JP2013122340A - Hot water storage tank and heat pump type hot water supply machine - Google Patents

Hot water storage tank and heat pump type hot water supply machine Download PDF

Info

Publication number
JP2013122340A
JP2013122340A JP2011270805A JP2011270805A JP2013122340A JP 2013122340 A JP2013122340 A JP 2013122340A JP 2011270805 A JP2011270805 A JP 2011270805A JP 2011270805 A JP2011270805 A JP 2011270805A JP 2013122340 A JP2013122340 A JP 2013122340A
Authority
JP
Japan
Prior art keywords
hot water
storage tank
water storage
heat exchanger
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011270805A
Other languages
Japanese (ja)
Inventor
Masahito Watanabe
将人 渡辺
Misao Fujitsuka
操 藤塚
Kazutoshi Ota
和利 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011270805A priority Critical patent/JP2013122340A/en
Publication of JP2013122340A publication Critical patent/JP2013122340A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress scale from sticking to a heat exchanger, in a hot water storage tank having the heat exchanger therein.SOLUTION: The hot water storage tank has a hot water storage tank body having a water supply channel and a hot water discharge channel, the heat exchanger arranged in the hot water storage tank and exchanging heat between a refrigerant flowing through the inside of the tank and water in the hot water storage tank, an electrode arranged in the hot water storage tank, and a power source connecting the heat exchanger and the electrode. The power source energizes the heat exchanger and the electrode, thereby the electrode functions as a positive electrode and the heat exchanger functions as the negative electrode relative to the electrode, or the electrode functions as the negative electrode and the heat exchanger functions as the positive electrode relative to the electrode. It is possible to suppress the scale from sticking to the heat exchanger and accordingly it is also possible to suppress heat exchanging efficiency from being lowered in use for a long period by making the heat exchanger itself function as the electrode.

Description

本発明は、内部に熱交換器を備える貯湯タンク、及びこの貯湯タンクを用いたヒートポンプ式温水給湯機に関する。   The present invention relates to a hot water storage tank having a heat exchanger therein, and a heat pump hot water hot water heater using the hot water storage tank.

冷媒を利用したヒートポンプ式温水給湯機の加熱方式として、貯湯タンク内に設けられた熱交換器に熱源機からの冷媒を供給し、熱交換器を介してこの冷媒から貯湯タンク内の水に熱カロリーを与えることにより、貯湯タンク内の水を加熱するものがある。貯湯タンク内の水を加熱する場合、水の加熱過程で水中の溶解塩類が濃縮されてその濃度が上昇する。その結果、炭酸カルシウムやシリカに代表されるスケール成分が析出して熱交換器に固着し、伝熱効率の低下を生じる。特に、炭酸カルシウムは、45℃以上の水温においてより顕著に析出することから、熱交換器に極めて容易に固着し、熱交換効率の低下を引き起こす。一方、シリカは酸性度が上昇すると析出するため、循環システム配管等で問題になる。   As a heating method of a heat pump type hot water hot water heater using a refrigerant, the refrigerant from the heat source unit is supplied to the heat exchanger provided in the hot water storage tank, and the heat from the refrigerant to the water in the hot water tank is supplied through the heat exchanger. Some heat the water in a hot water tank by giving calories. When the water in the hot water storage tank is heated, dissolved salts in the water are concentrated in the process of heating the water, and the concentration increases. As a result, scale components typified by calcium carbonate and silica are deposited and fixed to the heat exchanger, resulting in a decrease in heat transfer efficiency. In particular, calcium carbonate precipitates more remarkably at a water temperature of 45 ° C. or higher, and therefore adheres very easily to the heat exchanger, causing a decrease in heat exchange efficiency. On the other hand, since silica precipitates when the acidity rises, it becomes a problem in circulation system piping and the like.

このような課題に対して、スケール防止剤等の薬剤を投入して、スケールの固着を抑制する方法がある。しかしながら、給湯の使用目的が家庭用であり直接人体に対して使用する場合には、投入した薬剤による肌荒れや経口摂取の可能性がある。   In order to solve such a problem, there is a method for suppressing the sticking of the scale by introducing a chemical such as a scale inhibitor. However, when the purpose of using the hot water supply is for home use and is used directly on the human body, there is a possibility of rough skin or ingestion by the added medicine.

薬剤を使用しないスケール防止法として、水中に溶解している二酸化炭素を水中に溶出させた金属イオンと反応させて、加熱部における炭酸カルシウムの生成・析出を抑制させる方法がある。例えば、一対の金属電極間に電流を発生させて、スケール防止効果のあるアルミニウムイオンの金属イオンを水中に溶出させる。アルミニウムイオンは炭酸カルシウムの生成・析出を抑制することから、陰極と陽極にステンレスとアルミニウム又はカーボンとアルミニウムを用いることで、水中にアルミニウムを溶出させて熱交換器へのスケールの付着を抑制することができる。また、外部電源を用いて一対の銅電極に直流電圧を印加して銅イオンを溶出させ、スケールを防止する方法もある(特許文献1参照)。   As a scale prevention method that does not use a chemical, there is a method in which carbon dioxide dissolved in water is reacted with metal ions eluted in water to suppress the formation and precipitation of calcium carbonate in the heating section. For example, an electric current is generated between a pair of metal electrodes, and metal ions of aluminum ions having an effect of preventing scale are eluted in water. Since aluminum ions suppress the formation and precipitation of calcium carbonate, by using stainless steel and aluminum or carbon and aluminum for the cathode and anode, aluminum is eluted in the water and the adhesion of scale to the heat exchanger is suppressed. Can do. There is also a method for preventing scale by applying a direct current voltage to a pair of copper electrodes using an external power source to elute copper ions (see Patent Document 1).

一方、タンク内に加熱用の熱交換器を有するヒートポンプ式温水給湯機においては、長期使用により炭酸カルシウムを主体とするスケールが熱交換器に付着し、熱交換効率の低下が避けられない。連続的・長期的な運転状況下では、特許文献1に開示の技術を用いても、主たる加熱部である熱交換器へのスケールの付着を避けることは困難である。   On the other hand, in a heat pump hot water water heater having a heat exchanger for heating in a tank, a scale mainly composed of calcium carbonate adheres to the heat exchanger due to long-term use, and a decrease in heat exchange efficiency is inevitable. Under continuous and long-term operating conditions, it is difficult to avoid adhesion of scales to the heat exchanger, which is the main heating unit, even using the technique disclosed in Patent Document 1.

特開平6−296970号公報JP-A-6-296970

本発明は、内部に熱交換器を備える貯湯タンクにおいて、熱交換器へのスケールの付着を抑制することを課題とする。   This invention makes it a subject to suppress adhesion of the scale to a heat exchanger in the hot water storage tank provided with a heat exchanger inside.

本発明の貯湯タンクは、給水口及び出湯口を有する貯湯タンク本体と、貯湯タンク本体内に配置され内部に流れる冷媒と貯湯タンク内の水とを熱交換させる熱交換器と、貯湯タンク本体内に配置される電極と、熱交換器と電極とを接続する電源部とを備え、電源部が熱交換器及び電極に通電することにより、電極が陽極電極として機能し熱交換器が電極に対する陰極電極として機能する、又は、電極が陰極電極として機能し熱交換器が電極に対する陽極電極として機能する。   The hot water storage tank of the present invention includes a hot water storage tank main body having a water supply port and a hot water outlet, a heat exchanger that is arranged in the hot water storage tank main body and exchanges heat between water flowing in the hot water storage tank and water in the hot water storage tank, An electrode disposed on the heat exchanger and a power supply unit that connects the heat exchanger and the electrode. The power supply unit energizes the heat exchanger and the electrode, whereby the electrode functions as an anode electrode and the heat exchanger serves as a cathode for the electrode. It functions as an electrode, or the electrode functions as a cathode electrode and the heat exchanger functions as an anode electrode for the electrode.

本発明によれば、熱交換器自体を電極として機能させることにより、熱交換器へのスケール付着を抑制することができ、長期使用における熱交換効率の低下も抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, by making heat exchanger itself function as an electrode, scale adhesion to a heat exchanger can be suppressed and the fall of the heat exchange efficiency in long-term use can also be suppressed.

ヒートポンプ式温水給湯機の概略図。Schematic of a heat pump type hot water heater. 貯湯タンクの概略図。Schematic of a hot water storage tank. 犠牲陽極と貯湯タンク本体とを電気的に接続した図。The figure which electrically connected the sacrificial anode and the hot water storage tank main body. 吸着剤を配置した図。The figure which has arrange | positioned adsorption agent. 熱交換器と犠牲陽極の距離と電圧との関係を示す図。The figure which shows the relationship between the distance and voltage of a heat exchanger and a sacrificial anode. 貯湯タンクに対する熱交換器及び犠牲陽極の位置関係を示す図。The figure which shows the positional relationship of the heat exchanger and sacrificial anode with respect to a hot water storage tank.

本発明の第1の実施例について図1,図2,図4−図6を用いて説明する。図2は本実施例のヒートポンプ式温水給湯機の概略図である。図2が示す冷凍サイクルのうち左側の機能は概ね暖房運転時の空気調和機の室外機と同様である。つまり、本実施例のヒートポンプ式温水給湯機は、冷媒を高温高圧に圧縮する圧縮機9、冷房・暖房を切り替える四方弁10、ヒートポンプ暖房運転により大気中から熱量を吸収する大気側熱交換器11、及び、冷媒の圧力状態を制御する膨張弁12により冷凍サイクルを構成する。尚、給湯のみを考慮すると四方弁10は必ずしも必要ではない。   A first embodiment of the present invention will be described with reference to FIGS. 1, 2, and 4-6. FIG. 2 is a schematic diagram of the heat pump type hot water heater of this embodiment. The function on the left side of the refrigeration cycle shown in FIG. 2 is generally the same as that of the outdoor unit of the air conditioner during heating operation. That is, the heat pump type hot water hot water heater of the present embodiment includes a compressor 9 that compresses the refrigerant to a high temperature and a high pressure, a four-way valve 10 that switches between cooling and heating, and an atmospheric heat exchanger 11 that absorbs heat from the atmosphere by heat pump heating operation. And the refrigerating cycle is comprised by the expansion valve 12 which controls the pressure state of a refrigerant | coolant. In consideration of only hot water supply, the four-way valve 10 is not always necessary.

これらが冷媒配管により図2右部の貯湯タンク1に接続される。ヒートポンプ運転により貯湯タンク1内部の熱交換器4に高温高圧の冷媒を流入させてタンク内の水と熱交換し、タンク内の水を加熱して湯とする。   These are connected to the hot water storage tank 1 on the right side of FIG. A high-temperature and high-pressure refrigerant is caused to flow into the heat exchanger 4 in the hot water storage tank 1 by heat pump operation to exchange heat with the water in the tank, and the water in the tank is heated to make hot water.

貯湯タンク1の内部には給水経路3に接続された給水口より水が供給され満水の状態が維持される。使用者がシャワー等の給水設備を使用すると出湯口から出湯経路2を介して給水設備に湯が供給され、使用した水量が新たに給水経路3より供給される。給水された水は貯湯タンク1に配置された複数の温度検出装置(図示せず)により温度が検知され、この検知結果に基づいて、制御部(図示せず)が圧縮機9の運転を制御する。   Water is supplied into the hot water storage tank 1 from a water supply port connected to the water supply path 3 to maintain a full state. When the user uses a water supply facility such as a shower, hot water is supplied from the hot water outlet to the water supply facility via the hot water supply route 2, and the amount of water used is newly supplied from the water supply route 3. The temperature of the supplied water is detected by a plurality of temperature detection devices (not shown) arranged in the hot water storage tank 1, and a control unit (not shown) controls the operation of the compressor 9 based on the detection result. To do.

図1は本実施例の貯湯タンクの概略図である。貯湯タンク1に対して貯湯タンク1上部に出湯経路2を備え、貯湯タンク1に対して貯湯タンク1下部に給水経路3を備える。   FIG. 1 is a schematic view of a hot water storage tank of the present embodiment. The hot water storage tank 1 is provided with a hot water discharge path 2 at the upper part of the hot water storage tank 1 and the hot water storage tank 1 is provided with a water supply path 3 at the lower part of the hot water storage tank 1.

貯湯タンク1内には圧縮機9から吐出された高温高圧の冷媒が供給される熱交換器4が配置され、熱交換器4は熱交換器絶縁部5を介して貯湯タンク1に固定される。また、貯湯タンク1内には熱交換器4よりも下方に犠牲陽極6が配置され、犠牲陽極6は犠牲陽極絶縁部7を介して貯湯タンク1に固定される。熱交換器絶縁部5及び犠牲陽極絶縁部7は貯湯タンク1を通電回路にしないために設けられる。直流電源部8は電子制御されたスイッチを内包し、制御部からの指令により熱交換器4と犠牲陽極6に電圧を印加する。   A heat exchanger 4 to which a high-temperature and high-pressure refrigerant discharged from the compressor 9 is supplied is disposed in the hot water storage tank 1, and the heat exchanger 4 is fixed to the hot water storage tank 1 through a heat exchanger insulating portion 5. . A sacrificial anode 6 is disposed below the heat exchanger 4 in the hot water storage tank 1, and the sacrificial anode 6 is fixed to the hot water storage tank 1 via a sacrificial anode insulating portion 7. The heat exchanger insulating part 5 and the sacrificial anode insulating part 7 are provided in order not to make the hot water tank 1 into an energizing circuit. The DC power supply unit 8 includes an electronically controlled switch, and applies a voltage to the heat exchanger 4 and the sacrificial anode 6 according to a command from the control unit.

熱交換器4により加熱された貯湯タンク1内の水は密度が小さくなり、貯湯タンク1内の上部に向けて循環する。従って、貯湯タンク1の下方に配置された熱交換器4周辺には比較的温度の低い水が集まるので、加熱効率が良い。   The water in the hot water storage tank 1 heated by the heat exchanger 4 has a reduced density and circulates toward the upper part in the hot water storage tank 1. Accordingly, water having a relatively low temperature collects around the heat exchanger 4 arranged below the hot water storage tank 1, so that the heating efficiency is good.

しかしながら、熱交換器4自体が圧縮機9から吐出された高温高圧の冷媒により加熱されるので、熱交換器4の周辺ではカルシウムイオン濃度が上昇して炭酸カルシウムが析出する。   However, since the heat exchanger 4 itself is heated by the high-temperature and high-pressure refrigerant discharged from the compressor 9, the calcium ion concentration is increased around the heat exchanger 4 and calcium carbonate is deposited.

これに対して、直流電源部8より熱交換器4と犠牲陽極6に電圧を印加することにより、犠牲陽極6から金属イオンが溶出して水中に取り込まれる。その結果、犠牲陽極6から溶出した金属イオンと水中の二酸化炭素が先に結合して粉末状のスケールを形成する。   On the other hand, when a voltage is applied to the heat exchanger 4 and the sacrificial anode 6 from the DC power supply unit 8, metal ions are eluted from the sacrificial anode 6 and taken into water. As a result, the metal ions eluted from the sacrificial anode 6 and carbon dioxide in the water are combined first to form a powdery scale.

例えば犠牲陽極6にアルミニウムを使用した場合、水中の二酸化炭素との結合物は炭酸アルミニウムであり、この炭酸アルミニウムは不定組成塩基性塩であることから、過渡的な生成物質として水中の水酸化物イオンによってさらに反応し、水酸化アルミニウムとなる。水酸化アルミニウムは水に対し不溶であり固着性がないので、犠牲陽極6周辺で生成した後、貯湯タンク1下部に粉末状にスラッジとして堆積する。   For example, when aluminum is used for the sacrificial anode 6, the combined substance with carbon dioxide in water is aluminum carbonate, and since this aluminum carbonate is an undefined basic salt, hydroxide in water is used as a transient product. It further reacts with ions to form aluminum hydroxide. Since aluminum hydroxide is insoluble in water and has no stickiness, it is generated around the sacrificial anode 6 and then deposited as sludge in the form of powder at the lower part of the hot water storage tank 1.

貯湯タンク1下部に堆積したスラッジは清掃により容易に取り除くことができる。また、給水設備に取り付けられたフィルタ式の浄水装置を用いても除去が可能である。尚、犠牲陽極6には、例えば、アルミニウム以外にも、鉄、亜鉛、銅、又は、これらの合金を用いることができる。   Sludge accumulated at the bottom of the hot water storage tank 1 can be easily removed by cleaning. Moreover, even if it uses the filter type water purifier attached to the water supply equipment, it can be removed. For the sacrificial anode 6, for example, iron, zinc, copper, or an alloy thereof can be used in addition to aluminum.

このように、犠牲陽極6近傍では、溶解した二酸化炭素を過渡的に反応させることで、カルシウムイオンとの継続的な結合を阻害して炭酸カルシウムスケールの析出を抑制する。また、熱交換器4の主材料を陽極よりもイオン化係数が小さい銅とし、表面処理を陽極よりもイオン化係数が小さいスズやニッケルとすることにより、陰極(熱交換器4)で電子の供給極を形成して水の電気分解が生じ、水素イオン及び気体水素の発生/誘因が励起され、熱交換器4周辺でのpHが上昇する。熱交換器4周辺でpHが上昇することにより、カルシウムイオンの熱交換器4周囲への移動を抑制できる。従って、カルシウムイオンの濃度が低下することに加えて、カルシウムイオンと二酸化炭素との結合を抑制し、且つ、カルシウムイオンの熱交換器4周囲への移動を抑制することから、熱交換器へのスケール付着を抑制することができる。   As described above, in the vicinity of the sacrificial anode 6, the dissolved carbon dioxide is allowed to react transiently, thereby inhibiting continuous binding with calcium ions and suppressing the precipitation of calcium carbonate scale. Moreover, the main material of the heat exchanger 4 is copper having an ionization coefficient smaller than that of the anode, and the surface treatment is tin or nickel having an ionization coefficient smaller than that of the anode, so that the cathode (heat exchanger 4) can supply electrons. Water is electrolyzed and the generation / incentive of hydrogen ions and gaseous hydrogen is excited, increasing the pH around the heat exchanger 4. By increasing the pH around the heat exchanger 4, it is possible to suppress the movement of calcium ions to the periphery of the heat exchanger 4. Therefore, in addition to the decrease in the concentration of calcium ions, the binding between calcium ions and carbon dioxide is suppressed, and the movement of calcium ions to the periphery of the heat exchanger 4 is suppressed. Scale adhesion can be suppressed.

さらに、カルシウムイオンが陰極で還元され単カルシウムが生成されたとしても、炭酸カルシウムと異なり熱交換器に固着することなく貯湯タンク1の底部に堆積する。   Furthermore, even if calcium ions are reduced at the cathode and single calcium is generated, unlike calcium carbonate, it is deposited on the bottom of the hot water storage tank 1 without being fixed to the heat exchanger.

さらには、pHの上昇により局所的なシリカスケールの発生も抑制できることから総合的なスケール抑制効果が高い。水道水は一般的には地熱熱水由来ではないが、シリカの析出はゼロではないことから一定の効果が期待できる。   Furthermore, since the generation of local silica scale can be suppressed by increasing the pH, the overall scale suppression effect is high. Tap water is generally not derived from geothermal hot water, but since silica deposition is not zero, a certain effect can be expected.

これらの原理により、熱交換器4へのスケールの付着が強力に抑制され、長期使用における熱交換器4の熱交換効率の低下を避けることができる。   By these principles, the adhesion of the scale to the heat exchanger 4 is strongly suppressed, and a decrease in the heat exchange efficiency of the heat exchanger 4 during long-term use can be avoided.

尚、本実施例においては、犠牲陽極6に対して熱交換器4を陰極電極としたが、これらの陽極電極及び陰極電極の極性を直流電源部8により反転させるようにしてもよい。   In this embodiment, the heat exchanger 4 is a cathode electrode with respect to the sacrificial anode 6, but the polarity of these anode electrode and cathode electrode may be reversed by the DC power supply unit 8.

また、発明者による検討の結果、温度検出装置(図示せず)による水温情報に基づいて直流電源の入切を制御することで、好適な防食及びスケール防止作用が得られることが判明した。具体的には熱交換器の先端部の水温が摂氏40〜85度の場合に通電することで、より効果的な防食及びスケール防止作用が得られる。   Further, as a result of examination by the inventors, it has been found that suitable anticorrosion and scale prevention effects can be obtained by controlling on / off of the DC power supply based on water temperature information by a temperature detection device (not shown). Specifically, when the water temperature at the tip of the heat exchanger is 40 to 85 degrees Celsius, more effective anticorrosion and scale prevention can be obtained.

図5は、熱交換器と犠牲陽極の距離と電圧との関係を示す図である。発明者による検討の結果、印加電圧と極間距離(熱交換器4先端部と犠牲陽極6高さ方向中心との距離)との間に好適な関係があることが判明した。具体的には極間距離が25センチメートルから80センチメートルの場合には印加電圧が1.5Vから5.0V程度で十分であり、この値より小さい場合はスケール付着防止効果に乏しく、大きい場合には電解反応が進行しすぎて水素や塩素の発生量が増えてしまい使用者の利便性を損ねる。従って、極間距離(熱交換器4先端部と犠牲陽極6高さ方向中心との距離)は25〜80センチメートルとし、熱交換器4及び犠牲陽極6への印加電圧は1.5〜5.0V程度が望ましい。   FIG. 5 is a diagram showing the relationship between the distance between the heat exchanger and the sacrificial anode and the voltage. As a result of examination by the inventors, it has been found that there is a suitable relationship between the applied voltage and the distance between the electrodes (the distance between the tip of the heat exchanger 4 and the center of the sacrificial anode 6 in the height direction). Specifically, when the distance between the electrodes is 25 centimeters to 80 centimeters, an applied voltage of about 1.5 V to 5.0 V is sufficient. In this case, the electrolytic reaction proceeds too much and the amount of hydrogen and chlorine generated increases, which impairs the convenience for the user. Therefore, the distance between the electrodes (distance between the tip of the heat exchanger 4 and the center of the sacrificial anode 6 in the height direction) is 25 to 80 cm, and the voltage applied to the heat exchanger 4 and the sacrificial anode 6 is 1.5 to 5 cm. About 0.0V is desirable.

図6は、貯湯タンクに対する熱交換器及び犠牲陽極の位置関係を示す図である。発明者による検討の結果、貯湯タンク1に対する熱交換器4及び犠牲陽極6の配置について好適な位置関係があることが判明した。具体的には貯湯タンク1を高さ方向で概ね五等分し、貯湯タンク1の底面から1/5,2/5,3/5,4/5,5/5とすると、熱交換器4の冷媒導入部が概ね貯湯タンク1の1/5〜2/5の位置にあり、熱交換器4の先端部(最奥部)が概ね貯湯タンク1底面〜貯湯タンク1の1/5までの位置にあり、かつ、犠牲陽極6が概ね貯湯タンク1の2/5〜3/5の位置に配置することで良好なスケール防止効果や熱交換効率を得ることができた。   FIG. 6 is a diagram showing the positional relationship between the heat exchanger and the sacrificial anode with respect to the hot water storage tank. As a result of the examination by the inventors, it has been found that there is a preferable positional relationship with respect to the arrangement of the heat exchanger 4 and the sacrificial anode 6 with respect to the hot water storage tank 1. Specifically, when the hot water storage tank 1 is divided into approximately five equal parts in the height direction, and 1/5, 2/5, 3/5, 4/5, 5/5 from the bottom surface of the hot water storage tank 1, the heat exchanger 4 The refrigerant introduction portion is approximately 1/5 to 2/5 of the hot water storage tank 1, and the front end (the deepest portion) of the heat exchanger 4 is approximately from the bottom of the hot water storage tank 1 to 1/5 of the hot water storage tank 1. In this position, the sacrificial anode 6 was disposed approximately at the position of 2/5 to 3/5 of the hot water storage tank 1, so that a good scale prevention effect and heat exchange efficiency could be obtained.

ここで、熱交換器4を、漏洩検知機構を備える二重管構造とすることができる。これにより、冷媒及び水の漏洩を検知することができるとともに、冷媒流入部と通電部を完全に分離することができる。一般に電流は表層を通過することが判明している。熱交換器においても直流電源部8からの電流は熱交換器の表層を流れる。一方で突然の電流の流入は意図しない火花等を発生する場合がある。熱交換器4に二重管を使用することで、これら火花の発生による冷媒の引火の可能性を極めて低くすることができる。また、万一、冷媒が漏洩する事態になっても、二重管方式の漏洩検知管であれば、貯湯タンク1内に冷媒が流出して圧力が急激に上昇することや、冷凍サイクルに含まれる冷凍機油等の流入も回避できることから、使用者の安全性が大きく向上する。貯湯タンク1の水側からの漏洩であっても冷凍サイクルと水が混入することがないので修理が容易である。   Here, the heat exchanger 4 can be made into the double pipe structure provided with a leak detection mechanism. Thereby, leakage of the refrigerant and water can be detected, and the refrigerant inflow portion and the energization portion can be completely separated. In general, it has been found that current passes through the surface layer. Also in the heat exchanger, the current from the DC power supply unit 8 flows through the surface layer of the heat exchanger. On the other hand, sudden inflow of current may cause unintended sparks. By using a double pipe for the heat exchanger 4, the possibility of the ignition of the refrigerant due to the generation of these sparks can be extremely reduced. Even if the refrigerant leaks, if it is a double pipe type leak detection pipe, the refrigerant will flow out into the hot water storage tank 1 and the pressure will rise rapidly, or it may be included in the refrigeration cycle. Therefore, the safety of the user is greatly improved. Even if it is a leak from the water side of the hot water storage tank 1, the refrigeration cycle and water are not mixed, so that repair is easy.

さらに、貯湯タンク1の上部又は出湯経路2の経路中に気体を捕集する空間を備え、その空間に少なくとも水素又は塩素を吸着する吸着剤を配置してもよい。本実施例では電解回路を使用しているため、水中の不純物に起因する水自身の電気分解が生じる。そのため、本発明の実施に際しては水の電気分解による水素及び消毒に使用する塩素の発生が予想され、発明者による検討においてもこれら水素及び塩素の発生が確認された。これらの気体は使用者が湯を使用することで蛇口等から放出されるが、配管内に留まると圧力変動やエアロックによる配水不良等の原因となる可能性があるので、可能な限り除去することが望ましい。そこで本実施例においては、貯湯タンク1の上部又は出湯経路2の経路中に気体を捕集するトラップを備え、その空間に少なくとも水素又は塩素を吸着する吸着剤を配置することにより、電気分解により発生する水素及び塩素を除去することとする。   Furthermore, a space for collecting gas may be provided in the upper part of the hot water storage tank 1 or in the route of the hot water supply route 2, and an adsorbent that adsorbs at least hydrogen or chlorine may be disposed in the space. In this embodiment, since an electrolytic circuit is used, the water itself is electrolyzed due to impurities in the water. For this reason, in the practice of the present invention, hydrogen generated by electrolysis of water and chlorine used for disinfection are expected, and the inventors have confirmed the generation of hydrogen and chlorine. These gases are released from faucets etc. when the user uses hot water, but if they remain in the piping, they may cause pressure fluctuations or poor water distribution due to air locks, so remove them as much as possible. It is desirable. Therefore, in this embodiment, a trap for collecting gas is provided in the upper part of the hot water storage tank 1 or in the outlet hot water path 2, and an adsorbent that adsorbs at least hydrogen or chlorine is disposed in the space, so The generated hydrogen and chlorine will be removed.

以上、本実施例の貯湯タンクは、給水経路及び出湯経路を有する貯湯タンク本体と、貯湯タンク本体内に配置され内部に流れる冷媒と貯湯タンク内の水とを熱交換させる熱交換器と、貯湯タンク本体内に配置される電極と、熱交換器と電極とを接続する電源部とを備え、電源部が熱交換器及び電極に通電することにより、電極が陽極電極として機能し熱交換器が電極に対する陰極電極として機能する、又は、電極が陰極電極として機能し熱交換器が電極に対する陽極電極として機能する。熱交換器自体を電極として機能させることにより、熱交換器へのスケール付着を抑制することができる。特に、カルシウムイオンの濃度が低下することに加えて、カルシウムイオンと二酸化炭素との結合を抑制し、且つ、カルシウムイオンの熱交換器への移動を抑制することから、熱交換器へのスケール付着を抑制することができる。従って、長期使用における熱交換器の熱交換効率の低下も抑制することができる。また、熱交換器自体を電極として用いるので、陽極・陰極を別途必要とせず安価に構成することができる。   As described above, the hot water storage tank of the present embodiment includes a hot water storage tank body having a water supply path and a hot water discharge path, a heat exchanger that is disposed in the hot water storage tank body and that exchanges heat between water flowing in the hot water storage tank and water in the hot water storage tank, An electrode disposed in the tank body and a power supply unit that connects the heat exchanger and the electrode, and the power supply unit energizes the heat exchanger and the electrode so that the electrode functions as an anode electrode and the heat exchanger It functions as a cathode electrode for the electrode, or the electrode functions as a cathode electrode and the heat exchanger functions as an anode electrode for the electrode. By causing the heat exchanger itself to function as an electrode, scale adhesion to the heat exchanger can be suppressed. In particular, in addition to a decrease in the concentration of calcium ions, the binding between calcium ions and carbon dioxide is suppressed, and the movement of calcium ions to the heat exchanger is suppressed, so that the scale adheres to the heat exchanger. Can be suppressed. Therefore, the fall of the heat exchange efficiency of the heat exchanger in a long-term use can also be suppressed. In addition, since the heat exchanger itself is used as an electrode, an anode / cathode is not required separately and can be constructed at low cost.

次に、本発明の第2の実施例について図3を用いて説明する。基本的な冷凍サイクルや貯湯タンク等の構成は実施例1と同様であるので、実施例1と異なる点について説明する。   Next, a second embodiment of the present invention will be described with reference to FIG. Since the basic refrigeration cycle, hot water storage tank, and the like are configured in the same manner as in the first embodiment, differences from the first embodiment will be described.

実施例1では直流電源部8から熱交換器4及び犠牲陽極6へ直流電圧を印加したが、熱交換器4及び犠牲陽極6へ電圧を印加しない場合に、犠牲陽極6と貯湯タンク1本体を電気的に接続可能なように(犠牲陽極6と貯湯タンク1の金属部を接続可能なように)回路を構成する。犠牲陽極6と貯湯タンク1を電気的に接続することにより、電圧の印加がなくても、貯湯タンク1(一般的にはステンレス鋼)の防食効果を得ることができる。このとき、犠牲陽極6の材料には熱交換器4と同じ銅材は使用できないので、アルミニウムや亜鉛及びその合金を用いることが好ましい。   In the first embodiment, a DC voltage is applied from the DC power supply unit 8 to the heat exchanger 4 and the sacrificial anode 6, but when no voltage is applied to the heat exchanger 4 and the sacrificial anode 6, the sacrificial anode 6 and the hot water storage tank 1 main body are connected. A circuit is constructed so that it can be electrically connected (so that the sacrificial anode 6 and the metal part of the hot water storage tank 1 can be connected). By electrically connecting the sacrificial anode 6 and the hot water storage tank 1, the anticorrosion effect of the hot water storage tank 1 (generally stainless steel) can be obtained without application of voltage. At this time, since the same copper material as the heat exchanger 4 cannot be used as the material of the sacrificial anode 6, it is preferable to use aluminum, zinc, or an alloy thereof.

1 貯湯タンク
2 出湯経路
3 給水経路
4 熱交換器
5 熱交換器絶縁部
6 犠牲陽極
7 犠牲陽極絶縁部
8 直流電源部
9 圧縮機
10 四方弁
11 大気側熱交換器
12 膨張弁
13 吸着剤
DESCRIPTION OF SYMBOLS 1 Hot water storage tank 2 Hot water supply path 3 Water supply path 4 Heat exchanger 5 Heat exchanger insulation part 6 Sacrificial anode 7 Sacrificial anode insulation part 8 DC power supply part 9 Compressor 10 Four-way valve 11 Atmospheric side heat exchanger 12 Expansion valve 13 Adsorbent

Claims (10)

給水口及び出湯口を有する貯湯タンク本体と、
前記貯湯タンク本体内に配置され、内部に流れる冷媒と前記貯湯タンク内の水とを熱交換させる熱交換器と、
前記貯湯タンク本体内に配置される電極と、
前記熱交換器と前記電極とを接続する電源部と、を備え、
前記電源部が前記熱交換器及び前記電極に通電することにより、
前記電極が陽極電極として機能し、前記熱交換器が前記電極に対する陰極電極として機能する、又は、
前記電極が陰極電極として機能し、前記熱交換器が前記電極に対する陽極電極として機能する貯湯タンク。
A hot water storage tank body having a water inlet and a hot water outlet;
A heat exchanger disposed in the hot water storage tank body for exchanging heat between the refrigerant flowing inside and the water in the hot water storage tank;
An electrode disposed in the hot water storage tank body;
A power supply unit connecting the heat exchanger and the electrode,
When the power supply unit energizes the heat exchanger and the electrode,
The electrode functions as an anode electrode, and the heat exchanger functions as a cathode electrode for the electrode, or
A hot water storage tank in which the electrode functions as a cathode electrode and the heat exchanger functions as an anode electrode for the electrode.
請求項1において、前記熱交換器は銅により構成され、
前記電極は銅、鉄、アルミニウム、亜鉛、又はこれらの合金により構成され、
前記電源部により前記熱交換器及び前記電極に通電することにより、前記電極が陽極電極として機能し、前記熱交換器が前記電極に対する陰極電極として機能する貯湯タンク。
In claim 1, the heat exchanger is made of copper,
The electrode is made of copper, iron, aluminum, zinc, or an alloy thereof,
A hot water storage tank in which the electrode functions as an anode electrode and the heat exchanger functions as a cathode electrode for the electrode by energizing the heat exchanger and the electrode by the power supply unit.
請求項1又は2において、前記電源部により前記陽極電極及び前記陰極電極の極性を反転させる貯湯タンク。   The hot water storage tank according to claim 1 or 2, wherein the power supply unit reverses the polarity of the anode electrode and the cathode electrode. 請求項1乃至3の何れかにおいて、前記電極は、アルミニウム、亜鉛、又はこれらの合金で構成され、
前記電源部が前記熱交換器及び前記電極に通電せずに、且つ、前記電極と前記貯湯タンク本体とが電気的に接続される貯湯タンク。
In any one of Claims 1 thru | or 3, the said electrode is comprised with aluminum, zinc, or these alloys,
A hot water storage tank in which the power supply unit does not energize the heat exchanger and the electrode, and the electrode and the hot water storage tank body are electrically connected.
請求項1乃至4の何れかにおいて、前記熱交換器の先端部の水温が摂氏40〜85度の場合に前記電源部が前記熱交換器及び前記電極に通電する貯湯タンク。   5. The hot water storage tank according to claim 1, wherein when the water temperature at the front end portion of the heat exchanger is 40 to 85 degrees Celsius, the power supply unit energizes the heat exchanger and the electrode. 請求項1乃至5の何れかにおいて、前記電源部が印加する電圧が1.2〜5.0Vであり、前記熱交換器の先端部と前記電極の高さ方向中心との距離が25〜80センチメートルである貯湯タンク。   The voltage applied by the power supply unit according to any one of claims 1 to 5 is 1.2 to 5.0 V, and a distance between a tip portion of the heat exchanger and a center in the height direction of the electrode is 25 to 80. A hot water storage tank that is centimeters. 請求項1乃至6の何れかにおいて、前記熱交換器は漏洩検知機構を備えた二重管構造を有する貯湯タンク。   7. The hot water storage tank according to claim 1, wherein the heat exchanger has a double pipe structure provided with a leakage detection mechanism. 請求項1乃至7の何れかにおいて、前記貯湯タンク本体の上部又は前記出湯口に接続された出湯経路の経路中に気体を捕集する空間を備え、前記空間に少なくとも水素又は塩素を吸着する吸着剤を配置する貯湯タンク。   The adsorption according to any one of claims 1 to 7, wherein a space for collecting gas is provided in an upper part of the hot water storage tank body or in a hot water outlet path connected to the hot water outlet, and at least hydrogen or chlorine is adsorbed in the space. Hot water storage tank to place the agent. 請求項1乃至8の何れかにおいて、前記貯湯タンク本体の高さ方向を五等分したとき、
前記電極の中心が、前記貯湯タンクの底面から前記貯湯タンクの2/5〜3/5の高さに位置し、
前記熱交換器の先端部が、前記貯湯タンクの底面〜前記貯湯タンクの1/5の高さに位置し、
前記熱交換器の冷媒導入部が、前記貯湯タンクの底面から前記貯湯タンクの1/5〜2/5の高さに位置する貯湯タンク。
In any one of Claims 1 thru | or 8, When the height direction of the said hot water storage tank main body is divided into five equal parts,
The center of the electrode is located at a height of 2/5 to 3/5 of the hot water storage tank from the bottom surface of the hot water storage tank,
The front end of the heat exchanger is located at the bottom of the hot water storage tank to 1/5 height of the hot water storage tank,
The hot water storage tank in which the refrigerant introduction part of the heat exchanger is located at a height of 1/5 to 2/5 of the hot water storage tank from the bottom surface of the hot water storage tank.
請求項1乃至9の何れかに記載の貯湯タンク、及び、
前記貯湯タンク内に配置された前記熱交換器と、冷媒を高温高圧に圧縮する圧縮機と、ヒートポンプ運転により大気中から熱量を吸収する大気側熱交換器と、冷媒の圧力状態を制御する膨張弁と、を接続して構成された冷凍サイクル装置、
を備えるヒートポンプ式温水給湯機。
The hot water storage tank according to any one of claims 1 to 9, and
The heat exchanger disposed in the hot water storage tank, a compressor that compresses the refrigerant to high temperature and high pressure, an atmosphere-side heat exchanger that absorbs heat from the atmosphere by heat pump operation, and an expansion that controls the pressure state of the refrigerant A refrigeration cycle apparatus configured by connecting a valve,
A heat pump type hot water hot water supply machine.
JP2011270805A 2011-12-12 2011-12-12 Hot water storage tank and heat pump type hot water supply machine Pending JP2013122340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011270805A JP2013122340A (en) 2011-12-12 2011-12-12 Hot water storage tank and heat pump type hot water supply machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011270805A JP2013122340A (en) 2011-12-12 2011-12-12 Hot water storage tank and heat pump type hot water supply machine

Publications (1)

Publication Number Publication Date
JP2013122340A true JP2013122340A (en) 2013-06-20

Family

ID=48774391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011270805A Pending JP2013122340A (en) 2011-12-12 2011-12-12 Hot water storage tank and heat pump type hot water supply machine

Country Status (1)

Country Link
JP (1) JP2013122340A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104633746A (en) * 2015-02-10 2015-05-20 芜湖美的厨卫电器制造有限公司 Control method of burning pump complementary water heating system
CN105627557A (en) * 2016-03-16 2016-06-01 中山市前华五金制品有限公司 Corrosion preventing structure with two anodes used in cooperation in inner container of water heater
CN107726602A (en) * 2017-10-24 2018-02-23 九阳股份有限公司 A kind of electric heater of gas collection discharge
CN114906892A (en) * 2022-05-17 2022-08-16 山东省章丘鼓风机股份有限公司 Heating system for container tank

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104633746A (en) * 2015-02-10 2015-05-20 芜湖美的厨卫电器制造有限公司 Control method of burning pump complementary water heating system
CN104633746B (en) * 2015-02-10 2017-07-25 芜湖美的厨卫电器制造有限公司 Fire the control method of pump complementary hot-water system
CN105627557A (en) * 2016-03-16 2016-06-01 中山市前华五金制品有限公司 Corrosion preventing structure with two anodes used in cooperation in inner container of water heater
CN107726602A (en) * 2017-10-24 2018-02-23 九阳股份有限公司 A kind of electric heater of gas collection discharge
CN107726602B (en) * 2017-10-24 2020-08-18 杭州九阳小家电有限公司 Electric water heater with gas collection and discharge functions
CN114906892A (en) * 2022-05-17 2022-08-16 山东省章丘鼓风机股份有限公司 Heating system for container tank

Similar Documents

Publication Publication Date Title
EP2402289B1 (en) Hot-water supply device
JP6095341B2 (en) Scale suppression device, water heater, and hot water consumption device
JP2013122340A (en) Hot water storage tank and heat pump type hot water supply machine
EP1715265B1 (en) Refrigeration machine having drain pan
EP1792647A1 (en) Air filtering apparatus
JP6173462B2 (en) Anti-corrosion performance deterioration detection device, hot-water supply heating system and equipment
GB2535009A (en) Electrochemical refrigeration systems and appliances
JP5383111B2 (en) Fuel cell
JP5855291B1 (en) Heat exchanger for power generation system, binary power generation system including the heat exchanger, and control method for heat exchanger for power generation system
CN108507064A (en) Electrochemistry air-conditioning system and its control method
JP2009026718A (en) Fuel cell cogeneration system
JP2011127825A (en) Water heater
JP7082002B2 (en) Electrolytic cell and how to use it
CN103118989A (en) Electrolysis device and heat-pump-type water heater provided with same
KR20110000263A (en) Oxygen pump and air conditioner using thereof
KR20080060858A (en) Airconditioner
KR200283098Y1 (en) Device for preventing Anti-Scale and pension
JP2009115393A (en) Water heater
JP2013202486A (en) Electrolysis apparatus and temperature control water supply machine including the same
CN115433941B (en) Corrosion inhibitor and method for controlling SCAL type indirect cooling system corrosion and indoor simulation system and method
CN203286921U (en) Heat exchange system with high-chlorine water as heat-transfer medium
JP5525499B2 (en) Method and apparatus for grasping inhibitor concentration in absorbent, and absorption chiller / heater equipped with the apparatus
JP2022106088A (en) Cooling water purifier capable of being connected to cooling tower
JP2009204179A (en) Electric water heater
JP5932125B1 (en) Scale removing apparatus and scale removing method