1"に保てば、出力
端子10からの出力は直流となる。すなわち、第1図に示
すアーク溶接用電源は交直両用電源として使用可能であ
る。In the above description, the case where the output current values of the positive polarity and the reverse polarity are equal to each other has been described, but it is possible to easily change the output current value depending on the polarity by switching the output current set value during the operation of the drive circuit 24. . Further, if the outputs of the rectangular wave generators 16 and 23 are both kept at "0" or "1", the output from the output terminal 10 becomes DC. That is, the arc welding power source shown in FIG. 1 can be used as an AC / DC power source.
第4図は第2の発明の他の実施例の回路構成をブロッ
ク図で示したもので、図中、第1図と対応する部分には
同一符号を付し、重複する説明は省略する。第4図にお
いて、第3の電流設定器19には第2の電流設定器15の反
転電流値より高い上限反転電流値が設定されており、比
較器20はこの設定された上限反転電流値と電流検出器5
の検出値とを比較し、電流検出値が上限反転電流値以下
であるときに“1"の信号を出す。ゲート回路22は、基準
矩形波信号の立上り・立下り時から所定の遅延時間tDが
経過したことを示す遅延回路21の出力信号と電流検出値
が上限反転電流値以下であることを示す比較器20の出力
信号とが一致した時のみが矩形波発生器23へ信号を送
り、遅相矩形波信号を発生させる。これにより、第1図
の説明で述べたように駆動回路24に介して出力側インバ
ータ部9を反転動作させることを可能とする。この比較
器20、ゲート回路22で構成される極性反転規制手段の作
用により、上限反転電流値を超える大電流が流れている
非定常状態で極性反転を行なったときの過大な過渡電圧
の発生が避けられる。FIG. 4 is a block diagram showing a circuit configuration of another embodiment of the second invention. In the figure, parts corresponding to those in FIG. 1 are designated by the same reference numerals, and duplicated description will be omitted. In FIG. 4, the upper limit reversal current value higher than the reversal current value of the second current setter 15 is set in the third current setter 19, and the comparator 20 sets the upper limit reversal current value to the set upper limit reversal current value. Current detector 5
When the current detection value is less than or equal to the upper limit reversal current value, a "1" signal is output. The gate circuit 22 compares the output signal of the delay circuit 21 indicating that a predetermined delay time t D has elapsed from the rising and falling edges of the reference rectangular wave signal with the current detection value being equal to or less than the upper limit inversion current value. The signal is sent to the rectangular wave generator 23 only when the output signal of the device 20 matches, and the delayed rectangular wave signal is generated. As a result, it becomes possible to invert the output side inverter section 9 via the drive circuit 24 as described in the explanation of FIG. Due to the action of the polarity reversal restricting means composed of the comparator 20 and the gate circuit 22, excessive transient voltage is generated when polarity reversal is performed in an unsteady state in which a large current exceeding the upper limit reversal current value is flowing. can avoid.
第1、第2の発明はそれぞれ以下に述べるような独特
の効果を有する。The first and second inventions have unique effects as described below.
すなわち、第1の発明によれば、 (1) 極性反転時の過渡電圧を予め定めた大きさにで
きるから過大な過渡電圧を発生することなく、安定で確
実な出力電流の極性反転を行なうことができる。実験に
よれば、定格300A機で反転電流値は100A程度で良く、発
生する過渡電圧は半減する。That is, according to the first aspect of the invention, (1) since the transient voltage at the time of polarity reversal can be set to a predetermined magnitude, stable and reliable polarity reversal of the output current can be performed without generating an excessive transient voltage. You can According to experiments, a rated current of 300 A and a reverse current value of about 100 A are sufficient, and the transient voltage generated is halved.
(2) 定常の出力電流設定値が予め定めた電流値より
も小さいときには、極性反転前にいったん溶接電流を大
きくする結果、電極と母材間の空間の温度が上昇し、電
極と母材間のイオンの数が増加し、しかも直ちにすなわ
ち休止期間を設けずに極性を反転させるから、再点弧が
容易になり、アークが安定になる。(2) When the steady output current set value is smaller than the predetermined current value, the welding current is once increased before the polarity reversal, and as a result, the temperature of the space between the electrode and the base metal rises and the space between the electrode and the base metal rises. The number of the ions in the field increases, and the polarity is reversed immediately, that is, without providing the rest period, so that the re-ignition becomes easy and the arc becomes stable.
(3) 出力回路に挿入するリアクタ、コンデンサの選
択幅が広くなり、従来例に比べリアクタのインダクタン
ス値を大きく、コンデンサ容量を小さくすることができ
るので、電流リップルの平滑機能、制御応答性が向上す
る。(3) The selection range of the reactor and the capacitor to be inserted in the output circuit is widened, and the inductance value of the reactor can be made larger and the capacitance of the capacitor can be made smaller than the conventional example, so that the smoothing function of the current ripple and the control response are improved. To do.
(4) 第6図に示す再点弧補助回路25を不要とするこ
とができ、溶接用電源の価格および寸法・重量の低減が
図れる。(4) The re-ignition auxiliary circuit 25 shown in FIG. 6 can be dispensed with, and the price, size and weight of the welding power source can be reduced.
また、第2の発明によれば、 (5) 回路構成が簡単で、信頼性が高く、かつ安価な
装置によって第1の発明の機能を実現することができ
る。According to the second invention, (5) the function of the first invention can be realized by a device having a simple circuit configuration, high reliability, and low cost.
(6) 出力電流値の変化に十分な遅延時間がとれ、定
常の出力電流設定値から反転電流値への移行が円滑に行
なえる。(6) A sufficient delay time can be taken for the change of the output current value, and the steady change of the output current setting value to the reversal current value can be performed smoothly.
さらに、第2の発明の他の実施例によれば、 (7) 溶接回路に流れる実電流が所定値以下でなけれ
ば極性反転が行なわれず、アーク長の変化に伴う電流急
増などの非定常状態での不測の過渡電圧による回路素子
の破壊を防止することができる。Further, according to another embodiment of the second invention, (7) the polarity reversal is not performed unless the actual current flowing in the welding circuit is equal to or less than a predetermined value, and a non-steady state such as a current surge due to a change in arc length. It is possible to prevent the breakdown of the circuit element due to the unexpected transient voltage.
第1図は本願の第2の発明を具体化した実施例のブロッ
ク図、第2図は第1図中の出力側インバータ部の回路構
成図、第3図は第1図中の電流制御回路の回路構成図、
第4図は本願の第2の発明の他の実施例のブロック図、
第5図は第1図および第4図の実施例の動作波形図、第
6図は従来例のブロック図、第7図は従来例の動作波形
図である。 3……入力側インバータ部、 4……主変圧器、 6……出力側整流部、 7……リアクタ、 8……コンデンサ、 9……出力側インバータ部 5、11、12……電流制御系、 13……電流制御回路、 14……第1の電流設定器、 15……第2の電流設定器、 16、21、23……矩形波信号発生手段、 19……第3の電流設定器、 20、22……極性反転規制手段、 24……駆動回路。FIG. 1 is a block diagram of an embodiment embodying the second invention of the present application, FIG. 2 is a circuit configuration diagram of an output side inverter section in FIG. 1, and FIG. 3 is a current control circuit in FIG. Circuit configuration diagram of
FIG. 4 is a block diagram of another embodiment of the second invention of the present application,
FIG. 5 is an operation waveform diagram of the embodiment of FIGS. 1 and 4, FIG. 6 is a block diagram of a conventional example, and FIG. 7 is an operation waveform diagram of the conventional example. 3 ... Input side inverter section, 4 ... Main transformer, 6 ... Output side rectification section, 7 ... Reactor, 8 ... Capacitor, 9 ... Output side inverter section 5, 11, 12 ... Current control system , 13 ... current control circuit, 14 ... first current setting device, 15 ... second current setting device, 16, 21, 23 ... rectangular wave signal generating means, 19 ... third current setting device , 20, 22 …… Polarity reversal control means, 24 …… Drive circuit.
フロントページの続き (56)参考文献 特開 昭58−112657(JP,A)Continuation of front page (56) References JP-A-58-112657 (JP, A)
Claims (2)
圧、整流しリアクタとコンデンサにより平滑にした直流
を出力側インバータ部で極性反転させ再度交流に変換し
てアーク負荷に供給し、入力側インバータ部で出力電流
を定電流制御するアーク溶接用電源において、出力電流
の極性反転の直前に電流制御系の電流設定値を定常の出
力電流値から極性反転時の出力電流値に切替えるように
制御することを特徴とするアーク溶接用電源の制御方
法。1. A high-frequency AC output of an input-side inverter section is stepped down, rectified, and smoothed by a reactor and a capacitor. The polarity of the direct-current is inverted by the output-side inverter section, converted into AC again, and supplied to an arc load. In the arc welding power source that controls the output current at a constant current, the current setting value of the current control system is switched from the steady output current value to the output current value at the time of polarity reversal immediately before the polarity reversal of the output current. A method for controlling a power source for arc welding, which is characterized in that:
圧、整流しリアクタとコンデンサにより平滑にした直流
を出力側インバータ部で極性反転させ再度交流に変換し
てアーク負荷に供給し、入力側インバータ部で出力電流
を定電流制御するアーク溶接用電源において、所定の位
相差を持つ2つの制御用矩形波信号を発生する手段と、
定常の出力電流値を設定する第1の電流設定器と、極性
反転時の出力電流値を設定する第2の電流設定器と、前
記両矩形波信号のうち進み位相の矩形波信号の立上り・
立下りに同期して電流制御系の出力電流設定値を前記第
1の電流設定器の設定値から前記第2の電流設定器の設
定値へ移行させる電流制御回路と、前記両矩形波信号の
うち遅れ位相の矩形波信号の立上り・立下りに同期して
出力側インバータ部を反転動作させる駆動回路を備え、 出力電流値が前記第2の電流設定器の設定値になったと
きに出力電流の極性反転を行なうようにしたことを特徴
とするアーク溶接用電源の制御装置。2. A high-frequency AC output of an input-side inverter section is stepped down, rectified, and smoothed by a reactor and a capacitor, and then the output-side inverter section inverts the polarity of the direct-current again to convert it into an alternating current and supplies it to an arc load. Means for generating two control rectangular wave signals having a predetermined phase difference in a power source for arc welding whose output current is controlled by a constant current,
A first current setting device for setting a steady output current value, a second current setting device for setting an output current value at the time of polarity reversal, and a rising edge of a rectangular wave signal of a lead phase of the two rectangular wave signals.
A current control circuit that shifts the output current setting value of the current control system from the setting value of the first current setting device to the setting value of the second current setting device in synchronization with the fall; A drive circuit for inverting the output side inverter unit in synchronism with the rising and falling edges of the rectangular wave signal of the delay phase is provided, and the output current is output when the output current value reaches the setting value of the second current setting device. A power supply control device for arc welding, characterized in that the polarity is reversed.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62146952A JP2537516B2 (en) | 1987-06-15 | 1987-06-15 | Control method and apparatus for arc welding power source |
KR1019880007057A KR910006099B1 (en) | 1987-06-15 | 1988-06-13 | Inverter controlled type power source for arc welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62146952A JP2537516B2 (en) | 1987-06-15 | 1987-06-15 | Control method and apparatus for arc welding power source |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63313669A JPS63313669A (en) | 1988-12-21 |
JP2537516B2 true JP2537516B2 (en) | 1996-09-25 |
Family
ID=15419286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62146952A Expired - Lifetime JP2537516B2 (en) | 1987-06-15 | 1987-06-15 | Control method and apparatus for arc welding power source |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2537516B2 (en) |
KR (1) | KR910006099B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103618469A (en) * | 2013-11-29 | 2014-03-05 | 上海沪工焊接集团股份有限公司 | Inversion alternating current waveform control method and control circuit |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE531142C2 (en) * | 2007-05-11 | 2009-01-07 | Esab Ab | Welding power units, procedure and computer software product |
JP7106799B2 (en) * | 2018-06-15 | 2022-07-27 | 株式会社ダイヘン | welding power supply |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58112657A (en) * | 1981-12-25 | 1983-07-05 | Sansha Electric Mfg Co Ltd | Arc welder |
-
1987
- 1987-06-15 JP JP62146952A patent/JP2537516B2/en not_active Expired - Lifetime
-
1988
- 1988-06-13 KR KR1019880007057A patent/KR910006099B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103618469A (en) * | 2013-11-29 | 2014-03-05 | 上海沪工焊接集团股份有限公司 | Inversion alternating current waveform control method and control circuit |
Also Published As
Publication number | Publication date |
---|---|
JPS63313669A (en) | 1988-12-21 |
KR890000198A (en) | 1989-03-13 |
KR910006099B1 (en) | 1991-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4876433A (en) | Inverter controlled-type power source for arc welding | |
JPS649114B2 (en) | ||
JP2537516B2 (en) | Control method and apparatus for arc welding power source | |
JPH0241777A (en) | Power unit for arc machining | |
JP2685547B2 (en) | Control device for arc welding power supply | |
JPH0257474B2 (en) | ||
JPH0580311B2 (en) | ||
JP3981208B2 (en) | Arc machining power supply | |
JP3825870B2 (en) | Arc machining power supply | |
JPH1052754A (en) | Power source device for arc working | |
JP2663535B2 (en) | Power supply for arc machining | |
JPS6345913B2 (en) | ||
JP2572433B2 (en) | Power supply for arc welding and cutting | |
JP2866876B2 (en) | Power supply | |
JP3170833B2 (en) | Power supply for arc machining | |
JP2698969B2 (en) | Capacitor boost type spot welding machine | |
JP3161037B2 (en) | Power supply for arc welding | |
JP4080574B2 (en) | DC arc welding power supply | |
JP3881416B2 (en) | Arc machining power supply | |
JPH0542375A (en) | Charge control circuit for capacitor type spot welding machine | |
JPS5910952Y2 (en) | Inverter device | |
JPH01197998A (en) | Inverter type x-ray device | |
JPS61121773A (en) | Control system of ac/dc power converter | |
JP2884547B2 (en) | Power supply | |
JP2866877B2 (en) | Power supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |