JP2015193020A - Control method and control device of resistance welder - Google Patents

Control method and control device of resistance welder Download PDF

Info

Publication number
JP2015193020A
JP2015193020A JP2014071693A JP2014071693A JP2015193020A JP 2015193020 A JP2015193020 A JP 2015193020A JP 2014071693 A JP2014071693 A JP 2014071693A JP 2014071693 A JP2014071693 A JP 2014071693A JP 2015193020 A JP2015193020 A JP 2015193020A
Authority
JP
Japan
Prior art keywords
welding
current
control
inverter
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014071693A
Other languages
Japanese (ja)
Other versions
JP6338420B2 (en
Inventor
浩幸 高崎
Hiroyuki Takasaki
浩幸 高崎
賢一 石井
Kenichi Ishii
賢一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP2014071693A priority Critical patent/JP6338420B2/en
Publication of JP2015193020A publication Critical patent/JP2015193020A/en
Application granted granted Critical
Publication of JP6338420B2 publication Critical patent/JP6338420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To take countermeasures such as exactly setting weighting of PID control elements (proportion, integration, differentiation), etc. in a negative feedback circuit by predicting poor welding to be generated due to inappropriate setting of a negative feedback amount of PID control, or disturbance of welding conditions, etc.SOLUTION: In a control method of a resistance welder which performs welding by converting direct output into AC by an inverter 42 to be guided to a primary side of a welding transformer 28, and guiding secondary side AC output reduced by the welding transformer 28 to a welding electrode 24 via a full wave rectifier 30, PWM control is performed to the inverter 42 so as to set welding conditions including a current setting pattern of the welding electrode 24, and on the other hand, negatively feeding applied voltage and welding current of the welding electrode 24 back to the inverter 42 to fit to the welding conditions, and stability of control is discriminated by integrating frequencies N in which deviation D between the welding current and the current setting pattern performs zero cross and comparing the frequencies N with a setting value N.

Description

この発明は、交流電源出力を整流し、さらにインバータを介して溶接トランスに導くようにしたインバータ式の抵抗溶接機の制御方法および制御装置に関するものである。   The present invention relates to a control method and a control apparatus for an inverter type resistance welding machine that rectifies an AC power supply output and further guides the output to an welding transformer via an inverter.

従来より、直流をインバータを用いて高周波の交流にした後、溶接トランスの一次側に導き、この時に溶接トランスの二次側に誘起される交流低電圧を整流して溶接電極に導き溶接を行うインバータ方式の抵抗溶接機が公知である。この方式によれば、商用交流電源の周波数に比べて高い周波数の電流を溶接トランスに導くから、商用電源周波数の交流を溶接トランスに導く単相交流式抵抗溶接機に比べて溶接トランスを小型化できるという特徴がある。   Conventionally, direct current is converted to high-frequency alternating current using an inverter and then guided to the primary side of the welding transformer. At this time, the AC low voltage induced on the secondary side of the welding transformer is rectified and guided to the welding electrode for welding. Inverter type resistance welding machines are known. According to this method, since a current having a higher frequency than the frequency of the commercial AC power supply is led to the welding transformer, the welding transformer is downsized compared to a single-phase AC resistance welding machine that leads the AC of the commercial power supply frequency to the welding transformer. There is a feature that can be done.

このようなインバータ式のものにおいて、溶接電極に流れる電流を検出し、この電流(実効値)が一定になるようにインバータをPWM(Pulse Width Modulation)方式などで電力制御(以下PWM制御ともいう。)する定電流制御方式がある。この方式では、溶接電極に電流を流す時間が予めタイマーで設定した時間になるのを待って溶接を停止させる。また溶接電極に加わる電圧を検出して、この電圧が一定になるようにインバータをPWM制御する定電圧制御方式もある。この方式も溶接時間はタイマーで設定する。 さらに溶接電極の電流および電圧を同時に検出して、これらの積により電力を求め、この電力が一定になるようにインバータを制御する定電力制御方式も知られている(特許文献1)。   In such an inverter type, a current flowing through the welding electrode is detected, and the inverter is controlled by a power control (hereinafter also referred to as PWM control) by a PWM (Pulse Width Modulation) method or the like so that the current (effective value) becomes constant. There is a constant current control method. In this method, the welding is stopped after the current flowing through the welding electrode reaches a time set in advance by a timer. There is also a constant voltage control method in which a voltage applied to the welding electrode is detected and the inverter is PWM controlled so that this voltage becomes constant. This method also sets the welding time with a timer. Furthermore, a constant power control method is also known in which the current and voltage of the welding electrode are detected at the same time, power is obtained from the product of these, and the inverter is controlled so that this power is constant (Patent Document 1).

このように溶接電流、電圧、電力などをインバータに負帰還させる場合に、溶接電流などが予定した設定パターンとなるようにインバータをPWM制御するものも公知である。この場合には負帰還回路では、溶接電流、溶接電圧、溶接電力などの変動に対する比例値、積分値、微分値を求め、これらに所定の重み係数を積算した総和を負帰還量とすることも公知である(PID制御;特許文献2)。   When the welding current, voltage, power, and the like are negatively fed back to the inverter as described above, it is also known that the inverter is PWM controlled so that the welding current has a predetermined setting pattern. In this case, in the negative feedback circuit, a proportional value, an integral value, and a differential value with respect to fluctuations in the welding current, welding voltage, welding power, etc. are obtained, and the sum total obtained by adding a predetermined weight coefficient to these values may be used as the negative feedback amount. Known (PID control; Patent Document 2).

特開2001−30084号公報Japanese Patent Laid-Open No. 2001-30084 特開2002−160071号公報JP 2002-160071 A

しかしPID制御においては、次のような問題が有る。溶接電流などは所定設定パターンからの変動量すなわち偏差(絶対値を含む)が小さい時には、制御がスムーズで目標とする設定パターンに良く追従した制御が行われていると考えられるが、溶接部の異常などの外乱が発生するとこの偏差の変動量が大きくなることがあり、この時には制御が激しく暴れるような状態(例えば発振・共振しかかっている状態)が生じることがある。   However, PID control has the following problems. When the fluctuation amount, ie, deviation (including absolute value) of the welding current, etc., is small, it is considered that the control is smooth and the control well following the target setting pattern is performed. When a disturbance such as an abnormality occurs, the amount of variation of the deviation may increase. At this time, a state in which control is severely exposed (for example, a state in which oscillation or resonance is about to occur) may occur.

このような状態は、実際の制御パターンを目標値(設定パターン)に早く近づかせるために比例値(P値)、積分値(I値)、微分値(D値)などを大きく設定した(負帰還量を大きくした)場合や、設定パターンに無理があるような場合(電源の追従能力を超える制御パターンの波形設定をしたような場合など)に生じ得る。   In such a state, a proportional value (P value), an integral value (I value), a differential value (D value), etc. are set large (negative) in order to make the actual control pattern approach the target value (setting pattern) quickly. This may occur when the feedback amount is increased) or when the setting pattern is impossible (such as when the waveform of a control pattern exceeding the power tracking capability is set).

ここに外乱としては、溶接箇所でのワークの溶け易さのバラツキが大きく溶接部の抵抗値が想定外の変化を見せた時、ワークの酸化膜や汚れや表面状態(荒れ)などの変化で接触抵抗が不安定な時などに発生することが考えられる。このような溶接異常の発生は、従来は例えばスプラッシュ(スパーク、溶接飛沫)の発生を見てスプラッシュの発生頻度が高いことなどから気付くことができるが、これではスプラッシュ発生後の事後判断となり、溶接異常の発生を予測して予防することが困難であり、高精度な溶接に対応ができないという問題が有る。   Here, as disturbance, when there is a large variation in the ease of melting of the workpiece at the weld location and the resistance of the weld shows unexpected changes, changes in the oxide film, dirt, surface condition (roughness) of the workpiece, etc. This may occur when the contact resistance is unstable. The occurrence of such welding abnormalities can be noticed from the fact that, for example, the occurrence of splash (sparks and splashes) is high, and the occurrence of such splashes can be noticed. It is difficult to predict and prevent the occurrence of abnormalities, and there is a problem that high-precision welding cannot be handled.

この発明はこのような事情に鑑みなされたものであり、PID制御の負帰還量の設定が不適切であったり、溶接条件の外乱などにより発生する溶接不良を予測して、負帰還回路におけるPID制御要素(比例、積分、微分)の重み付けなどを的確に設定するなどの対応策をとれるようにした抵抗溶接機の制御方法を提供することを第1の目的とする。またこの抵抗溶接機を提供することを第2の目的とする。   The present invention has been made in view of such circumstances, and predicts welding defects caused by improper setting of the negative feedback amount of PID control or disturbance of welding conditions, and the like in the negative feedback circuit. It is a first object of the present invention to provide a control method for a resistance welder that can take countermeasures such as appropriately setting weights of control elements (proportional, integral, differential). The second object is to provide this resistance welder.

本発明によれば第1の目的は、直流出力をインバータによって交流に変換して溶接トランスの一次側に導き、この溶接トランスで降圧された二次側交流出力を全波整流器を介し溶接電極に導いて溶接を行う抵抗溶接機の制御方法において、
前記溶接電極の電流設定パターンを含む溶接条件を設定する一方、前記溶接電極の印加電圧および溶接電流を前記インバータに負帰還させ前記溶接条件に適合するように前記インバータをPWM制御し、この溶接電流と電流設定パターンとの偏差がゼロクロスする回数Nを積算して設定値N0と比較することによって制御の安定性を判別することを特徴とする抵抗溶接機の制御方法、により達成される。
According to the present invention, a first object is to convert a direct current output to an alternating current by an inverter and lead it to the primary side of the welding transformer, and to convert the secondary side alternating current output stepped down by the welding transformer to a welding electrode via a full-wave rectifier. In the control method of the resistance welding machine that guides and welds,
While setting the welding conditions including the current setting pattern of the welding electrode, the inverter is PWM-controlled so that the applied voltage and the welding current of the welding electrode are negatively fed back to the inverter so as to meet the welding condition, and this welding current The resistance welding machine control method is characterized in that the stability of control is determined by integrating the number N of times the deviation between the current setting pattern and the current setting pattern is zero-crossed and comparing it with the set value N 0 .

また第2の目的は、直流出力をインバータによって交流に変換して溶接トランスの一次側に導き、この溶接トランスで降圧された二次側交流出力を全波整流器を介し溶接電極に導いて溶接を行う抵抗溶接機の制御装置において、
前記インバータの出力を制御するPWM制御部と、溶接電極の印加電圧および電流を検出して前記PWM制御部に負帰還する増幅乗算部と、制御モードに対応する制御プログラムを選択するためのプログラム選択入力部と、選択された前記制御プログラムに基づいて溶接電流の電流設定パターンを求め前記PWM制御部に送出する溶接条件設定部と、ゼロクロス回数の設定値N0を入力するモニタリング条件入力部と、前記増幅乗算部で検出した溶接電流を前記電流設定パターンと比較してゼロクロスの検出回数を積算するゼロクロス検出部と、ゼロクロスの積算値Nを前記ゼロクロス設定値N0と比較して制御の安定性を判定する比較判定部と、を備えることを特徴とする抵抗溶接機の制御装置、により達成される。
The second purpose is to convert the direct current output to alternating current by an inverter and lead it to the primary side of the welding transformer. The secondary side alternating current output stepped down by this welding transformer is guided to the welding electrode via the full-wave rectifier and welded. In the resistance welding machine control device to perform,
A PWM control unit that controls the output of the inverter, an amplification multiplication unit that detects the applied voltage and current of the welding electrode and negatively feeds back to the PWM control unit, and a program selection for selecting a control program corresponding to the control mode An input unit, a welding condition setting unit that obtains a current setting pattern of a welding current based on the selected control program and sends it to the PWM control unit, a monitoring condition input unit that inputs a set value N 0 of the number of zero crosses, Comparing the welding current detected by the amplification multiplication unit with the current setting pattern and integrating the number of zero cross detections, and comparing the zero cross integration value N with the zero cross setting value N 0 to control stability It is achieved by a resistance welding machine control device comprising a comparison / determination unit for determining whether or not.

第1の発明によれば、溶接電極の電流設定パターンを含む溶接条件を設定する一方、溶接電極の印加電圧および溶接電流をインバータに負帰還させ前記溶接条件に適合するように前記インバータをPWM制御し、この溶接電流と電流設定パターンとの偏差がゼロクロスする回数Nを積算して設定値N0と比較することによって制御の安定性を判別するから、例えばN>N0の時に制御系が不安定であると判定し、PWM制御の負帰還量を変更することなどにより制御系を安定させることができる。また電流などの設定パターンに制御が無理なパターンを含んでいる時にはこのパターンを変更することにより制御系を安定させることもできる。
第2の発明によれば、この制御方法の実施に直接使用する抵抗溶接機が得られる。
According to the first invention, while setting the welding conditions including the current setting pattern of the welding electrode, the inverter is PWM-controlled so that the applied voltage and welding current of the welding electrode are negatively fed back to the inverter and adapted to the welding condition. and, since that determines the stability of the control by the deviation between the welding current and the current setting pattern is compared with a set value N 0 by integrating the number of times N to the zero-crossing, for example, the control system when N> N 0 is not It can be determined that the control system is stable, and the control system can be stabilized by changing the negative feedback amount of the PWM control. Further, when a set pattern such as a current includes a pattern that cannot be controlled, the control system can be stabilized by changing the pattern.
According to the second aspect of the present invention, a resistance welder that is directly used for carrying out this control method is obtained.

本発明の実施例である抵抗溶接機の外観図1 is an external view of a resistance welder that is an embodiment of the present invention. その回路構成ブロック図Its circuit configuration block diagram 同じくその動作を示す流れ図Flow chart showing the operation 溶接電流の変動と電流設定パターンとを示す図Diagram showing welding current fluctuation and current setting pattern

溶接の良否は、N>N0の時に前記溶接条件の変更を促すための警告を出力するように構成することができる(請求項2)。溶接機の操作者は、この警告(アラーム)により溶接条件変更の必要性を知ることができるので、その後の溶接不良の発生を事前に防ぐことが可能になる。なおゼロクロス回数Nを積算する監視範囲と前記設定値N0とを設定可能にすることにより、例えば溶接初期や溶接末期の電流不安定時を監視範囲から除外することにより、制御精度を向上させることができる(請求項3)。 The quality of the welding can be configured to output a warning for prompting the change of the welding conditions when N> N 0 (Claim 2). Since the operator of the welding machine can know the necessity of changing the welding conditions by this warning (alarm), it becomes possible to prevent the occurrence of subsequent welding defects in advance. In addition, by making it possible to set the monitoring range in which the number of zero crossings N is integrated and the set value N 0 , for example, by excluding the current unstable state at the initial stage of welding or the end of welding from the monitoring range, the control accuracy can be improved. (Claim 3).

ゼロクロス回数の積算値Nと共に、溶接電流の電流設定パターからの偏差Dを求め、この偏差Dの絶対値を設定値D0と比較することにより制御の安定性を判別してもよい(請求項4)。この場合には、ゼロクロス回数Nが設定値N0以上になった時だけだけでなく、偏差Dの変動幅が過大(設定値±D0の範囲外)になった時にも警告を出して溶接条件変更の必要性を知らせることができるので、制御不安定性の検出精度が一層向上する。前記インバータは、溶接電圧および溶接電流の負帰還量をPID制御すると共に、前記溶接条件の変更はこれらPID制御の重み係数を変化させることにより行うことができる(請求項5)。 The stability D of the control may be determined by obtaining a deviation D of the welding current from the current setting pattern together with the integrated value N of the number of times of zero crossing and comparing the absolute value of this deviation D with the setting value D 0. 4). In this case, not only when the number of zero crossings N exceeds the set value N 0 , but also when the fluctuation range of the deviation D becomes excessive (out of the set value ± D 0 range), a warning is issued and welding is performed. Since the necessity of condition change can be notified, the detection accuracy of control instability is further improved. The inverter performs PID control of the negative feedback amount of the welding voltage and welding current, and the welding condition can be changed by changing the weighting coefficient of these PID controls.

図1において符号10はコントローラ、12は溶接トランスケース、14は溶接ヘッドである。コントローラ10は電源スイッチ16、プログラム選択入力部18、表示パネル20を持つ。プログラム選択入力部18では、例えば定電流制御、低電圧制御、定電力制御、固定パルス幅制御などのいずれかの制御モードを選択する。   In FIG. 1, reference numeral 10 is a controller, 12 is a welding transformer case, and 14 is a welding head. The controller 10 has a power switch 16, a program selection input unit 18, and a display panel 20. The program selection input unit 18 selects one of control modes such as constant current control, low voltage control, constant power control, and fixed pulse width control.

溶接ヘッド14は、上下動可能な上のクランプ部22aと、所定高さに固定された下のクランプ部22bを持ち、これらのクランプ部22a,22bにそれぞれ溶接電極24a,24bが固定されている。各電極24a,24bはウェルドケーブル26によって溶接トランスケース12に収容された溶接トランス28(図2)の二次側に整流器であるダイオード30、30(図2)を介して接続されている。この溶接トランス28の一次側はパワーケーブル32(図1)によってコントローラ10に接続されている。   The welding head 14 has an upper clamp portion 22a that can move up and down, and a lower clamp portion 22b that is fixed to a predetermined height, and welding electrodes 24a and 24b are fixed to the clamp portions 22a and 22b, respectively. . Each electrode 24a, 24b is connected to the secondary side of the welding transformer 28 (FIG. 2) accommodated in the welding transformer case 12 by a weld cable 26 via diodes 30 and 30 (FIG. 2) as rectifiers. The primary side of the welding transformer 28 is connected to the controller 10 by a power cable 32 (FIG. 1).

溶接ヘッド14の可動クランプ部22aは、ばね(図示せず)を介してエアシリンダ(共に図示せず)により上下に駆動される。また両電極24a,24bの間にはワークの溶接部(図示せず)が置かれる。   The movable clamp portion 22a of the welding head 14 is driven up and down by an air cylinder (both not shown) via a spring (not shown). A welded part (not shown) of the workpiece is placed between the electrodes 24a and 24b.

足踏みスイッチ(図示せず)から送られるオン信号はアクチュエータケーブル34を介してコントローラ10に送られ、この信号(押圧信号)によってエアシリンダは作動する。そして電極24a,24bの溶接部に対する押圧力が一定値になるとリミットスイッチ(図示せず)がオンとなり、このオン信号がアクチュエータケーブル34を介してコントローラ10に送られる(図3のステップS100)。コントローラ10はこのオン信号に基づいて溶接動作を開始させる。すなわちこのオン信号がスタート信号となる。   An ON signal sent from a foot switch (not shown) is sent to the controller 10 via the actuator cable 34, and the air cylinder is operated by this signal (pressing signal). When the pressing force of the electrodes 24a, 24b against the welded portion becomes a constant value, a limit switch (not shown) is turned on, and this on signal is sent to the controller 10 via the actuator cable 34 (step S100 in FIG. 3). The controller 10 starts a welding operation based on this ON signal. That is, this ON signal becomes a start signal.

図1で36はウェルドセンスケーブルであり、溶接トランス28の二次側電流を示す信号をコントローラ10に導く。この信号は溶接電流値を示す信号である。38は電圧検出用ケーブルであり、クランプ部22a,22bに接続されている。このケーブル38は電極24a,24b間の電圧を検出してコントローラ10に導く。   In FIG. 1, reference numeral 36 denotes a weld sense cable, which guides a signal indicating the secondary side current of the welding transformer 28 to the controller 10. This signal is a signal indicating the welding current value. A voltage detection cable 38 is connected to the clamp portions 22a and 22b. The cable 38 detects the voltage between the electrodes 24 a and 24 b and guides it to the controller 10.

次にコントローラ10の主回路を図2に基づいて説明する。この図で40は3相交流電源などの電源である。この電源40から3つの相がそれぞれ電源スイッチ16(図1)を介してインバータ42に導かれる。   Next, the main circuit of the controller 10 will be described with reference to FIG. In this figure, reference numeral 40 denotes a power source such as a three-phase AC power source. Three phases are led from the power source 40 to the inverter 42 via the power switch 16 (FIG. 1).

インバータ42は、4個のNPNトランジスタからなるブリッジで構成される。このインバータ42は電源40の三相交流をダイオード(図示せず)にて整流し、ダイオード(図示せず)で平滑した直流電源をPWM制御して高周波数の電流に変換し、溶接トランス28の一次側に供給する。この溶接トランス28の二次側出力は整流器のダイオード30、30で全波整流され、溶接電極24a,24bに導かれる。   The inverter 42 is constituted by a bridge composed of four NPN transistors. This inverter 42 rectifies the three-phase alternating current of the power supply 40 with a diode (not shown), and converts the direct current power supply smoothed with the diode (not shown) into a high-frequency current by PWM control. Supply to the primary side. The secondary output of the welding transformer 28 is full-wave rectified by the diodes 30 and 30 of the rectifier and guided to the welding electrodes 24a and 24b.

44はPWM制御部であり、インバータ42をPWM(Pulse Width Modulation)方式によって電力制御する。なおこのPWM制御部44は、例えば定電流、定電圧、定電力、固定パルス幅などの4種の異なる制御方式を選択可能である。この選択は前記したプログラム選択入力部18(図1、2)で行う。これらの制御方式については、特許文献1に詳細に説明されているのでここでは説明しない。   A PWM control unit 44 controls the power of the inverter 42 by a PWM (Pulse Width Modulation) method. The PWM control unit 44 can select four different control methods such as constant current, constant voltage, constant power, and fixed pulse width. This selection is performed by the program selection input unit 18 (FIGS. 1 and 2). Since these control methods are described in detail in Patent Document 1, they will not be described here.

PWM制御部44は、選択された方式に対応するプログラムで設定される溶接条件に基づいてインバータ42のトランジスタをオン/オフ制御する。この溶接条件は、電流設定パターンA(図4に点線で示す)を含み、溶接条件設定部46で設定される。図2で48は増幅乗算部であり、前記溶接電極24a、24bに流れる溶接電流Iと両電極間の溶接電圧Vを示す信号i、vを増幅し、またこれらの乗算により電力Wを算出する。これら電流I、電圧V、電力WはPWM制御部44に導かれ、ここで前記したように選択されたプログラムに従ってPID制御の比例成分P、積分成分I、微分成分Dの各成分を重み付けし、負帰還量が算出される。   The PWM control unit 44 performs on / off control of the transistor of the inverter 42 based on a welding condition set by a program corresponding to the selected method. This welding condition includes a current setting pattern A (indicated by a dotted line in FIG. 4) and is set by the welding condition setting unit 46. In FIG. 2, reference numeral 48 denotes an amplification multiplier, which amplifies the signals i and v indicating the welding current I flowing through the welding electrodes 24a and 24b and the welding voltage V between both electrodes, and calculates the power W by multiplying them. . These current I, voltage V, and power W are led to the PWM control unit 44, and according to the program selected here, the proportional component P, integral component I, and differential component D of PID control are weighted. A negative feedback amount is calculated.

50はゼロクロス検出部であり、前記溶接条件設定部46で求めた電流設定パターンAと、増幅乗算部48で求めた実際の溶接電流波形I(図4の実線)とを比較して、両者の偏差を取り、この偏差のゼロクロスを検出し、予め設定した監視範囲a(図4)内での交差回数(ゼロクロス回数)を積算する。この積算値Nは、比較判定部52で基準値N0と比較され、N>N0であれば制御が不適切であるとしてその結果を比較判定結果出力部54に出力すると共に警告表示部56により警告音などで警告する。 Reference numeral 50 denotes a zero cross detection unit, which compares the current setting pattern A obtained by the welding condition setting unit 46 with the actual welding current waveform I obtained by the amplification multiplication unit 48 (solid line in FIG. 4). The deviation is taken, the zero crossing of this deviation is detected, and the number of crossings (zero crossing number) within the preset monitoring range a (FIG. 4) is integrated. The integrated value N is compared with the reference value N 0 by the comparison / determination unit 52, and if N> N 0 , it is determined that control is inappropriate and the result is output to the comparison / determination result output unit 54 and a warning display unit 56. To warn with a warning sound.

この警告を受けて操作者はPWM制御部44に負帰還する前記PID制御の各成分の重み付けを修正し、ゼロクロス回数の積算値Nが設定値N0を超えないように設定する。なおこの設定値N0は、モニタリング条件入力部58で入力され、設定値メモリ60に記憶しておく。 Operator receiving this warning modifies the weighting of the components of the PID control for negative feedback to the PWM controller 44 is set so as cumulative value N of the zero crossing count is not greater than the set value N 0. The set value N 0 is input by the monitoring condition input unit 58 and stored in the set value memory 60.

なおこのモニタリング条件入力部58では偏差の変動幅の許容範囲を決める基準値±D0も設定しておき、この基準値D0は前記ゼロクロス検出部50に送られて、ここで溶接電流の偏差Dがこの基準値の幅すなわち±D0の幅内にあるか否かを検出する。この場合基準値D0は、偏差Dの変動幅が過大であるか否かを求めるためのしきい値である。この偏差Dの絶対値|D|が基準値±D0の幅より大なら偏差Dは過大で制御不安定であり、基準値±D0の幅内にあれば制御安定と判定する。 The monitoring condition input unit 58 also sets a reference value ± D 0 that determines an allowable range of variation in deviation, and this reference value D 0 is sent to the zero cross detection unit 50, where the welding current deviation is determined. D detects whether within the width of the width or ± D 0 of the reference value. In this case, the reference value D 0 is a threshold value for determining whether or not the fluctuation range of the deviation D is excessive. If the absolute value | D | of the deviation D is larger than the width of the reference value ± D 0 , the deviation D is excessive and unstable, and if it is within the width of the reference value ± D 0 , it is determined that the control is stable.

次に動作を図2、3、4を用いて説明する。前記したように電極24a,24bの溶接部に対する押圧力が一定値になるとリミットスイッチ(図示せず)がオンとなり、このオン信号がアクチュエータケーブル34を介してコントローラ10に送られる(図3、ステップS100)。コントローラ10はこのオン信号に基づいて電源40に通電を開始し(ステップS102)、溶接動作を開始させる。   Next, the operation will be described with reference to FIGS. As described above, when the pressing force of the electrodes 24a and 24b against the welded portion becomes a constant value, a limit switch (not shown) is turned on, and this on signal is sent to the controller 10 via the actuator cable 34 (FIG. 3, step). S100). Based on this ON signal, the controller 10 starts energizing the power supply 40 (step S102) and starts the welding operation.

コントローラ10は、予めプログラム選択入力部18で選択された制御モードに対応する制御プログラムなどに対応して、溶接条件設定部46で溶接条件を設定する。この溶接条件は制御モードにより異なり、例えば定電流制御の場合には制御の目標となる電流設定パターンAを含む(ステップS104)。   The controller 10 sets welding conditions in the welding condition setting unit 46 in accordance with a control program corresponding to the control mode selected in advance by the program selection input unit 18. This welding condition differs depending on the control mode, and includes, for example, a current setting pattern A that is a control target in the case of constant current control (step S104).

PWM制御部44は、この溶接条件に従ってインバータ42の各トランジスタをオン・オフ制御し、高周波の所定電圧、電流を溶接トランス28の一次側に導く。溶接トランス28の二次側に誘起される交流は、ダイオード30、30によって全波整流され電極24a、24bに導かれ、溶接が始まる。   The PWM control unit 44 performs on / off control of each transistor of the inverter 42 according to the welding conditions, and guides a high-frequency predetermined voltage and current to the primary side of the welding transformer 28. The alternating current induced on the secondary side of the welding transformer 28 is full-wave rectified by the diodes 30 and 30 and guided to the electrodes 24a and 24b, and welding starts.

溶接電流iと溶接電圧vとが検出されて、増幅乗算部48に入力される。ここでこれら電流iと電圧vの信号が増幅されて電流I、電圧Vが求められ、またこれらの積である電力Wが算出される。PWM制御部44ではこれら電流I、電圧V、電力Wを用いて、PID制御の負帰還量を演算し、インバータ42をPWM制御する(ステップS106)。   The welding current i and the welding voltage v are detected and input to the amplification multiplier 48. Here, the signals of current i and voltage v are amplified to obtain current I and voltage V, and power W, which is the product of these, is calculated. The PWM control unit 44 uses these current I, voltage V, and power W to calculate the negative feedback amount of PID control, and performs PWM control of the inverter 42 (step S106).

増幅乗算部48で求めた電流Iと、溶接条件設定部46で設定した目標制御パターン(例えば定電流制御の場合には電流設定パターンA)とは、ゼロクロス検出部50に送られ、ここでこれらの偏差Dが検出される(ステップS108)。この偏差Dは、溶接時間に比べて十分に短い周期でサンプリングされる。この偏差Dは図4(A)に示すように、制御がスムーズ(安定)で適切である時には小さいが、同図(B)に示すように、制御が非スムーズ(不安定)であるときには正負に激しく変化する。   The current I obtained by the amplification multiplication unit 48 and the target control pattern set by the welding condition setting unit 46 (for example, current setting pattern A in the case of constant current control) are sent to the zero cross detection unit 50, where these Deviation D is detected (step S108). This deviation D is sampled at a period sufficiently shorter than the welding time. The deviation D is small when the control is smooth (stable) and appropriate as shown in FIG. 4A, but is positive and negative when the control is non-smooth (unstable) as shown in FIG. 4B. Changes drastically.

ゼロクロス検出部50では所定の監視範囲aにおいてこの偏差Dが正負に変化するゼロクロスを検出し(ステップS110)、その正負変化回数N、すなわちゼロクロス回数Nを積算する(ステップS112)。比較判定部52ではこのゼロクロス回数Nをメモリ60に記憶した設定値N0と比較し(ステップS114)、N>N0なら比較判定結果出力部54にブザーなどの音を出力すると共に、警告表示部56にアラーム表示する(ステップS116)。 The zero cross detector 50 detects a zero cross where the deviation D changes positively or negatively within a predetermined monitoring range a (step S110), and integrates the number N of positive / negative changes, that is, the zero cross number N (step S112). The comparison determination unit 52 compares the number of zero crossings N with the set value N 0 stored in the memory 60 (step S114). If N> N 0, the comparison determination result output unit 54 outputs a sound such as a buzzer and a warning display. An alarm is displayed on the unit 56 (step S116).

またこの実施例では、このゼロクロス検出部50で検出した偏差Dを、メモリ60から入力される基準値D0と比較し、偏差Dの絶対値|D|がこの基準値D0の幅より大となったこと(偏差Dの変動幅が基準値D0の正負の幅よりも過大になったこと)を検出して(ステップS118)、警告を発する(ステップS116)ようにしている。このようにゼロクロス回数Nを監視するだけでなく、偏差Dの変動幅(振幅)も監視しているので、制御が不安定になったことを高精度に検出することができる。 In this embodiment, the deviation D detected by the zero cross detector 50 is compared with the reference value D 0 input from the memory 60, and the absolute value | D | of the deviation D is larger than the width of the reference value D 0. to detect and became possible (that becomes excessive than the positive and negative of the width of the reference value D 0 fluctuation range of the deviation D) (step S118), a warning is in (step S116) as. Thus, not only the number of zero crossings N but also the fluctuation range (amplitude) of the deviation D is monitored, so that it is possible to detect with high accuracy that the control has become unstable.

以上のようにして比較判定部52で制御不安定と判定しなければ、溶接箇所の溶接に必要な溶接電流の通電が終了したか否かを判定し(ステップS120)、終了していなければさらにステップ106に戻って以上の動作を繰り返す。その途中で比較判定部52が制御不安定と判定すれば、たとえばコントローラ10の警告表示部56に溶接不良であることを表示し、溶接途中で制御安定と判定すれば溶接良好と表示して(ステップS122)、溶接動作を終了する(ステップS124)。   As described above, if the comparison / determination unit 52 does not determine that the control is unstable, it is determined whether or not energization of the welding current necessary for welding the welded portion is completed (step S120). Returning to step 106, the above operation is repeated. If the comparison determination unit 52 determines that the control is unstable in the middle, for example, the warning display unit 56 of the controller 10 indicates that the welding is defective, and if it determines that the control is stable during the welding, indicates that welding is good ( Step S122), the welding operation is terminated (Step S124).

10 コントローラ
18 プログラム選択入力部
28 溶接トランス
24a、24b 溶接電極
40 3相交流電源
42 インバータ
44 PWM制御部
46 溶接条件設定部
48 増幅乗算部
50 ゼロクロス検出部
52 比較判定部
54 比較判定結果出力部
56 警告表示部
58 モニタリング条件入力部
A 電流設定パターン(目標値パターン)
I 溶接電流波形
D 偏差
a 監視範囲
DESCRIPTION OF SYMBOLS 10 Controller 18 Program selection input part 28 Welding transformer 24a, 24b Welding electrode 40 Three-phase alternating current power supply 42 Inverter 44 PWM control part 46 Welding condition setting part 48 Amplification multiplication part 50 Zero cross detection part 52 Comparison determination part 54 Comparison determination result output part 56 Warning display 58 Monitoring condition input A Current setting pattern (target value pattern)
I Welding current waveform D Deviation a Monitoring range

Claims (6)

直流出力をインバータによって交流に変換して溶接トランスの一次側に導き、この溶接トランスで降圧された二次側交流出力を全波整流器を介し溶接電極に導いて溶接を行う抵抗溶接機の制御方法において、
前記溶接電極の電流設定パターンを含む溶接条件を設定する一方、前記溶接電極の印加電圧および溶接電流を前記インバータに負帰還させ前記溶接条件に適合するように前記インバータをPWM制御し、この溶接電流と電流設定パターンとの偏差がゼロクロスする回数Nを積算して設定値N0と比較することによって制御の安定性を判別することを特徴とする抵抗溶接機の制御方法。
A control method for a resistance welding machine that converts a direct current output to an alternating current by an inverter and leads it to a primary side of a welding transformer, and guides a secondary side alternating current output stepped down by the welding transformer to a welding electrode through a full-wave rectifier and performs welding. In
While setting the welding conditions including the current setting pattern of the welding electrode, the inverter is PWM-controlled so that the applied voltage and the welding current of the welding electrode are negatively fed back to the inverter so as to meet the welding condition, and this welding current A control method for a resistance welding machine, wherein the stability of control is determined by integrating the number N of times the deviation between the current setting pattern and the current setting pattern is zero-crossed and comparing it with a set value N 0 .
溶接の良否は、N>N0の時に前記溶接条件の変更を促すための警告を出力することを特徴とする請求項1の抵抗溶接機の制御方法。 The resistance welding machine control method according to claim 1, wherein a warning for prompting the change of the welding condition is output when the welding quality is N> N 0 . 前記ゼロクロス回数Nを積算する監視範囲と前記設定値N0とを設定可能にした請求項1の抵抗溶接機の制御方法。 The resistance welding machine control method according to claim 1, wherein a monitoring range in which the number of zero crossings N is integrated and the set value N 0 can be set. ゼロクロス回数の積算値Nと共に、溶接電流の電流設定パターンからの偏差Dを求め、この偏差Dが設定値±D0の範囲内にあることから制御の安定性を判別することを特徴とする請求項1の抵抗溶接機の制御方法。 The deviation D from the current setting pattern of the welding current is obtained together with the integrated value N of the number of times of zero crossing, and the stability of the control is determined because the deviation D is within the range of the set value ± D 0. Item 1. A resistance welding machine control method according to Item 1. 前記インバータは、溶接電圧および溶接電流の負帰還量をPID制御すると共に、前記溶接条件の変更はこれらPID制御の重み係数を変化させることにより行う請求項1の抵抗溶接機の制御方法。   2. The resistance welding machine control method according to claim 1, wherein the inverter performs PID control of a negative feedback amount of a welding voltage and a welding current, and the change of the welding condition is performed by changing a weight coefficient of the PID control. 直流出力をインバータによって交流に変換して溶接トランスの一次側に導き、この溶接トランスで降圧された二次側交流出力を全波整流器を介し溶接電極に導いて溶接を行う抵抗溶接機の制御装置において、
前記インバータの出力を制御するPWM制御部と、
溶接電極の印加電圧および電流を検出して前記PWM制御部に負帰還する増幅乗算部と、
制御モードに対応する制御プログラムを選択するためのプログラム選択入力部と、
選択された前記制御プログラムに基づいて溶接電流の電流設定パターンを求め前記PWM制御部に送出する溶接条件設定部と、
ゼロクロス回数の設定値N0を入力するモニタリング条件入力部と、
前記増幅乗算部で検出した溶接電流を前記電流設定パターンと比較してゼロクロスの検出回数を積算するゼロクロス検出部と、
ゼロクロスの積算値Nを前記ゼロクロス設定値N0と比較して制御の安定性を判定する比較判定部と、
を備えることを特徴とする抵抗溶接機の制御装置。
A control device for a resistance welding machine that converts DC output to AC by an inverter and leads it to the primary side of the welding transformer. The secondary AC output that is stepped down by the welding transformer is guided to the welding electrode via a full-wave rectifier and welded. In
A PWM controller for controlling the output of the inverter;
An amplification multiplier that detects the applied voltage and current of the welding electrode and negatively feeds back to the PWM controller;
A program selection input unit for selecting a control program corresponding to the control mode;
A welding condition setting unit for obtaining a current setting pattern of a welding current based on the selected control program and sending it to the PWM control unit;
A monitoring condition input unit for inputting a set value N 0 of the number of zero crossings;
A zero cross detection unit that integrates the number of zero cross detections by comparing the welding current detected by the amplification multiplication unit with the current setting pattern;
A comparison determination unit that compares the zero-cross integrated value N with the zero-cross set value N 0 to determine control stability;
A resistance welding machine control device comprising:
JP2014071693A 2014-03-31 2014-03-31 Control method and control apparatus for resistance welding machine Active JP6338420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014071693A JP6338420B2 (en) 2014-03-31 2014-03-31 Control method and control apparatus for resistance welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014071693A JP6338420B2 (en) 2014-03-31 2014-03-31 Control method and control apparatus for resistance welding machine

Publications (2)

Publication Number Publication Date
JP2015193020A true JP2015193020A (en) 2015-11-05
JP6338420B2 JP6338420B2 (en) 2018-06-06

Family

ID=54432581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014071693A Active JP6338420B2 (en) 2014-03-31 2014-03-31 Control method and control apparatus for resistance welding machine

Country Status (1)

Country Link
JP (1) JP6338420B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108883488A (en) * 2016-02-15 2018-11-23 诺维尔里斯公司 Method for improving the quality of aluminium resistance spot welding
US11421309B2 (en) 2015-10-30 2022-08-23 Novelis Inc. High strength 7xxx aluminum alloys and methods of making the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333380A (en) * 1991-03-06 1992-11-20 Elpatronic Ag Method of resistance welding and device executes method
JP2000084678A (en) * 1998-09-08 2000-03-28 Toshiba Fa Syst Eng Corp Control device for resistance welding machine
JP2002160071A (en) * 2000-11-28 2002-06-04 Nippon Avionics Co Ltd Welding machine and its controlling method
JP2007190594A (en) * 2006-01-20 2007-08-02 Nippon Avionics Co Ltd Welding machine and method of controlling the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333380A (en) * 1991-03-06 1992-11-20 Elpatronic Ag Method of resistance welding and device executes method
JP2000084678A (en) * 1998-09-08 2000-03-28 Toshiba Fa Syst Eng Corp Control device for resistance welding machine
JP2002160071A (en) * 2000-11-28 2002-06-04 Nippon Avionics Co Ltd Welding machine and its controlling method
JP2007190594A (en) * 2006-01-20 2007-08-02 Nippon Avionics Co Ltd Welding machine and method of controlling the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11421309B2 (en) 2015-10-30 2022-08-23 Novelis Inc. High strength 7xxx aluminum alloys and methods of making the same
CN108883488A (en) * 2016-02-15 2018-11-23 诺维尔里斯公司 Method for improving the quality of aluminium resistance spot welding

Also Published As

Publication number Publication date
JP6338420B2 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
JPS6317032B2 (en)
JP6338420B2 (en) Control method and control apparatus for resistance welding machine
JP2011062730A (en) Device for and method of monitoring resistance welding
JP3669559B2 (en) Resistance welding machine
JP2013010105A (en) Resistance welding method and resistance welding apparatus
CN110891723A (en) Arc welding machine
US11077514B2 (en) Systems and methods to reduce magnetic flux in a transformer in a switched mode power supply
JPH0947883A (en) Controller for inverter type resistance welding
TWI411483B (en) Welding anomaly detection method, seam welding abnormal detection device, seam welding device
JP5047707B2 (en) Power supply for arc welding
CN111630764A (en) Power supply device and welding power supply device
JPH0644542Y2 (en) Inverter resistance welding machine control or measuring device
JP6444271B2 (en) AC output inverter welding machine
JP6529232B2 (en) Welding current measuring device, resistance welding monitoring device and resistance welding control device
WO2020095501A1 (en) Inverter power source device
JP3752947B2 (en) Control device and method for resistance welding machine
JP2022099369A (en) Consumable electrode arc welding power supply
US20200384566A1 (en) Constant current control systems and methods
JP7198558B2 (en) Pulse arc welding control method
KR101729607B1 (en) Resistance Spot Welding System Using Dynamic Resistance Characteristics for Weld Quality Improvement and Method for Power Supply for Resistance Spot Welding System
JP5871603B2 (en) Resistance welding machine and control method thereof
JP2005238267A (en) Welding monitor
JP2022137453A (en) Resistance-welding electric power supply
JP3136987B2 (en) Control apparatus and method for resistance welding machine
JP2022080333A (en) Consumable electrode arc welding power source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180508

R150 Certificate of patent or registration of utility model

Ref document number: 6338420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250